1
|
Matheus GG, Chamoun MN, Khosrotehrani K, Sivakumaran Y, Wells TJ. Understanding the pathophysiology of Pseudomonas aeruginosa colonization as a guide for future treatment for chronic leg ulcers. BURNS & TRAUMA 2025; 13:tkae083. [PMID: 39830194 PMCID: PMC11741523 DOI: 10.1093/burnst/tkae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025]
Abstract
Chronic leg wounds represent a major burden of disease worldwide, costing health care systems billions of dollars each year. Aside from the financial implications, they also impose a significant physical and psychosocial burden on the patient, their relatives and/or carers, and the community. Whilst measures such as maintenance of wound hygiene, debridement, dressings and compression are the current standard of care, complete healing is not always achievable and ulcer recurrence is common. Thus, there is still a gap to breach in terms of understanding the intricate pathophysiology of chronic wounds and the role this plays on treatment and management. Pseudomonas aeruginosa has been linked to poor wound healing, with the pathogen being frequently isolated from chronic leg ulcers. Characterized by its multi-drug resistance, targeting P. aeruginosa requires the development of novel therapeutic options. Thus, the aim of this literature review is to describe the pathophysiology of P. aeruginosa in chronic leg ulcers and discuss novel treatment strategies. Here, we describe the key molecular mechanisms driving the observed clinical effect of P. aeruginosa on wounds and discuss novel strategies of molecular targeting of this common bacteria, establishing new approaches that could benefit patients with chronic hard to heal wounds.
Collapse
Affiliation(s)
- Gabriela Gonzalez Matheus
- Frazer Institute, The University of Queensland, Brisbane, Australia
- Department of Dermatology, Princess Alexandra Hospital, Brisbane, Australia
| | | | - Kiarash Khosrotehrani
- Frazer Institute, The University of Queensland, Brisbane, Australia
- Department of Dermatology, Princess Alexandra Hospital, Brisbane, Australia
| | - Yogeesan Sivakumaran
- Department of Vascular Surgery, Princess Alexandra Hospital, Brisbane, Australia
| | - Timothy J Wells
- Frazer Institute, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| |
Collapse
|
2
|
Guo Y, Li Y, Li J, Cai H, Liu K, Duan D, Zhang W, Han G, Zhao Y. Controlled Inflammation Drives Neutrophil-Mediated Precision Drug Delivery in Heterogeneous Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2411307. [PMID: 39799561 DOI: 10.1002/advs.202411307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/05/2024] [Indexed: 01/15/2025]
Abstract
Tumor heterogeneity remains a formidable obstacle in targeted cancer therapy, often leading to suboptimal treatment outcomes. This study presents an innovative approach that harnesses controlled inflammation to guide neutrophil-mediated drug delivery, effectively overcoming the limitations imposed by tumor heterogeneity. By inducing localized inflammation within tumors using lipopolysaccharide, it significantly amplify the recruitment of drug-laden neutrophils to tumor sites, irrespective of specific tumor markers. This strategy not only enhances targeted drug delivery but also triggers the release of neutrophil extracellular traps, further potentiating the anti-tumor effect. Crucially, this study demonstrates that potential systemic inflammatory responses can be effectively mitigated through neutrophil transfusion, ensuring the safety and clinical viability of this approach. In a murine breast cancer model, the method significantly impedes tumor growth compared to conventional treatments. This work offers a versatile strategy for precise drug delivery across diverse tumor types. The findings pave the way for more effective and broadly applicable cancer treatments, potentially addressing the long-standing challenge of tumor heterogeneity.
Collapse
Affiliation(s)
- Yunfei Guo
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P. R. China
| | - Yiming Li
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P. R. China
| | - Jianmin Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P. R. China
| | - Haoran Cai
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P. R. China
| | - Kangkang Liu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P. R. China
| | - Dengyi Duan
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P. R. China
| | - Wenyi Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P. R. China
| | - Gang Han
- Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Yang Zhao
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P. R. China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P. R. China
- Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
3
|
Parab L, Romeyer Dherbey J, Rivera N, Schwarz M, Gallie J, Bertels F. Chloramphenicol and gentamicin reduce the evolution of resistance to phage ΦX174 by suppressing a subset of E. coli LPS mutants. PLoS Biol 2025; 23:e3002952. [PMID: 39841243 PMCID: PMC11753469 DOI: 10.1371/journal.pbio.3002952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/25/2024] [Indexed: 01/23/2025] Open
Abstract
Bacteriophages infect gram-negative bacteria by attaching to molecules present on the bacterial surface, often lipopolysaccharides (LPS). Modification of LPS can lead to resistance to phage infection. In addition, LPS modifications can impact antibiotic susceptibility, allowing for phage-antibiotic synergism. The evolutionary mechanism(s) behind such synergistic interactions remain largely unclear. Here, we show that the presence of antibiotics can affect the evolution of resistance to phage infection, using phage ΦX174 and Escherichia coli C. We use a collection of 34 E. coli C LPS strains, each of which is resistant to ΦX174, and has either a "rough" or "deep rough" LPS phenotype. Growth of the bacterial strains with the deep rough phenotype is inhibited at low concentrations of chloramphenicol and, to a much lesser degree, gentamicin. Treating E. coli C wild type with ΦX174 and chloramphenicol eliminates the emergence of mutants with the deep rough phenotype, and thereby slows the evolution of resistance to phage infection. At slightly lower chloramphenicol concentrations, phage resistance rates are similar to those observed at high concentrations; yet, we show that the diversity of possible mutants is much larger than at higher chloramphenicol concentrations. These data suggest that specific antibiotic concentrations can lead to synergistic phage-antibiotic interactions that disappear at higher antibiotic concentrations. Overall, we show that the change in survival of various ΦX174-resistant E. coli C mutants in the presence of antibiotics can explain the observed phage-antibiotic synergism.
Collapse
Affiliation(s)
- Lavisha Parab
- Microbial Molecular Evolution Group, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jordan Romeyer Dherbey
- Microbial Molecular Evolution Group, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Norma Rivera
- Microbial Molecular Evolution Group, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Michael Schwarz
- Microbial Molecular Evolution Group, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jenna Gallie
- Microbial Evolutionary Dynamics Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Frederic Bertels
- Microbial Molecular Evolution Group, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
4
|
Hernández-García M, Barbero-Herranz R, Bastón-Paz N, Díez-Aguilar M, López-Collazo E, Márquez-Garrido FJ, Hernández-Pérez JM, Baquero F, Ekkelenkamp MB, Fluit AC, Fuentes-Valverde V, Moscoso M, Bou G, del Campo R, Cantón R, Avendaño-Ortiz J. Unravelling the mechanisms causing murepavadin resistance in Pseudomonas aeruginosa: lipopolysaccharide alterations and its consequences. Front Cell Infect Microbiol 2024; 14:1446626. [PMID: 39711784 PMCID: PMC11659217 DOI: 10.3389/fcimb.2024.1446626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
Introduction Murepavadin is an antimicrobial peptide (AMP) in clinical development that selectively targets Pseudomonas aeruginosa LptD and whose resistance profile remains unknown. We aimed to explore genomic modifications and consequences underlying murepavadin and/or colistin susceptibility. Methods To define genomic mechanisms underlying resistance, we performed two approaches: 1) a genome-wide association study (GWAS) in a P. aeruginosa clinical collection (n=496), considering >0.25 mg/L as tentative cut-off of murepavadin acquired resistance; 2) a paired genomic comparison in a subset of 5 isolates and their isogenic murepavadin-resistant mutants obtained in vitro. Lipid-A composition, immunogenicity and cathelicidin and indolicidin effects on bacterial growth were also tested in this last subset of isolates. Murepavadin MICs were determined in ΔlpxL1 and ΔlpxL2 knock-out mutants obtained from a auxotroph PAO1 derivative. Results GWAS revealed a missense variant (A→G p.Thr260Ala in the hisJ gene) associated with murepavadin resistance although both resistant and susceptible strains harbored it (21% and 12% respectively, OR=1.92, p=0.012 in χ² test). Among the isolate subset, murepavadin-resistant mutants with deletions in lpxL1 and lpxL2 genes showed lower abundance of hexa-acylated lipid-A (m/z 1616, 1632). 4-aminoarabinose addition was found only in colistin-resistant isolates but not in the other ones, irrespective of murepavadin susceptibility. Accordingly, ΔlpxL1 and ΔlpxL2 mutants exhibited higher murepavadin MICs than parental PAO1 auxotroph strain (2 and 4 vs 0.5 mg/L respectively). Lipopolysaccharide from murepavadin-resistant mutants triggered lower inflammatory responses in human monocytes. Those with lpxL mutations and hexa-acylated lipid-A loss also exhibited greater growth reduction when exposed to host-derived AMPs cathelicidin and indolicidin. Discussion High murepavadin-resistance seems to be linked to lpxL1 and lpxL2 mutations and lower hexa-acylated lipid-A, corresponding to lower inflammatory induction and higher susceptibility to host-derived AMPs. Although GWAS identified one variant associated with the murepavadin-resistant phenotype, data revealed that there was no unique single genetic event underlying this phenotype. Our study provides insight into the mechanisms underlying murepavadin susceptibility.
Collapse
Affiliation(s)
- Marta Hernández-García
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Barbero-Herranz
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Natalia Bastón-Paz
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - María Díez-Aguilar
- Servicio de Microbiología y Parasitología, Hospital Universitario La Princesa, Madrid, Spain
| | - Eduardo López-Collazo
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Innate Immune Response Group, IdiPAZ, Madrid, Spain
| | | | - José María Hernández-Pérez
- Plataforma de Proteómica y Metabolómica, Instituto de Investigación Germans Trias i Pujol, Badalona, Spain
| | - Fernando Baquero
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| | - Miquel B. Ekkelenkamp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ad C. Fluit
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Víctor Fuentes-Valverde
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Microbiology, University Hospital A Coruña (CHUAC)-Biomedical Research Institute A Coruña (INIBIC), A Coruña, Spain
| | - Miriam Moscoso
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Microbiology, University Hospital A Coruña (CHUAC)-Biomedical Research Institute A Coruña (INIBIC), A Coruña, Spain
| | - Germán Bou
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Microbiology, University Hospital A Coruña (CHUAC)-Biomedical Research Institute A Coruña (INIBIC), A Coruña, Spain
| | - Rosa del Campo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - José Avendaño-Ortiz
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
HOW SS, CHIENG S, NATHAN S, LAM SD. ATP-binding cassette (ABC) transporters: structures and roles in bacterial pathogenesis. J Zhejiang Univ Sci B 2024; 26:58-75. [PMID: 39815611 PMCID: PMC11735909 DOI: 10.1631/jzus.b2300641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/17/2023] [Indexed: 10/22/2024]
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporter systems are divided into importers and exporters that facilitate the movement of diverse substrate molecules across the lipid bilayer, against the concentration gradient. These transporters comprise two highly conserved nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). Unlike ABC exporters, prokaryotic ABC importers require an additional substrate-binding protein (SBP) as a recognition site for specific substrate translocation. The discovery of a large number of ABC systems in bacterial pathogens revealed that these transporters are crucial for the establishment of bacterial infections. The existing literature has highlighted the roles of ABC transporters in bacterial growth, pathogenesis, and virulence. These roles include importing essential nutrients required for a variety of cellular processes and exporting outer membrane-associated virulence factors and antimicrobial substances. This review outlines the general structures and classification of ABC systems to provide a comprehensive view of the activities and roles of ABC transporters associated with bacterial virulence and pathogenesis during infection.
