1
|
Gaffney A, Smyth EG, Moore Z, Patton D, Connor TO, Derwin R. Role of admission rapid antigen testing (RATs) for COVID-19 on patients transferred from acute hospitals to a post-acute rehabilitation setting. Am J Infect Control 2024:S0196-6553(24)00822-8. [PMID: 39489423 DOI: 10.1016/j.ajic.2024.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Rapid antigen tests (RATs) are suitable for point-of -care testing, require no laboratory time and give immediate results. However, are RATs useful for detecting asymptomatic COVID-19 infection when compared with polymerase chain reaction (PCR) testing in healthcare settings? AIM The aim of this study was to implement a reliable testing system utilising RATs to promptly detect COVID-19 infection in predominantly asymptomatic patients transferred from acute hospitals to a post-acute rehabilitation unit (PARU). METHODS RAT testing was carried out on all new admissions without a history of confirmed Covid-19 infection within three months of admission. PCR testing was carried out on all patients with a positive RAT for confirmation purposes. The cycle threshold (Ct) values of COVID-19 detected results on PCR testing were examined to determine the utility of the RATs. RESULTS A total of 1,403 patients were transferred to the PARU from January to December 2023. The results of the study revealed an 85% accuracy of RATs with a 15% rate of false negative results at the time of admission. All patients that had a positive RAT at the time of admission also had a positive PCR test. CONCLUSION This testing algorithm resulted in early detection and prompt isolation of positive cases reducing the likely spread of COVID-19 infection, hospital outbreaks and bed/ward closures.
Collapse
Affiliation(s)
- Ann Gaffney
- School of Nursing and Midwifery, Royal College of Surgeons in Ireland, St Stephens Green, St Peters, Dublin 2, Ireland; Clontarf Hospital, Blackheath Park, Clontarf, Dublin 3; Honorary Professor, Lida Institute, Shanghai, China.
| | - Edmond G Smyth
- Clontarf Hospital, Blackheath Park, Clontarf, Dublin 3; Honorary Professor, Lida Institute, Shanghai, China.
| | - Zena Moore
- School of Nursing and Midwifery, Royal College of Surgeons in Ireland, St Stephens Green, St Peters, Dublin 2, Ireland; Adjunct Professor, School of Nursing & Midwifery, Griffith University, Queensland, Australia; Visiting Professor, School of Health Sciences, Faculty of Life and Health Sciences Ulster University, Northern Ireland; Honorary Visiting Professor, Cardiff University, Cardiff, Wales; Adjunct Professor, Department of Nursing, Fakeeh College for Medical Sciences, Jeddah, KSA; Professor, Department of Public Health, Faculty of Medicine and Health Sciences, Ghent University, Belgium; Honorary Professor, Lida Institute, Shanghai, China.
| | - Declan Patton
- School of Nursing and Midwifery, Royal College of Surgeons in Ireland, St Stephens Green, St Peters, Dublin 2, Ireland; Adjunct Associate Professor, Fakeeh College of Health Sciences, Jeddah, Saudi Arabia; Honorary Senior Fellow, Faculty of Science, Medicine and Health, University of Wollongong, Australia; Honorary Professor, Lida Institute, Shanghai, China.
| | - Tom O Connor
- School of Nursing and Midwifery, Royal College of Surgeons in Ireland, St Stephens Green, St Peters, Dublin 2, Ireland; Adjunct Associate Professor, Fakeeh College of Health Sciences, Jeddah, Saudi Arabia; Honorary Professor, Lida Institute, Shanghai, China.
| | - Rosemarie Derwin
- School of Nursing and Midwifery, Trinity College Dublin, 24 D'Olier Street, Dublin 2, Ireland; Honorary Professor, Lida Institute, Shanghai, China.
