1
|
Nakhaie M, Rukerd MRZ, Shahpar A, Pardeshenas M, Khoshnazar SM, Khazaeli M, Bashash D, Nezhad NZ, Charostad J. A Closer Look at the Avian Influenza Virus H7N9: A Calm before the Storm? J Med Virol 2024; 96:e70090. [PMID: 39601174 DOI: 10.1002/jmv.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/15/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
The avian influenza A (H7N9) virus, which circulates in wild birds and poultry, has been a major concern for public health since it was first discovered in China in 2013 due to its demonstrated ability to infect humans, causing severe respiratory illness with high mortality rates. According to the World Health Organization (WHO), a total of 1568 human infections with 616 fatal cases caused by novel H7N9 viruses have been reported in China from early 2013 to January 2024. This manuscript provides a comprehensive review of the virology, evolutionary patterns, and pandemic potential of H7N9. The H7N9 virus exhibits a complex reassortment history, receiving genes from H9N2 and other avian influenza viruses. The presence of certain molecular markers, such as mutations in the hemagglutinin and polymerase basic protein 2, enhances the virus's adaptability to human hosts. The virus activates innate immune responses through pattern recognition receptors, leading to cytokine production and inflammation. Clinical manifestations range from mild to severe, with complications including pneumonia, acute respiratory distress syndrome, and multiorgan failure. Diagnosis relies on molecular assays such as reverse transcription-polymerase chain reaction. The increasing frequency of human infections, along with the virus's ability to bind to human receptors and cause severe disease, highlights its pandemic potential. Continued surveillance, vaccine development, and public health measures are crucial to limit the risk posed by H7N9. Understanding the virus's ecology, transmission dynamics, and pathogenesis is essential for developing effective prevention and control strategies.
Collapse
Affiliation(s)
- Mohsen Nakhaie
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
- Clinical Research Development Unit, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Rezaei Zadeh Rukerd
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amirhossein Shahpar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Pardeshenas
- Department of Microbiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mana Khazaeli
- Clinical Research Development Unit, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Zeinali Nezhad
- Clinical Research Development Unit, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Javad Charostad
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
2
|
Zhang L, Ye X, Liu Y, Zhang Z, Xia X, Dong S. Research progress on the effect of traditional Chinese medicine on the activation of PRRs-mediated NF-κB signaling pathway to inhibit influenza pneumonia. Front Pharmacol 2023; 14:1132388. [PMID: 37089926 PMCID: PMC10119400 DOI: 10.3389/fphar.2023.1132388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Influenza pneumonia has challenged public health and social development. One of the hallmarks of severe influenza pneumonia is overproduction of pro-inflammatory cytokines and chemokines, which result from the continuous activation of intracellular signaling pathways, such as the NF-κB pathway, mediated by the interplay between viruses and host pattern recognition receptors (PRRs). It has been reported that traditional Chinese medicines (TCMs) can not only inhibit viral replication and inflammatory responses but also affect the expression of key components of PRRs and NF-κB signaling pathways. However, whether the antiviral and anti-inflammatory roles of TCM are related with its effects on NF-κB signaling pathway activated by PRRs remains unclear. Here, we reviewed the mechanism of PRRs-mediated activation of NF-κB signaling pathway following influenza virus infection and summarized the influence of anti-influenza TCMs on inflammatory responses and the PRRs/NF-κB signaling pathway, so as to provide better understanding of the mode of action of TCMs in the treatment of influenza pneumonia.
