1
|
Heljanko V, Tyni O, Johansson V, Virtanen JP, Räisänen K, Lehto KM, Lipponen A, Oikarinen S, Pitkänen T, Heikinheimo A. Clinically relevant sequence types of carbapenemase-producing Escherichia coli and Klebsiella pneumoniae detected in Finnish wastewater in 2021-2022. Antimicrob Resist Infect Control 2024; 13:14. [PMID: 38291521 PMCID: PMC10829384 DOI: 10.1186/s13756-024-01370-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a critical threat to human health. Escherichia coli and Klebsiella pneumoniae are clinically the most important species associated with AMR and are the most common carbapenemase-producing (CP) Enterobacterales detected in human specimens in Finland. Wastewater surveillance has emerged as a potential approach for population-level surveillance of AMR, as wastewater could offer a reflection from a larger population with one sample and minimal recognized ethical issues. In this study, we investigated the potential of wastewater surveillance to detect CP E. coli and K. pneumoniae strains similar to those detected in human specimens. METHODS Altogether, 89 composite samples of untreated community wastewater were collected from 10 wastewater treatment plants across Finland in 2021-2022. CP E. coli and K. pneumoniae were isolated using selective culture media and identified using MALDI-TOF MS. Antimicrobial susceptibility testing was performed using disk diffusion test and broth microdilution method, and a subset of isolates was characterized using whole-genome sequencing. RESULTS CP E. coli was detected in 26 (29.2%) and K. pneumoniae in 25 (28.1%) samples. Among E. coli, the most common sequence type (ST) was ST410 (n = 7/26, 26.9%), while ST359 (n = 4/25, 16.0%) predominated among K. pneumoniae. Globally successful STs were detected in both E. coli (ST410, ST1284, ST167, and ST405) and K. pneumoniae (ST512, ST101, and ST307). K. pneumoniae carbapenemases (KPC) were the most common carbapenemases in both E. coli (n = 11/26, 42.3%) and K. pneumoniae (n = 13/25, 52.0%), yet also other carbapenemases, such as blaNDM-5, blaOXA-48, and blaOXA-181, were detected. We detected isolates harboring similar ST and enzyme type combinations previously linked to clusters in Finland, such as E. coli ST410 with blaKPC-2 and K. pneumoniae ST512 with blaKPC-3. CONCLUSIONS Our study highlights the presence of clinically relevant strains of CP E. coli and K. pneumoniae in community wastewater. The results indicate that wastewater surveillance could serve as a monitoring tool for CP Enterobacterales. However, the specificity and sensitivity of the methods should be improved, and technologies, like advanced sequencing methods, should be utilized to distinguish data with public health relevance, harness the full potential of wastewater surveillance, and implement the data in public health surveillance.
Collapse
Affiliation(s)
- Viivi Heljanko
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | - Olga Tyni
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Venla Johansson
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | - Kati Räisänen
- Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Kirsi-Maarit Lehto
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anssi Lipponen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tarja Pitkänen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Finnish Food Authority, Seinäjoki, Finland
| |
Collapse
|
2
|
Kraftova L, Finianos M, Studentova V, Chudejova K, Jakubu V, Zemlickova H, Papagiannitsis CC, Bitar I, Hrabak J. Evidence of an epidemic spread of KPC-producing Enterobacterales in Czech hospitals. Sci Rep 2021; 11:15732. [PMID: 34344951 PMCID: PMC8333104 DOI: 10.1038/s41598-021-95285-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/23/2021] [Indexed: 12/27/2022] Open
Abstract
The aim of the present study is to describe the ongoing spread of the KPC-producing strains, which is evolving to an epidemic in Czech hospitals. During the period of 2018-2019, a total of 108 KPC-producing Enterobacterales were recovered from 20 hospitals. Analysis of long-read sequencing data revealed the presence of several types of blaKPC-carrying plasmids; 19 out of 25 blaKPC-carrying plasmids could be assigned to R (n = 12), N (n = 5), C (n = 1) and P6 (n = 1) incompatibility (Inc) groups. Five of the remaining blaKPC-carrying plasmids were multireplicon, while one plasmid couldn't be typed. Additionally, phylogenetic analysis confirmed the spread of blaKPC-carrying plasmids among different clones of diverse Enterobacterales species. Our findings demonstrated that the increased prevalence of KPC-producing isolates was due to plasmids spreading among different species. In some districts, the local dissemination of IncR and IncN plasmids was observed. Additionally, the ongoing evolution of blaKPC-carrying plasmids, through genetic rearrangements, favours the preservation and further dissemination of these mobile genetic elements. Therefore, the situation should be monitored, and immediate infection control should be implemented in hospitals reporting KPC-producing strains.
