1
|
Seabaugh JA, Anderson DM. Pathogenicity and virulence of Yersinia. Virulence 2024; 15:2316439. [PMID: 38389313 PMCID: PMC10896167 DOI: 10.1080/21505594.2024.2316439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
The genus Yersinia includes human, animal, insect, and plant pathogens as well as many symbionts and harmless bacteria. Within this genus are Yersinia enterocolitica and the Yersinia pseudotuberculosis complex, with four human pathogenic species that are highly related at the genomic level including the causative agent of plague, Yersinia pestis. Extensive laboratory, field work, and clinical research have been conducted to understand the underlying pathogenesis and zoonotic transmission of these pathogens. There are presently more than 500 whole genome sequences from which an evolutionary footprint can be developed that details shared and unique virulence properties. Whereas the virulence of Y. pestis now seems in apparent homoeostasis within its flea transmission cycle, substantial evolutionary changes that affect transmission and disease severity continue to ndergo apparent selective pressure within the other Yersiniae that cause intestinal diseases. In this review, we will summarize the present understanding of the virulence and pathogenesis of Yersinia, highlighting shared mechanisms of virulence and the differences that determine the infection niche and disease severity.
Collapse
Affiliation(s)
- Jarett A. Seabaugh
- Department of Veterinary Pathobiology, University of Missouri, Columbia, USA
| | - Deborah M. Anderson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, USA
| |
Collapse
|
2
|
Lariviere PJ, Ashraf AHMZ, Gifford I, Tanguma SL, Barrick JE, Moran NA. Virulence-linked adhesin drives mutualist colonization of the bee gut via biofilm formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618124. [PMID: 39464101 PMCID: PMC11507737 DOI: 10.1101/2024.10.14.618124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Bacterial biofilms are stable multicellular structures that can enable long term host association. Yet, the role of biofilms in supporting gut mutualism is still not fully understood. Here, we investigate Snodgrassella alvi, a beneficial bacterial symbiont of honey bees, and find that biofilm formation is required for its colonization of the bee gut. We constructed fifteen S. alvi mutants containing knockouts of genes known to promote colonization with putative roles in biofilm formation. Genes required for colonization included staA and staB, encoding trimeric autotransporter adhesins (TAAs) and mltA, encoding a lytic transglycosylase. Intriguingly, TAAs are considered virulence factors in pathogens but support mutualism by the symbiont S. alvi. In vitro, biofilm formation was reduced in ΔstaB cells and abolished in the other two mutants. Loss of staA also reduced auto-aggregation and cell-cell connections. Based on structural predictions, StaA/B are massive (>300 nm) TAAs with many repeats in their stalk regions. Further, we find that StaA/B are conserved across Snodgrassella species, suggesting that StaA/B-dependent colonization is characteristic of this symbiont lineage. Finally, staA deletion increases sensitivity to bactericidal antimicrobials, suggesting that the biofilm indirectly buffers against antibiotic stress. In all, the inability of two biofilm-deficient strains (ΔstaA and ΔmltA) to effectively mono-colonize bees indicates that S. alvi biofilm formation is required for colonization of the bee gut. We envision the bee gut system as a genetically tractable model for studying the physical basis of biofilm-mutualist-gut interactions.
Collapse
Affiliation(s)
- Patrick J. Lariviere
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - A. H. M. Zuberi Ashraf
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Isaac Gifford
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sylvia L. Tanguma
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffrey E. Barrick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nancy A. Moran
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
3
|
Meuskens I, Kristiansen PE, Bardiaux B, Koynarev VR, Hatlem D, Prydz K, Lund R, Izadi-Pruneyre N, Linke D. A poly-proline II helix in YadA from Yersinia enterocolitica serotype O:9 facilitates heparin binding through electrostatic interactions. FEBS J 2024; 291:761-777. [PMID: 37953437 DOI: 10.1111/febs.17001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/25/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Poly-proline II helices are secondary structure motifs frequently found in ligand-binding sites. They exhibit increased flexibility and solvent exposure compared to the strongly hydrogen-bonded α-helices or β-strands and can therefore easily be misinterpreted as completely unstructured regions with an extremely high rotational freedom. Here, we show that the adhesin YadA of Yersinia enterocolitica serotype O:9 contains a poly-proline II helix interaction motif in the N-terminal region. The motif is involved in the interaction of YadAO:9 with heparin, a host glycosaminoglycan. We show that the basic residues within the N-terminal motif of YadA are required for electrostatic interactions with the sulfate groups of heparin. Biophysical methods including CD spectroscopy, solution-state NMR and SAXS all independently support the presence of a poly-proline helix allowing YadAO:9 binding to the rigid heparin. Lastly, we show that host cells deficient in sulfation of heparin and heparan sulfate are not targeted by YadAO:9 -mediated adhesion. We speculate that the YadAO:9 -heparin interaction plays an important and highly strain-specific role in the pathogenicity of Yersinia enterocolitica serotype O:9.
Collapse
Affiliation(s)
- Ina Meuskens
- Department of Biosciences, University of Oslo, Norway
| | | | - Benjamin Bardiaux
- Structural Bioinformatics Unit, CNRS UMR3528, Institut Pasteur, Université de Paris-Cité, France
| | | | - Daniel Hatlem
- Department of Biosciences, University of Oslo, Norway
| | | | - Reidar Lund
- Department of Chemistry, University of Oslo, Norway
| | - Nadia Izadi-Pruneyre
- Bacterial Transmembrane Systems Unit, CNRS UMR3528, Institut Pasteur, Université de Paris-Cité, France
| | - Dirk Linke
- Department of Biosciences, University of Oslo, Norway
| |
Collapse
|
4
|
Luo Y, Chen Z, Lian S, Ji X, Zhu C, Zhu G, Xia P. The Love and Hate Relationship between T5SS and Other Secretion Systems in Bacteria. Int J Mol Sci 2023; 25:281. [PMID: 38203452 PMCID: PMC10778856 DOI: 10.3390/ijms25010281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Bacteria have existed on Earth for billions of years, exhibiting ubiquity and involvement in various biological activities. To ensure survival, bacteria usually release and secrete effector proteins to acquire nutrients and compete with other microorganisms for living space during long-term evolution. Consequently, bacteria have developed a range of secretion systems, which are complex macromolecular transport machines responsible for transporting proteins across the bacterial cell membranes. Among them, one particular secretion system that stands out from the rest is the type V secretion system (T5SS), known as the "autotransporter". Bacterial activities mediated by T5SS include adherence to host cells or the extracellular matrix, invasion of host cells, immune evasion and serum resistance, contact-dependent growth inhibition, cytotoxicity, intracellular flow, protease activity, autoaggregation, and biofilm formation. In a bacterial body, it is not enough to rely on T5SS alone; in most cases, T5SS cooperates with other secretion systems to carry out bacterial life activities, but regardless of how good the relationship is, there is friction between the secretion systems. T5SS and T1SS/T2SS/T3SS/T6SS all play a synergistic role in the pathogenic processes of bacteria, such as nutrient acquisition, pathogenicity enhancement, and immune modulation, but T5SS indirectly inhibits the function of T4SS. This could be considered a love-hate relationship between secretion systems. This paper uses the systematic literature review methodology to review 117 journal articles published within the period from 1995 to 2024, which are all available from the PubMed, Web of Science, and Scopus databases and aim to elucidate the link between T5SS and other secretion systems, providing clues for future prevention and control of bacterial diseases.
Collapse
Affiliation(s)
- Yi Luo
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (Y.L.); (Z.C.); (S.L.); (X.J.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Ziyue Chen
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (Y.L.); (Z.C.); (S.L.); (X.J.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Siqi Lian
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (Y.L.); (Z.C.); (S.L.); (X.J.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Xingduo Ji
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (Y.L.); (Z.C.); (S.L.); (X.J.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Chunhong Zhu
- Jiangsu Institute of Poultry Science, Yangzhou 225009, China;
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (Y.L.); (Z.C.); (S.L.); (X.J.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Pengpeng Xia
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (Y.L.); (Z.C.); (S.L.); (X.J.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Danforth DR, Melloni M, Thorpe R, Cohen A, Voogt R, Tristano J, Mintz KP. Dual function of the O-antigen WaaL ligase of Aggregatibacter actinomycetemcomitans. Mol Oral Microbiol 2023; 38:471-488. [PMID: 37941494 PMCID: PMC10758912 DOI: 10.1111/omi.12444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/14/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Abstract
Protein glycosylation is critical to the quaternary structure and collagen-binding activity of the extracellular matrix protein adhesin A (EmaA) associated with Aggregatibacter actinomycetemcomitans. The glycosylation of this large, trimeric autotransporter adhesin is postulated to be mediated by WaaL, an enzyme with the canonical function to ligate the O-polysaccharide (O-PS) antigen with a terminal sugar of the lipid A-core oligosaccharide of lipopolysaccharide (LPS). In this study, we have determined that the Escherichia coli waaL ortholog (rflA) does not restore collagen binding of a waaL mutant strain of A. actinomycetemcomitans but does restore O-PS ligase activity following transformation of a plasmid expressing waaL. Therefore, a heterologous E. coli expression system was developed constituted of two independently replicating plasmids expressing either waaL or emaA of A. actinomycetemcomitans to directly demonstrate the necessity of ligase activity for EmaA collagen binding. Proper expression of the protein encoded by each plasmid was characterized, and the individually transformed strains did not promote collagen binding. However, coexpression of the two plasmids resulted in a strain with a significant increase in collagen binding activity and a change in the biochemical properties of the protein. These results provide additional data supporting the novel hypothesis that the WaaL ligase of A. actinomycetemcomitans shares a dual role as a ligase in LPS biosynthesis and is required for collagen binding activity of EmaA.