Collapse
|
6
|
DeMichele E, Buret AG, Taylor CT. Hypoxia-inducible factor-driven glycolytic adaptations in host-microbe interactions. Pflugers Arch 2024; 476:1353-1368. [PMID: 38570355 PMCID: PMC11310250 DOI: 10.1007/s00424-024-02953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/07/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Mammalian cells utilize glucose as a primary carbon source to produce energy for most cellular functions. However, the bioenergetic homeostasis of cells can be perturbed by environmental alterations, such as changes in oxygen levels which can be associated with bacterial infection. Reduction in oxygen availability leads to a state of hypoxia, inducing numerous cellular responses that aim to combat this stress. Importantly, hypoxia strongly augments cellular glycolysis in most cell types to compensate for the loss of aerobic respiration. Understanding how this host cell metabolic adaptation to hypoxia impacts the course of bacterial infection will identify new anti-microbial targets. This review will highlight developments in our understanding of glycolytic substrate channeling and spatiotemporal enzymatic organization in response to hypoxia, shedding light on the integral role of the hypoxia-inducible factor (HIF) during host-pathogen interactions. Furthermore, the ability of intracellular and extracellular bacteria (pathogens and commensals alike) to modulate host cellular glucose metabolism will be discussed.
Collapse
Affiliation(s)
- Emily DeMichele
- School of Medicine and Systems Biology Ireland, The Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Andre G Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Cormac T Taylor
- School of Medicine and Systems Biology Ireland, The Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
7
|
Gong F, Xin S, Liu X, He C, Yu X, Pan L, Zhang S, Gao H, Xu J. Multiple biological characteristics and functions of intestinal biofilm extracellular polymers: friend or foe? Front Microbiol 2024; 15:1445630. [PMID: 39224216 PMCID: PMC11367570 DOI: 10.3389/fmicb.2024.1445630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The gut microbiota is vital to human health, and their biofilms significantly impact intestinal immunity and the maintenance of microbial balance. Certain pathogens, however, can employ biofilms to elude identification by the immune system and medical therapy, resulting in intestinal diseases. The biofilm is formed by extracellular polymorphic substances (EPS), which shield microbial pathogens from the host immune system and enhance its antimicrobial resistance. Therefore, investigating the impact of extracellular polysaccharides released by pathogens that form biofilms on virulence and defence mechanisms is crucial. In this review, we provide a comprehensive overview of current pathogenic biofilm research, deal with the role of extracellular polymers in the formation and maintenance of pathogenic biofilm, and elaborate different prevention and treatment strategies to provide an innovative approach to the treatment of intestinal pathogen-based diseases.
Collapse
Affiliation(s)
- Fengrong Gong
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinyi Yu
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Luming Pan
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Han Gao
- Department of Clinical Laboratory, Aerospace Center Hospital, Beijing, China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Hickson SM, Hoehensteiger JK, Mayer-Coverdale J, Torres VVL, Feng W, Monteith JN, Henderson IR, McCarthy KL, Wells TJ. Antibody-Mediated Serum Resistance Protects Pseudomonas aeruginosa During Bloodstream Infections. J Infect Dis 2024; 230:e221-e229. [PMID: 38235716 PMCID: PMC11326846 DOI: 10.1093/infdis/jiad457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/17/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is a frequent pathogen isolated from bacterial bloodstream infection (BSI) and is associated with high mortality. To survive in the blood, P aeruginosa must resist the bactericidal action of complement (ie, serum killing). Antibodies usually promote serum killing through the classical complement pathway; however, "cloaking antibodies" (cAbs) have been described, which paradoxically protect bacteria from serum killing. The relevance of cAbs in P aeruginosa BSI is unknown. METHODS Serum and P aeruginosa were collected from a cohort of 100 patients with BSI. Isolates were tested for sensitivity to healthy control serum (HCS). cAb prevalence was determined in sera. Patient sera were mixed with HCS to determine if killing of the matched isolate was inhibited. RESULTS Overall, 36 patients had elevated titers of cAbs, and 34 isolates were sensitive to HCS killing. Fifteen patients had cAbs and HCS-sensitive isolates; of these patients, 14 had serum that protected their matched bacteria from HCS killing. Patients with cAbs were less likely to be neutropenic or have comorbidities. CONCLUSIONS cAbs are prevalent in patients with P aeruginosa BSI and allow survival of otherwise serum-sensitive bacteria in the bloodstream. Generation of cAbs may be a risk factor for the development of BSI.
Collapse
Affiliation(s)
- Sarah M Hickson
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | | | - Johanna Mayer-Coverdale
- UQ Centre for Clinical Research, The University of Queensland, Herston, Australia
- Department of Microbiology, Pathology Queensland, Brisbane, Australia
| | - Von Vergel L Torres
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Wenkang Feng
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Joshua N Monteith
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Ian R Henderson
- Institute of Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Kate L McCarthy
- Department of Microbiology, Pathology Queensland, Brisbane, Australia
- Infectious Diseases Unit, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Timothy J Wells
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| |
Collapse
|
9
|
Sendra E, Fernández-Muñoz A, Zamorano L, Oliver A, Horcajada JP, Juan C, Gómez-Zorrilla S. Impact of multidrug resistance on the virulence and fitness of Pseudomonas aeruginosa: a microbiological and clinical perspective. Infection 2024; 52:1235-1268. [PMID: 38954392 PMCID: PMC11289218 DOI: 10.1007/s15010-024-02313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Pseudomonas aeruginosa is one of the most common nosocomial pathogens and part of the top emergent species associated with antimicrobial resistance that has become one of the greatest threat to public health in the twenty-first century. This bacterium is provided with a wide set of virulence factors that contribute to pathogenesis in acute and chronic infections. This review aims to summarize the impact of multidrug resistance on the virulence and fitness of P. aeruginosa. Although it is generally assumed that acquisition of resistant determinants is associated with a fitness cost, several studies support that resistance mutations may not be associated with a decrease in virulence and/or that certain compensatory mutations may allow multidrug resistance strains to recover their initial fitness. We discuss the interplay between resistance profiles and virulence from a microbiological perspective but also the clinical consequences in outcomes and the economic impact.
Collapse
Affiliation(s)
- Elena Sendra
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain
| | - Almudena Fernández-Muñoz
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
| | - Laura Zamorano
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
| | - Antonio Oliver
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Pablo Horcajada
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Juan
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain.
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Silvia Gómez-Zorrilla
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain.
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
10
|
Tian G, Hu J, Qin C, Li L, Ning Y, Zhu S, Xie S, Zou X, Seeberger PH, Yin J. Chemical Synthesis and Antigenicity Evaluation of an Aminoglycoside Trisaccharide Repeating Unit of Pseudomonas aeruginosa Serotype O5 O-Antigen Containing a Rare Dimeric-Man pN3NA. J Am Chem Soc 2024; 146:18427-18439. [PMID: 38946080 DOI: 10.1021/jacs.4c03814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Pseudomonas aeruginosa bacteria are becoming increasingly resistant against multiple antibiotics. Therefore, the development of vaccines to prevent infections with these bacteria is an urgent medical need. While the immunological activity of lipopolysaccharide O-antigens in P. aeruginosa is well-known, the specific protective epitopes remain unidentified. Herein, we present the first chemical synthesis of highly functionalized aminoglycoside trisaccharide 1 and its acetamido derivative 2 found in the P. aeruginosa serotype O5 O-antigen. The synthesis of the trisaccharide targets is based on balancing the reactivity of disaccharide acceptors and monosaccharide donors. Glycosylations were analyzed by quantifying the reactivity of the hydroxyl group of the disaccharide acceptor using the orbital-weighted Fukui function and dual descriptor. The stereoselective formation of 1,2-cis-α-fucosylamine linkages was achieved through a combination of remote acyl participation and reagent modulation. The simultaneous SN2 substitution of azide groups at C2' and C2″ enabled the efficient synthesis of 1,2-cis-β-linkages for both 2,3-diamino-D-mannuronic acids. Through a strategic orthogonal modification, the five amino groups on target trisaccharide 1 were equipped with a rare acetamidino (Am) and four acetyl (Ac) groups. Glycan microarray analyses of sera from patients infected with P. aeruginosa indicated that trisaccharides 1 and 2 are key antigenic epitopes of the serotype O5 O-antigen. The acetamidino group is not an essential determinant of antibody binding. The β-D-ManpNAc3NAcA residue is a key motif for the antigenicity of serotype O5 O-antigen. These findings serve as a foundation for the development of glycoconjugate vaccines targeting P. aeruginosa serotype O5.
Collapse
Affiliation(s)
- Guangzong Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
- Biomolecular Systems Department, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, Potsdam 14476, Germany
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Lingxin Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Yunzhan Ning
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Shengyong Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Suqing Xie
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Xiaopeng Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Peter H Seeberger
- Biomolecular Systems Department, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, Potsdam 14476, Germany
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
11
|
Khumalo GP, Loa-Kum-Cheung W, Van Wyk BE, Feng Y, Cock IE. Leaf extracts of eight selected southern African medicinal plants modulate pro-inflammatory cytokine secretion in LPS-stimulated RAW 264.7 macrophages. Inflammopharmacology 2024; 32:1607-1620. [PMID: 38310564 PMCID: PMC11006729 DOI: 10.1007/s10787-023-01420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/22/2023] [Indexed: 02/06/2024]
Abstract
This study investigates the anti-inflammatory properties of extracts prepared from the leaves of eight southern African medicinal plants used traditionally to treat inflammation and pain. The inhibitory effect of aqueous and ethanol extracts on the release of pro-inflammatory cytokines was determined in lipopolysaccharide (LPS) stimulated and unstimulated RAW 264.7 murine macrophage cells. The levels of interleukin (IL)-1β, IL-6, tumour necrosis factor-α (TNF-α), interferon-gamma (IFN-γ), monocyte chemoattractant protein 1 (MCP-1) and macrophage inflammatory protein (MIP)-2 release were determined using cytokine multiplex-bead assays. The ethanol extracts of Melianthus comosus Vahl (commonly known as honey flower), Tetradenia riparia (Hochst.) Codd (misty plume bush) and Warburgia salutaris (G. Bertol.) Chiov. (pepper-bark tree), demonstrated the most significant inhibitory activity, with over 50-fold inhibition of IL-1β, IL-6 and TNF-α levels in LPS-stimulated RAW 264.7 macrophages. The aqueous extract of M. comosus also significantly inhibited the secretion of all the tested cytokines and chemokines. Phytochemical investigation of M. comosus ethanol leaf extract using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS) led to the detection of crassolide, deoxylimonoic acid D-ring-lactone, 2-hydroxynonanoic acid and 5-noniloxytryptamine. To the best of our knowledge, the cytokine inhibition properties of most of the medicinal plants screened in this study are reported for the first time. Our results support the use of southern African medicinal plants as anti-inflammatory remedies and provide an insight into the immunomodulatory mechanisms of action.
Collapse
Affiliation(s)
- Gugulethu P Khumalo
- Centre for Planetary Health and Food Security, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, QLD, 4111, Australia
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, QLD, 4111, Australia
| | - Wendy Loa-Kum-Cheung
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Nathan, QLD, 4111, Australia
| | - Ben-Erik Van Wyk
- Department of Botany and Plant Biotechnology, University of Johannesburg, Auckland Park, P.O. Box 524, Johannesburg, 2006, South Africa
| | - Yunjiang Feng
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, QLD, 4111, Australia
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Nathan, QLD, 4111, Australia
| | - Ian E Cock
- Centre for Planetary Health and Food Security, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, QLD, 4111, Australia.