Collapse
Affiliation(s)
- Lucie Kraftova
- Department of Microbiology, Faculty of Medicine, and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Marc Finianos
- Department of Microbiology, Faculty of Medicine, and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Vendula Studentova
- Department of Microbiology, Faculty of Medicine, and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Katerina Chudejova
- Department of Microbiology, Faculty of Medicine, and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Vladislav Jakubu
- National Reference Laboratory for Antibiotics, National Institute of Public Health, Pilsen, Czech Republic
- Department of Microbiology, 3rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady and National Institute of Public Health, Prague, Czech Republic
| | - Helena Zemlickova
- National Reference Laboratory for Antibiotics, National Institute of Public Health, Pilsen, Czech Republic
- Department of Microbiology, 3rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady and National Institute of Public Health, Prague, Czech Republic
| | | | - Ibrahim Bitar
- Department of Microbiology, Faculty of Medicine, and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic.
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic.
| | - Jaroslav Hrabak
- Department of Microbiology, Faculty of Medicine, and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| |
Collapse
|
3
|
Majewski P, Gutowska A, Sacha P, Schneiders T, Talalaj M, Majewska P, Zebrowska A, Ojdana D, Wieczorek P, Hauschild T, Kowalczuk O, Niklinski J, Radziwon P, Tryniszewska E. Expression of AraC/XylS stress response regulators in two distinct carbapenem-resistant Enterobacter cloacae ST89 biotypes. J Antimicrob Chemother 2021; 75:1146-1150. [PMID: 31960042 DOI: 10.1093/jac/dkz569] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 12/09/2019] [Accepted: 12/20/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The growing incidence of MDR Gram-negative bacteria is a rapidly emerging challenge in modern medicine. OBJECTIVES We sought to establish the role of intrinsic drug-resistance regulators in combination with specific genetic mutations in 11 Enterobacter cloacae isolates obtained from a single patient within a 7 week period. METHODS The molecular characterization of eight carbapenem-resistant and three carbapenem-susceptible E. cloacae ST89 isolates included expression-level analysis and WGS. Quantitative PCR included: (i) chromosomal cephalosporinase gene (ampC); (ii) membrane permeability factor genes, e.g. ompF, ompC, acrA, acrB and tolC; and (iii) intrinsic regulatory genes, e.g. ramA, ampR, rob, marA and soxS, which confer reductions in antibiotic susceptibility. RESULTS In this study we describe the influence of the alterations in membrane permeability (ompF and ompC levels), intrinsic regulatory genes (ramA, marA, soxS) and intrinsic chromosomal cephalosporinase AmpC on reductions in carbapenem susceptibility of E. cloacae clinical isolates. Interestingly, only the first isolate possessed the acquired VIM-4 carbapenemase, which has been lost in subsequent isolates. The remaining XDR E. cloacae ST89 isolates presented complex carbapenem-resistance pathways, which included perturbations in permeability of bacterial membranes mediated by overexpression of ramA, encoding an AraC/XylS global regulator. Moreover, susceptible isolates differed significantly from other isolates in terms of marA down-regulation and soxS up-regulation. CONCLUSIONS Molecular mechanisms of resistance among carbapenem-resistant E. cloacae included production of acquired VIM-4 carbapenemase, significant alterations in membrane permeability due to increased expression of ramA, encoding an AraC/XylS global regulator, and the overproduction of chromosomal AmpC cephalosporinase.