Collapse
Affiliation(s)
- David R. Danforth
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT
| | - Marcella Melloni
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT
| | - Richard Thorpe
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT
| | - Avi Cohen
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT
| | - Richard Voogt
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT
| | - Jake Tristano
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT
| | - Keith P. Mintz
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT
| |
Collapse
|
6
|
Farag SI, Francis MK, Gurung JM, Wai SN, Stenlund H, Francis MS, Nadeem A. Macrophage innate immune responses delineate between defective translocon assemblies produced by Yersinia pseudotuberculosis YopD mutants. Virulence 2023; 14:2249790. [PMID: 37621095 PMCID: PMC10461508 DOI: 10.1080/21505594.2023.2249790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 06/11/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Translocon pores formed in the eukaryotic cell membrane by a type III secretion system facilitate the translocation of immune-modulatory effector proteins into the host cell interior. The YopB and YopD proteins produced and secreted by pathogenic Yersinia spp. harboring a virulence plasmid-encoded type III secretion system perform this pore-forming translocator function. We had previously characterized in vitro T3SS function and in vivo pathogenicity of a number of strains encoding sited-directed point mutations in yopD. This resulted in the classification of mutants into three different classes based upon the severity of the phenotypic defects. To investigate the molecular and functional basis for these defects, we explored the effectiveness of RAW 264.7 cell line to respond to infection by representative YopD mutants of all three classes. Signature cytokine profiles could separate the different YopD mutants into distinct categories. The activation and suppression of certain cytokines that function as central innate immune response modulators correlated well with the ability of mutant bacteria to alter anti-phagocytosis and programmed cell death pathways. These analyses demonstrated that sub-optimal translocon pores impact the extent and magnitude of host cell responsiveness, and this limits the capacity of pathogenic Yersinia spp. to fortify against attack by both early and late arms of the host innate immune response.
Collapse
Affiliation(s)
- Salah I. Farag
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Monika K. Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Jyoti M. Gurung
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Sun Nyunt Wai
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Hans Stenlund
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, Umeå, Sweden
- Swedish Metabolomics Centre (SMC), Umeå, Sweden
| | - Matthew S. Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Aftab Nadeem
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
7
|
Pecoraro C, Carbone D, Parrino B, Cascioferro S, Diana P. Recent Developments in the Inhibition of Bacterial Adhesion as Promising Anti-Virulence Strategy. Int J Mol Sci 2023; 24:ijms24054872. [PMID: 36902301 PMCID: PMC10002502 DOI: 10.3390/ijms24054872] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Infectious diseases caused by antimicrobial-resistant strains have become a serious threat to global health, with a high social and economic impact. Multi-resistant bacteria exhibit various mechanisms at both the cellular and microbial community levels. Among the different strategies proposed to fight antibiotic resistance, we reckon that the inhibition of bacterial adhesion to host surfaces represents one of the most valid approaches, since it hampers bacterial virulence without affecting cell viability. Many different structures and biomolecules involved in the adhesion of Gram-positive and Gram-negative pathogens can be considered valuable targets for the development of promising tools to enrich our arsenal against pathogens.
Collapse
|
8
|
Cell Density-Regulated Adhesins Contribute to Early Disease Development and Adhesion in Ralstonia solanacearum. Appl Environ Microbiol 2023; 89:e0156522. [PMID: 36688670 PMCID: PMC9973027 DOI: 10.1128/aem.01565-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Adhesins (adhesive proteins) help bacteria stick to and colonize diverse surfaces and often contribute to virulence. The genome of the bacterial wilt pathogen Ralstonia solanacearum (Rs) encodes dozens of putative adhesins, some of which are upregulated during plant pathogenesis. Little is known about the role of these proteins in bacterial wilt disease. During tomato colonization, three putative Rs adhesin genes were upregulated in a ΔphcA quorum-sensing mutant that cannot respond to high cell densities: radA (Ralstonia adhesin A), rcpA (Ralstonia collagen-like protein A), and rcpB. Based on this differential gene expression, we hypothesized that adhesins repressed by PhcA contribute to early disease stages when Rs experiences a low cell density. During root colonization, Rs upregulated rcpA and rcpB, but not radA, relative to bacteria in the stem at mid-disease. Root attachment assays and confocal microscopy with ΔrcpA/B and ΔradA revealed that all three adhesins help Rs attach to tomato seedling roots. Biofilm assays on abiotic surfaces found that Rs does not require RadA, RcpA, or RcpB for interbacterial attachment (cohesion), but these proteins are essential for anchoring aggregates to a surface (adhesion). However, Rs did not require the adhesins for later disease stages in planta, including colonization of the root endosphere and stems. Interestingly, all three adhesins were essential for full competitive fitness in planta. Together, these infection stage-specific assays identified three proteins that contribute to adhesion and the critical first host-pathogen interaction in bacterial wilt disease. IMPORTANCE Every microbe must balance its need to attach to surfaces with the biological imperative to move and spread. The high-impact plant-pathogenic bacterium Ralstonia solanacearum can stick to biotic and abiotic substrates, presumably using some of the dozens of putative adhesins encoded in its genome. We confirmed the functions and identified the biological roles of multiple afimbrial adhesins. By assaying the competitive fitness and the success of adhesin mutants in three different plant compartments, we identified the specific disease stages and host tissues where three previously cryptic adhesins contribute to success in plants. Combined with tissue-specific regulatory data, this work indicates that R. solanacearum deploys distinct adhesins that help it succeed at different stages of plant pathogenesis.
Collapse
|
9
|
Thibau A, Vaca DJ, Bagowski M, Hipp K, Bender D, Ballhorn W, Linke D, Kempf VAJ. Adhesion of Bartonella henselae to Fibronectin Is Mediated via Repetitive Motifs Present in the Stalk of Bartonella Adhesin A. Microbiol Spectr 2022; 10:e0211722. [PMID: 36165788 PMCID: PMC9602544 DOI: 10.1128/spectrum.02117-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/06/2022] [Indexed: 12/31/2022] Open
Abstract
Adhesion to host cells is the first and most crucial step in infections with pathogenic Gram-negative bacteria and is often mediated by trimeric autotransporter adhesins (TAAs). Bartonella henselae targets the extracellular matrix glycoprotein fibronectin (Fn) via the Bartonella adhesin A (BadA) attaching the bacteria to the host cell. The TAA BadA is characterized by a highly repetitive passenger domain consisting of 30 neck/stalk domains with various degrees of similarity. To elucidate the motif sequences mediating Fn binding, we generated 10 modified BadA constructs and verified their expression via Western blotting, confocal laser scanning, and electron microscopy. We analyzed their ability to bind human plasma Fn using quantitative whole-cell enzyme-linked immunosorbent assays (ELISAs) and fluorescence microscopy. Polyclonal antibodies targeting a 15-mer amino acid motif sequence proved to reduce Fn binding. We suggest that BadA adheres to Fn in a cumulative effort with quick saturation primarily via unpaired β-strands appearing in motifs repeatedly present throughout the neck/stalk region. In addition, we demonstrated that the length of truncated BadA constructs correlates with the immunoreactivity of human patient sera. The identification of BadA-Fn binding regions will support the development of new "antiadhesive" compounds inhibiting the initial adherence of B. henselae and other TAA-expressing pathogens to host cells. IMPORTANCE Trimeric autotransporter adhesins (TAAs) are important virulence factors and are widely present in various pathogenic Gram-negative bacteria. TAA-expressing bacteria cause a wide spectrum of human diseases, such as cat scratch disease (Bartonella henselae), enterocolitis (Yersinia enterocolitica), meningitis (Neisseria meningitis), and bloodstream infections (multidrug-resistant Acinetobacter baumannii). TAA-targeted antiadhesive strategies (against, e.g., Bartonella adhesin A [BadA], Yersinia adhesin A [YadA], Neisseria adhesin A [NadA], and Acinetobacter trimeric autotransporter [Ata]) might represent a universal strategy to counteract such bacterial infections. BadA is one of the best characterized TAAs, and because of its high number of (sub)domains, it serves as an attractive adhesin to study the domain-function relationship of TAAs in the infection process. The identification of common binding motifs between TAAs (here, BadA) and their major binding partner (here, fibronectin) provides a basis toward the design of novel "antiadhesive" compounds preventing the initial adherence of Gram-negative bacteria in infections.