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, QLD, 4111, Australia.
| |
Collapse
|
12
|
Xu Q, Kang D, Meyer MD, Pennington CL, Gopal C, Schertzer JW, Kirienko NV. Cytotoxic rhamnolipid micelles drive acute virulence in Pseudomonas aeruginosa. Infect Immun 2024; 92:e0040723. [PMID: 38391248 PMCID: PMC10929412 DOI: 10.1128/iai.00407-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that has developed multi- or even pan-drug resistance toward most frontline and last resort antibiotics, leading to increasing frequency of infections and deaths among hospitalized patients, especially those with compromised immune systems. Further complicating treatment, P. aeruginosa produces numerous virulence factors that contribute to host tissue damage and immune evasion, promoting bacterial colonization and pathogenesis. In this study, we demonstrate the importance of rhamnolipid production in host-pathogen interactions. Secreted rhamnolipids form micelles that exhibited highly acute toxicity toward murine macrophages, rupturing the plasma membrane and causing organellar membrane damage within minutes of exposure. While rhamnolipid micelles (RMs) were particularly toxic to macrophages, they also caused membrane damage in human lung epithelial cells, red blood cells, Gram-positive bacteria, and even noncellular models like giant plasma membrane vesicles. Most importantly, rhamnolipid production strongly correlated with P. aeruginosa virulence against murine macrophages in various panels of clinical isolates. Altogether, our findings suggest that rhamnolipid micelles are highly cytotoxic virulence factors that drive acute cellular damage and immune evasion during P. aeruginosa infections.
Collapse
Affiliation(s)
- Qi Xu
- Department of BioSciences, Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Donghoon Kang
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Matthew D. Meyer
- Shared Equipment Authority, Rice University, Houston, Texas, USA
| | | | - Citrupa Gopal
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
| | - Jeffrey W. Schertzer
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
| | | |
Collapse
|
13
|
Ambreetha S, Zincke D, Balachandar D, Mathee K. Genomic and metabolic versatility of Pseudomonas aeruginosa contributes to its inter-kingdom transmission and survival. J Med Microbiol 2024; 73. [PMID: 38362900 DOI: 10.1099/jmm.0.001791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
Pseudomonas aeruginosa is one of the most versatile bacteria with renowned pathogenicity and extensive drug resistance. The diverse habitats of this bacterium include fresh, saline and drainage waters, soil, moist surfaces, taps, showerheads, pipelines, medical implants, nematodes, insects, plants, animals, birds and humans. The arsenal of virulence factors produced by P. aeruginosa includes pyocyanin, rhamnolipids, siderophores, lytic enzymes, toxins and polysaccharides. All these virulent elements coupled with intrinsic, adaptive and acquired antibiotic resistance facilitate persistent colonization and lethal infections in different hosts. To date, treating pulmonary diseases remains complicated due to the chronic secondary infections triggered by hospital-acquired P. aeruginosa. On the contrary, this bacterium can improve plant growth by suppressing phytopathogens and insects. Notably, P. aeruginosa is one of the very few bacteria capable of trans-kingdom transmission and infection. Transfer of P. aeruginosa strains from plant materials to hospital wards, animals to humans, and humans to their pets occurs relatively often. Recently, we have identified that plant-associated P. aeruginosa strains could be pathologically similar to clinical isolates. In this review, we have highlighted the genomic and metabolic factors that facilitate the dominance of P. aeruginosa across different biological kingdoms and the varying roles of this bacterium in plant and human health.
Collapse
Affiliation(s)
- Sakthivel Ambreetha
- Developmental Biology and Genetics, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Diansy Zincke
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Dananjeyan Balachandar
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
14
|
Mei M, Pheng P, Kurzeja-Edwards D, Diggle SP. High prevalence of lipopolysaccharide mutants and R2-pyocin susceptible variants in Pseudomonas aeruginosa populations sourced from cystic fibrosis lung infections. Microbiol Spectr 2023; 11:e0177323. [PMID: 37877708 PMCID: PMC10714928 DOI: 10.1128/spectrum.01773-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
IMPORTANCE Cystic fibrosis (CF) patients often experience chronic, debilitating lung infections caused by antibiotic-resistant Pseudomonas aeruginosa, contributing to antimicrobial resistance (AMR). The genetic and phenotypic diversity of P. aeruginosa populations in CF lungs raises questions about their susceptibility to non-traditional antimicrobials, like bacteriocins. In this study, we focused on R-pyocins, a type of bacteriocin with high potency and a narrow killing spectrum. Our findings indicate that a large number of infectious CF variants are susceptible to R2-pyocins, even within diverse bacterial populations, supporting their potential use as therapeutic agents. The absence of a clear correlation between lipopolysaccharide (LPS) phenotypes and R-pyocin susceptibility suggests that LPS packing density may play a significant role in R-pyocin susceptibility among CF variants. Understanding the relationship between LPS phenotypes and R-pyocin susceptibility is crucial for developing effective treatments for these chronic infections.
Collapse
Affiliation(s)
- Madeline Mei
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Preston Pheng
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Detriana Kurzeja-Edwards
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Stephen P. Diggle
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
15
|
Petrosino A, Saporetti R, Starinieri F, Sarti E, Ulfo L, Boselli L, Cantelli A, Morini A, Zadran SK, Zuccheri G, Pasquini Z, Di Giosia M, Prodi L, Pompa PP, Costantini PE, Calvaresi M, Danielli A. A modular phage vector platform for targeted photodynamic therapy of Gram-negative bacterial pathogens. iScience 2023; 26:108032. [PMID: 37822492 PMCID: PMC10563061 DOI: 10.1016/j.isci.2023.108032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/04/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023] Open
Abstract
Growing antibiotic resistance has encouraged the revival of phage-inspired antimicrobial approaches. On the other hand, photodynamic therapy (PDT) is considered a very promising research domain for the protection against infectious diseases. Yet, very few efforts have been made to combine the advantages of both approaches in a modular, retargetable platform. Here, we foster the M13 bacteriophage as a multifunctional scaffold, enabling the selective photodynamic killing of bacteria. We took advantage of the well-defined molecular biology of M13 to functionalize its capsid with hundreds of photo-activable Rose Bengal sensitizers and contemporarily target this light-triggerable nanobot to specific bacterial species by phage display of peptide targeting moieties fused to the minor coat protein pIII of the phage. Upon light irradiation of the specimen, the targeted killing of diverse Gram(-) pathogens occurred at subnanomolar concentrations of the phage vector. Our findings contribute to the development of antimicrobials based on targeted and triggerable phage-based nanobiotherapeutics.
Collapse
Affiliation(s)
- Annapaola Petrosino
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Roberto Saporetti
- Dipartimento di Chimica “Giacomo Ciamician” – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Francesco Starinieri
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Edoardo Sarti
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Luca Ulfo
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Luca Boselli
- Nanobiointeractions and Nanodiagnostics Laboratory, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Andrea Cantelli
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" Unit of Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Andrea Morini
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Suleman Khan Zadran
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Giampaolo Zuccheri
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
- CIRI SDV – Centro Interdipartimentale Scienze della Vita - Alma Mater Studiorum - Università di Bologna, Via Tolara di Sopra, 41/E - 40064 Ozzano dell'Emilia (BO), Italy
| | - Zeno Pasquini
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| | - Matteo Di Giosia
- Dipartimento di Chimica “Giacomo Ciamician” – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Luca Prodi
- Dipartimento di Chimica “Giacomo Ciamician” – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
- CIRI SDV – Centro Interdipartimentale Scienze della Vita - Alma Mater Studiorum - Università di Bologna, Via Tolara di Sopra, 41/E - 40064 Ozzano dell'Emilia (BO), Italy
| | - Pier Paolo Pompa
- Nanobiointeractions and Nanodiagnostics Laboratory, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Paolo Emidio Costantini
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician” – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
- CIRI SDV – Centro Interdipartimentale Scienze della Vita - Alma Mater Studiorum - Università di Bologna, Via Tolara di Sopra, 41/E - 40064 Ozzano dell'Emilia (BO), Italy
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
- CIRI SDV – Centro Interdipartimentale Scienze della Vita - Alma Mater Studiorum - Università di Bologna, Via Tolara di Sopra, 41/E - 40064 Ozzano dell'Emilia (BO), Italy
| |
Collapse
|
16
|
Xu Q, Kang D, Meyer MD, Pennington CL, Gopal C, Schertzer JW, Kirienko NV. Cytotoxic rhamnolipid micelles drive acute virulence in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562257. [PMID: 37873290 PMCID: PMC10592815 DOI: 10.1101/2023.10.13.562257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that has developed multi- or even pan-drug resistance towards most frontline and last resort antibiotics, leading to increasing infections and deaths among hospitalized patients, especially those with compromised immune systems. Further complicating treatment, P. aeruginosa produces numerous virulence factors that contribute to host tissue damage and immune evasion, promoting bacterial colonization and pathogenesis. In this study, we demonstrate the importance of rhamnolipid production in host-pathogen interactions. Secreted rhamnolipids form micelles that exhibited highly acute toxicity towards murine macrophages, rupturing the plasma membrane and causing organellar membrane damage within minutes of exposure. While rhamnolipid micelles (RMs) were particularly toxic to macrophages, they also caused membrane damage in human lung epithelial cells, red blood cells, Gram-positive bacteria, and even non-cellular models like giant plasma membrane vesicles. Most importantly, rhamnolipid production strongly correlated to P. aeruginosa virulence against murine macrophages in various panels of clinical isolates. Altogether, our findings suggest that rhamnolipid micelles are highly cytotoxic virulence factors that drive acute cellular damage and immune evasion during P. aeruginosa infections.
Collapse
Affiliation(s)
- Qi Xu
- Department of BioSciences, Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Donghoon Kang
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Matthew D. Meyer
- Shared Equipment Authority, Rice University, Houston, Texas, USA
| | | | - Citrupa Gopal
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
| | - Jeffrey W. Schertzer
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
| | | |
Collapse
|
17
|
Cross AS. Hit 'em Where It Hurts: Gram-Negative Bacterial Lipopolysaccharide as a Vaccine Target. Microbiol Mol Biol Rev 2023; 87:e0004522. [PMID: 37432116 PMCID: PMC10521362 DOI: 10.1128/mmbr.00045-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023] Open
Abstract
Infections with antimicrobial-resistant (AMR) bacteria pose an increasing threat to the ability to perform surgical procedures, organ transplantation, and treat cancer among many other medical conditions. There are few new antimicrobials in the development pipeline. Vaccines against AMR Gram-negative bacteria may reduce the use of antimicrobials and prevent bacterial transmission. This review traces the origins of lipopolysaccharide (LPS)-based vaccines against Gram-negative bacteria, the role of O polysaccharides and LPS core regions as potential vaccine targets, the development of new vaccine technologies, and their application to vaccines in current development.
Collapse
Affiliation(s)
- Alan S. Cross
- Center for Vaccine Development and Global Health, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Shun K, Ying-Li S, Zhi-Juan L, Jian-Liang L, Feng X, Lu-Jiao D, Peng Y, Jiang S, Zhi-Jing X. Stimulation of lipopolysaccharide from Pseudomonas aeruginosa following H9N2 IAV infection exacerbates inflammatory responses of alveolar macrophages and decreases virus replication. Microb Pathog 2023; 182:106254. [PMID: 37481007 DOI: 10.1016/j.micpath.2023.106254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
H9N2 IAV infection contributed to P. aeruginosa coinfection, causing severe hemorrhagic pneumonia in mink. In this study, the in vitro alveolar macrophage models were developed to investigate the innate immune responses to P. aeruginosa LPS stimulation following H9N2 IAV infection, using MH-S cells. The cytokine levels, apoptosis levels and the viral nucleic acid levels were detected and analyzed. As a result, the levels of IFN-α, IL-1β, TNF-α, and IL-10 in MH-S cells with P. aeruginosa LPS stimulation following H9N2 IAV infection were significantly higher than those in MH-S cells with single H9N2 IAV infection and single LPS stimulation (P < 0.05), exacerbating inflammatory responses. LPS stimulation aggravated the apoptosis of MH-S cells with H9N2 IAV infection. Interestingly, LPS stimulation influences H9N2 IAV replication and indirectly reduced H9N2 IAV replications in in vitro AMs. It implied that LPS should play an important role in the pathogenesis of H9N2 IAV and P. aeruginosa coinfection.