Collapse
Affiliation(s)
- Ling Zhang
- The Affiliated Anning First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiong Ye
- The Affiliated Anning First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yuntao Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Zhongde Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- *Correspondence: Zhongde Zhang, ; Xueshan Xia, ; Shuwei Dong,
| | - Xueshan Xia
- The Affiliated Anning First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Zhongde Zhang, ; Xueshan Xia, ; Shuwei Dong,
| | - Shuwei Dong
- The Affiliated Anning First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Zhongde Zhang, ; Xueshan Xia, ; Shuwei Dong,
| |
Collapse
|
3
|
Zhang Y, Wang R, Shi W, Zheng Z, Wang X, Li C, Zhang S, Zhang P. Antiviral effect of fufang yinhua jiedu (FFYH) granules against influenza A virus through regulating the inflammatory responses by TLR7/MyD88 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114063. [PMID: 33813013 PMCID: PMC9759603 DOI: 10.1016/j.jep.2021.114063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fufang-Yinhua-Jiedu Granules (FFYH) optimized from a Yin-Qiao-San, as traditional Chinese medicine (TCM), was used to treat influenza and upper respiratory tract infection and was recommended for the prevention and treatment of SARS in 2003 and current COVID-19 in Anhui Province in 2020. AIM OF STUDY In the clinical studies, FFYH was very effective for the treatment of influenza, but the mechanism of action against influenza A virus remains unclear. In the present study, we investigated the antiviral effect of FFYH against influenza A virus in vitro and vivo. Moreover, the potential mechanism of FFYH against influenza A virus in vivo was investigated for the first time. MATERIALS AND METHODS CPE inhibition assay and HA assay were used to evaluate the in vitro antiviral effects of FFYH against influenza A virus H1N1, H3N2, H5N1, H7N9 and H9N2. Mice were used to evaluate the antiviral effect of FFYH in vivo with ribavirin and lianhuaqingwen as positive controls. RT-PCR was used to quantify the mRNA transcription of TNF-α, IL-6, IFN-γ, IP10, and IL-1β mRNA. ELISA was used to examine the expression of inflammatory factors such as TNF-α, IL-6, IFN-γ, IP10, and IL-1β in sera. The blood parameters were analyzed with auto hematology analyzer. Moreover, the potential mechanism of FFYH against influenza A virus in vivo was also investigated. RESULTS FFYH showed a broad-spectrum of antiviral activity against H1N1, H3N2, H5N1, H7N9, and H9N2 influenza A viruses. Furthermore, FFYH dose-dependently increased the survival rate, significantly prolonged the median survival time of mice, and markedly reduced lung injury caused by influenza A virus. Also, FFYH significantly improve the sick signs, food taken, weight loss, blood parameters, lung index, and lung pathological changes. Moreover, FFYH could markedly inhibit the inflammatory cytokine expression of TNF-α, IL-6, IFN-γ, IP10, IL-10, and IL-1β mRNA or protein via inhibition of the TLR7/MyD88/NF-κB signaling pathway in vivo. CONCLUSION FFYH not only showed a broad-spectrum of anti-influenza virus activity in vitro, but also exhibited a significant protective effect against lethal influenza virus infection in vivo. Furthermore, our results indicated that the in vivo antiviral effect of FFYH against influenza virus may be attributed to suppressing the expression of inflammatory cytokines via regulating the TLR7/MyD88/NF-κB signaling pathway. These findings provide evidence for the clinical treatment of influenza A virus infection with FFYH.
Collapse
Affiliation(s)
- Yuqian Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Ronghua Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Weiqing Shi
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Zhihui Zheng
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoquan Wang
- College of Veterinary Medicine & Jiangsu Provincial Key Laboratory of Human Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Cheng Li
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Shuofeng Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Pinghu Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225009, China; College of Veterinary Medicine & Jiangsu Provincial Key Laboratory of Human Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Winokur P, El Sahly HM, Mulligan MJ, Frey SE, Rupp R, Anderson EJ, Edwards KM, Bernstein DI, Schmader K, Jackson LA, Chen WH, Hill H, Bellamy A. Immunogenicity and safety of different dose schedules and antigen doses of an MF59-adjuvanted H7N9 vaccine in healthy adults aged 65 years and older. Vaccine 2021; 39:1339-1348. [PMID: 33485646 PMCID: PMC8504682 DOI: 10.1016/j.vaccine.2020.11.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 11/10/2020] [Accepted: 11/14/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND The number of human influenza A (H7N9) infections has escalated since 2013 with high resultant mortality. We conducted a phase II, randomized, partially-blinded trial to evaluate the safety and immunogenicity of an MF59-adjuvanted inactivated, split virion, H7N9 influenza vaccine (H7N9 IIV) administered at various dose levels and schedules in older adults. METHODS 479 adults ≥ 65 years of age in stable health were randomized to one of six groups to receive either 3.75, 7.5 or 15 µg of influenza A/Shanghai/02/2013 (H7N9) IIV adjuvanted with MF59 given as a 3-dose series either on days 1, 28 and 168 or on days 1, 57 and 168. Immunogenicity was assessed using both hemagglutination inhibition (HAI) and microneutralization (MN) assays prior to and 28 days following each dose. Safety was assessed through 1 year following the last dose. RESULTS Subjects in all groups had only modest immune responses, with the HAI GMT < 20 after the second vaccine dose and <29 after the third vaccine dose. HAI titers ≥ 40 were seen in <37% of subjects after the second dose and <49% after the third dose. There were no significant differences seen between the two dose schedules. MN titers followed similar patterns, although the titers were approximately two-fold higher than the HAI titers. Logistic regression modeling demonstrated no statistically significant associations between the immune responses and age, sex or body mass index whereas recent prior receipt of seasonal influenza vaccine significantly reduced the HAI response [OR 0.13 (95% CI 0.05, 0.33); p < 0.001]. Overall, the vaccine was well tolerated. Two mild potentially immune mediated adverse events occurred, lichen planus and guttate psoriasis. CONCLUSIONS MF59-adjuvanted H7N9 IIV was only modestly immunogenic in the older adult population following three doses. There were no significant differences in antibody responses noted among the various antigen doses or the two dose schedules.