Collapse
Affiliation(s)
- Arno Thibau
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Diana J. Vaca
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Marlene Bagowski
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Katharina Hipp
- Electron Microscopy Facility, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Daniela Bender
- Federal Institute for Vaccines and Biomedicines, Department of Virology, Paul-Ehrlich-Institut, Langen, Germany
| | - Wibke Ballhorn
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Volkhard A. J. Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| |
Collapse
|
10
|
Prevalence, bio-serotype, antibiotic susceptibility and genotype of Yersinia enterocolitica and other Yersinia species isolated from retail and processed meats in Shaanxi Province, China. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Feitosa-Junior OR, Souza APS, Zaini PA, Baccari C, Ionescu M, Pierry PM, Uceda-Campos G, Labroussaa F, Almeida RPP, Lindow SE, da Silva AM. The XadA Trimeric Autotransporter Adhesins in Xylella fastidiosa Differentially Contribute to Cell Aggregation, Biofilm Formation, Insect Transmission and Virulence to Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:857-866. [PMID: 35704683 DOI: 10.1094/mpmi-05-22-0108-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface adhesion strategies are widely employed by bacterial pathogens during establishment and systemic spread in their host. A variety of cell-surface appendages such as pili, fimbriae, and afimbrial adhesins are involved in these processes. The phytopathogen Xylella fastidiosa employs several of these structures for efficient colonization of its insect and plant hosts. Among the adhesins encoded in the X. fastidiosa genome, three afimbrial adhesins, XadA1, Hsf/XadA2, and XadA3, are predicted to be trimeric autotransporters with a C-terminal YadA-anchor membrane domain. We analyzed the individual contributions of XadA1, XadA2, and XadA3 to various cellular behaviors both in vitro and in vivo. Using isogenic X. fastidiosa mutants, we found that cell-cell aggregation and biofilm formation were severely impaired in the absence of XadA3. No significant reduction of cell-surface attachment was found with any mutant under flow conditions. Acquisition by insect vectors and transmission to grapevines were reduced in the XadA3 deletion mutant. While the XadA3 mutant was hypervirulent in grapevines, XadA1 or XadA2 deletion mutants conferred lower disease severity than the wild-type strain. This insight of the importance of these adhesive proteins and their individual contributions to different aspects of X. fastidiosa biology should guide new approaches to reduce pathogen transmission and disease development. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Oseias R Feitosa-Junior
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Paula S Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo A Zaini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Department of Plant Sciences, University of California, Davis, CA, U.S.A
| | - Clelia Baccari
- Department of Plant and Microbial Biology, University of California, Berkeley, U.S.A
| | - Michael Ionescu
- Department of Plant and Microbial Biology, University of California, Berkeley, U.S.A
| | - Paulo M Pierry
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Guillermo Uceda-Campos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Fabien Labroussaa
- Department of Environmental Science, Policy and Management, University of California, Berkeley, U.S.A
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, U.S.A
| | - Steven E Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley, U.S.A
| | - Aline M da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Sande MG, Ferreira D, Rodrigues JL, Melo LDR, Linke D, Silva CJ, Moreira FTC, Sales MGF, Rodrigues LR. Electrochemical Aptasensor for the Detection of the Key Virulence Factor YadA of Yersinia enterocolitica. BIOSENSORS 2022; 12:bios12080614. [PMID: 36005012 PMCID: PMC9405658 DOI: 10.3390/bios12080614] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 05/31/2023]
Abstract
New point-of-care (POC) diagnosis of bacterial infections are imperative to overcome the deficiencies of conventional methods, such as culture and molecular methods. In this study, we identified new aptamers that bind to the virulence factor Yersinia adhesin A (YadA) of Yersinia enterocolitica using cell-systematic evolution of ligands by exponential enrichment (cell-SELEX). Escherichia coli expressing YadA on the cell surface was used as a target cell. After eight cycles of selection, the final aptamer pool was sequenced by high throughput sequencing using the Illumina Novaseq platform. The sequencing data, analyzed using the Geneious software, was aligned, filtered and demultiplexed to obtain the key nucleotides possibly involved in the target binding. The most promising aptamer candidate, Apt1, bound specifically to YadA with a dissociation constant (Kd) of 11 nM. Apt1 was used to develop a simple electrochemical biosensor with a two-step, label-free design towards the detection of YadA. The sensor surface modifications and its ability to bind successfully and stably to YadA were confirmed by cyclic voltammetry, impedance spectroscopy and square wave voltammetry. The biosensor enabled the detection of YadA in a linear range between 7.0 × 104 and 7.0 × 107 CFU mL−1 and showed a square correlation coefficient >0.99. The standard deviation and the limit of detection was ~2.5% and 7.0 × 104 CFU mL−1, respectively. Overall, the results suggest that this novel biosensor incorporating Apt1 can potentially be used as a sensitive POC detection system to aid the diagnosis of Y. enterocolitica infections. Furthermore, this simple yet innovative approach could be replicated to select aptamers for other (bacterial) targets and to develop the corresponding biosensors for their detection.
Collapse
Affiliation(s)
- Maria G. Sande
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Débora Ferreira
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Joana L. Rodrigues
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Luís D. R. Melo
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Carla J. Silva
- CENTI—Center for Nanotechnology and Smart Materials, Rua Fernando Mesquita 278, 4760-034 Vila Nova de Famalicão, Portugal
- CITEVE—Technological Center for the Textile and Clothing Industries of Portugal, Rua Fernando Mesquita 2785, 4760-034 Vila Nova de Famalicão, Portugal
| | - Felismina T. C. Moreira
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- BioMark-CINTESIS/ISEP, School of Engineering, Polytechnic Institute of Porto, 4219-015 Porto, Portugal
| | - Maria Goreti F. Sales
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- BioMark-CINTESIS/ISEP, School of Engineering, Polytechnic Institute of Porto, 4219-015 Porto, Portugal
| | - Ligia R. Rodrigues
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
13
|
Tang-Siegel GG, Danforth DR, Tristano J, Ruiz T, Mintz KP. The serotype a-EmaA adhesin of Aggregatibacter actinomycetemcomitans does not require O-PS synthesis for collagen binding activity. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35551696 DOI: 10.1099/mic.0.001191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aggregatibacter actinomycetemcomitans, a causative agent of periodontitis and non-oral diseases, synthesizes a trimeric extracellular matrix protein adhesin A (EmaA) that mediates collagen binding and biofilm formation. EmaA is found as two molecular forms, which correlate with the serotype of the bacterium. The canonical protein (b-EmaA), associated with serotypes b and c, has a monomeric molecular mass of 202 kDa. The collagen binding activity of b-EmaA is dependent on the presence of O-polysaccharide (O-PS), whereas biofilm activity is independent of O-PS synthesis. The EmaA associated with serotype a strains (a-EmaA) has a monomeric molecular mass of 173 kDa and differs in the amino acid sequence of the functional domain of the protein. In this study, a-emaA was confirmed to encode a protein that forms antenna-like appendages on the surface of the bacterium, which were found to be important for both collagen binding and biofilm formation. In an O-PS-deficient talose biosynthetic (tld) mutant strain, the electrophoretic mobility of the a-EmaA monomers was altered and the amount of membrane-associated EmaA was decreased when compared to the parent strain. The mass of biofilm formed remained unchanged. Interestingly, the collagen binding activity of the mutant strain was similar to the activity associated with the parent strain, which differs from that observed with the canonical b-EmaA isoform. These data suggest that the properties of the a-EmaA isoform are like those of b-EmaA, with the exception that collagen binding activity is independent of the presence or absence of the O-PS.
Collapse
Affiliation(s)
- Gaoyan G Tang-Siegel
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT, USA
| | - David R Danforth
- Department of Microbiology & Molecular Genetics, University of Vermont, Burlington, VT, USA
| | - Jake Tristano
- Department of Microbiology & Molecular Genetics, University of Vermont, Burlington, VT, USA
| | - Teresa Ruiz
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT, USA
| | - Keith P Mintz
- Department of Microbiology & Molecular Genetics, University of Vermont, Burlington, VT, USA
| |
Collapse
|
14
|
Liu X, Wang X, Sun B, Sun L. The Involvement of Thiamine Uptake in the Virulence of Edwardsiella piscicida. Pathogens 2022; 11:464. [PMID: 35456139 PMCID: PMC9026889 DOI: 10.3390/pathogens11040464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022] Open
Abstract
Edwardsiella piscicida is a pathogenic bacterium, which can infect a number of fish species and cause a disease termed edwardsiellosis, threatening global fish farming with high prevalence and mortality. Thiamine (Vitamin B1), functioning in the form of thiamine pyrophosphate (TPP), is essential for almost all organisms. Bacteria acquire TPP by biosynthesis or by transportation of exogenous thiamine. TPP availability has been associated with bacterial pathogenicity, but the underlying mechanisms remain to be discovered. The role of thiamine in the pathogenicity of E. piscicida is unknown. In this study, we characterized a thiamine transporter (TT) operon in E. piscicida. The deletion of the TT operon resulted in an intracellular TPP lacking situation, which led to attenuated overall pathogenicity, impaired abilities associated with motility and host cell adhesion, as well as decreased expression of certain flagellar and adhesion genes. Moreover, TPP starvation led to intracellular c-di-GMP reduction, and introducing into the TPP-suppressed mutant strain an exogenous diguanylate cyclase for c-di-GMP synthesis restored the virulence loss. Taken together, this work reveals the involvement of thiamine uptake in the virulence regulation of E. piscicida, with c-di-GMP implicated in the process. These finding could be employed to explore potential drug targets against E. piscicida.
Collapse
Affiliation(s)
- Xin Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; (X.L.); (X.W.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266003, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinhui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; (X.L.); (X.W.)
| | - Boguang Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; (X.L.); (X.W.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; (X.L.); (X.W.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266003, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
A Computational Model of Bacterial Population Dynamics in Gastrointestinal Yersinia enterocolitica Infections in Mice. BIOLOGY 2022; 11:biology11020297. [PMID: 35205164 PMCID: PMC8869254 DOI: 10.3390/biology11020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022]
Abstract
Simple Summary Computational modeling of bacterial infection is an attractive way to simulate infection scenarios. In the long-term, such models could be used to identify factors that make individuals more susceptible to infection, or how interference with bacterial growth influences the course of bacterial infection. This study used different mouse infection models (immunocompetent, lacking a microbiota, and immunodeficient models) to develop a basic mathematical model of a Yersinia enterocolitica gastrointestinal infection. We showed that our model can reflect our findings derived from mouse infections, and we demonstrated how crucial the exact knowledge about parameters influencing the population dynamics is. Still, we think that computational models will be of great value in the future; however, to foster the development of more complex models, we propose the broad implementation of the interdisciplinary training of mathematicians and biologists. Abstract The complex interplay of a pathogen with its virulence and fitness factors, the host’s immune response, and the endogenous microbiome determine the course and outcome of gastrointestinal infection. The expansion of a pathogen within the gastrointestinal tract implies an increased risk of developing severe systemic infections, especially in dysbiotic or immunocompromised individuals. We developed a mechanistic computational model that calculates and simulates such scenarios, based on an ordinary differential equation system, to explain the bacterial population dynamics during gastrointestinal infection. For implementing the model and estimating its parameters, oral mouse infection experiments with the enteropathogen, Yersinia enterocolitica (Ye), were carried out. Our model accounts for specific pathogen characteristics and is intended to reflect scenarios where colonization resistance, mediated by the endogenous microbiome, is lacking, or where the immune response is partially impaired. Fitting our data from experimental mouse infections, we can justify our model setup and deduce cues for further model improvement. The model is freely available, in SBML format, from the BioModels Database under the accession number MODEL2002070001.
Collapse
|
16
|
Meuskens I, Leva-Bueno J, Millner P, Schütz M, Peyman SA, Linke D. The Trimeric Autotransporter Adhesin YadA of Yersinia enterocolitica Serotype O:9 Binds Glycan Moieties. Front Microbiol 2022; 12:738818. [PMID: 35178035 PMCID: PMC8844515 DOI: 10.3389/fmicb.2021.738818] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022] Open
Abstract
Yersinia adhesin A (YadA) is a key virulence factor of Yersinia enterocolitica and Yersinia pseudotuberculosis. YadA is a trimeric autotransporter adhesin, a class of adhesins that have been shown to enable many Gram-negative pathogens to adhere to/interact with the host extracellular matrix proteins such as collagen, vitronectin, and fibronectin. Here, we show for the first time that YadA of Yersinia enterocolitica serotype O:9 not only interacts with proteinaceous surface molecules but can also attach directly to glycan moieties. We show that YadA from Y. enterocolitica serotype O:9 does not interact with the vitronectin protein itself but exclusively with its N-linked glycans. We also show that YadA can target other glycan moieties as found in heparin, for example. So far, little is known about specific interactions between bacterial autotransporter adhesins and glycans. This could potentially lead to new antimicrobial treatment strategies, as well as diagnostic applications.