Collapse
Affiliation(s)
- Kang Shun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province, 271018, China
| | - Sun Ying-Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province, 271018, China
| | - Li Zhi-Juan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province, 271018, China
| | - Li Jian-Liang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, 271018, China
| | - Xiao Feng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, 271018, China
| | - Dong Lu-Jiao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, 271018, China
| | - Yuan Peng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, 271018, China
| | - Shijin Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, 271018, China
| | - Xie Zhi-Jing
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, 271018, China.
| |
Collapse
|
19
|
Salvà-Serra F, Pérez-Pantoja D, Donoso RA, Jaén-Luchoro D, Fernández-Juárez V, Engström-Jakobsson H, Moore ERB, Lalucat J, Bennasar-Figueras A. Comparative genomics of Stutzerimonas balearica ( Pseudomonas balearica): diversity, habitats, and biodegradation of aromatic compounds. Front Microbiol 2023; 14:1159176. [PMID: 37275147 PMCID: PMC10234333 DOI: 10.3389/fmicb.2023.1159176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/13/2023] [Indexed: 06/07/2023] Open
Abstract
Stutzerimonas balearica (Pseudomonas balearica) has been found principally in oil-polluted environments. The capability of S. balearica to thrive from the degradation of pollutant compounds makes it a species of interest for potential bioremediation applications. However, little has been reported about the diversity of S. balearica. In this study, genome sequences of S. balearica strains from different origins were analyzed, revealing that it is a diverse species with an open pan-genome that will continue revealing new genes and functionalities as the genomes of more strains are sequenced. The nucleotide signatures and intra- and inter-species variation of the 16S rRNA genes of S. balearica were reevaluated. A strategy of screening 16S rRNA gene sequences in public databases enabled the detection of 158 additional strains, of which only 23% were described as S. balearica. The species was detected from a wide range of environments, although mostly from aquatic and polluted environments, predominantly related to petroleum oil. Genomic and phenotypic analyses confirmed that S. balearica possesses varied inherent capabilities for aromatic compounds degradation. This study increases the knowledge of the biology and diversity of S. balearica and will serve as a basis for future work with the species.
Collapse
Affiliation(s)
- Francisco Salvà-Serra
- Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Danilo Pérez-Pantoja
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Raúl A. Donoso
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Víctor Fernández-Juárez
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Hedvig Engström-Jakobsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Edward R. B. Moore
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jorge Lalucat
- Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Antoni Bennasar-Figueras
- Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| |
Collapse
|
20
|
Sun Z, Yang F, Ji J, Cao W, Liu C, Ding B, Xu X. Dissecting the genotypic features of a fluoroquinolone-resistant Pseudomonas aeruginosa ST316 sublineage causing ear infections in Shanghai, China. Microb Genom 2023; 9:mgen000989. [PMID: 37079456 PMCID: PMC10210959 DOI: 10.1099/mgen.0.000989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/20/2023] [Indexed: 04/21/2023] Open
Abstract
Limited information is available regarding the genomic characteristics of P. aeruginosa causing ear infections. Our aim is to characterize the genotypic features of an emerging ST316 sublineage causing aural infections in Shanghai. A total of 199 ear swab isolates were subjected to whole genome sequencing (WGS). Complete genomes for two isolates were resolved. We showed this recently emerged sublineage exhibited high-level resistance to fluoroquinolones (FQs) primarily by accumulation of known mutations in quinolone resistance determining regions (QRDRs). Loss-of-function mutations in mexR and mexCD were frequently detected. Mutations in fusA1 (P166S) and parE (S492F) were resident in this sublinage about 2 years after its emergence. Recombination events might be a key driver of genomic diversity in this sublineage. Convergent evolution events on Multidrug-resistant (MDR) determinants were also observed. We generated predictive machine models and identified biomarkers of resistance to gentamicin, fosfomycin, and cefoperazone-sulbactam in this sublineage. This sublineage tended to be less virulent by loss of a series virulence genes represented by ppkA, rhlI, and iron uptake- and antimicrobial activity-related genes. Specific mutations were detected in pilU and lpxB genes that related to surface structures. Moreover, this sublineage differed from non-ST316 isolates in several ways, including virulence genes related to cell surface structure. Our analysis suggested acquisition of a roughly 390 kbp MDR plasmid carrying qnrVC1 might play an important role in the success of this sublinage. Clonal expansion of this sublineage exhibiting enhanced adaptation to cause ear infections is concerning, which requires urgent control measures to be implemented.
Collapse
Affiliation(s)
- Zhewei Sun
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, PR China
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, PR China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, PR China
| | - Feifei Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, PR China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, PR China
| | - Jian Ji
- Department of Clinical Laboratory, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Wenjun Cao
- Department of Clinical Laboratory, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Chunhong Liu
- Department of Clinical Laboratory, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Baixing Ding
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, PR China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, PR China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, PR China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, PR China
| |
Collapse
|
21
|
Pseudomonas aeruginosa and the Complement System: A Review of the Evasion Strategies. Microorganisms 2023; 11:microorganisms11030664. [PMID: 36985237 PMCID: PMC10056308 DOI: 10.3390/microorganisms11030664] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The increasing emergence of multidrug resistant isolates of P. aeruginosa causes major problems in hospitals worldwide. This concern is particularly significant in bloodstream infections that progress rapidly, with a high number of deaths within the first hours and without time to select the most appropriate treatment. In fact, despite improvements in antimicrobial therapy and hospital care, P. aeruginosa bacteremia remains fatal in about 30% of cases. The complement system is a main defensive mechanism in blood against this pathogen. This system can mark bacteria for phagocytosis or directly lyse it via the insertion of a membrane attack complex in the bacterial membrane. P. aeruginosa exploits different strategies to resist complement attack. In this review for the special issue on “bacterial pathogens associated with bacteriemia”, we present an overview of the interactions between P. aeruginosa and the complement components and strategies used by this pathogen to prevent recognition and killing by the complement system. A thorough understanding of these interactions will be critical in order to develop drugs to counteract bacterial evasion mechanisms.
Collapse
|
22
|
Salvà-Serra F, Jaén-Luchoro D, Marathe NP, Adlerberth I, Moore ERB, Karlsson R. Responses of carbapenemase-producing and non-producing carbapenem-resistant Pseudomonas aeruginosa strains to meropenem revealed by quantitative tandem mass spectrometry proteomics. Front Microbiol 2023; 13:1089140. [PMID: 36845973 PMCID: PMC9948630 DOI: 10.3389/fmicb.2022.1089140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/08/2022] [Indexed: 02/11/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen with increasing incidence of multidrug-resistant strains, including resistance to last-resort antibiotics, such as carbapenems. Resistances are often due to complex interplays of natural and acquired resistance mechanisms that are enhanced by its large regulatory network. This study describes the proteomic responses of two carbapenem-resistant P. aeruginosa strains of high-risk clones ST235 and ST395 to subminimal inhibitory concentrations (sub-MICs) of meropenem by identifying differentially regulated proteins and pathways. Strain CCUG 51971 carries a VIM-4 metallo-β-lactamase or 'classical' carbapenemase; strain CCUG 70744 carries no known acquired carbapenem-resistance genes and exhibits 'non-classical' carbapenem-resistance. Strains were cultivated with different sub-MICs of meropenem and analyzed, using quantitative shotgun proteomics based on tandem mass tag (TMT) isobaric labeling, nano-liquid chromatography tandem-mass spectrometry and complete genome sequences. Exposure of strains to sub-MICs of meropenem resulted in hundreds of differentially regulated proteins, including β-lactamases, proteins associated with transport, peptidoglycan metabolism, cell wall organization, and regulatory proteins. Strain CCUG 51971 showed upregulation of intrinsic β-lactamases and VIM-4 carbapenemase, while CCUG 70744 exhibited a combination of upregulated intrinsic β-lactamases, efflux pumps, penicillin-binding proteins and downregulation of porins. All components of the H1 type VI secretion system were upregulated in strain CCUG 51971. Multiple metabolic pathways were affected in both strains. Sub-MICs of meropenem cause marked changes in the proteomes of carbapenem-resistant strains of P. aeruginosa exhibiting different resistance mechanisms, involving a wide range of proteins, many uncharacterized, which might play a role in the susceptibility of P. aeruginosa to meropenem.
Collapse
Affiliation(s)
- Francisco Salvà-Serra
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden,Culture Collection University of Gothenburg (CCUG), Department of Clinical Microbiology, Sahlgrenska University Hospital and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden,Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain,*Correspondence: Francisco Salvà-Serra, ✉
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Culture Collection University of Gothenburg (CCUG), Department of Clinical Microbiology, Sahlgrenska University Hospital and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | | | - Ingegerd Adlerberth
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Edward R. B. Moore
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden,Culture Collection University of Gothenburg (CCUG), Department of Clinical Microbiology, Sahlgrenska University Hospital and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Roger Karlsson
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden,Nanoxis Consulting AB, Gothenburg, Sweden,Roger Karlsson, ✉
| |
Collapse
|
23
|
Wood SJ, Goldufsky JW, Seu MY, Dorafshar AH, Shafikhani SH. Pseudomonas aeruginosa Cytotoxins: Mechanisms of Cytotoxicity and Impact on Inflammatory Responses. Cells 2023; 12:cells12010195. [PMID: 36611990 PMCID: PMC9818787 DOI: 10.3390/cells12010195] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas aeruginosa is one of the most virulent opportunistic Gram-negative bacterial pathogens in humans. It causes many acute and chronic infections with morbidity and mortality rates as high as 40%. P. aeruginosa owes its pathogenic versatility to a large arsenal of cell-associated and secreted virulence factors which enable this pathogen to colonize various niches within hosts and protect it from host innate immune defenses. Induction of cytotoxicity in target host cells is a major virulence strategy for P. aeruginosa during the course of infection. P. aeruginosa has invested heavily in this strategy, as manifested by a plethora of cytotoxins that can induce various forms of cell death in target host cells. In this review, we provide an in-depth review of P. aeruginosa cytotoxins based on their mechanisms of cytotoxicity and the possible consequences of their cytotoxicity on host immune responses.
Collapse
Affiliation(s)
- Stephen J. Wood
- Department of Medicine, Division of Hematology, Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Josef W. Goldufsky
- Department of Medicine, Division of Hematology, Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
| | - Michelle Y. Seu
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Amir H. Dorafshar
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sasha H. Shafikhani
- Department of Medicine, Division of Hematology, Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
- Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
24
|
Hummig W, Baggio DF, Lopes RV, dos Santos SMD, Ferreira LEN, Chichorro JG. Antinociceptive effect of ultra-low dose naltrexone in a pre-clinical model of postoperative orofacial pain. Brain Res 2023; 1798:148154. [DOI: 10.1016/j.brainres.2022.148154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/10/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
25
|
Sankar S, Ganesh PS, Subramaniam S, Shankar EM, Yuwanati M, Govindasamy R, Thiruvengadam M. Host cell responses against the pseudomonal biofilm: A continued tale of host-pathogen interactions. Microb Pathog 2023; 174:105940. [PMID: 36513294 DOI: 10.1016/j.micpath.2022.105940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
In biofilm formation, pathogens within the bacterial community coordinate a cell-cell communication system called quorum sensing (QS). This is achieved through various signalling pathways that regulate bacterial virulence and host immune response. Here, we reviewed the host responses, key clinical implications, and novel therapeutic approaches against the biofilms of P. aeruginosa. Given the high degree of intrinsic antibiotic resistance and biofilm formation by the pathogen, the ensuing treatment complications could result in high morbidity and mortality rates worldwide. Notwithstanding the availability of intervention strategies, there remains a paucity of effective therapeutic options to control biofilmogenesis. This review discusses the basic understanding of QS-associated virulence factors and several key therapeutic interventions to foil the biofilm menace of P. aeruginosa.