Collapse
Affiliation(s)
- Patricia Winokur
- Division of Infectious Diseases, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States.
| | - Hana M El Sahly
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Mark J Mulligan
- The Hope Clinic of the Emory Vaccine Center, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Sharon E Frey
- Department of Medicine, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Richard Rupp
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States
| | - Evan J Anderson
- Emory Children's Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Kathryn M Edwards
- Department of Pediatrics, Vanderbilt Vaccine Research Program, Vanderbilt University, Nashville, TN, United States
| | - David I Bernstein
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | | | - Lisa A Jackson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, United States
| | - Wilbur H Chen
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Heather Hill
- The Emmes Corporation, Rockville, MD, United States
| | | |
Collapse
|
5
|
A delicate balancing act: immunity and immunopathology in human H7N9 influenza virus infections. Curr Opin Infect Dis 2020; 32:191-195. [PMID: 30888978 DOI: 10.1097/qco.0000000000000538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW A delicate balance exists between a protective and detrimental immune response to an invading viral pathogen. Here, we review the latest advancements in our understanding of immunity and immunopathology during H7N9 influenza A virus (IAV) infections and its relevance to disease management and diagnosis. RECENT FINDINGS Recent studies have highlighted the role of specific leukocytes in the pathogenesis of H7N9 IAV infections and potential diagnostic role that host cytokine profiles can play in forecasting disease severity. Furthermore, alterations in diet have emerged as a possible preventive measure for severe IAV infections. SUMMARY The recent emergence and continued evolution of H7N9 IAVs have emphasized the threat that these avian viruses pose to human health. Understanding the role of the host immune response in both disease protection and pathogenesis is an essential first step in the creation of novel therapeutic and preventive measures for H7N9 IAV infections.
Collapse
|
6
|
Endo M, Tanishima M, Ibaragi K, Hayashida K, Fukuda T, Tanabe T, Naruse T, Kino Y, Ueda K. Clinical phase II and III studies of an AS03-adjuvanted H5N1 influenza vaccine produced in an EB66 ® cell culture platform. Influenza Other Respir Viruses 2020; 14:551-563. [PMID: 32579785 PMCID: PMC7431644 DOI: 10.1111/irv.12755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/09/2019] [Accepted: 04/21/2020] [Indexed: 12/22/2022] Open
Abstract
Background We have developed an AS03‐adjuvanted H5N1 influenza vaccine produced in an EB66® cell culture platform (KD‐295). Objectives In accordance with Japanese guidelines for development of pandemic prototype vaccines, the phase II study was conducted in a double‐blind, randomized, parallel‐group comparison study and the phase III study was conducted in an open‐label, non‐randomized, uncontrolled study. Methods Healthy adult volunteers aged 20 ‐ 64 years enrolled in the phase II and III studies (N = 248 and N = 369) received KD‐295 intramuscularly twice with a 21‐day interval. After administration, immune response and adverse events were evaluated. In the phase II study, four different vaccine formulations were compared: MA (3.75 μg hemagglutinin [HA] antigen + AS03 adjuvant system), MB (3.75 μg HA + 1/2AS03), HA (7.5 μg HA + AS03), and HB (7.5 μg HA + 1/2AS03). In the phase III study, the MA formulation was further evaluated. Results In the phase II study, all four vaccine formulations were well‐tolerated and no SAE related to vaccination were observed. The MA formulation was slightly more immunogenic and less reactogenic among the vaccine formulations. Therefore, the MA formulation was selected for the phase III study, and it was well‐tolerated and no serious adverse drug reactions were observed. The vaccine fulfilled the three immunogenicity criteria described in the Japanese guidelines. Conclusions These data indicate that the MA formulation of KD‐295 was well‐tolerated and highly immunogenic and it can be considered a useful pandemic and pre‐pandemic influenza vaccine.