Collapse
Affiliation(s)
- Piotr Majewski
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Gutowska
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Pawel Sacha
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | | | - Mariola Talalaj
- Department of Anaesthesiology and Intensive Care with Postoperative Unit, University Children's Clinical Hospital, Bialystok, Poland
| | | | | | - Dominika Ojdana
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Wieczorek
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz Hauschild
- Department of Microbiology, Institute of Biology, University of Bialystok, Bialystok, Poland
| | - Oksana Kowalczuk
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Radziwon
- Regional Centre for Transfusion Medicine, Bialystok, Poland.,Department of Hematology, Medical University of Bialystok, Bialystok, Poland
| | - Elzbieta Tryniszewska
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
4
|
Ramos-Vivas J, Chapartegui-González I, Fernández-Martínez M, González-Rico C, Barrett J, Fortún J, Escudero R, Marco F, Linares L, Nieto J, Aranzamendi M, Muñoz P, Valerio M, Aguado JM, Chaves F, Gracia-Ahufinger I, Paez-Vega A, Martínez-Martínez L, Fariñas MC. Adherence to Human Colon Cells by Multidrug Resistant Enterobacterales Strains Isolated From Solid Organ Transplant Recipients With a Focus on Citrobacter freundii. Front Cell Infect Microbiol 2020; 10:447. [PMID: 33042855 PMCID: PMC7525035 DOI: 10.3389/fcimb.2020.00447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
Enterobacteria species are common causes of hospital-acquired infections, which are associated with high morbidity and mortality rates. Immunocompromised patients such as solid organ transplant (SOT) recipients are especially at risk because they are frequently exposed to antibiotics in the course of their treatments. In this work, we used a collection of 106 Escherichia coli, 78 Klebsiella pneumoniae, 25 Enterobacter spp., and 24 Citrobacter spp. multidrug resistant strains isolated from transplant patients (hepatic, renal or renal/pancreatic) in order to examine their ability to adhere in vitro to HT-29 human colon cells, and to determine if some adhesive characteristics are associated with prevalence and persistence of these strains. A total of 33 E. coli (31%), 21 K. pneumoniae (27%), 7 Enterobacter spp. (28%), and 5 Citrobacter spp. (21%), adhered to the colon epithelial cells. Two main adherence patterns were observed in the four species analyzed, diffuse adherence, and aggregative adherence. Under transmission electronic microscopy (TEM), most bacteria lacked visible fimbria on their surface, despite their strong adherence to epithelial cells. None of the strains studied was able to induce any cytotoxic effect on HT-29 cells although some of them strongly colonizing both cells and glass coverslips at high density. Some of the strains failed to adhere to the epithelial cells but adhered strongly to the cover-slide, which shows that microscopy studies are mandatory to elucidate the adherence of bacteria to epithelial cells in vitro, and that quantitative assays using colony forming unit (CFUs) counting need to be supplemented with pictures to determine definitively if a bacterial strain adheres or not to animal cells in vitro. We report here, for the first time, the aggregative adherence pattern of two multidrug resistant (MDR) Citrobacter freundii strains isolated from human patients; importantly, biofilm formation in Citrobacter is totally dependent on the temperature; strong biofilms were formed at room temperature (RT) but not at 37°C, which can play an important role in the colonization of hospital surfaces. In conclusion, our results show that there is a great variety of adhesion phenotypes in multidrug-resistant strains that colonize transplanted patients.
Collapse
Affiliation(s)
| | | | - Marta Fernández-Martínez
- Instituto de Investigación Valdecilla-IDIVAL, Santander, Spain.,Service of Microbiology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Claudia González-Rico
- Instituto de Investigación Valdecilla-IDIVAL, Santander, Spain.,Service of Infectious Diseases, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - John Barrett
- Instituto de Investigación Valdecilla-IDIVAL, Santander, Spain.,New York University School of Medicine, New York, NY, United States
| | - Jesús Fortún
- Infectious Diseases Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Rosa Escudero
- Infectious Diseases Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Francesc Marco
- Service of Microbiology, Hospital Clínic-IDIBAPS, Universidad de Barcelona, Barcelona, Spain
| | - Laura Linares
- Infectious Diseases Service, Hospital Clínic-IDIBAPS, Universidad de Barcelona, Barcelona, Spain
| | - Javier Nieto
- Infectious Diseases Unit, Hospital Universitario de Cruces, Barakaldo, Spain
| | | | - Patricia Muñoz
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Maricela Valerio
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Jose María Aguado
- Infectious Diseases Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Fernando Chaves
- Service of Microbiology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Irene Gracia-Ahufinger
- Microbiology Unit, Hospital Universitario Reina Sofía, Córdoba, Spain.,Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.,Department of Microbiology, Universidad de Córdoba, Córdoba, Spain