Collapse
Affiliation(s)
- Ina Meuskens
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Juan Leva-Bueno
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Paul Millner
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Monika Schütz
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universität Tübingen, Tübingen, Germany
| | - Sally A. Peyman
- Molecular and Nanoscale Physics Group, Department of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Plasticity within the barrel domain of BamA mediates a hybrid-barrel mechanism by BAM. Nat Commun 2021; 12:7131. [PMID: 34880256 PMCID: PMC8655018 DOI: 10.1038/s41467-021-27449-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
In Gram-negative bacteria, the biogenesis of β-barrel outer membrane proteins is mediated by the β-barrel assembly machinery (BAM). The mechanism employed by BAM is complex and so far- incompletely understood. Here, we report the structures of BAM in nanodiscs, prepared using polar lipids and native membranes, where we observe an outward-open state. Mutations in the barrel domain of BamA reveal that plasticity in BAM is essential, particularly along the lateral seam of the barrel domain, which is further supported by molecular dynamics simulations that show conformational dynamics in BAM are modulated by the accessory proteins. We also report the structure of BAM in complex with EspP, which reveals an early folding intermediate where EspP threads from the underside of BAM and incorporates into the barrel domain of BamA, supporting a hybrid-barrel budding mechanism in which the substrate is folded into the membrane sequentially rather than as a single unit.
Collapse
|
18
|
Wang J, Liu M, Wang H, Wu Q, Ding Y, Xu T, Ma G, Zhong Y, Zhang J, Chen M, Xue L, Ye Q, Zeng H, Yang X, Yang R. Occurrence, molecular characterization, and antimicrobial susceptibility of Yersinia enterocolitica isolated from retail food samples in China. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Abstract
Pathogen attachment to host tissue is critical in the progress of many infections. Bacteria use adhesion in vivo to stabilize colonization and subsequently regulate the deployment of contact-dependent virulence traits. To specifically target host cells, they decorate themselves with adhesins, proteins that bind to mammalian cell surface receptors. One common assumption is that adhesin-receptor interactions entirely govern bacterial attachment. However, how adhesins engage with their receptors in an in vivo-like context remains unclear, in particular under the influence of a heterogeneous mechanical microenvironment. We here investigate the biophysical processes governing bacterial adhesion to host cells using a tunable adhesin-receptor system. By dynamically visualizing attachment, we found that bacterial adhesion to host cell surface, unlike adhesion to inert surfaces, involves two consecutive steps. Bacteria initially attach to their host without engaging adhesins. This step lasts about 1 min, during which bacteria can easily detach. We found that at this stage, the glycocalyx, a layer of glycosylated proteins and lipids, shields the host cell by keeping adhesins away from their receptor ligand. In a second step, adhesins engage with their target receptors to strengthen attachment for minutes to hours. The active properties of the membrane, endowed by the actin cytoskeleton, strengthen specific adhesion. Altogether, our results demonstrate that adhesin-ligand binding is not the sole regulator of bacterial adhesion. In fact, the host cell’s surface mechanical microenvironment mediates the physical interactions between host and bacteria, thereby playing an essential role in the onset of infection.
Collapse
|
20
|
Suntsov VV. Genomogenesis of the Plague Bacteria Yersinia pestis as a Process of Mosaic Evolution. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Wimmi S, Balinovic A, Jeckel H, Selinger L, Lampaki D, Eisemann E, Meuskens I, Linke D, Drescher K, Endesfelder U, Diepold A. Dynamic relocalization of cytosolic type III secretion system components prevents premature protein secretion at low external pH. Nat Commun 2021; 12:1625. [PMID: 33712575 PMCID: PMC7954860 DOI: 10.1038/s41467-021-21863-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 02/12/2021] [Indexed: 01/31/2023] Open
Abstract
Many bacterial pathogens use a type III secretion system (T3SS) to manipulate host cells. Protein secretion by the T3SS injectisome is activated upon contact to any host cell, and it has been unclear how premature secretion is prevented during infection. Here we report that in the gastrointestinal pathogens Yersinia enterocolitica and Shigella flexneri, cytosolic injectisome components are temporarily released from the proximal interface of the injectisome at low external pH, preventing protein secretion in acidic environments, such as the stomach. We show that in Yersinia enterocolitica, low external pH is detected in the periplasm and leads to a partial dissociation of the inner membrane injectisome component SctD, which in turn causes the dissociation of the cytosolic T3SS components. This effect is reversed upon restoration of neutral pH, allowing a fast activation of the T3SS at the native target regions within the host. These findings indicate that the cytosolic components form an adaptive regulatory interface, which regulates T3SS activity in response to environmental conditions.
Collapse
Affiliation(s)
- Stephan Wimmi
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Alexander Balinovic
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Hannah Jeckel
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Lisa Selinger
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Dimitrios Lampaki
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Max-Planck-Institut für Immunbiologie und Epigenetik, Freiburg, Germany
| | - Emma Eisemann
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- James Madison University, Harrisonburg, VA, USA
| | - Ina Meuskens
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Ulrike Endesfelder
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany.
| |
Collapse
|
22
|
Paulson AR, O’Callaghan M, Zhang XX, Rainey PB, Hurst MRH. In vivo transcriptome analysis provides insights into host-dependent expression of virulence factors by Yersinia entomophaga MH96, during infection of Galleria mellonella. G3 (BETHESDA, MD.) 2021; 11:jkaa024. [PMID: 33561230 PMCID: PMC7849909 DOI: 10.1093/g3journal/jkaa024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/19/2020] [Indexed: 12/31/2022]
Abstract
The function of microbes can be inferred from knowledge of genes specifically expressed in natural environments. Here, we report the in vivo transcriptome of the entomopathogenic bacterium Yersinia entomophaga MH96, captured during initial, septicemic, and pre-cadaveric stages of intrahemocoelic infection in Galleria mellonella. A total of 1285 genes were significantly upregulated by MH96 during infection; 829 genes responded to in vivo conditions during at least one stage of infection, 289 responded during two stages of infection, and 167 transcripts responded throughout all three stages of infection compared to in vitro conditions at equivalent cell densities. Genes upregulated during the earliest infection stage included components of the insecticidal toxin complex Yen-TC (chi1, chi2, and yenC1), genes for rearrangement hotspot element containing protein yenC3, cytolethal distending toxin cdtAB, and vegetative insecticidal toxin vip2. Genes more highly expressed throughout the infection cycle included the putative heat-stable enterotoxin yenT and three adhesins (usher-chaperone fimbria, filamentous hemagglutinin, and an AidA-like secreted adhesin). Clustering and functional enrichment of gene expression data also revealed expression of genes encoding type III and VI secretion system-associated effectors. Together these data provide insight into the pathobiology of MH96 and serve as an important resource supporting efforts to identify novel insecticidal agents.
Collapse
Affiliation(s)
- Amber R Paulson
- Forage Science, AgResearch Ltd., Lincoln 8140, New Zealand
- New Zealand Institute for Advanced Study, Massey University, Auckland 0745, New Zealand
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | | | - Xue-Xian Zhang
- School of Natural and Computational Sciences, Massey University, Auckland 0745, New Zealand
| | - Paul B Rainey
- New Zealand Institute for Advanced Study, Massey University, Auckland 0745, New Zealand
- Laboratoire de Génétique de l’Evolution CBI, ESPCI Paris, Université PSL, CNRS, Paris 75005, France
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Mark R H Hurst
- Forage Science, AgResearch Ltd., Lincoln 8140, New Zealand
| |
Collapse
|
23
|
Lundquist K, Billings E, Bi M, Wellnitz J, Noinaj N. The assembly of β-barrel membrane proteins by BAM and SAM. Mol Microbiol 2020; 115:425-435. [PMID: 33314350 DOI: 10.1111/mmi.14666] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/11/2020] [Indexed: 12/31/2022]
Abstract
Gram-negative bacteria, mitochondria, and chloroplasts all possess an outer membrane populated with a host of β-barrel outer-membrane proteins (βOMPs). These βOMPs play crucial roles in maintaining viability of their hosts, and therefore, it is essential to understand the biogenesis of this class of membrane proteins. In recent years, significant structural and functional advancements have been made toward elucidating this process, which is mediated by the β-barrel assembly machinery (BAM) in Gram-negative bacteria, and by the sorting and assembly machinery (SAM) in mitochondria. Structures of both BAM and SAM have now been reported, allowing a comparison and dissection of the two machineries, with other studies reporting on functional aspects of each. Together, these new insights provide compelling support for the proposed budding mechanism, where each nascent βOMP forms a hybrid-barrel intermediate with BAM/SAM in route to its biogenesis into the membrane. Here, we will review these recent studies and highlight their contributions toward understanding βOMP biogenesis in Gram-negative bacteria and in mitochondria. We will also weigh the evidence supporting each of the two leading mechanistic models for how BAM/SAM function, and offer an outlook on future studies within the field.
Collapse
Affiliation(s)
- Karl Lundquist
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA
| | - Evan Billings
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA
| | - Maxine Bi
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA
| | - James Wellnitz
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA
| | - Nicholas Noinaj
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA.,Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
24
|
Mostolizadeh R, Dräger A. Computational Model Informs Effective Control Interventions against Y. enterocolitica Co-Infection. BIOLOGY 2020; 9:E431. [PMID: 33266094 PMCID: PMC7759887 DOI: 10.3390/biology9120431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 01/05/2023]
Abstract
The complex interplay between pathogens, host factors, and the integrity and composition of the endogenous microbiome determine the course and outcome of gastrointestinal infections. The model organism Yersinia entercolitica (Ye) is one of the five top frequent causes of bacterial gastroenteritis based on the Epidemiological Bulletin of the Robert Koch Institute (RKI), 10 September 2020. A fundamental challenge in predicting the course of an infection is to understand whether co-infection with two Yersinia strains, differing only in their capacity to resist killing by the host immune system, may decrease the overall virulence by competitive exclusion or increase it by acting cooperatively. Herein, we study the primary interactions among Ye, the host immune system and the microbiota, and their influence on Yersinia population dynamics. The employed model considers commensal bacterial in two host compartments (the intestinal mucosa the and lumen), the co-existence of wt and mut Yersinia strains, and the host immune responses. We determine four possible equilibria: disease-free, wt-free, mut-free, and co-existence of wt and mut in equilibrium. We also calculate the reproduction number for each strain as a threshold parameter to determine if the population may be eradicated or persist within the host. We conclude that the infection should disappear if the reproduction numbers for each strain fall below one, and the commensal bacteria growth rate exceeds the pathogen's growth rate. These findings will help inform medical control strategies. The supplement includes the MATLAB source script, Maple workbook, and figures.