| |
Collapse
|
2
|
Zhao CR, Lin LT, Tang JW, Zhang Y, Zhang W, Chen JM, Wei P, Huang T, Wei TC, Mo ML. Development of a colloidal gold immunochromatographic strip for rapid detection of avian coronavirus infectious bronchitis virus. Poult Sci 2024; 103:103648. [PMID: 38574460 PMCID: PMC11004996 DOI: 10.1016/j.psj.2024.103648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
Avian infectious bronchitis virus (IBV) still causes serious economic losses in the poultry industry. Currently, there are multiple prevalent genotypes and serotypes of IBVs. It is imperative to develop a new diagnosis method that is fast, sensitive, specific, simple, and broad-spectrum. A monoclonal hybridoma cell, N2D5, against the IBV N protein was obtained after fusion of myeloma SP2/0 cells with spleen cells isolated from the immunized Balb/c mice. The N2D5 monoclonal antibody (mAb) and the previously prepared mouse polyclonal antibody against the IBV N protein were used to target IBV as a colloidal gold-mAb conjugate and a captured antibody, respectively, in order to develop an immunochromatographic strip. The optimal pH and minimum antibody concentration in the reaction system for colloidal gold-mAb N2D5 conjugation were pH 6.5 and 30 μg/mL, respectively. Common avian pathogens were tested to evaluate the specificity of the strip and no cross-reaction was observed. The sensitivity of the strip for detecting IBV was 10-1.4522 EID50/mL. The strip showed a broad-spectrum cross-reactive capacity for detecting IBV antigens, including multiple IBV genotypes in China and all of the seven serotypes of IBV that are currently prevalent in southern China. Additionally, the result can be observed within 2 min without any equipment. The throat and cloacal swab samples of chickens that were artificially infected with three IBV strains were tested using the developed strip and the qPCR method; the strip test demonstrated a high consistency in detecting IBV via qPCR gene detection. In conclusion, the immunochromatographic strip that was established is rapid, sensitive, specific, simple, practical, and broad-spectrum; additionally, it has the potential to serve as an on-site rapid detection method of IBV and can facilitate the surveillance and control of the disease, especially in resource-limited areas.
Collapse
Affiliation(s)
- Chang-Run Zhao
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Li-Ting Lin
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jin-Wen Tang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yu Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Wen Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Ji-Ming Chen
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Ping Wei
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Teng Huang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Tian-Chao Wei
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Mei-Lan Mo
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, China.
| |
Collapse
|
3
|
Montagud AC, Llenas-García J, Moragues R, Pérez-Bernabeu A, Alcocer Pertegal MJ, García Gómez FJ, Gamayo Serna AM, García Morante H, Caballero P, Tuells J. Prevalence of neutralizing antibodies against SARS-CoV-2 using a rapid serological test in health workers of a Spanish Department of Health in Alicante (Spain) before the booster dose of the vaccine. Rev Clin Esp 2024; 224:197-203. [PMID: 38423384 DOI: 10.1016/j.rceng.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
AIM To study the prevalence of neutralizing antibodies in healthcare workers and healthcare support personnel after the administration of the second dose of the BNT162b2 vaccine (Pfizer-BioNTech). MATERIALS AND METHODS In December 2021, we undertook a study in the Health Department in Orihuela, Alicante (Spain), which consists of 1500 workers. We collected demographic variables about the study participants, and we performed a "point-of-care" immunochromatography test to measure the presence of neutralizing antibodies (OJABIO® SARS-CoV-2 Neutralizing Antibody Detection Kit, manufactured by Wenzhou OJA Biotechnology Co., Ltd. Wenzhou, Zhejiang, China) before the administration of the third dose of the vaccine. RESULTS We obtained complete information about 964 (64%) workers, which consisted of 290 men and 674 women. The average age was 45,8 years (min. 18, max. 68) and the average time since the last dose of the vaccine was 40,5 weeks (min. 1,71, max. 47,71). A total of 131 participants (13,5%) had suffered infection by SARS-CoV-2 confirmed using RT-PCR. The proportion of participants who showed presence of neutralizing antibodies was 38,5%. In the multivariable analysis, the time since the last dose of the vaccine (aOR week: 1,07; 95%CI: 1,04; 1,09) and previous infection by SARS-CoV-2 (aOR: 3,7; 95CI: 2,39; 5,63) showed a statistically significant association with the presence of neutralizing antibodies. CONCLUSIONS The time since the administration of the last dose of the vaccine and the previous infection by SARS-CoV-2 determined the presence of neutralizing antibodies in 38,5% of the healthcare workers and support workers.