Collapse
Affiliation(s)
- Sathish Sankar
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Chennai, 600 077, Tamil Nadu, India.
| | - Pitchaipillai Sankar Ganesh
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Chennai, 600 077, Tamil Nadu, India.
| | - Suganya Subramaniam
- Department of Biotechnology, MMES Women's Arts and Science College, Melvisharam, 632 509, Tamil Nadu, India
| | - Esaki M Shankar
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, 610 005, Tamil Nadu, India
| | - Monal Yuwanati
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Chennai, 600 077, Tamil Nadu, India
| | - Rajakumar Govindasamy
- Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
26
|
Cangui-Panchi SP, Ñacato-Toapanta AL, Enríquez-Martínez LJ, Salinas-Delgado GA, Reyes J, Garzon-Chavez D, Machado A. Battle royale: Immune response on biofilms – host-pathogen interactions. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100057. [PMID: 37025390 PMCID: PMC10070391 DOI: 10.1016/j.crimmu.2023.100057] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
The research interest of the scientific community in biofilm-forming microorganisms is growing due to the problems caused by their infections affecting humans and animals, mainly because of the difficulty of the host immune system in eradicating these microbial complex communities and the increasing antimicrobial resistance rates worldwide. This review describes the virulence factors and their interaction with the microbial communities of four well-known and highly biofilm-forming pathogens, more exactly, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus spp., and Candida spp. The innate and adaptive immune responses caused by the infection with these microorganisms and their evasion to the host immune system by biofilm formation are discussed in the present work. The relevance of the differences in the expression of certain virulence factors and the immune response in biofilm-associated infections when compared to planktonic infections is usually described as the biofilm architecture protects the pathogen and alters the host immune responses, here we extensively discussed these mechanisms.
Collapse
Affiliation(s)
- Sandra Pamela Cangui-Panchi
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
| | - Anahí Lizbeth Ñacato-Toapanta
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
| | - Leonardo Joshué Enríquez-Martínez
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
| | - Gabriela Alexandra Salinas-Delgado
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
| | - Jorge Reyes
- Hospital del Instituto Ecuatoriano de Seguridad Social (IESS) Quito-Sur, Quito, Ecuador
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito, Ecuador
| | - Daniel Garzon-Chavez
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Quito, Ecuador
| | - António Machado
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
- Corresponding author.
| |
Collapse
|
27
|
Phage phiZ98: a novel tri-segmented dsRNA cystovirus for controlling Pseudomonas strains with defective lipopolysaccharides in foods. Food Res Int 2022; 162:112197. [DOI: 10.1016/j.foodres.2022.112197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
|
28
|
The In Vivo and In Vitro Assessment of Pyocins in Treating Pseudomonas aeruginosa Infections. Antibiotics (Basel) 2022; 11:antibiotics11101366. [PMID: 36290026 PMCID: PMC9598984 DOI: 10.3390/antibiotics11101366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
Abstract
Pseudomonas aeruginosa can cause several life-threatening infections among immunocompromised patients (e.g., cystic fibrosis) due to its ability to adapt and develop resistance to several antibiotics. In recent years, P. aeruginosa infections has become difficult to treat using conventional antibiotics due to the increase multidrug-resistant P. aeruginosa strains. Therefore, there is a growing interest to develop novel treatments against antibiotic-resistance P. aeruginosa strains. One novel method includes the application of antimicrobial peptides secreted by P. aeruginosa strains, known as pyocins. In this review, we will discuss the structure, function, and use of pyocins in the pathogenesis and treatment of P. aeruginosa infection.
Collapse
|
29
|
Jackson SA, Duan M, Zhang P, Ihua MW, Stengel DB, Duan D, Dobson ADW. Isolation, identification, and biochemical characterization of a novel bifunctional phosphomannomutase/phosphoglucomutase from the metagenome of the brown alga Laminaria digitata. Front Microbiol 2022; 13:1000634. [PMID: 36212884 PMCID: PMC9537760 DOI: 10.3389/fmicb.2022.1000634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Macroalgae host diverse epiphytic bacterial communities with potential symbiotic roles including important roles influencing morphogenesis and growth of the host, nutrient exchange, and protection of the host from pathogens. Macroalgal cell wall structures, exudates, and intra-cellular environments possess numerous complex and valuable carbohydrates such as cellulose, hemi-cellulose, mannans, alginates, fucoidans, and laminarin. Bacterial colonizers of macroalgae are important carbon cyclers, acquiring nutrition from living macroalgae and also from decaying macroalgae. Seaweed epiphytic communities are a rich source of diverse carbohydrate-active enzymes which may have useful applications in industrial bioprocessing. With this in mind, we constructed a large insert fosmid clone library from the metagenome of Laminaria digitata (Ochrophyta) in which decay was induced. Subsequent sequencing of a fosmid clone insert revealed the presence of a gene encoding a bifunctional phosphomannomutase/phosphoglucomutase (PMM/PGM) enzyme 10L6AlgC, closely related to a protein from the halophilic marine bacterium, Cobetia sp. 10L6AlgC was subsequently heterologously expressed in Escherichia coli and biochemically characterized. The enzyme was found to possess both PMM and PGM activity, which had temperature and pH optima of 45°C and 8.0, respectively; for both activities. The PMM activity had a K m of 2.229 mM and V max of 29.35 mM min-1 mg-1, while the PGM activity had a K m of 0.5314 mM and a V max of 644.7 mM min-1 mg-1. Overall characterization of the enzyme including the above parameters as well as the influence of various divalent cations on these activities revealed that 10L6AlgC has a unique biochemical profile when compared to previously characterized PMM/PGM bifunctional enzymes. Thus 10L6AlgC may find utility in enzyme-based production of biochemicals with different potential industrial applications, in which other bacterial PMM/PGMs have previously been used such as in the production of low-calorie sweeteners in the food industry.
Collapse
Affiliation(s)
- Stephen A. Jackson
- School of Microbiology, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Maohang Duan
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Pengyan Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Maureen W. Ihua
- School of Microbiology, University College Cork, Cork, Ireland
| | - Dagmar B. Stengel
- Botany and Plant Science, School of Natural Sciences, Ryan Institute for Environmental, Marine and Energy Research, University of Galway, Galway, Ireland
| | - Delin Duan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
30
|
Kahli H, Béven L, Grauby-Heywang C, Debez N, Gammoudi I, Moroté F, Sbartai H, Cohen-Bouhacina T. Impact of Growth Conditions on Pseudomonas fluorescens Morphology Characterized by Atomic Force Microscopy. Int J Mol Sci 2022; 23:ijms23179579. [PMID: 36076985 PMCID: PMC9455637 DOI: 10.3390/ijms23179579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
This work is dedicated to the characterization by Atomic Force Microscopy (AFM) of Pseudomonas fluorescens, bacteria having high potential in biotechnology. They were first studied first in optimal conditions in terms of culture medium and temperature. AFM revealed a more-or-less elongated morphology with typical dimensions in the micrometer range, and an organization of the outer membrane characterized by the presence of long and randomly distributed ripples, which are likely related to the organization of lipopolysaccharides (LPS). The outer membrane also presents invaginations, some of them showing a reorganization of ripples, which could be the first sign of a bacterial stress response. In a second step, bacteria grown under unfavorable conditions were characterized. The choice of the medium appeared to be more critical in the case of the second generation of cells, the less adapted medium inducing not only changes in the membrane organization but also larger damages in bacteria. An increased growth temperature affected both the usual “swollen” morphology and the organization of the outer membrane. Here also, LPS likely contribute to membrane remodelling, which makes them potential markers to track cell state changes.
Collapse
Affiliation(s)
- Houssem Kahli
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France
- Laboratory of Cellular Toxicology, University of Badji Mokhtar, Annaba 23000, Algeria
- Correspondence: (H.K.); (T.C.-B.)
| | - Laure Béven
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, 33140 Villenave d’Ornon, France
| | | | - Nesrine Debez
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France
- Laboratory of Cellular Toxicology, University of Badji Mokhtar, Annaba 23000, Algeria
- Laboratory of Biodiversity and Pollution of Ecosystems, University Chadli Bendjedid, El Tarf 36000, Algeria
| | | | - Fabien Moroté
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France
| | - Hana Sbartai
- Laboratory of Cellular Toxicology, University of Badji Mokhtar, Annaba 23000, Algeria
| | - Touria Cohen-Bouhacina
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France
- Correspondence: (H.K.); (T.C.-B.)
| |
Collapse
|
31
|
Wang M, Deng Z, Li Y, Xu K, Ma Y, Yang ST, Wang J. Antibiofilm property and multiple action of peptide PEW300 against Pseudomonas aeruginosa. Front Microbiol 2022; 13:963292. [PMID: 35966656 PMCID: PMC9372277 DOI: 10.3389/fmicb.2022.963292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa), an opportunistic pathogen, is often associated with difficulties in treating hospital-acquired infections. Biofilms formed by P. aeruginosa significantly improve its resistance to antimicrobial agents, thereby, posing a great challenge to the combat of P. aeruginosa infection. Antimicrobial peptides (AMPs) have recently emerged as promising antibiofilm agents and increasingly attracting the attention of scientists worldwide. However, current knowledge of their antibiofilm behavior is limited and their underlying mechanism remains unclear. In this study, a novel AMP, named PEW300, with three-point mutations (E9H, D17K, and T33A) from Cecropin A was used to investigate its antibiofilm property and antibiofilm pathway against P. aeruginosa. PEW300 displayed strong antibacterial and antibiofilm activity against P. aeruginosa with no significant hemolysis or cytotoxicity to mouse erythrocyte and human embryonic kidney 293 cells. Besides, the antibiofilm pathway results showed that PEW300 preferentially dispersed the mature biofilm, leading to the biofilm-encapsulated bacteria exposure and death. Meanwhile, we also found that the extracellular DNA was a critical target of PEW300 against the mature biofilm of P. aeruginosa. In addition, multiple actions of PEW300 including destroying the cell membrane integrity, inducing high levels of intracellular reactive oxygen species, and interacting with genomic DNA were adopted to exert its antibacterial activity. Moreover, PEW300 could dramatically reduce the virulence of P. aeruginosa. Taken together, PEW300 might be served as a promising antibiofilm candidate to combat P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Meng Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zifeng Deng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yanmei Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Keyong Xu
- Kaiping Healthwise Health Food Co., Ltd, Kaiping, China
| | - Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Shang-Tian Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Jufang Wang,
| |
Collapse
|
32
|
Antioxidant and Anti-Inflammatory Effects of Thyme (Thymus vulgaris L.) Essential Oils Prepared at Different Plant Phenophases on Pseudomonas aeruginosa LPS-Activated THP-1 Macrophages. Antioxidants (Basel) 2022; 11:antiox11071330. [PMID: 35883820 PMCID: PMC9311800 DOI: 10.3390/antiox11071330] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Thyme (Thymus vulgaris L.) essential oil (TEO) is widely used as an alternative therapy especially for infections of the upper respiratory tract. TEO possesses antiviral, antibacterial, and antifungal properties. The emerging antibiotic resistance of bacterial strains, including Pseudomonas aeruginosa, has prompted the urge to find alternative treatments. In the present study, we examined the anti-inflammatory and antioxidant effects of thymol, the main compound of TEO, and two TEOs prepared at the beginning and at the end of the flowering period that may make these oils promising candidates as complementary or alternative therapies against P. aeruginosa infections. The activity measurements of the antioxidant enzymes peroxidase (PX), catalase (CAT), and superoxide dismutase (SOD) as well as the determination of total antioxidant capacity of P. aeruginosa-activated THP-1 cells revealed that thymol and both TEOs increased CAT and SOD activity as well as the antioxidant capacity of the THP-1 cells. The measurements of the proinflammatory cytokine mRNA expression and secreted protein level of LPS-activated THP-1 cells showed that from the two TEOs, only TEO prepared at the beginning of the flowering period acted as a potent inhibitor of the synthesis of IL-6, IL-8, IL-β, and TNF-α. Our results suggest that not only thymol, but also the synergism or the antagonistic effects of the additional compounds of the essential oils are responsible for the anti-inflammatory activity of TEOs.