Collapse
Affiliation(s)
- Masafumi Endo
- KM Biologics Co., Ltd. (KM Biologics), Kumamoto, Japan
| | | | - Kayo Ibaragi
- KM Biologics Co., Ltd. (KM Biologics), Kumamoto, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Zheng S, Zou Q, Wang X, Bao J, Yu F, Guo F, Liu P, Shen Y, Wang Y, Yang S, Wu W, Sheng J, Vijaykrishna D, Gao H, Chen Y. Factors Associated With Fatality Due to Avian Influenza A(H7N9) Infection in China. Clin Infect Dis 2020; 71:128-132. [PMID: 31418813 PMCID: PMC8127055 DOI: 10.1093/cid/ciz779] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/09/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The high case fatality rate of influenza A(H7N9)-infected patients has been a major clinical concern. METHODS To identify the common causes of death due to H7N9 as well as identify risk factors associated with the high inpatient mortality, we retrospectively collected clinical treatment information from 350 hospitalized human cases of H7N9 virus in mainland China during 2013-2017, of which 109 (31.1%) had died, and systematically analyzed the patients' clinical characteristics and risk factors for death. RESULTS The median age at time of infection was 57 years, whereas the median age at time of death was 61 years, significantly older than those who survived. In contrast to previous studies, we found nosocomial infections comprising Acinetobacter baumannii and Klebsiella most commonly associated with secondary bacterial infections, which was likely due to the high utilization of supportive therapies, including mechanical ventilation (52.6%), extracorporeal membrane oxygenation (14%), continuous renal replacement therapy (19.1%), and artificial liver therapy (9.7%). Age, time from illness onset to antiviral therapy initiation, and secondary bacterial infection were independent risk factors for death. Age >65 years, secondary bacterial infections, and initiation of neuraminidase-inhibitor therapy after 5 days from symptom onset were associated with increased risk of death. CONCLUSIONS Death among H7N9 virus-infected patients occurred rapidly after hospital admission, especially among older patients, followed by severe hypoxemia and multisystem organ failure. Our results show that early neuraminidase-inhibitor therapy and reduction of secondary bacterial infections can help reduce mortality.Characterization of 350 hospitalized avian influenza A(H7N9)-infected patients in China shows that age >65 years, secondary bacterial infections, and initiation of neuraminidase-inhibitor therapy after 5 days from symptom onset were associated with increased risk of death.
Collapse
Affiliation(s)
- Shufa Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Zhejiang University, Hangzhou, People’s Republic of China
- Center of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Qianda Zou
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Zhejiang University, Hangzhou, People’s Republic of China
- Center of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xiaochen Wang
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Zhejiang University, Hangzhou, People’s Republic of China
- Center of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jiaqi Bao
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Zhejiang University, Hangzhou, People’s Republic of China
- Center of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Fei Yu
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Zhejiang University, Hangzhou, People’s Republic of China
- Center of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Feifei Guo
- Department of Infectious Diseases, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, People’s Republic of China
| | - Peng Liu
- Department of Infectious Diseases, Second Hospital of Ningbo, Ningbo, People’s Republic of China
| | - Yinzhong Shen
- Department of Infectious and Immune Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People’s Republic of China
| | - Yimin Wang
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, National Clinical Research Center of Respiratory Diseases, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Shigui Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Wei Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jifang Sheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Dhanasekaran Vijaykrishna
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hainv Gao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- Department of Infectious Diseases, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, People’s Republic of China
| | - Yu Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Zhejiang University, Hangzhou, People’s Republic of China
- Center of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
8
|
Chen J, Zhu H, Horby PW, Wang Q, Zhou J, Jiang H, Liu L, Zhang T, Zhang Y, Chen X, Deng X, Nikolay B, Wang W, Cauchemez S, Guan Y, Uyeki TM, Yu H. Specificity, kinetics and longevity of antibody responses to avian influenza A(H7N9) virus infection in humans. J Infect 2020; 80:310-319. [PMID: 31954742 PMCID: PMC7112568 DOI: 10.1016/j.jinf.2019.11.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/26/2019] [Accepted: 11/08/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The long-term dynamics of antibody responses in patients with influenza A(H7N9) virus infection are not well understood. METHODS We conducted a longitudinal serological follow-up study in patients who were hospitalized with A(H7N9) virus infection, during 2013-2018. A(H7N9) virus-specific antibody responses were assessed by hemagglutination inhibition (HAI) and neutralization (NT) assays. A random intercept model was used to fit a curve to HAI antibody responses over time. HAI antibody responses were compared by clinical severity. RESULTS Of 67 patients with A(H7N9) virus infection, HAI antibody titers reached 40 on average 11 days after illness onset and peaked at a titer of 290 after three months, and average titers of ≥80 and ≥40 were present until 11 months and 22 months respectively. HAI antibody responses were significantly higher in patients who experienced severe disease, including respiratory failure and acute respiratory distress syndrome, compared with patients who experienced less severe illness. CONCLUSIONS Patients with A(H7N9) virus infection who survived severe disease mounted higher antibody responses that persisted for longer periods compared with those that experienced moderate disease. Studies of convalescent plasma treatment for A(H7N9) patients should consider collection of donor plasma from survivors of severe disease between 1 and 11 months after illness onset.