Collapse
Affiliation(s)
- A C Montagud
- Laboratorio de Inmunología, Plataforma Oncológica, Hospital QuironSalud Torrevieja. Torrevieja, Alicante, Spain
| | - J Llenas-García
- Servicio de Medicina Interna, Hospital Vega Baja. Orihuela, Alicante, Spain; Departamento de Medicina Clínica, Universidad Miguel Hernández, Elche, Alicante, Spain; Fundación para la Promoción de la Salud e Investigación Biomédica de Valencia, FISABIO, Valencia, Spain
| | - R Moragues
- Departamento de Enfermería Comunitaria, Medicina Preventiva, Salud Pública e Historia de la Ciencia, Universidad de Alicante, Alicante, Spain
| | - A Pérez-Bernabeu
- Servicio de Medicina Interna, Hospital Vega Baja. Orihuela, Alicante, Spain; Fundación para la Promoción de la Salud e Investigación Biomédica de Valencia, FISABIO, Valencia, Spain
| | - M J Alcocer Pertegal
- Dirección de Enfermería de Atención Primaria. Departamento de Salud de Orihuela, Orihuela, Alicante, Spain
| | - F J García Gómez
- Dirección de Enfermería Hospitalaria, Hospital Vega Baja. Orihuela, Alicante, Spain
| | - A M Gamayo Serna
- Dirección de Enfermería Hospitalaria, Hospital Vega Baja. Orihuela, Alicante, Spain
| | - H García Morante
- Servicio de Medicina Interna, Hospital Vega Baja. Orihuela, Alicante, Spain; Fundación para la Promoción de la Salud e Investigación Biomédica de Valencia, FISABIO, Valencia, Spain
| | - P Caballero
- Departamento de Enfermería Comunitaria, Medicina Preventiva, Salud Pública e Historia de la Ciencia, Universidad de Alicante, Alicante, Spain
| | - J Tuells
- Departamento de Enfermería Comunitaria, Medicina Preventiva, Salud Pública e Historia de la Ciencia, Universidad de Alicante, Alicante, Spain; Instituto de Salud e Investigación Biomédica de Alicante, (ISABIAL), Alicante, Spain.
| |
Collapse
|
4
|
Bi H, You R, Bian X, Li P, Zhao X, You Z. A magnetic control enrichment technique combined with terahertz metamaterial biosensor for detecting SARS-CoV-2 spike protein. Biosens Bioelectron 2024; 243:115763. [PMID: 37890389 DOI: 10.1016/j.bios.2023.115763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023]
Abstract
The highly contagious SARS-CoV-2 virus, responsible for the COVID-19 pandemic continues to pose significant challenges to public health. Developing new methods for early detection and diagnosis is crucial in combatting the disease, mitigating its impact and be prepared for future challenges in pandemic diseases. In this study, we propose a terahertz (THz) biosensing technology that capitalizes on the properties of THz metamaterial in conjunction with magnetic nanoparticles. This approach can accurately identify the SARS-CoV-2 spike protein by pinpointing its location on the THz resonance sources grooved surface. The magnetic nanoparticles are employed to selectively bind with target molecules, and migrate towards the THz metamaterial unit cell when exposed to an applied magnetic field. The presence of target molecules in to the metamaterial variation in the frequency, amplitude, and phase of the resonance response, thus enabling swift, accurate and sensitive detection. To assess the effectiveness of the proposed technique, we have conducted a comparative analysis between real samples on platforms controlled by magnetic manipulation and those without the control. It was confirmed that the proposed THz sensing method demonstrated a linear detection range spanning from 0.005 ng mL-1 to 1000 ng mL-1 with a detection limit of 0.002 ng mL-1. Furthermore, it exhibited a frequency shift of 24 GHz and a stability index of 95%. The THz biosensing technique may pave a new avenue in identifying and preempting the spread of potential pandemic diseases.
Collapse
Affiliation(s)
- Hao Bi
- Beijing Laboratory of Biomedical Detection Technology and Instrument, Beijing Information Science & Technology University, Beijing, 10029, PR China; School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100029, PR China
| | - Rui You
- Beijing Laboratory of Biomedical Detection Technology and Instrument, Beijing Information Science & Technology University, Beijing, 10029, PR China; School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100029, PR China.
| | - Xiaomeng Bian
- Beijing Laboratory of Biomedical Detection Technology and Instrument, Beijing Information Science & Technology University, Beijing, 10029, PR China; School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100029, PR China
| | - Peng Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, 100084, PR China; Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing, 100084, PR China; Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100084, PR China.
| | - Xiaoguang Zhao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, 100084, PR China; Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing, 100084, PR China; Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100084, PR China.