Collapse
|
33
|
Liao C, Huang X, Wang Q, Yao D, Lu W. Virulence Factors of Pseudomonas Aeruginosa and Antivirulence Strategies to Combat Its Drug Resistance. Front Cell Infect Microbiol 2022; 12:926758. [PMID: 35873152 PMCID: PMC9299443 DOI: 10.3389/fcimb.2022.926758] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing nosocomial infections in severely ill and immunocompromised patients. Ubiquitously disseminated in the environment, especially in hospitals, it has become a major threat to human health due to the constant emergence of drug-resistant strains. Multiple resistance mechanisms are exploited by P. aeruginosa, which usually result in chronic infections difficult to eradicate. Diverse virulence factors responsible for bacterial adhesion and colonization, host immune suppression, and immune escape, play important roles in the pathogenic process of P. aeruginosa. As such, antivirulence treatment that aims at reducing virulence while sparing the bacterium for its eventual elimination by the immune system, or combination therapies, has significant advantages over traditional antibiotic therapy, as the former imposes minimal selective pressure on P. aeruginosa, thus less likely to induce drug resistance. In this review, we will discuss the virulence factors of P. aeruginosa, their pathogenic roles, and recent advances in antivirulence drug discovery for the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Chongbing Liao
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Xin Huang
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Qingxia Wang
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Dan Yao
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Wuyuan Lu
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Flagellotropic Bacteriophages: Opportunities and Challenges for Antimicrobial Applications. Int J Mol Sci 2022; 23:ijms23137084. [PMID: 35806089 PMCID: PMC9266447 DOI: 10.3390/ijms23137084] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 12/22/2022] Open
Abstract
Bacteriophages (phages) are the most abundant biological entities in the biosphere. As viruses that solely infect bacteria, phages have myriad healthcare and agricultural applications including phage therapy and antibacterial treatments in the foodservice industry. Phage therapy has been explored since the turn of the twentieth century but was no longer prioritized following the invention of antibiotics. As we approach a post-antibiotic society, phage therapy research has experienced a significant resurgence for the use of phages against antibiotic-resistant bacteria, a growing concern in modern medicine. Phages are extraordinarily diverse, as are their host receptor targets. Flagellotropic (flagellum-dependent) phages begin their infection cycle by attaching to the flagellum of their motile host, although the later stages of the infection process of most of these phages remain elusive. Flagella are helical appendages required for swimming and swarming motility and are also of great importance for virulence in many pathogenic bacteria of clinical relevance. Not only is bacterial motility itself frequently important for virulence, as it allows pathogenic bacteria to move toward their host and find nutrients more effectively, but flagella can also serve additional functions including mediating bacterial adhesion to surfaces. Flagella are also a potent antigen recognized by the human immune system. Phages utilizing the flagellum for infections are of particular interest due to the unique evolutionary tradeoff they force upon their hosts: by downregulating or abolishing motility to escape infection by a flagellotropic phage, a pathogenic bacterium would also likely attenuate its virulence. This factor may lead to flagellotropic phages becoming especially potent antibacterial agents. This review outlines past, present, and future research of flagellotropic phages, including their molecular mechanisms of infection and potential future applications.
Collapse
|
35
|
Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, Liang H, Song X, Wu M. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther 2022; 7:199. [PMID: 35752612 PMCID: PMC9233671 DOI: 10.1038/s41392-022-01056-1] [Citation(s) in RCA: 394] [Impact Index Per Article: 131.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative opportunistic pathogen that infects patients with cystic fibrosis, burn wounds, immunodeficiency, chronic obstructive pulmonary disorder (COPD), cancer, and severe infection requiring ventilation, such as COVID-19. P. aeruginosa is also a widely-used model bacterium for all biological areas. In addition to continued, intense efforts in understanding bacterial pathogenesis of P. aeruginosa including virulence factors (LPS, quorum sensing, two-component systems, 6 type secretion systems, outer membrane vesicles (OMVs), CRISPR-Cas and their regulation), rapid progress has been made in further studying host-pathogen interaction, particularly host immune networks involving autophagy, inflammasome, non-coding RNAs, cGAS, etc. Furthermore, numerous technologic advances, such as bioinformatics, metabolomics, scRNA-seq, nanoparticles, drug screening, and phage therapy, have been used to improve our understanding of P. aeruginosa pathogenesis and host defense. Nevertheless, much remains to be uncovered about interactions between P. aeruginosa and host immune responses, including mechanisms of drug resistance by known or unannotated bacterial virulence factors as well as mammalian cell signaling pathways. The widespread use of antibiotics and the slow development of effective antimicrobials present daunting challenges and necessitate new theoretical and practical platforms to screen and develop mechanism-tested novel drugs to treat intractable infections, especially those caused by multi-drug resistance strains. Benefited from has advancing in research tools and technology, dissecting this pathogen's feature has entered into molecular and mechanistic details as well as dynamic and holistic views. Herein, we comprehensively review the progress and discuss the current status of P. aeruginosa biophysical traits, behaviors, virulence factors, invasive regulators, and host defense patterns against its infection, which point out new directions for future investigation and add to the design of novel and/or alternative therapeutics to combat this clinically significant pathogen.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanmin Zhou
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, 430071, P.R. China
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haihua Liang
- College of Life Sciences, Northwest University, Xi'an, ShaanXi, 710069, China
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Min Wu
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA.
| |
Collapse
|
36
|
Jang WY, Lee HP, Kim SA, Huang L, Yoon JH, Shin CY, Mitra A, Kim HG, Cho JY. Angiopteris cochinchinensis de Vriese Ameliorates LPS-Induced Acute Lung Injury via Src Inhibition. PLANTS 2022; 11:plants11101306. [PMID: 35631731 PMCID: PMC9143704 DOI: 10.3390/plants11101306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022]
Abstract
Growing demand for treatment options against acute lung injury (ALI) emphasizes studies on plant extracts harboring anti-inflammatory effects. According to GC-MS analysis, Angiopteris cochinchinensis de Vriese consists of various flavonoids with anti-inflammatory activities. Thus, in this study, the anti-inflammatory effects of an extract of Angiopteris cochinchinensis de Vriese (Ac-EE) were assessed using RAW264.6 murine macrophages and a lipopolysaccharide (LPS)-induced ALI model. Ac-EE reduced the nitric oxide production in murine macrophages increased by LPS induction. Moreover, protective effects of Ac-EE on lung tissue were demonstrated by shrinkage of edema and lung injury. Reduced neutrophil infiltration and formation of hyaline membranes were also detected in lung tissues after H&E staining. Semiquantitative RT-PCR, quantitative real-time PCR, and ELISA showed that Ac-EE inhibits the production of proinflammatory mediators, including iNOS and COX-2, and cytokines, such as TNF-α, IL-1β, and IL-6. An Ac-EE-mediated anti-inflammatory response was derived from inhibiting the NF-κB signaling pathway, which was evaluated by luciferase reporter assay and Western blotting analysis. A cellular thermal shift assay revealed that the prime target of Ac-EE in alleviating inflammation was Src. With its direct binding with Src, Angiopteris cochinchinensis de Vriese significantly mitigates lung injury, showing possibilities of its potential as an effective botanical drug.
Collapse
Affiliation(s)
- Won Young Jang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (W.Y.J.); (H.P.L.); (S.A.K.)
| | - Hwa Pyoung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (W.Y.J.); (H.P.L.); (S.A.K.)
| | - Seung A Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (W.Y.J.); (H.P.L.); (S.A.K.)
| | - Lei Huang
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (L.H.); (J.H.Y.); (C.Y.S.)
| | - Ji Hye Yoon
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (L.H.); (J.H.Y.); (C.Y.S.)
| | - Chae Yun Shin
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (L.H.); (J.H.Y.); (C.Y.S.)
| | - Ankita Mitra
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea;
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (W.Y.J.); (H.P.L.); (S.A.K.)
- Correspondence: (H.G.K.); (J.Y.C.); Tel.: +82-31-290-7878 (H.G.K.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (W.Y.J.); (H.P.L.); (S.A.K.)
- Correspondence: (H.G.K.); (J.Y.C.); Tel.: +82-31-290-7878 (H.G.K.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|
37
|
Jennings MP, Day CJ, Atack JM. How bacteria utilize sialic acid during interactions with the host: snip, snatch, dispatch, match and attach. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001157. [PMID: 35316172 PMCID: PMC9558349 DOI: 10.1099/mic.0.001157] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/08/2022] [Indexed: 12/16/2022]
Abstract
N -glycolylneuraminic acid (Neu5Gc), and its precursor N-acetylneuraminic acid (Neu5Ac), commonly referred to as sialic acids, are two of the most common glycans found in mammals. Humans carry a mutation in the enzyme that converts Neu5Ac into Neu5Gc, and as such, expression of Neu5Ac can be thought of as a 'human specific' trait. Bacteria can utilize sialic acids as a carbon and energy source and have evolved multiple ways to take up sialic acids. In order to generate free sialic acid, many bacteria produce sialidases that cleave sialic acid residues from complex glycan structures. In addition, sialidases allow escape from innate immune mechanisms, and can synergize with other virulence factors such as toxins. Human-adapted pathogens have evolved a preference for Neu5Ac, with many bacterial adhesins, and major classes of toxin, specifically recognizing Neu5Ac containing glycans as receptors. The preference of human-adapted pathogens for Neu5Ac also occurs during biosynthesis of surface structures such as lipo-oligosaccharide (LOS), lipo-polysaccharide (LPS) and polysaccharide capsules, subverting the human host immune system by mimicking the host. This review aims to provide an update on the advances made in understanding the role of sialic acid in bacteria-host interactions made in the last 5-10 years, and put these findings into context by highlighting key historical discoveries. We provide a particular focus on 'molecular mimicry' and incorporation of sialic acid onto the bacterial outer-surface, and the role of sialic acid as a receptor for bacterial adhesins and toxins.