Collapse
Affiliation(s)
- Reihaneh Mostolizadeh
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany;
- Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
| | - Andreas Dräger
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany;
- Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
25
|
Rahbar MR, Zarei M, Jahangiri A, Khalili S, Nezafat N, Negahdaripour M, Fattahian Y, Savardashtaki A, Ghasemi Y. Non-adaptive Evolution of Trimeric Autotransporters in Brucellaceae. Front Microbiol 2020; 11:560667. [PMID: 33281759 PMCID: PMC7688925 DOI: 10.3389/fmicb.2020.560667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Brucella species are Gram-negative, facultative intracellular pathogens. They are the main cause of brucellosis, which has led to a global health burden. Adherence of the pathogen to the host cells is the first step in the infection process. The bacteria can adhere to various biotic and abiotic surfaces using their outer membrane proteins. Trimeric autotransporter adhesins (TAAs) are modular homotrimers of various length and domain complexity. They are a diverse, and widespread gene family constituting the type Vc secretion pathway. These adhesins have been established as virulence factors in Brucellaceae. To date, no comprehensive and exhaustive study has been performed on the trimeric autotransporter family in the genus. In the present study, various bioinformatics tools were used to provide a novel evolutionary insight into the sequence and structure of this protein family in Brucellaceae. To this end, a dataset of all trimeric autotransporters from the Brucella genomes was built. Analyses included but were not limited to sequence alignment, phylogenetic tree constructions, codon-based test for selection, clustering of the sequences, and structure (primary to quaternary) predictions. Batch analyzes of the dataset suggested the existence of a few structural domains within the whole population. BatA from the B. abortus 2308 genome was selected as a reference to describe the features of these structural domains. Furthermore, we examined the structural basis for the observed rigidity and resiliency of the protein structure through a molecular dynamics evaluation, which led us to deduce that the random drift results in the non-adaptive evolution of the trimeric autotransporter genes in the Brucella genus. Notably, the modifications have occurred across the genus without interference of gene transmission.
Collapse
Affiliation(s)
- Mohammad Reza Rahbar
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboubeh Zarei
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yaser Fattahian
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
26
|
Khalil HS, Øgaard J, Leo JC. Coaggregation properties of trimeric autotransporter adhesins. Microbiologyopen 2020; 9:e1109. [PMID: 32864901 PMCID: PMC7568254 DOI: 10.1002/mbo3.1109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Trimeric autotransporter adhesins (TAAs) comprise a group of virulence‐related proteins in Gram‐negative bacteria. Members of this family bind to extracellular matrix components such as collagen and fibronectin, but also they exhibit several other functions, such as conferring serum resistance and autoaggregation. Autoaggregation promoted by TAAs is homotypic and mediated by the sticky, globular head domains of these lollipop‐like molecules. However, whether TAAs mediate heterotypic interactions (i.e., coaggregation) has not been studied. To address this question, we investigated the coaggregation of two model TAA groups: YadA from the enteropathogenic Yersiniae and the immunoglobulin‐binding Eib proteins from Escherichia coli. To study TAA coaggregation, we coexpressed a fluorescent label together with a particular TAA and followed the aggregative interactions using fluorescence microscopy and quantified the interactions using a novel script implemented in Fiji. Our results show that there is coaggregation between some populations expressing different TAAs, which can be explained by relatively high sequence similarity between the interacting TAAs. Generally, the level of coaggregation correlated with the sequence similarity. However, some TAAs did not interact despite high sequence similarity, showing exclusion of bacteria producing a noncompatible TAA. These data demonstrate that TAAs can mediate bacterial coaggregation, but in some cases prevent coaggregation of bacteria with disparate TAAs. Our results have implications for the ecology of TAA‐producing bacteria, where coaggregation may promote co‐operation whereas exclusion might be an indication of competition.
Collapse
Affiliation(s)
- Hawzeen S Khalil
- Section for Evolution and Genetics, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jonas Øgaard
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Jack C Leo
- Section for Evolution and Genetics, Department of Biosciences, University of Oslo, Oslo, Norway.,Antimicrobial Resistance, Omics and Microbiota Group, Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
27
|
Menanteau-Ledouble S, Nöbauer K, Razzazi-Fazeli E, El-Matbouli M. Effects of Yersinia ruckeri invasion on the proteome of the Chinook salmon cell line CHSE-214. Sci Rep 2020; 10:11840. [PMID: 32678312 PMCID: PMC7366648 DOI: 10.1038/s41598-020-68903-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 07/03/2020] [Indexed: 12/18/2022] Open
Abstract
Yersinia ruckeri is an important bacterial pathogen of fish, in particular salmonids, it has been associated with systemic infections worldwide and, like many enteric bacteria, it is a facultative intracellular pathogen. However, the effect of Y. ruckeri's interactions with the host at the cellular level have received little investigation. In the present study, a culture of Chinook Salmon Embryo (CHSE) cell line was exposed to Y. ruckeri. Afterwards, the proteins were investigated and identified by mass spectrometry and compared to the content of unexposed cultures. The results of this comparison showed that 4.7% of the identified proteins were found at significantly altered concentrations following infection. Interestingly, infection with Y. ruckeri was associated with significant changes in the concentration of surface adhesion proteins, including a significantly decreased presence of β-integrins. These surface adhesion molecules are known to be the target for several adhesion molecules of Yersiniaceae. The concentration of several anti-apoptotic regulators (HSP90 and two DNAj molecules) appeared similarly downregulated. Taken together, these findings suggest that Y. ruckeri affects the proteome of infected cells in a notable manner and our results shed some light on the interaction between this important bacterial pathogen and its host.
Collapse
Affiliation(s)
- Simon Menanteau-Ledouble
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Katharina Nöbauer
- VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | | | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| |
Collapse
|
28
|
Whelan R, McVicker G, Leo JC. Staying out or Going in? The Interplay between Type 3 and Type 5 Secretion Systems in Adhesion and Invasion of Enterobacterial Pathogens. Int J Mol Sci 2020; 21:E4102. [PMID: 32521829 PMCID: PMC7312957 DOI: 10.3390/ijms21114102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Enteric pathogens rely on a variety of toxins, adhesins and other virulence factors to cause infections. Some of the best studied pathogens belong to the Enterobacterales order; these include enteropathogenic and enterohemorrhagic Escherichia coli, Shigella spp., and the enteropathogenic Yersiniae. The pathogenesis of these organisms involves two different secretion systems, a type 3 secretion system (T3SS) and type 5 secretion systems (T5SSs). The T3SS forms a syringe-like structure spanning both bacterial membranes and the host cell plasma membrane that translocates toxic effector proteins into the cytoplasm of the host cell. T5SSs are also known as autotransporters, and they export part of their own polypeptide to the bacterial cell surface where it exerts its function, such as adhesion to host cell receptors. During infection with these enteropathogens, the T3SS and T5SS act in concert to bring about rearrangements of the host cell cytoskeleton, either to invade the cell, confer intracellular motility, evade phagocytosis or produce novel structures to shelter the bacteria. Thus, in these bacteria, not only the T3SS effectors but also T5SS proteins could be considered "cytoskeletoxins" that bring about profound alterations in host cell cytoskeletal dynamics and lead to pathogenic outcomes.
Collapse
Affiliation(s)
| | | | - Jack C. Leo
- Antimicrobial Resistance, Omics and Microbiota Group, Department of Biosciences, Nottingham Trent University, Nottingham NG1 4FQ, UK; (R.W.); (G.M.)
| |
Collapse
|
29
|
Krukonis ES, Thomson JJ. Complement evasion mechanisms of the systemic pathogens Yersiniae and Salmonellae. FEBS Lett 2020; 594:2598-2620. [DOI: 10.1002/1873-3468.13771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Eric S. Krukonis
- Division of Integrated Biomedical Sciences University of Detroit Mercy School of Dentistry Detroit MI USA
| | - Joshua J. Thomson
- Division of Integrated Biomedical Sciences University of Detroit Mercy School of Dentistry Detroit MI USA
| |
Collapse
|
30
|
Abstract
SAR11 clade members are among the most abundant bacteria on Earth. Their study is complicated by their great diversity and difficulties in being grown and manipulated in the laboratory. On the other hand, and due to their extraordinary abundance, metagenomic data sets provide enormous richness of information about these microbes. Given the major role played by phages in the lifestyle and evolution of prokaryotic cells, the contribution of several new bacteriophage genomes preying on this clade opens windows into the infection strategies and life cycle of its viruses. Such strategies could provide models of attack of large-genome phages preying on streamlined aquatic microbes. The SAR11 clade is one of the most abundant bacterioplankton groups in surface waters of most of the oceans and lakes. However, only 15 SAR11 phages have been isolated thus far, and only one of them belongs to the Myoviridae family (pelagimyophages). Here, we have analyzed 26 sequences of myophages that putatively infect the SAR11 clade. They have been retrieved by mining ca. 45 Gbp aquatic assembled cellular metagenomes and viromes. Most of the myophages were obtained from the cellular fraction (0.2 μm), indicating a bias against this type of virus in viromes. We have found the first myophages that putatively infect Candidatus Fonsibacter (freshwater SAR11) and another group putatively infecting bathypelagic SAR11 phylogroup Ic. The genomes have similar sizes and maintain overall synteny in spite of low average nucleotide identity values, revealing high similarity to marine cyanomyophages. Pelagimyophages recruited metagenomic reads widely from several locations but always much more from cellular metagenomes than from viromes, opposite to what happens with pelagipodophages. Comparing the genomes resulted in the identification of a hypervariable island that is related to host recognition. Interestingly, some genes in these islands could be related to host cell wall synthesis and coinfection avoidance. A cluster of curli-related proteins was widespread among the genomes, although its function is unclear. IMPORTANCE SAR11 clade members are among the most abundant bacteria on Earth. Their study is complicated by their great diversity and difficulties in being grown and manipulated in the laboratory. On the other hand, and due to their extraordinary abundance, metagenomic data sets provide enormous richness of information about these microbes. Given the major role played by phages in the lifestyle and evolution of prokaryotic cells, the contribution of several new bacteriophage genomes preying on this clade opens windows into the infection strategies and life cycle of its viruses. Such strategies could provide models of attack of large-genome phages preying on streamlined aquatic microbes.