| | - Zheng You
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, 100084, PR China; Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing, 100084, PR China; Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100084, PR China
| |
Collapse
|
5
|
Liu Z, Liang J, Hu H, Wu M, Ma J, Ma Z, Ji J, Chen H, Li X, Wang Z, Luo Y. Development of an Effective Neutralizing Antibody Assay for SARS-CoV-2 Diagnosis. Int J Nanomedicine 2023; 18:3125-3139. [PMID: 37333734 PMCID: PMC10275375 DOI: 10.2147/ijn.s408921] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/08/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Neutralizing antibodies (NAbs) are essential for preventing reinfection with SARS-CoV-2 and the recurrence of COVID-19; nonetheless, the formation of NAbs following vaccination and infection remains enigmatic due to the lack of a practical and effective NAb assay in routine laboratory settings. In this study, we developed a convenient lateral flow assay for the rapid and precise measurement of serum NAb levels within 20 minutes. Methods Receptor-binding domain-fragment crystallizable (RBD-Fc) and angiotensin-converting enzyme 2-histidine tag (ACE2-His) were expressed by the eukaryotic expression systems of Spodoptera frugiperda clone 9 and human embryonic kidney 293T, respectively. Then, colloidal gold was synthesized and conjugated with ACE2. After optimizing various operating parameters, an NAb lateral flow assay was constructed. Subsequently, its detection limit, specificity, and stability were systematically evaluated, and clinical samples were analyzed to validate its clinical feasibility. Results RBD-Fc and ACE2-His were obtained with 94.01% and 90.05% purity, respectively. The synthesized colloidal gold had a uniform distribution with an average diameter of 24.15 ± 2.56 nm. With a detection limit of 2 μg/mL, the proposed assay demonstrated a sensitivity of 97.80% and a specificity of 100% in 684 uninfected clinical samples. By evaluating 356 specimens from infected individuals, we observed that the overall concordance rate between the proposed assay and conventional enzyme-linked immunosorbent assay was 95.22%, and we noticed that 16.57% (59/356) of individuals still did not produce NAbs after infection (both by ELISA and the proposed assay). All the above tests by this assay can obtain results within 20 minutes by the naked eye without any additional instruments or equipment. Conclusion The proposed assay can expediently and reliably detect anti-SARS-CoV-2 NAbs after infection, and the results provide valuable data to facilitate effective prevention and control of SARS-CoV-2. Clinical trial registration Serum and blood samples were used under approval from the Biomedical Research Ethics Subcommittee of Henan University, and the clinical trial registration number was HUSOM-2022-052. We confirm that this study complies with the Declaration of Helsinki.
Collapse
Affiliation(s)
- Zhigang Liu
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Jiahui Liang
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Hangzhan Hu
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Mengli Wu
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Jingjing Ma
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Ziwei Ma
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Jianing Ji
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Hengyi Chen
- Center of Smart Laboratory and Molecular Medicine, Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 400044, People’s Republic of China
| | - Xiaoquan Li
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Zhizeng Wang
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People’s Republic of China
- Center of Smart Laboratory and Molecular Medicine, Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 400044, People’s Republic of China
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 400044, People’s Republic of China
- College of Life Science and Laboratory Medicine, Kunming Medical University, Kunming, 650500, People’s Republic of China
| |
Collapse
|
6
|
Mu Y, McManus DP, Gordon CA, You H, Ross AG, Olveda RM, Cai P. Development and assessment of a novel gold immunochromatographic assay for the diagnosis of schistosomiasis japonica. Front Immunol 2023; 14:1165480. [PMID: 37077910 PMCID: PMC10106775 DOI: 10.3389/fimmu.2023.1165480] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/07/2023] [Indexed: 04/05/2023] Open
Abstract
BackgroundThe neglected zoonosis, schistosomiasis japonica, remains a major public health problem in the Philippines. The current study aims to develop a novel gold immunochromatographic assay (GICA) and evaluate its performance in the detection of Schistosoma japonicum infection.MethodsA GICA strip incorporating a S. japonicum saposin protein, SjSAP4 was developed. For each GICA strip test, diluted serum sample (50 µl) was loaded and strips were scanned after 10 min to convert the results into images. ImageJ was used to calculate an R value, which was defined as the signal intensity of the test line divided by the signal intensity of the control line within the cassette. After determination of optimal serum dilution and diluent, the GICA assay was evaluated with sera collected from non-endemic controls (n = 20) and individuals living in schistosomiasis-endemic areas of the Philippines (n = 60), including 40 Kato Katz (KK)-positive participants and 20 subjects confirmed as KK-negative and faecal droplet digital PCR assay (F_ddPCR)-negative at a dilution of 1:20. An ELISA assay evaluating IgG levels against SjSAP4 was also performed on the same panel of sera.ResultsPhosphate-buffered saline (PBS) and 0.9% NaCl were determined as optimal dilution buffer for the GICA assay. The strips tested with serial dilutions of a pooled serum sample from KK-positive individuals (n = 3) suggested that a relatively wide range of dilutions (from 1:10 to 1:320) can be applied for the test. Using the non-endemic donors as controls, the GICA strip showed a sensitivity of 95.0% and absolute specificity; while using the KK-negative and F_ddPCR-negative subjects as controls, the immunochromatographic assay had a sensitivity of 85.0% and a specificity of 80.0%. The SjSAP4-incorperated GICA displayed a high concordance with the SjSAP4-ELISA assay.ConclusionsThe developed GICA assay exhibited a similar diagnostic performance with that of the SjSAP4-ELISA assay, yet the former can be performed by local personnel with minimal training with no requirement for specialised equipment. The GICA assay established here represents a rapid, easy-to-use, accurate and field-friendly diagnostic tool for the on-site surveillance/screening of S. japonicum infection.