| | - Aurora Paez-Vega
- Infectious Diseases Unit, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Luis Martínez-Martínez
- Microbiology Unit, Hospital Universitario Reina Sofía, Córdoba, Spain.,Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.,Department of Microbiology, Universidad de Córdoba, Córdoba, Spain
| | - María Carmen Fariñas
- Instituto de Investigación Valdecilla-IDIVAL, Santander, Spain.,Service of Infectious Diseases, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| |
Collapse
|
5
|
Lalaoui R, Javelle E, Bakour S, Ubeda C, Rolain JM. Infections Due to Carbapenem-Resistant Bacteria in Patients With Hematologic Malignancies. Front Microbiol 2020; 11:1422. [PMID: 32765433 PMCID: PMC7379235 DOI: 10.3389/fmicb.2020.01422] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/02/2020] [Indexed: 12/24/2022] Open
Abstract
In developed countries, hematological malignancies (HM) account for 8 to 10% of cancers diagnosed annually and one-third of patients with HM (HMP) are expected to die from their disease. The former wide spectrum “magic bullet,” imipenem, has been ousted by the emergence of carbapenem resistant (CR) pathogens. In endemic areas, infections with CR-bacteria occur in vulnerable patients, notably in HMP, who suffer from high mortality related to infectious complications. In this work, we reviewed epidemiologic and clinical factors associated with CR-infections in adult HMP and data on CR-related mortality and antibiotic treatments in this population. We found that resistance profile of strains involved in HMP infections, mainly bacteremia, reflect local epidemiology. Significant risk factors for infections with CR-bacteria include sex male, age around 50 years old, acute leukemia, selvage chemotherapy, neutropenia, and digestive colonization by CR-bacteria. Mortality rate is high in HMP infected with CR-Enterobacteriaceae, more particularly in case of acute myeloid leukemia and unresolved neutropenia, due to inappropriate empiric management and delayed administration of targeted antibiotics, such as tigecycline, colistin, or new associations of active drugs. Thus, we developed an algorithm for clinicians, assessing the incremental risk for CR-bacterial infection occurrence and mortality in febrile HMP, to guide decisions related to empirical therapeutic strategies.
Collapse
Affiliation(s)
- Rym Lalaoui
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Emilie Javelle
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France.,IHU-Méditerranée Infection, Marseille, France.,Laveran Military Teaching Hospital, Marseille, France
| | - Sofiane Bakour
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Carles Ubeda
- Centro Superior de Investigación en Salud Pública, FISABIO, Valencia, Spain.,Centers of Biomedical Research Network (CIBER), Epidemiology and Public Health, Madrid, Spain
| | - Jean-Marc Rolain
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
6
|
Whole genome analysis of multidrug-resistant Citrobacter freundii B9-C2 isolated from preterm neonate’s stool in the first week. J Glob Antimicrob Resist 2020; 21:246-251. [DOI: 10.1016/j.jgar.2020.03.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/28/2020] [Accepted: 03/25/2020] [Indexed: 12/23/2022] Open
|
7
|
Ramsamy Y, Mlisana KP, Amoako DG, Allam M, Ismail A, Singh R, Abia ALK, Essack SY. Pathogenomic Analysis of a Novel Extensively Drug-Resistant Citrobacter freundii Isolate Carrying a bla NDM-1 Carbapenemase in South Africa. Pathogens 2020; 9:pathogens9020089. [PMID: 32024012 PMCID: PMC7168644 DOI: 10.3390/pathogens9020089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
Pathogenomic analysis was performed on a novel carbapenem-resistant Citrobacter freundii isolate (H2730R) from a rectal swab of an adult male patient admitted to a tertiary hospital, Durban, South Africa. H2730R was identified using selective media and API 20e kit. Confirmatory identification and antibiotic susceptibility testing were performed using the VITEK II. H2730R was whole-genome sequenced on the Illumina MiSeq platform. H2730R was resistant to all tested antibiotics except tigecycline and was defined as ST498 by the C. freundii multilocus sequence typing (MLST) database. The estimated pathogenic potential predicted a higher probability (Pscore ≈ 0.875), supporting H2730R as a human pathogen. H2730R harbored 25 putative acquired resistance genes, 4 plasmid replicons, 4 intact prophages, a class 1 integron (IntI1), 2 predominant insertion sequences (IS3 and IS5), numerous efflux genes, and virulome. BLASTn analysis of the blaNDM-1 encoding contig (00022) and its flanking sequences revealed the blaNDM-1 was located on a plasmid similar to the multireplicon p18-43_01 plasmid reported for the spread of carbapenem resistance in South Africa. Phylogenomic analysis showed clustering of H2730R with CF003/CF004 strains in the same clade, suggesting a possible association between C. freundii strains/clones. Acquiring the p18-43_01 plasmid containing blaNDM-1, the diversity, and complex resistome, virulome, and mobilome of this pathogen makes its incidence very worrying regarding mobilized resistance. This study presents the background genomic information for future surveillance and tracking of the spread of carbapenem-resistant Enterobacteriaceae in South Africa.