Collapse
Affiliation(s)
- Junbo Chen
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Building 8, 130 Dong'an Road, Xuhui District, Shanghai 200032, China
| | - Huachen Zhu
- Joint Institute of Virology (STU-HKU), Shantou University, Shantou 515041, China; State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Peter W Horby
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Qianli Wang
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Building 8, 130 Dong'an Road, Xuhui District, Shanghai 200032, China
| | - Jiaxin Zhou
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Building 8, 130 Dong'an Road, Xuhui District, Shanghai 200032, China
| | - Hui Jiang
- Beijing Chest Hospital, Capital Medical University, Beijing 101149, China; Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Liwei Liu
- Joint Institute of Virology (STU-HKU), Shantou University, Shantou 515041, China
| | - Tianchen Zhang
- Jiangxi Provincial Center for Disease Control and Prevention, Nanchang 330000, China
| | - Yongli Zhang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinhua Chen
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Building 8, 130 Dong'an Road, Xuhui District, Shanghai 200032, China
| | - Xiaowei Deng
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Building 8, 130 Dong'an Road, Xuhui District, Shanghai 200032, China
| | - Birgit Nikolay
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, 75015 Paris, France
| | - Wei Wang
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Building 8, 130 Dong'an Road, Xuhui District, Shanghai 200032, China
| | - Simon Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, 75015 Paris, France
| | - Yi Guan
- Joint Institute of Virology (STU-HKU), Shantou University, Shantou 515041, China; State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Timothy M Uyeki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Hongjie Yu
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Building 8, 130 Dong'an Road, Xuhui District, Shanghai 200032, China.
| |
Collapse
|
9
|
Su K, Ye S, Li Q, Xie W, Yu H, Qi L, Xiong Y, Zhao H, Li B, Ling H, Tang Y, Xiao B, Rong R, Tang W, Li Y. Influenza A(H7N9) virus emerged and resulted in human infections in Chongqing, southwestern China since 2017. Int J Infect Dis 2019; 81:244-250. [PMID: 30797966 DOI: 10.1016/j.ijid.2019.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/07/2019] [Accepted: 02/13/2019] [Indexed: 12/09/2022] Open
Abstract
OBJECTIVES Influenza A(H7N9) virus has emerged and resulted in human infections in Chongqing, southwestern China since 2017. This study aimed to describe the epidemiological characteristics of the first epidemic in this region. METHODS The epidemiological data of patients were collected. Live poultry markets (LPMs), commercial poultry farms (CPFs) and backyard poultry farms (BPFs) were monitored, and poultry sources were registered. Samples derived from the patients, their close contacts, and the environments were tested for influenza A(H7N9) virus by real-time reverse transcriptase polymerase chain reaction. Genetic sequencing and phylogenetic analysis were also conducted. RESULTS Since the confirmation of the first patient infected with influenza A(H7N9) virus on March 5, 2017, nine patients had been identified within four months in Chongqing. Their mean age was 45 years, 77.8% were male, 66.7% were urban residents and 55.6% were of poultry related occupation. All patients became infected after exposure to live chickens. The median time interval from initial detection of influenza A(H7N9) virus in Chongqing to the patients' onset was 75 days. Since initial detection in February 2017, influenza A(H7N9) virus was detected in 21 (53.8%) counties within four months. The proportion of positive samples was 2.94% (337/11,451) from February 2017 to May 2018, and was higher (χ2=75.78, P<0.001) in LPMs (3.66%, 329/8979) than that in CPFs (0.41%, 5/1229) and BPFs (0.24%, 3/1243). The proportion of positive samples (34.4%, 22/64) at the premises to which the patients were exposed was significantly higher than that (5.7%, 257/4474) in premises with no patients. Phylogenetic analysis indicated that the viruses isolated in Chongqing belonged to the Yangtze River Delta lineage and resembled those circulated in Jiangsu and Anhui provinces between late 2016 and early 2017. CONCLUSION Influenza A(H7N9) virus was newly introduced into Chongqing most likely between late 2016 and early 2017, which swept across half of Chongqing territory and resulted in human infections within months. The most impacted premises and population were LPMs and poultry related workers respectively in the epidemic.