Collapse
|
31
|
Furuichi Y, Yoshimoto S, Inaba T, Nomura N, Hori K. Process Description of an Unconventional Biofilm Formation by Bacterial Cells Autoagglutinating through Sticky, Long, and Peritrichate Nanofibers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2520-2529. [PMID: 31972092 DOI: 10.1021/acs.est.9b06577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, we elucidated the formation process of an unconventional biofilm formed by a bacterium autoagglutinating through sticky, long, and peritrichate nanofibers. Understanding the mechanisms of biofilm formation is essential to control microbial behavior and improve environmental biotechnologies. Acinetobacter sp. Tol 5 autoagglutinate through the interaction of the long, peritrichate nanofiber protein AtaA, a trimeric autotransporter adhesin. Using AtaA, without cell growth or extracellular polymeric substances production, Tol 5 cells quickly form an unconventional biofilm. The process forming this unconventional biofilm started with cell-cell interactions, proceeded to cell clumping, and led to the formation of large cell aggregates. The cell-cell interaction was described by Derjaguin-Landau-Verwey-Overbeek (DLVO) theory based on a new concept, which considers two independent interactions between two cell bodies and between two AtaA fiber tips forming a discontinuous surface. If cell bodies cannot collide owing to an energy barrier at low ionic strengths but approach within the interactive distance of AtaA fibers, cells can agglutinate through their contact. Cell clumping proceeds following the cluster-cluster aggregation model, and an unconventional biofilm containing void spaces and a fractal nature develops. Understanding its formation process would extend the utilization of various types of biofilms, enhancing environmental biotechnologies.
Collapse
Affiliation(s)
- Yoshihide Furuichi
- Department of Biotechnology, Graduate School of Engineering , Nagoya University , Furo-cho, Chikusa-ku , Nagoya , Aichi 464-8603 , Japan
| | - Shogo Yoshimoto
- Department of Biomolecular Engineering, Graduate School of Engineering , Nagoya University , Furo-cho, Chikusa-ku , Nagoya , Aichi 464-8603 , Japan
| | - Tomohiro Inaba
- Graduate School of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Ibaraki 305-0006 , Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Ibaraki 305-0006 , Japan
- Microbiology Research Center for Sustainability , University of Tsukuba , Tsukuba , Ibaraki 305-8572 , Japan
| | - Katsutoshi Hori
- Department of Biomolecular Engineering, Graduate School of Engineering , Nagoya University , Furo-cho, Chikusa-ku , Nagoya , Aichi 464-8603 , Japan
| |
Collapse
|
32
|
Byvalov AA, Konyshev IV. Yersinia pseudotuberculosis-derived adhesins. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2019. [DOI: 10.15789/2220-7619-2019-3-4-437-448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Around fifteen surface components referred to adhesins have been identified in Yersinia pseudotuberculosis combining primarily microbiological, molecular and genetic, as well as immunochemical and biophysical methods. Y. pseudotuberculosis-derived adhesins vary in structure and chemical composition but they are mainly presented by protein molecules. Some of them were shown to participate not only in adhesive but in other pathogen-related physiological functions in the host-parasite interplay. Adhesins can mediate bacterial adhesion to eukaryotic cell either directly or via the extracellular matrix components. These adhesion molecules are encoded by chromosomal DNA excepting YadA protein which gene is located in the calcium-dependence plasmid pYV common for pathogenic yersisniae. An optimum temperature for adhesin biosynthesis is located close to the body temperature of warm-blooded animals; however, at low temperature only invasin InvA, full-length smooth lipopolysaccharide and porin OmpF are produced in Y. pseudotuberculosis. Several adhesins (Psa, InvA) can be expressed at low pH (corresponds to intracellular content), thereby defining pathogenic yersiniae as facultative intracellular parasites. Three human Yersinia genus pathogens differ by ability to produce adhesins. Y. pseudotuberculosis adherence to host cells or extracellular matrix components is determined by a cumulative adhesion-based activity, which expression depends on chemical composition and physicochemical environmental conditions. It’s proposed that at the initial stage of infectious process adherence of Y. pseudotuberculosis to intestinal epithelium is mediated by InvA protein and “smooth” LPS form. These adhesins are produced in bacterial cells at low (lower than 30°С) temperature occurring in environment from which a pathogen invades into the host. At later stages of pathogenesis, after penetrating through intestinal epithelium, bacterial cells produce other adhesins, which promote survival and dissemination primarily into the mesenteric lymph nodes and, possibly, liver and spleen. At later stages of pathogenesis, after penetrating through intestinal epithelium, bacterial cells produce other adhesins, which promote survival and dissemination primarily into the mesenteric lymph nodes and, perhaps, liver and spleen. Qualitative and quantitative spectrum of Y. pseudotuberculosis adhesins is determined by environmental parameters (intercellular space, intracellular content within the diverse eukaryotic cells).
Collapse
|
33
|
Gkouletsos T, Patas K, Lambrinidis G, Neubauer H, Sprague LD, Ioannidis A, Chatzipanagiotou S. Antimicrobial resistance of Yersinia enterocolitica and presence of plasmid pYV virulence genes in human and animal isolates. New Microbes New Infect 2019; 32:100604. [PMID: 31719995 PMCID: PMC6838977 DOI: 10.1016/j.nmni.2019.100604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/31/2019] [Accepted: 09/20/2019] [Indexed: 01/01/2023] Open
Abstract
Interactions between bacterial virulence and antimicrobial resistance are of increasing interest in clinical microbiology. On this account, antimicrobial resistance of Yersinia enterocolitica O:3 strains isolated from humans (n = 55), food-chain animals (n = 58) and companion animals (n = 13) was determined in relation to the absence or presence of the pYV plasmid-encoded virulence genes yadA and virF. There were no statistically significant associations between the rate of antimicrobial resistance and the presence or absence of the plasmid, in either human-derived or animal-derived strains. Therefore, it can be concluded that response to conventionally used antimicrobials in Y. enterocolitica O:3 strains is not dependent on pYV-encoded virulence determinants.
Collapse
Affiliation(s)
- T Gkouletsos
- Department of Biopathology and Clinical Microbiology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Greece.,Department of Biological Applications and Technologies, University of Ioannina, Ioannina, Greece
| | - K Patas
- Department of Biopathology and Clinical Microbiology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| | - G Lambrinidis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National & Kapodistrian University of Athens, Greece
| | - H Neubauer
- Friedrich-Loeffler-Institut, Federal Research Institut for Animal Health, Institute for Bacterial Infections and Zoonoses, Jena, Germany
| | - L D Sprague
- Friedrich-Loeffler-Institut, Federal Research Institut for Animal Health, Institute for Bacterial Infections and Zoonoses, Jena, Germany
| | - A Ioannidis
- Department of Biopathology and Clinical Microbiology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Greece.,Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| | - S Chatzipanagiotou
- Department of Biopathology and Clinical Microbiology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
34
|
Wu R, Stephenson R, Gichaba A, Noinaj N. The big BAM theory: An open and closed case? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183062. [PMID: 31520605 DOI: 10.1016/j.bbamem.2019.183062] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022]
Abstract
The β-barrel assembly machinery (BAM) is responsible for the biogenesis of outer membrane proteins (OMPs) into the outer membranes of Gram-negative bacteria. These OMPs have a membrane-embedded domain consisting of a β-barrel fold which can vary from 8 to 36 β-strands, with each serving a diverse role in the cell such as nutrient uptake and virulence. BAM was first identified nearly two decades ago, but only recently has the molecular structure of the full complex been reported. Together with many years of functional characterization, we have a significantly clearer depiction of BAM's structure, the intra-complex interactions, conformational changes that BAM may undergo during OMP biogenesis, and the role chaperones may play. But still, despite advances over the past two decades, the mechanism for BAM-mediated OMP biogenesis remains elusive. Over the years, several theories have been proposed that have varying degrees of support from the literature, but none has of yet been conclusive enough to be widely accepted as the sole mechanism. We will present a brief history of BAM, the recent work on the structures of BAM, and a critical analysis of the current theories for how it may function.
Collapse
Affiliation(s)
- Runrun Wu
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Robert Stephenson
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Abigail Gichaba
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
35
|
Wrobel A, Leo JC, Linke D. Overcoming Fish Defences: The Virulence Factors of Yersinia ruckeri. Genes (Basel) 2019; 10:E700. [PMID: 31514317 PMCID: PMC6770984 DOI: 10.3390/genes10090700] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 12/24/2022] Open
Abstract
Yersinia ruckeri is the causative agent of enteric redmouth disease, a bacterial infection of marine and freshwater fish. The disease mainly affects salmonids, and outbreaks have significant economic impact on fish farms all over the world. Vaccination routines are in place against the major serotypes of Y. ruckeri but are not effective in all cases. Despite the economic importance of enteric redmouth disease, a detailed molecular understanding of the disease is lacking. A considerable number of mostly omics-based studies have been performed in recent years to identify genes related to Y. ruckeri virulence. This review summarizes the knowledge on Y. ruckeri virulence factors. Understanding the molecular pathogenicity of Y. ruckeri will aid in developing more efficient vaccines and antimicrobial compounds directed against enteric redmouth disease.