Collapse
Affiliation(s)
- Yogandree Ramsamy
- Medical Microbiology, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
- National Health Laboratory Services, Durban 4000, South Africa;
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (A.L.K.A.); (S.Y.E.)
- Correspondence:
| | | | - Daniel G. Amoako
- Infection Genomics and Applied Bioinformatics Division, Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| | - Mushal Allam
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg 2131, South Africa; (M.A.); (A.I.)
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg 2131, South Africa; (M.A.); (A.I.)
| | - Ravesh Singh
- Medical Microbiology, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
- National Health Laboratory Services, Durban 4000, South Africa;
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (A.L.K.A.); (S.Y.E.)
| | - Sabiha Y. Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (A.L.K.A.); (S.Y.E.)
| |
Collapse
|
8
|
Liu L, Chen D, Liu L, Lan R, Hao S, Jin W, Sun H, Wang Y, Liang Y, Xu J. Genetic Diversity, Multidrug Resistance, and Virulence of Citrobacter freundii From Diarrheal Patients and Healthy Individuals. Front Cell Infect Microbiol 2018; 8:233. [PMID: 30050870 PMCID: PMC6052900 DOI: 10.3389/fcimb.2018.00233] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022] Open
Abstract
Objectives:Citrobacter freundii is a frequent cause of nosocomial infections and a known cause of diarrheal infections, and has increasingly become multidrug resistant (MDR). In this study, we aimed to determine the genetic diversity, the antimicrobial resistance profiles and in vitro virulence properties of C. freundii from diarrheal patients and healthy individuals. Methods: 82 C. freundii isolates were obtained from human diarrheal outpatients and healthy individuals. Multilocus Sequence Typing (MLST) of seven housekeeping genes was performed. Antimicrobial susceptibility testing was carried out using the disk diffusion method according to the Clinical and Laboratory Standards Institute (CLSI) recommendations. Adhesion and cytotoxicity to HEp-2 cells were assessed. PCR and sequencing were used to identify blaCTX-M, blaSHV, blaTEM, qnrA, qnrB, qnrS, qnrC, qnrD, aac(6')-Ib-cr, and qepA genes. Results: The 82 C. freundii isolates were divided into 76 sequence types (STs) with 65 STs being novel, displaying high genetic diversity. Phylogenetic analysis divided the 82 isolates into 5 clusters. All 82 isolates were sensitive to imipenem (IPM), but resistant to one or more other 16 antibiotics tested. Twenty-six isolates (31.7%) were multidrug resistant to three or more antibiotic classes out of the 10 distinct antibiotic classes tested. Five MDR isolates, all of which were isolated from 2014, harbored one or more of the resistance genes, blaTEM-1, blaCTX-M-9, aac(6')-Ib-cr, qnrS1, qnrB9, and qnrB13. All 11 qnrB-carrying C. freundii isolates belonged to cluster 1, and one C. freundii isolate carried a new qnrB gene (qnrB92). Six isolates showed strong cytotoxicity to HEp-2 cells, one of which was multidrug resistant. Conclusions:C. freundii isolates from human diarrheal outpatients and healthy individuals were diverse with variation in sequence types, antibiotic resistance profiles and virulence properties.
Collapse
Affiliation(s)
- Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang, China
| | - Daoli Chen
- Maanshan Center for Disease Control and Prevention, Ma'anshan, China
| | - Liqin Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Shuai Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Wenjie Jin
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Hui Sun
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yiting Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ying Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang, China
| |
Collapse
|
9
|
Complete Genome Sequence of Citrobacter freundii 705SK3, an OXA-48-Encoding Wastewater Isolate. GENOME ANNOUNCEMENTS 2017; 5:5/33/e00842-17. [PMID: 28818914 PMCID: PMC5604787 DOI: 10.1128/genomea.00842-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We present the genome sequence of Citrobacter freundii 705SK3, a wastewater isolate harboring an IncL OXA-48-encoding plasmid. Assembly of the genome resulted in a 5,242,839-bp circular chromosome (GC content, 52%) and two closed plasmids of 296,175 bp and 63, 458 bp in size.
Collapse
|