Collapse
Affiliation(s)
- Yi Mu
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Donald P. McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Catherine A. Gordon
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Hong You
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Allen G. Ross
- Rural Health and Medical Research Institute, Charles Sturt University, Orange, NSW, Australia
| | - Remigio M. Olveda
- Department of Immunology, Research Institute for Tropical Medicine, Manila, Philippines
| | - Pengfei Cai
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- *Correspondence: Pengfei Cai,
| |
Collapse
|
7
|
Yakoubi A, Dhafer CEB. Advanced Plasmonic Nanoparticle-Based Techniques for the Prevention, Detection, and Treatment of Current COVID-19. PLASMONICS (NORWELL, MASS.) 2022; 18:311-347. [PMID: 36588744 PMCID: PMC9786532 DOI: 10.1007/s11468-022-01754-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Coronavirus is an ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2. Coronavirus disease 2019 known as COVID-19 is the worst pandemic since World War II. The outbreak of COVID-19 had a significant repercussion on the health, economy, politics, and environment, making coronavirus-related issues more complicated and becoming one of the most challenging pandemics of the last century with deadly outcomes and a high rate of the reproduction number. There are thousands of different types - or variants - of COVID circulating across the world. Viruses mutate all the time; it emphasizes the critical need for the designing of efficient vaccines to prevent virus infection, early and fast diagnosis, and effective antiviral and protective therapeutics. In this regard, the use of nanotechnology offers new opportunities for the development of novel strategies in terms of prevention, diagnosis, and treatment of COVID-19. This review presents an outline of the platforms developed using plasmonic nanoparticles in the detection, treatment, and prevention of SARS-CoV-2. We select the best strategies in each of these approaches. The properties of metallic plasmon NPs and their relevance in the development of novel point-of-care diagnosis approaches for COVID-19 are highlighted. Also, we discuss the current challenges and the future perspectives looking towards the clinical translation and the commercial aspects of nanotechnology and plasmonic NP-based diagnostic tools and therapy to fight COVID-19 pandemic. The article could be of significance for researchers dedicated to developing suitable plasmonic detection tools and therapy approaches for COVID-19 viruses and future pandemics.
Collapse
Affiliation(s)
- Afef Yakoubi
- Laboratory of Hetero-organic Compounds and Nanostructured Materials, Chemistry Department, Faculty of Sciences Bizerte, University of Carthage, LR 18 ES11, 7021 Bizerte, Tunisia
| | - Cyrine El Baher Dhafer
- Chemistry Department College of Science, Jouf University, P.O Box: 2014, Sakaka, Saudi Arabia
| |
Collapse
|
8
|
Xu K, Liu Y. Studies of probe tip materials by atomic force microscopy: a review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1256-1267. [PMID: 36415853 PMCID: PMC9644057 DOI: 10.3762/bjnano.13.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/27/2022] [Indexed: 05/09/2023]
Abstract
As a tool that can test insulators' surface morphology and properties, the performance index of atomic force microscope (AFM) probes is the most critical factor in determining the resolution of microscopy, and the performance of probes varies in various modes and application requirements. This paper reviews the latest research results in metal, carbon nanotube, and colloidal probes and reviews their related methods and techniques, analyses the advantages and disadvantages of the improved probes compared with ordinary probes by comparing the differences in spatial resolution, sensitivity, imaging, and other performance aspects, and finally provides an outlook on the future development of AFM probes. This paper promotes the development of AFM probes in the direction of new probes and further promotes the broader and deeper application of scanning probe microscope (SPM).