Collapse
Affiliation(s)
- Agnieszka Wrobel
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| | - Jack C Leo
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK.
| | - Dirk Linke
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
36
|
Bohn E, Sonnabend M, Klein K, Autenrieth IB. Bacterial adhesion and host cell factors leading to effector protein injection by type III secretion system. Int J Med Microbiol 2019; 309:344-350. [DOI: 10.1016/j.ijmm.2019.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/02/2019] [Accepted: 05/31/2019] [Indexed: 01/14/2023] Open
|
37
|
Meuskens I, Saragliadis A, Leo JC, Linke D. Type V Secretion Systems: An Overview of Passenger Domain Functions. Front Microbiol 2019; 10:1163. [PMID: 31214135 PMCID: PMC6555100 DOI: 10.3389/fmicb.2019.01163] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Bacteria secrete proteins for different purposes such as communication, virulence functions, adhesion to surfaces, nutrient acquisition, or growth inhibition of competing bacteria. For secretion of proteins, Gram-negative bacteria have evolved different secretion systems, classified as secretion systems I through IX to date. While some of these systems consist of multiple proteins building a complex spanning the cell envelope, the type V secretion system, the subject of this review, is rather minimal. Proteins of the Type V secretion system are often called autotransporters (ATs). In the simplest case, a type V secretion system consists of only one polypeptide chain with a β-barrel translocator domain in the membrane, and an extracellular passenger or effector region. Depending on the exact domain architecture of the protein, type V secretion systems can be further separated into sub-groups termed type Va through e, and possibly another recently identified subtype termed Vf. While this classification works well when it comes to the architecture of the proteins, this is not the case for the function(s) of the secreted passenger. In this review, we will give an overview of the functions of the passengers of the different AT classes, shedding more light on the variety of functions carried out by type V secretion systems.
Collapse
Affiliation(s)
| | | | | | - Dirk Linke
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
38
|
Hatlem D, Trunk T, Linke D, Leo JC. Catching a SPY: Using the SpyCatcher-SpyTag and Related Systems for Labeling and Localizing Bacterial Proteins. Int J Mol Sci 2019; 20:E2129. [PMID: 31052154 PMCID: PMC6539128 DOI: 10.3390/ijms20092129] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/05/2023] Open
Abstract
The SpyCatcher-SpyTag system was developed seven years ago as a method for protein ligation. It is based on a modified domain from a Streptococcus pyogenes surface protein (SpyCatcher), which recognizes a cognate 13-amino-acid peptide (SpyTag). Upon recognition, the two form a covalent isopeptide bond between the side chains of a lysine in SpyCatcher and an aspartate in SpyTag. This technology has been used, among other applications, to create covalently stabilized multi-protein complexes, for modular vaccine production, and to label proteins (e.g., for microscopy). The SpyTag system is versatile as the tag is a short, unfolded peptide that can be genetically fused to exposed positions in target proteins; similarly, SpyCatcher can be fused to reporter proteins such as GFP, and to epitope or purification tags. Additionally, an orthogonal system called SnoopTag-SnoopCatcher has been developed from an S. pneumoniae pilin that can be combined with SpyCatcher-SpyTag to produce protein fusions with multiple components. Furthermore, tripartite applications have been produced from both systems allowing the fusion of two peptides by a separate, catalytically active protein unit, SpyLigase or SnoopLigase. Here, we review the current state of the SpyCatcher-SpyTag and related technologies, with a particular emphasis on their use in vaccine development and in determining outer membrane protein localization and topology of surface proteins in bacteria.
Collapse
Affiliation(s)
- Daniel Hatlem
- Bacterial Cell Surface Group, Section for Evolution and Genetics, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| | - Thomas Trunk
- Bacterial Cell Surface Group, Section for Evolution and Genetics, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| | - Dirk Linke
- Bacterial Cell Surface Group, Section for Evolution and Genetics, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| | - Jack C Leo
- Bacterial Cell Surface Group, Section for Evolution and Genetics, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
39
|
Identification and typing of Yersinia enterocolitica and Yersinia pseudotuberculosis isolated from human clinical specimens in England between 2004 and 2018. J Med Microbiol 2019; 68:538-548. [DOI: 10.1099/jmm.0.000943] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
40
|
Rahbar MR, Zarei M, Jahangiri A, Khalili S, Nezafat N, Negahdaripour M, Fattahian Y, Ghasemi Y. Trimeric autotransporter adhesins in Acinetobacter baumannii, coincidental evolution at work. INFECTION GENETICS AND EVOLUTION 2019; 71:116-127. [PMID: 30922803 DOI: 10.1016/j.meegid.2019.03.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/27/2019] [Accepted: 03/23/2019] [Indexed: 12/20/2022]
Abstract
Trimeric autotransporter (TAA), also known as type Vc secretion system, is expressed by many strains of Acinetobacter baumannii, an opportunistic pathogen, which is responsible for nosocomial infections worldwide. TAAs, are modular homotrimeric virulence factors, containing a signal peptide, complex stalk, and conserved membrane anchoring domain. The evolutionary mechanisms underlying the evolvement of these adhesins are not clear. Here, we showed that TAA genes were laterally acquired and underwent gene duplication and recombination. The heterogeneity of TAA nucleotide sequences, GC content, codon usage, and the probability of recombination and duplication events were assessed by MEGA7. Given the heterogeneity of sequences, we used all-against-all BLAST for clustering the TAAs. The pattern of distribution of TAAs are highly scattered; GC content and codon usage for these genes are variable. Multiple events of lateral gene transfer from the early history of Acinetobacter and the occurrence of gene duplication, gene loss, and recombination after acquiring the alien genes may explain the scattered pattern of distribution of TAAs. Additionally, this gene is not present in many clinical isolates of A. baumannii, thus is not a single virulence factor attributing to the infection. The advantage of harboring such genes might be adopting to different environments by developing the biofilm communities. We suggested that TAA genes were laterally acquired in the environmental context and incidentally provided some benefits at the infection site. Thus, coincidental evolution theory may be better suited for describing the evolution of TAA genes in A. baumannii genomes.
Collapse
Affiliation(s)
- Mohammad Reza Rahbar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboubeh Zarei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yaser Fattahian
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
41
|
Zhu Z, Dong C, Weng S, He J. Identification of outer membrane protein TolC as the major adhesin and potential vaccine candidate for Vibrio harveyi in hybrid grouper, Epinephelus fuscoguttatus (♀) × E. lanceolatus (♂). FISH & SHELLFISH IMMUNOLOGY 2019; 86:143-151. [PMID: 30453046 DOI: 10.1016/j.fsi.2018.11.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 05/21/2023]
Abstract
Vibrio harveyi is a serious pathogen of scale drop and muscle necrosis disease in marine commercial fishes. Adhesion to and colonization of the host cells surfaces is the first and crucial step for pathogenic bacterial infection, which is usually mediated by outer membrane proteins (Omps). The objectives of this study were to identify the major adhesin in Omps that plays the essential role in adhesion of V. harveyi to the host cells, and to assess the potential of this adhesin as a vaccine candidate for V. harveyi infection. We observed that pathogenic V. harveyi adhered to the surface of grouper embryonic cells (GEM cells) and induced apoptosis of them. Native Omps were extracted from nine different V. harveyi strains, and five common Omp bands were isolated by SDS-PAGE analysis. Western blot analysis and an anti-native Omp antibodies blocking assay indicated that one strong and several weak immunoreactivity Omps bands presence. Next, a total of five Omps, including TolC, Agg (Agglutination protein), Omp47, Fla (Flagellin), and OmpW, were identified and their encoding genes were cloned, characterized, and expressed in E. coli. The purified recombinant TolC could competitively inhibit the invasion of V. harveyi to GEM cells in vitro, and anti-TolC antibody also could significantly block the adhesion of V. harveyi to GEM cells. When used to immunize hybrid groupers, the recombinant TolC could confer significant protection to fish against experimental V. harveyi challenge. These data suggested that outer membrane protein TolC functions as a major adhesin in V. harveyi and could be a potential vaccine candidate for V. harveyi infection.
Collapse
Affiliation(s)
- Zhiming Zhu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; State Key Laboratory of Biocontrol / MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Institute of Aquatic Economic Animals, and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Chuanfu Dong
- State Key Laboratory of Biocontrol / MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Institute of Aquatic Economic Animals, and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Shaoping Weng
- State Key Laboratory of Biocontrol / MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Institute of Aquatic Economic Animals, and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Jianguo He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; State Key Laboratory of Biocontrol / MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Institute of Aquatic Economic Animals, and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
42
|
Chauhan N, Hatlem D, Orwick-Rydmark M, Schneider K, Floetenmeyer M, van Rossum B, Leo JC, Linke D. Insights into the autotransport process of a trimeric autotransporter, Yersinia Adhesin A (YadA). Mol Microbiol 2019; 111:844-862. [DOI: 10.1111/mmi.14195] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Nandini Chauhan
- Department of Biosciences; University of Oslo; Blindernveien 31 0371 Oslo Norway
- Max Planck Institute for Developmental Biology, Department 1; 72076 Tübingen Germany
| | - Daniel Hatlem
- Department of Biosciences; University of Oslo; Blindernveien 31 0371 Oslo Norway
| | | | - Kenneth Schneider
- Department of Biosciences; University of Oslo; Blindernveien 31 0371 Oslo Norway
| | - Matthias Floetenmeyer
- Max Planck Institute for Developmental Biology, Department 1; 72076 Tübingen Germany
- The Centre for Microscopy and Microanalysis, The University of Queensland; 4072 St. Lucia Queensland Australia
| | - Barth van Rossum
- Forschungsinstitut für Molekulare Pharmakologie; Department of NMR-Supported Structural Biology; Berlin Germany
| | - Jack C. Leo
- Department of Biosciences; University of Oslo; Blindernveien 31 0371 Oslo Norway
- Max Planck Institute for Developmental Biology, Department 1; 72076 Tübingen Germany
| | - Dirk Linke
- Department of Biosciences; University of Oslo; Blindernveien 31 0371 Oslo Norway
- Max Planck Institute for Developmental Biology, Department 1; 72076 Tübingen Germany
| |
Collapse
|
43
|
Rapid detection of extra-intestinal pathogenic Escherichia coli multi-locus sequence type 127 using a specific PCR assay. J Med Microbiol 2019; 68:188-196. [DOI: 10.1099/jmm.0.000902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
44
|
Wrobel A, Ottoni C, Leo JC, Linke D. pYR4 From a Norwegian Isolate of Yersinia ruckeri Is a Putative Virulence Plasmid Encoding Both a Type IV Pilus and a Type IV Secretion System. Front Cell Infect Microbiol 2018; 8:373. [PMID: 30460204 PMCID: PMC6232867 DOI: 10.3389/fcimb.2018.00373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/04/2018] [Indexed: 01/14/2023] Open
Abstract
Enteric redmouth disease caused by the pathogen Yersinia ruckeri is a significant problem for fish farming around the world. Despite its importance, only a few virulence factors of Y. ruckeri have been identified and studied in detail. Here, we report and analyze the complete DNA sequence of pYR4, a plasmid from a highly pathogenic Norwegian Y. ruckeri isolate, sequenced using PacBio SMRT technology. Like the well-known pYV plasmid of human pathogenic Yersiniae, pYR4 is a member of the IncFII family. Thirty-one percent of the pYR4 sequence is unique compared to other Y. ruckeri plasmids. The unique regions contain, among others genes, a large number of mobile genetic elements and two partitioning systems. The G+C content of pYR4 is higher than that of the Y. ruckeri NVH_3758 genome, indicating its relatively recent horizontal acquisition. pYR4, as well as the related plasmid pYR3, comprises operons that encode for type IV pili and for a conjugation system (tra). In contrast to other Yersinia plasmids, pYR4 cannot be cured at elevated temperatures. Our study highlights the power of PacBio sequencing technology for identifying mis-assembled segments of genomic sequences. Comparative analysis of pYR4 and other Y. ruckeri plasmids and genomes, which were sequenced by second and the third generation sequencing technologies, showed errors in second generation sequencing assemblies. Specifically, in the Y. ruckeri 150 and Y. ruckeri ATCC29473 genome assemblies, we mapped the entire pYR3 plasmid sequence. Placing plasmid sequences on the chromosome can result in erroneous biological conclusions. Thus, PacBio sequencing or similar long-read methods should always be preferred for de novo genome sequencing. As the tra operons of pYR3, although misplaced on the chromosome during the genome assembly process, were demonstrated to have an effect on virulence, and type IV pili are virulence factors in many bacteria, we suggest that pYR4 directly contributes to Y. ruckeri virulence.