Collapse
Affiliation(s)
- Michael P. Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Christopher J. Day
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - John M. Atack
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
- School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
38
|
Garcia-Vello P, Speciale I, Di Lorenzo F, Molinaro A, De Castro C. Dissecting Lipopolysaccharide Composition and Structure by GC-MS and MALDI Spectrometry. Methods Mol Biol 2022; 2548:181-209. [PMID: 36151499 DOI: 10.1007/978-1-0716-2581-1_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lipopolysaccharides (LPSs) are the main components of the external leaflet of the outer membrane of Gram-negative bacteria. They exert multiple functions, starting from conferring stability to the bacterial membrane to mediating the interaction of the microbe with the external environment. The composition and the structure of LPSs present tremendous diversity even within bacteria of the same species, and for this reason, the determination of the structure of these molecules is crucial because it can provide information on the motifs key for the virulence of a pathogen or that are associated to a bacterium of the commensal or beneficial microbiota. In addition, structural data disclose the effects triggered from a mutation or from the use of an antibiotic, or they can be used as tools to check the quality of adjuvants and/or medications, as vaccines, that make use of LPS.The structural study of LPSs is complex, and it can be achieved with the right combination of different techniques. In this frame, this chapter focuses on the two MS-based approaches, the gas chromatography-mass spectrometry (GC-MS) and the matrix-assisted laser desorption/ionization (MALDI).
Collapse
Affiliation(s)
| | - Immacolata Speciale
- Department of Chemical Sciences, University of Naples, Naples, Italy
- Department of Agricultural Sciences, University of Naples, Portici, Italy
| | | | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples, Naples, Italy
| | - Cristina De Castro
- Department of Agricultural Sciences, University of Naples, Portici, Italy.
| |
Collapse
|
39
|
Potential Therapeutic Targets for Combination Antibody Therapy against Pseudomonas aeruginosa Infections. Antibiotics (Basel) 2021; 10:antibiotics10121530. [PMID: 34943742 PMCID: PMC8698887 DOI: 10.3390/antibiotics10121530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Despite advances in antimicrobial therapy and even the advent of some effective vaccines, Pseudomonas aeruginosa (P. aeruginosa) remains a significant cause of infectious disease, primarily due to antibiotic resistance. Although P. aeruginosa is commonly treatable with readily available therapeutics, these therapies are not always efficacious, particularly for certain classes of patients (e.g., cystic fibrosis (CF)) and for drug-resistant strains. Multi-drug resistant P. aeruginosa infections are listed on both the CDC’s and WHO’s list of serious worldwide threats. This increasing emergence of drug resistance and prevalence of P. aeruginosa highlights the need to identify new therapeutic strategies. Combinations of monoclonal antibodies against different targets and epitopes have demonstrated synergistic efficacy with each other as well as in combination with antimicrobial agents typically used to treat these infections. Such a strategy has reduced the ability of infectious agents to develop resistance. This manuscript details the development of potential therapeutic targets for polyclonal antibody therapies to combat the emergence of multidrug-resistant P. aeruginosa infections. In particular, potential drug targets for combinational immunotherapy against P. aeruginosa are identified to combat current and future drug resistance.
Collapse
|
40
|
Martínez-Alcantar L, Orozco G, Díaz-Pérez AL, Villegas J, Reyes-De la Cruz H, García-Pineda E, Campos-García J. Participation of Acyl-Coenzyme A Synthetase FadD4 of Pseudomonas aeruginosa PAO1 in Acyclic Terpene/Fatty Acid Assimilation and Virulence by Lipid A Modification. Front Microbiol 2021; 12:785112. [PMID: 34867927 PMCID: PMC8637051 DOI: 10.3389/fmicb.2021.785112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 12/03/2022] Open
Abstract
The pathogenic bacterium Pseudomonas aeruginosa possesses high metabolic versatility, with its effectiveness to cause infections likely due to its well-regulated genetic content. P. aeruginosa PAO1 has at least six fadD paralogous genes, which have been implicated in fatty acid (FA) degradation and pathogenicity. In this study, we used mutagenesis and a functional approach in P. aeruginosa PAO1 to determine the roles of the fadD4 gene in acyclic terpene (AT) and FA assimilation and on pathogenicity. The results indicate that fadD4 encodes a terpenoyl-CoA synthetase utilized for AT and FA assimilation. Additionally, mutations in fadD paralogs led to the modification of the quorum-sensing las/rhl systems, as well as the content of virulence factors pyocyanin, biofilm, rhamnolipids, lipopolysaccharides (LPS), and polyhydroxyalkanoates. In a Caenorhabditis elegans in vivo pathogenicity model, culture supernatants from the 24-h-grown fadD4 single mutant increased lethality compared to the PAO1 wild-type (WT) strain; however, the double mutants fadD1/fadD2, fadD1/fadD4, and fadD2/fadD4 and single mutant fadD2 increased worm survival. A correlation analysis indicated an interaction between worm death by the PAO1 strain, the fadD4 mutation, and the virulence factor LPS. Fatty acid methyl ester (FAME) analysis of LPS revealed that a proportion of the LPS and FA on lipid A were modified by the fadD4 mutation, suggesting that FadD4 is also involved in the synthesis/degradation and modification of the lipid A component of LPS. LPS isolated from the fadD4 mutant and double mutants fadD1/fadD4 and fadD2/fadD4 showed a differential behavior to induce an increase in body temperature in rats injected with LPS compared to the WT strain or from the fadD1 and fadD2 mutants. In agreement, LPS isolated from the fadD4 mutant and double mutants fadD1/fadD2 and fadD2/fadD4 increased the induction of IL-8 in rat sera, but IL1-β cytokine levels decreased in the double mutants fadD1/fadD2 and fadD1/fadD4. The results indicate that the fadD genes are implicated in the degree of pathogenicity of P. aeruginosa PAO1 induced by LPS-lipid A, suggesting that FadD4 contributes to the removal of acyl-linked FA from LPS, rendering modification in its immunogenic response associated to Toll-like receptor TLR4. The genetic redundancy of fadD is important for bacterial adaptability and pathogenicity over the host.
Collapse
Affiliation(s)
- Lorena Martínez-Alcantar
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Gabriela Orozco
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Alma Laura Díaz-Pérez
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Javier Villegas
- Laboratorio de Interacción Suelo, Planta, Microorganismo, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Homero Reyes-De la Cruz
- Laboratorio de Control Traduccional, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Ernesto García-Pineda
- Laboratorio de Bioquímica y Biología Molecular, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Jesús Campos-García
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| |
Collapse
|
41
|
Anti-LPS IgA and IgG Can Inhibit Serum Killing of Pseudomonas aeruginosa in Patients with Cystic Fibrosis. Infect Immun 2021; 89:e0041221. [PMID: 34460286 DOI: 10.1128/iai.00412-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pseudomonas aeruginosa is one of the principal pathogens implicated in respiratory infections of patients with cystic fibrosis (CF) and non-CF bronchiectasis. Previously, we demonstrated that impaired serum-mediated killing of P. aeruginosa was associated with increased severity of respiratory infections in patients with non-CF bronchiectasis. This inhibition was mediated by high titers of O-antigen-specific IgG2 antibodies that cloak the surface of the bacteria, blocking access to the membrane. Infection-related symptomatology was ameliorated in patients by using plasmapheresis to remove the offending antibodies. To determine if these inhibitory "cloaking antibodies" were prevalent in patients with CF, we investigated 70 serum samples from patients with P. aeruginosa infection and 5 from those without P. aeruginosa infection. Of these patients, 32% had serum that inhibited the ability of healthy control serum to kill P. aeruginosa. Here, we demonstrate that this inhibition of killing requires O-antigen expression. Furthermore, we reveal that while IgG alone can inhibit the activity of healthy control serum, O-antigen-specific IgA in patient sera can also inhibit serum-killing. We found that antibody affinity, not just titer, was also important in the inhibition of serum-mediated killing. These studies provide novel insight into cloaking antibodies in human infection and may provide further options in CF and other diseases for treatment of recalcitrant P. aeruginosa infections.
Collapse
|
42
|
Si A, Sucheck SJ. Synthesis of Aminooxy Glycoside Derivatives of the Outer Core Domain of Pseudomonas aeruginosa Lipopolysaccharide. Front Mol Biosci 2021; 8:750502. [PMID: 34820424 PMCID: PMC8606414 DOI: 10.3389/fmolb.2021.750502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/09/2021] [Indexed: 11/21/2022] Open
Abstract
Pseudomonas aeruginosa is a highly prevalent gram-negative bacterium that is becoming more difficult to treat because of increasing antibiotic resistance. As chemotherapeutic treatment options diminish, there is an increased need for vaccines. However, the creation of an effective P. aeruginosa vaccine has been elusive despite intensive efforts. Thus, new paradigms for vaccine antigens should be explored to develop effective vaccines. In these studies, we have focused on the synthesis of two L-rhamnose-bearing epitopes common to glycoforms I and II of the outer core domain of Pseudomonas aeruginosa lipopolysaccharide, α-L-Rha-(1→6)-α-D-Glc-(1→4)-α-D-GalN-(Ala)-α-aminooxy (3) and α-L-Rha-(1→3)-β-D-Glc-(1→3)-α-D-GalN-(Ala)-α-aminooxy (4), respectively. The target trisaccharides were both prepared starting from a suitably protected galactosamine glycoside, followed by successive deprotection and glycosylation with suitably protected D-glucose and L-rhamnose thioglycosides. Global deprotection resulted in the formation of targets 3 and 4 in 22 and 35% yield each. Care was required to modify basic reaction conditions to avoid early deprotection of the N-oxysuccinamido group. In summary, trisaccharides related to the L-rhamnose-bearing epitopes common to glycoforms I and II of the outer core domain of Pseudomonas aeruginosa lipopolysaccharide have been prepared as their aminooxy glycosides. The latter are expected to be useful in chemoselective oxime-based bioconjugation reactions to form Pseudomonas aeruginosa vaccines.
Collapse
Affiliation(s)
| | - Steven J. Sucheck
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH, United States
| |
Collapse
|
43
|
Chadha J, Harjai K, Chhibber S. Revisiting the virulence hallmarks of Pseudomonas aeruginosa: a chronicle through the perspective of quorum sensing. Environ Microbiol 2021; 24:2630-2656. [PMID: 34559444 DOI: 10.1111/1462-2920.15784] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen and the leading cause of mortality among immunocompromised patients in clinical setups. The hallmarks of virulence in P. aeruginosa encompass six biologically competent attributes that cumulatively drive disease progression in a multistep manner. These multifaceted hallmarks lay the principal foundation for rationalizing the complexities of pseudomonal infections. They include factors for host colonization and bacterial motility, biofilm formation, production of destructive enzymes, toxic secondary metabolites, iron-chelating siderophores and toxins. This arsenal of virulence hallmarks is fostered and stringently regulated by the bacterial signalling system called quorum sensing (QS). The central regulatory functions of QS in controlling the timely expression of these virulence hallmarks for adaptation and survival drive the disease outcome. This review describes the intricate mechanisms of QS in P. aeruginosa and its role in shaping bacterial responses, boosting bacterial fitness. We summarize the virulence hallmarks of P. aeruginosa, relating them with the QS circuitry in clinical infections. We also examine the role of QS in the development of drug resistance and propose a novel antivirulence therapy to combat P. aeruginosa infections. This can prove to be a next-generation therapy that may eventually become refractory to the use of conventional antimicrobial treatments.