Collapse
Affiliation(s)
- Ke Xu
- School of Electrical & Control Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Yuzhe Liu
- School of Electrical & Control Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| |
Collapse
|
9
|
Yu H, Liu H, Yang Y, Guan X. Development and Evaluation of a Rapid Neutralizing Antibody Assay for COVID-19 Vaccination. ACS OMEGA 2022; 7:36254-36262. [PMID: 36278077 PMCID: PMC9583339 DOI: 10.1021/acsomega.2c03677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
SARS-CoV-2 neutralizing antibodies have excellent application prospects in the prevention and treatment of COVID-19. This study established a competitive colloidal gold immunochromatography assay (GICA) to detect neutralizing antibodies against the receptor-binding domain (RBD) of SARS-CoV-2 in postvaccination serum. The sensitivity, stability, and specificity of GICA were evaluated using neutralizing antibody solution reference material and positive serum. The consistency and correlation between GICA, pseudovirus neutralization (PN) assay, and ELISA were compared. Consistency analysis of serum neutralizing antibody and specific IgG antibody titers was conducted, and changes in neutralizing antibodies and specific IgG antibodies in serum after inoculation with the homologous booster inactivated vaccine and recombinant vaccine were noted. The sensitivity of the reagent was 20.66 IU/L, and the specificity was 100%. There was a strong consistency and correlation between GICA and PN (κ = 0.886, n = 165; r = 0.918, P < 0.001). The correlation coefficient of serum anti-RBD antibody and specific IgG antibody titers was 0.5253 (P < 0.001). The specific IgG antibody titers in serum after (W4) inoculation with homologous booster inactivated vaccine were 10.80 (S/CO).The anti-RBD antibody titers were 28.33. The anti-RBD omicron variant (B.1.1.529) antibody titers were 11.67. After inoculation with the recombinant vaccine, the specific IgG antibody titers in the serum of W4 were 10.68. The serum anti-RBD antibody titers of W4 were 103.30. The serum anti-RBD omicron variant (B.1.1.529) antibody titers of W4 were 56.67. Therefore, vaccination of the third dose of the homologous booster inactivated vaccine and recombinant vaccine can enhance the level of neutralizing antibodies against the omicron variant (B.1.1.529). This study demonstrates that a GICA kit for neutralizing antibodies against the RBD of SARS-CoV-2 can be used for COVID-19 vaccine evaluation. Changes in titers enable long-term monitoring of a population's immunity and guide interventions when their immunity declines.
Collapse
Affiliation(s)
- Heshan Yu
- Affiliated
Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, Liaoning, China
| | - Huan Liu
- Liaoning
University of Traditional Chinese Medicine, Shenyang 110847, Liaoning, China
| | - Yongju Yang
- Affiliated
Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, Liaoning, China
| | - Xuefeng Guan
- Liaoning
University of Traditional Chinese Medicine, Shenyang 110847, Liaoning, China
| |
Collapse
|
10
|
Pansare AV, Pansare SV, Pansare PV, More BP, Nagarkar AA, Barbezat M, Donde KJ, Patil VR, Terrasi GP. Economical gold recovery cycle from bio-sensing AuNPs: an application for nanowaste and COVID-19 testing kits. Dalton Trans 2022; 51:14686-14699. [PMID: 36098266 DOI: 10.1039/d2dt01405j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report the controlled growth of biologically active compounds: gold nanoparticles (AuNPs) in various shapes, including their green synthesis, characterization, and studies of their applications towards biological, degradation and recycling. Using spectroscopic methods, studies on responsive binding mechanisms of AuNPs with biopolymers herring sperm deoxyribonucleic acid (hsDNA), bovine serum albumin (BSA), dyes degradation study, and exquisitely gold separation studies/recovery from nanowaste, COVID-19 testing kits, and pregnancy testing kits are discussed. The sensing ability of the AuNPs with biopolymers was investigated via various analytical techniques. The rate of degradation of various dyes in the presence and absence of AuNPs was studied by deploying stirring, IR, solar, and UV-Vis methods. AuNPs were found to be the most active cytotoxic agent against human breast cancer cell lines such as MCF-7 and MDAMB-468. Furthermore, an economical process for the recovery of gold traces from nanowaste, COVID-19 detection kits, and pregnancy testing kits was developed using inexpensive and eco-friendly α-cyclodextrin sugar. This method was found to be easy and safest in comparison with the universally accepted cyanidation process. In the future, small gold jewelry makers and related industries would benefit from the proposed gold-recycling process and it might contribute to their socio-economic growth. The methodologies proposed are also beneficial for trace-level forensic investigation.