Collapse
Affiliation(s)
| | - Claudio Ottoni
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Jack C Leo
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
45
|
Saragliadis A, Trunk T, Leo JC. Producing Gene Deletions in Escherichia coli by P1 Transduction with Excisable Antibiotic Resistance Cassettes. J Vis Exp 2018. [PMID: 30222159 DOI: 10.3791/58267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A first approach to study the function of an unknown gene in bacteria is to create a knock-out of this gene. Here, we describe a robust and fast protocol for transferring gene deletion mutations from one Escherichia coli strain to another by using generalized transduction with the bacteriophage P1. This method requires that the mutation be selectable (e.g., based on gene disruptions using antibiotic cassette insertions). Such antibiotic cassettes can be mobilized from a donor strain and introduced into a recipient strain of interest to quickly and easily generate a gene deletion mutant. The antibiotic cassette can be designed to include flippase recognition sites that allow the excision of the cassette by a site-specific recombinase to produce a clean knock-out with only a ~100-base-pair-long scar sequence in the genome. We demonstrate the protocol by knocking out the tamA gene encoding an assembly factor involved in autotransporter biogenesis and test the effect of this knock-out on the biogenesis and function of two trimeric autotransporter adhesins. Though gene deletion by P1 transduction has its limitations, the ease and speed of its implementation make it an attractive alternative to other methods of gene deletion.
Collapse
Affiliation(s)
| | - Thomas Trunk
- Evolution and Genetics, Department of Biosciences, University of Oslo
| | - Jack C Leo
- Evolution and Genetics, Department of Biosciences, University of Oslo;
| |
Collapse
|
46
|
Davis KM. All Yersinia Are Not Created Equal: Phenotypic Adaptation to Distinct Niches Within Mammalian Tissues. Front Cell Infect Microbiol 2018; 8:261. [PMID: 30128305 PMCID: PMC6088192 DOI: 10.3389/fcimb.2018.00261] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/13/2018] [Indexed: 01/30/2023] Open
Abstract
Yersinia pseudotuberculosis replicates within mammalian tissues to form clustered bacterial replication centers, called microcolonies. A subset of bacterial cells within microcolonies interact directly with host immune cells, and other subsets of bacteria only interact with other bacteria. This establishes a system where subsets of Yersinia have distinct gene expression profiles, which are driven by their unique microenvironments and cellular interactions. When this leads to alterations in virulence gene expression, small subsets of bacteria can play a critical role in supporting the replication of the bacterial population, and can drive the overall disease outcome. Based on the pathology of infections with each of the three Yersinia species that are pathogenic to humans, it is likely that this specialization of bacterial subsets occurs during all Yersiniae infections. This review will describe the pathology that occurs during infection with each of the three human pathogenic Yersinia, in terms of the structure of bacterial replication centers and the specific immune cell subsets that bacteria interact with, and will also describe the outcome these interactions have or may have on bacterial gene expression.
Collapse
Affiliation(s)
- Kimberly M Davis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
47
|
Volke DC, Nikel PI. Getting Bacteria in Shape: Synthetic Morphology Approaches for the Design of Efficient Microbial Cell Factories. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800111] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daniel C. Volke
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; Kemitorvet 2800 Kgs. Lyngby Denmark
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; Kemitorvet 2800 Kgs. Lyngby Denmark
| |
Collapse
|
48
|
Bancerz-Kisiel A, Pieczywek M, Łada P, Szweda W. The Most Important Virulence Markers of Yersinia enterocolitica and Their Role during Infection. Genes (Basel) 2018; 9:E235. [PMID: 29751540 PMCID: PMC5977175 DOI: 10.3390/genes9050235] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022] Open
Abstract
Yersinia enterocolitica is the causative agent of yersiniosis, a zoonotic disease of growing epidemiological importance with significant consequences for public health. This pathogenic species has been intensively studied for many years. Six biotypes (1A, 1B, 2, 3, 4, 5) and more than 70 serotypes of Y. enterocolitica have been identified to date. The biotypes of Y. enterocolitica are divided according to their pathogenic properties: the non-pathogenic biotype 1A, weakly pathogenic biotypes 2⁻5, and the highly pathogenic biotype 1B. Due to the complex pathogenesis of yersiniosis, further research is needed to expand our knowledge of the molecular mechanisms involved in the infection process and the clinical course of the disease. Many factors, both plasmid and chromosomal, significantly influence these processes. The aim of this study was to present the most important virulence markers of Y. enterocolitica and their role during infection.
Collapse
Affiliation(s)
- Agata Bancerz-Kisiel
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2 Str., 10-719 Olsztyn, Poland.
| | - Marta Pieczywek
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2 Str., 10-719 Olsztyn, Poland.
| | - Piotr Łada
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2 Str., 10-719 Olsztyn, Poland.
| | - Wojciech Szweda
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2 Str., 10-719 Olsztyn, Poland.
| |
Collapse
|
49
|
Abstract
Many bacteria, both environmental and pathogenic, exhibit the property of autoaggregation. In autoaggregation (sometimes also called autoagglutination or flocculation), bacteria of the same type form multicellular clumps that eventually settle at the bottom of culture tubes. Autoaggregation is generally mediated by self-recognising surface structures, such as proteins and exopolysaccharides, which we term collectively as autoagglutinins. Although a widespread phenomenon, in most cases the function of autoaggregation is poorly understood, though there is evidence to show that aggregating bacteria are protected from environmental stresses or host responses. Autoaggregation is also often among the first steps in forming biofilms. Here, we review the current knowledge on autoaggregation, the role of autoaggregation in biofilm formation and pathogenesis, and molecular mechanisms leading to aggregation using specific examples.
Collapse
Affiliation(s)
- Thomas Trunk
- Bacterial Cell Surface Group, Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Hawzeen S Khalil
- Bacterial Cell Surface Group, Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jack C Leo
- Bacterial Cell Surface Group, Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
50
|
Meuskens I, Michalik M, Chauhan N, Linke D, Leo JC. A New Strain Collection for Improved Expression of Outer Membrane Proteins. Front Cell Infect Microbiol 2017; 7:464. [PMID: 29164072 PMCID: PMC5681912 DOI: 10.3389/fcimb.2017.00464] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/20/2017] [Indexed: 02/02/2023] Open
Abstract
Almost all integral membrane proteins found in the outer membranes of Gram-negative bacteria belong to the transmembrane β-barrel family. These proteins are not only important for nutrient uptake and homeostasis, but are also involved in such processes as adhesion, protein secretion, biofilm formation, and virulence. As surface exposed molecules, outer membrane β-barrel proteins are also potential drug and vaccine targets. High production levels of heterologously expressed proteins are desirable for biochemical and especially structural studies, but over-expression and subsequent purification of membrane proteins, including outer membrane proteins, can be challenging. Here, we present a set of deletion mutants derived from E. coli BL21 Gold (DE3) designed for the over-expression of recombinant outer membrane proteins. These strains harbor deletions of four genes encoding abundant β-barrel proteins in the outer membrane (OmpA, OmpC, OmpF, and LamB), both single and in all combinations of double, triple, and quadruple knock-outs. The sequences encoding these outer membrane proteins were deleted completely, leaving only a minimal scar sequence, thus preventing the possibility of genetic reversion. Expression tests in the quadruple mutant strain with four test proteins, including a small outer membrane β-barrel protein and variants thereof as well as two virulence-related autotransporters, showed significantly improved expression and better quality of the produced proteins over the parent strain. Differences in growth behavior and aggregation in the presence of high salt were observed, but these phenomena did not negatively influence the expression in the quadruple mutant strain when handled as we recommend. The strains produced in this study can be used for outer membrane protein production and purification, but are also uniquely useful for labeling experiments for biophysical measurements in the native membrane environment.
Collapse
Affiliation(s)
- Ina Meuskens
- Section for Evolution and Genetics, Department of Biosciences, University of Oslo, Oslo, Norway.,Interfaculty Institute for Biochemistry, Eberhard Karls University, Tübingen, Germany
| | - Marcin Michalik
- Section for Evolution and Genetics, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Nandini Chauhan
- Section for Evolution and Genetics, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Section for Evolution and Genetics, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jack C Leo
- Section for Evolution and Genetics, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|