Collapse
Affiliation(s)
- Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
44
|
Le Noci V, Bernardo G, Bianchi F, Tagliabue E, Sommariva M, Sfondrini L. Toll Like Receptors as Sensors of the Tumor Microbial Dysbiosis: Implications in Cancer Progression. Front Cell Dev Biol 2021; 9:732192. [PMID: 34604233 PMCID: PMC8485072 DOI: 10.3389/fcell.2021.732192] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/23/2021] [Indexed: 01/02/2023] Open
Abstract
The microbiota is a complex ecosystem of active microorganisms resident in the body of mammals. Although the majority of these microorganisms resides in the distal gastrointestinal tract, high-throughput DNA sequencing technology has made possible to understand that several other tissues of the human body host their own microbiota, even those once considered sterile, such as lung tissue. These bacterial communities have important functions in maintaining a healthy body state, preserving symbiosis with the host immune system, which generates protective responses against pathogens and regulatory pathways that sustain the tolerance to commensal microbes. Toll-like receptors (TLRs) are critical in sensing the microbiota, maintaining the tolerance or triggering an immune response through the direct recognition of ligands derived from commensal microbiota or pathogenic microbes. Lately, it has been highlighted that the resident microbiota influences the initiation and development of cancer and its response to therapies and that specific changes in the number and distribution of taxa correlate with the existence of cancers in various tissues. However, the knowledge of functional activity and the meaning of microbiome changes remain limited. This review summarizes the current findings on the function of TLRs as sensors of the microbiota and highlighted their modulation as a reflection of tumor-associated changes in commensal microbiota. The data available to date suggest that commensal "onco-microbes" might be able to break the tolerance of TLRs and become complicit in cancer by sustaining its growth.
Collapse
Affiliation(s)
- Valentino Le Noci
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Giancarla Bernardo
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Francesca Bianchi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, IRCCS Policlinico San Donato, Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michele Sommariva
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
45
|
Larrouy-Maumus G. Shotgun Bacterial Lipid A Analysis Using Routine MALDI-TOF Mass Spectrometry. Methods Mol Biol 2021; 2306:275-283. [PMID: 33954953 DOI: 10.1007/978-1-0716-1410-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Detection of bacterial lipids and particularly the lipid A, the lipid anchor of the lipopolysaccharide, can be very challenging and requires a certain level of expertise. Here, this chapter describes a straightforward and simple method for the analysis of bacterial lipid A. In addition, such approach, lipid fingerprint, has the potential to be applied to other bacteria such as mycobacteria.
Collapse
Affiliation(s)
- Gérald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK.
| |
Collapse
|
46
|
Koudouna E, Huertas-Bello M, Rodriguez CN, Consuelo Henao S, Navarrete ML, Avila MY. Genipin in an Ex Vivo Corneal Model of Bacterial and Fungal Keratitis. Transl Vis Sci Technol 2021; 10:31. [PMID: 34436544 PMCID: PMC8399543 DOI: 10.1167/tvst.10.9.31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/06/2021] [Indexed: 01/04/2023] Open
Abstract
Purpose To determine whether genipin (a natural crosslinker) could reduce the colonization and proliferation of bacteria and fungi in an ex vivo model of corneal infection. Methods This study, using an ex vivo model of bacterial and fungal keratitis, investigated the antimicrobial efficacy of genipin crosslinking. Excised corneoscleral buttons were wounded by scalpel incision and subsequently infected with Staphylococcus aureus, Pseudomonas aeruginosa, or Candida albicans. After inoculation, corneas were treated with genipin for 24 hours at 37°C. Histologic examinations were carried out, and the number of viable colony-forming units (CFU)/cornea was determined. Results Genipin exerts bactericidal action against S. aureus and P. aeruginosa, as well as fungicidal action against C. albicans and significantly reduced the CFU compared to contralateral eyes that received saline treatment (P < 0.05). Conclusions These data identify genipin as a novel ocular antimicrobial agent that has the potential to be incorporated into the therapeutic armamentarium against microbial keratitis. Translational Relevance This study provided evidence for the antimicrobial and antifungal properties of genipin as an alternative crosslinker that could be used in the management of infectious keratitis.
Collapse
Affiliation(s)
- Elena Koudouna
- Department of Ophthalmology, Faculty of Medicine, Bogota DC, Universidad Nacional de Colombia, Bogota Colombia
- Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, UK
| | - Marcela Huertas-Bello
- Department of Ophthalmology, Faculty of Medicine, Bogota DC, Universidad Nacional de Colombia, Bogota Colombia
| | - Cristian Nicolas Rodriguez
- Department of Microbiology, Faculty of Medicine, Bogota DC, Universidad Nacional de Colombia, Bogota Colombia
| | - Sandra Consuelo Henao
- Department of Microbiology, Faculty of Medicine, Bogota DC, Universidad Nacional de Colombia, Bogota Colombia
| | - Myriam Lucia Navarrete
- Department of Microbiology, Faculty of Medicine, Bogota DC, Universidad Nacional de Colombia, Bogota Colombia
| | - Marcel Yecid Avila
- Department of Ophthalmology, Faculty of Medicine, Bogota DC, Universidad Nacional de Colombia, Bogota Colombia
| |
Collapse
|
47
|
Harwood KH, McQuade RM, Jarnicki A, Schneider-Futschik EK. Anti-Inflammatory Influences of Cystic Fibrosis Transmembrane Conductance Regulator Drugs on Lung Inflammation in Cystic Fibrosis. Int J Mol Sci 2021; 22:7606. [PMID: 34299226 PMCID: PMC8306345 DOI: 10.3390/ijms22147606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/04/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
Cystic fibrosis (CF) is caused by a defect in the cystic fibrosis transmembrane conductance regulator protein (CFTR) which instigates a myriad of respiratory complications including increased vulnerability to lung infections and lung inflammation. The extensive influx of pro-inflammatory cells and production of mediators into the CF lung leading to lung tissue damage and increased susceptibility to microbial infections, creates a highly inflammatory environment. The CF inflammation is particularly driven by neutrophil infiltration, through the IL-23/17 pathway, and function, through NE, NETosis, and NLRP3-inflammasome formation. Better understanding of these pathways may uncover untapped therapeutic targets, potentially reducing disease burden experienced by CF patients. This review outlines the dysregulated lung inflammatory response in CF, explores the current understanding of CFTR modulators on lung inflammation, and provides context for their potential use as therapeutics for CF. Finally, we discuss the determinants that need to be taken into consideration to understand the exaggerated inflammatory response in the CF lung.
Collapse
Affiliation(s)
- Kiera H. Harwood
- Department of Biochemistry & Pharmacology, Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Rachel M. McQuade
- Gut-Axis Injury and Repair Laboratory, Department of Medicine Western Health, Melbourne University, Melbourne, VIC 3021, Australia;
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia
| | - Andrew Jarnicki
- Lung Disease Research Laboratory, Department of Biochemistry & Pharmacology, Melbourne University, Melbourne, VIC 3021, Australia
| | - Elena K. Schneider-Futschik
- Department of Biochemistry & Pharmacology, Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
| |
Collapse
|
48
|
Sass G, Miller Conrad LC, Nguyen TTH, Stevens DA. The Pseudomonas aeruginosa product pyochelin interferes with Trypanosoma cruzi infection and multiplication in vitro. Trans R Soc Trop Med Hyg 2021; 114:492-498. [PMID: 32193540 DOI: 10.1093/trstmh/trz136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/09/2019] [Accepted: 09/04/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Bacteria are sources of numerous molecules used in treatment of infectious diseases. We investigated effects of molecules produced by 26 Pseudomonas aeruginosa strains against infection of mammalian cell cultures with Trypanosoma cruzi, the aetiological agent of Chagas disease. METHODS Vero cells were infected with T. cruzi in the presence of wild-type P. aeruginosa supernatants or supernatants of mutants with defects in the production of various virulence, quorum sensing and iron acquisition factors. Quantification of T. cruzi infection (percentage of infected cells) and multiplication (number of amastigotes per infected cell) was performed and cell viability was determined. RESULTS Wild-type P. aeruginosa products negatively affected T. cruzi infection and multiplication in a dose-dependent manner, without evident toxicity for mammalian cells. PvdD/pchE mutation (loss of the P. aeruginosa siderophores pyoverdine and pyochelin) had the greatest impact on anti-T. cruzi activity. Negative effects on T. cruzi infection by pure pyochelin, but not pyoverdine, or other P. aeruginosa exoproducts studied, were quantitatively similar to the effects of benznidazole, the current standard therapy against T. cruzi. CONCLUSIONS The P. aeruginosa product pyochelin showed promising activity against T. cruzi and might become a new lead molecule for therapy development.
Collapse
Affiliation(s)
- Gabriele Sass
- California Institute for Medical Research, San Jose, CA 95128, USA
| | | | | | - David A Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA.,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
49
|
M. Abd Asada M, Aziz Mahal Al-amri N. Molecular identification and Virulence factors of Pseudomonas aeruginosa isolated from operation hall. AL-KUFA UNIVERSITY JOURNAL FOR BIOLOGY 2021; 13:39-46. [DOI: 10.36320/ajb/v13.i2.11758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
This study aimed to determine the P.aeruginosa that causes contamination to operation hall in hospitals by detecting of pathogenisity markers ..Moreover, the virulence factors of predominant species were detected phenotypically by using routine techniques, that responsible for pathogenicity.
Fifteen samples were collected from different sites of operation hall during two months 2022 in AL-Hussein hospital/ karbala City. The identification of P.aeruginosa isolates depended on colonial morphology, microscopic examination and biochemical tests as a primary identification. The final identification was confirm by PCR technique from different sites .The results obtained by the PCR tests were twenty two isolates of P.aeruginosa were detected , which distributed into :(9) earth, (8) wall, and (10) beds.
The study investigated the virulence factors of P.aeruginosa, which had the ability to produce capsule, biofilm , adhesion ,protease, bacteriocin ,haemolysin and β-lactamase and gelatinase .
The results revealed variation in the resistance of bacteria to some antibiotics,..P.aeruginosa exhibited high resistance (96%) to Cefotaxime, but absolute susceptibility to Ciproflaxacin and Gentamycin and high susceptibility to Amikacin.Ceftiaxone,and Azithromycin.
Collapse
|
50
|
Wang S, Xiang D, Tian F, Ni M. Lipopolysaccharide from biofilm-forming Pseudomonas aeruginosa PAO1 induces macrophage hyperinflammatory responses. J Med Microbiol 2021; 70. [PMID: 33909550 PMCID: PMC8289208 DOI: 10.1099/jmm.0.001352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction. Macrophages polarization is essential in infection control. Llipopolysaccharide (LPS) plays an essential role in host innate immune system-pathogen interaction. The LPS structure of Pseudomonas aeruginosa modifies in the adaptation of this pathogen to biofilm-related chronic infection.Gap statement. There have been several studies on LPS induced polarization of human and mouse macrophages with different results. And it was reported that the lipid A structure of the LPS derived from biofilm-forming Pseudomonas aeruginosa strain PAO1 was modified.Aim. This study aimed to investigate the effect and the involved pathway of LPS from biofilm-forming PAO1 on human and murine macrophage polarization.Methodology. LPS was isolated from biofilm-forming and planktonic PAO1 and quantified. Then the LPS was added to PMA-differentiated human macrophage THP-1 cells and Raw264.7 murine macrophage cells. The expression of iNOS, Arg-1, IL4, TNF-α, CCL3, and CCL22 was analysed in the different cell lines. The expression of TICAM-1 and MyD88 in human THP-1 macrophages was quantified by Western blot. PAO1 infected macrophages at different polarization states, and the intracellular bacterial growth in macrophages was evaluated.Results. LPS from biofilm-forming PAO1 induced more marked hyperinflammatory responses in THP-1 and Raw264.7 macrophages than LPS derived from planktonic PAO1, and these responses were related to the up-regulation of MyD88. Intracellular growth of PAO1 was significantly increased in THP-1 macrophages polarized by LPS from biofilm-forming PAO1, but decreased both in THP-1 and Raw264.7 macrophages polarized by LPS from planktonic PAO1.Conclusion. The presented in vitro study indicates that LPS derived from biofilm-forming PAO1 induces enhanced M1 polarization in human and murine macrophage cell lines than LPS from planktonic PAO1.
Collapse
Affiliation(s)
- Sufei Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Dandan Xiang
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Fangbing Tian
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Ming Ni
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| |
Collapse
|