Collapse
Affiliation(s)
- Amol V Pansare
- Composite group, Mechanical Systems Engineering, Swiss Federal Laboratories for Materials Science and Technology-Empa, 8600 Dübendorf, Switzerland.
| | - Shubham V Pansare
- Department of Chemistry, University of Mumbai, Santacruz (E), Mumbai 400098, India.
| | - Priyanka V Pansare
- Ramnarain Ruia Autonomous College, University of Mumbai, Matunga (E), India.
| | - Bhausaheb P More
- Directorate of Forensic Science Laboratories Mumbai, Home Department, Government of Maharashtra-98, India
| | - Amit A Nagarkar
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138 USA
| | - Michel Barbezat
- Composite group, Mechanical Systems Engineering, Swiss Federal Laboratories for Materials Science and Technology-Empa, 8600 Dübendorf, Switzerland.
| | - Kamini J Donde
- Ramnarain Ruia Autonomous College, University of Mumbai, Matunga (E), India.
| | - Vishwanath R Patil
- Department of Chemistry, University of Mumbai, Santacruz (E), Mumbai 400098, India.
| | - Giovanni P Terrasi
- Composite group, Mechanical Systems Engineering, Swiss Federal Laboratories for Materials Science and Technology-Empa, 8600 Dübendorf, Switzerland.
| |
Collapse
|
11
|
Asghari S, Ekrami E, Barati F, Avatefi M, Mahmoudifard M. The role of the nanofibers in lateral flow assays enhancement: a critical review. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2090360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Sahar Asghari
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Elena Ekrami
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Fatemeh Barati
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Manizheh Avatefi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Matin Mahmoudifard
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
12
|
Hua Q, Liu Z, Wang J, Liang Z, Zhou Z, Shen X, Lei H, Li X. Magnetic immunochromatographic assay with smartphone-based readout device for the on-site detection of zearalenone in cereals. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Lin Q, Wu J, Liu L, Wu W, Fang X, Kong J. Sandwich/competitive immuno-sensors on micro-interface for SARS-CoV-2 neutralizing antibodies. Anal Chim Acta 2021; 1187:339144. [PMID: 34753584 PMCID: PMC8490918 DOI: 10.1016/j.aca.2021.339144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/15/2022]
Abstract
A simple, rapid and robust method to quantify SARS-CoV-2 neutralizing antibodies (nAbs) is urgently needed for determining COVID-19 serodiagnosis, vaccine development and evaluation of vaccine efficacy. In this study, we report sandwich/competitive immuno-sensors based on lateral chromatography micro-interface for accurate quantification of SARS-CoV-2 nAbs. Fluorescent microspheres (FMS) labeled receptor binding domain (RBD) antigen was prepared for detection of nAbs with high sensitivity. Sandwich and competitive immunoassay were conducted on the microfluidic-based sensor within 10 min and the fluorescent signal of immunoassay was analyzed by a portable microfluidic immunoassay instrument. The nAbs detection range of sandwich immuno-sensor and competitive immuno-sensor was 4.0 ng/mL to 400 ng/mL and 2.13 ng/mL to 213 ng/mL, respectively. Furthermore, the sandwich immuno-sensor was demonstrated to be comparable with existing methods and used to detect 182 clinical serum samples from vaccinated individuals. Sandwich immuno-sensor based on lateral chromatography micro-interface allowed reliable, fast, and low-cost detection of nAbs, which holds considerable potential for nAbs testing.
Collapse
Affiliation(s)
- Qiuyuan Lin
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Jingjing Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, PR China
| | - Liling Liu
- Shanghai Suxin Biotechnology Co. Ltd, And IgeneTec Diagnostic Products Co. Ltd, Shanghai, 201318, PR China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, PR China,Corresponding author
| | - Xueen Fang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China,Corresponding author
| | - Jilie Kong
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China,Corresponding author
| |
Collapse
|