Collapse
Affiliation(s)
- Kun Su
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, People's Republic of China; Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, People's Republic of China
| | - Sheng Ye
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, People's Republic of China
| | - Qin Li
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, People's Republic of China
| | - Weijia Xie
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Hongyue Yu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Li Qi
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, People's Republic of China
| | - Yu Xiong
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, People's Republic of China
| | - Han Zhao
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, People's Republic of China
| | - Baisong Li
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, People's Republic of China
| | - Hua Ling
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, People's Republic of China
| | - Yun Tang
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, People's Republic of China
| | - Bangzhong Xiao
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, People's Republic of China
| | - Rong Rong
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, People's Republic of China
| | - Wenge Tang
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, People's Republic of China.
| | - Yafei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, People's Republic of China.
| |
Collapse
|
10
|
Koutsakos M, Kedzierska K, Subbarao K. Immune Responses to Avian Influenza Viruses. THE JOURNAL OF IMMUNOLOGY 2019; 202:382-391. [DOI: 10.4049/jimmunol.1801070] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/24/2018] [Indexed: 12/26/2022]
|
11
|
Cheng Q, Zhao G, Xie L, Wang X. Impacts of age and gender at the risk of underlying medical conditions and death in patients with avian influenza A (H7N9): a meta-analysis study. Ther Clin Risk Manag 2018; 14:1615-1626. [PMID: 30233197 PMCID: PMC6132488 DOI: 10.2147/tcrm.s173834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective The objective of our study was to conduct a series of analyses that examined the impacts of age and gender at the risk of underlying medical conditions (UMCs) and death in patients with influenza A (H7N9). Methods We began by searching for potentially relevant articles in English or Chinese before February 28, 2018. Additionally, we reviewed our own files and reference lists of articles identified by this search. Results The association between death and UMCs was significant in H7N9 patients, with an OR of 1.49 (95% CI: 1.24–1.78). Subgroup analyses showed that having two or more UMCs of any type (OR: 2.24; P=0.044), chronic respiratory diseases (OR: 1.81; P=0.032), and chronic cardiovascular disease (OR: 1.63; P=0.013) had an association with increased fatality in H7N9 patients. Age (60 years or older) [adjusted OR (AOR): 1.86; P=0.032] and gender (male: AOR: 1.68, P=0.006; female: AOR: 1.88, P=0.044) were significantly associated with death in H7N9 patients with UMCs compared to H7N9 patients without any UMC. Stratification analyses found statistically significant increased death in H7N9 patients with UMCs who were 60 years of age and older (AOR: 2.72; P<0.001) and gender (male; AOR=1.64; P=0.033), compared to H7N9 patients without these respective conditions. Conclusion Impacts of age are substantial and significant at the risk of UMCs and death in H7N9 patients. This analysis did not find a significant difference in gender comparisons. Efforts should particularly focus on reducing fatality rates in patients with combined risks from UMCs and other significant impact factor such as age (60 years or older).
Collapse
Affiliation(s)
- Qinglin Cheng
- Division of Infectious Diseases, Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, China, .,Department of Adolescents and Children Health, School of Public Health, Medical College of Soochow University, Suzhou 215123, China
| | - Gang Zhao
- Division of Infectious Diseases, Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, China,
| | - Li Xie
- Division of Infectious Diseases, Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, China,
| | - Xuchu Wang
- Division of Infectious Diseases, Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, China,
| |
Collapse
|