1
|
Ferrell KC, Stewart EL, Counoupas C, Triccas JA. Colony morphotype governs innate and adaptive pulmonary immune responses to Mycobacterium abscessus infection in C3HeB/FeJ mice. Eur J Immunol 2024; 54:e2350610. [PMID: 38576227 DOI: 10.1002/eji.202350610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Mycobacterium abscessus is an emerging pathogen that causes chronic pulmonary infection. Treatment is challenging owing in part to our incomplete understanding of M. abscessus virulence mechanisms that enable pathogen persistence, such as the differing pathogenicity of M. abscessus smooth (S) and rough (R) colony morphotype. While R M. abscessus is associated with chronic infection and worse patient outcomes, it is unknown how immune responses to S and R M. abscessus differ in an acute pulmonary infection setting. In this study, immunological outcomes of M. abscessus infection with S and R morphotypes were examined in an immune-competent C3HeB/FeJ murine model. R M. abscessus infection was associated with the rapid production of inflammatory chemokines and recruitment of activated, MHC-II+ Ly6C+ macrophages to lungs and mediastinal LN (mLN). While both S and R M. abscessus increased T helper 1 (Th1) phenotype T cells in the lung, this was markedly delayed in mice infected with S M. abscessus. However, histopathological involvement and bacterial clearance were similar regardless of colony morphotype. These results demonstrate the importance of M. abscessus colony morphotype in shaping the development of pulmonary immune responses to M. abscessus, which further informs our understanding of M. abscessus host-pathogen interactions.
Collapse
Affiliation(s)
- Kia C Ferrell
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, Sydney, NSW, Australia
| | - Erica L Stewart
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, Sydney, NSW, Australia
| | - Claudio Counoupas
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - James A Triccas
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Sydney Institute for Infectious Diseases and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
2
|
Gao K, Liu M, Tang H, Ma Z, Pan H, Zhang X, Inam M, Shan X, Gao Y, Wang G. Downregulation of miR-1388 Regulates the Expression of Antiviral Genes via Tumor Necrosis Factor Receptor ( TNFR)-Associated Factor 3 Targeting Following poly(I:C) Stimulation in Silver Carp ( Hypophthalmichthys molitrix). Biomolecules 2024; 14:694. [PMID: 38927097 PMCID: PMC11201635 DOI: 10.3390/biom14060694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
MicroRNAs (miRNAs) are highly conserved endogenous single-stranded non-coding RNA molecules that play a crucial role in regulating gene expression to maintain normal physiological functions in fish. Nevertheless, the specific physiological role of miRNAs in lower vertebrates, particularly in comparison to mammals, remains elusive. Additionally, the mechanisms underlying the control of antiviral responses triggered by viral stimulation in fish are still not fully understood. In this study, we investigated the regulatory impact of miR-1388 on the signaling pathway mediated by IFN regulatory factor 3 (IRF3). Our findings revealed that following stimulation with the viral analog poly(I:C), the expression of miR-1388 was significantly upregulated in primary immune tissues and macrophages. Through a dual luciferase reporter assay, we corroborated a direct targeting relationship between miR-1388 and tumor necrosis factor receptor (TNFR)-associated factor 3 (TRAF3). Furthermore, our study demonstrated a distinct negative post-transcriptional correlation between miR-1388 and TRAF3. We observed a significant negative post-transcriptional regulatory association between miR-1388 and the levels of antiviral genes following poly(I:C) stimulation. Utilizing reporter plasmids, we elucidated the role of miR-1388 in the antiviral signaling pathway activated by TRAF3. By intervening with siRNA-TRAF3, we validated that miR-1388 regulates the expression of antiviral genes and the production of type I interferons (IFN-Is) through its interaction with TRAF3. Collectively, our experiments highlight the regulatory influence of miR-1388 on the IRF3-mediated signaling pathway by targeting TRAF3 post poly(I:C) stimulation. These findings provide compelling evidence for enhancing our understanding of the mechanisms through which fish miRNAs participate in immune responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yunhang Gao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (K.G.); (M.L.); (H.T.); (Z.M.); (H.P.); (X.Z.); (M.I.); (X.S.)
| | - Guiqin Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (K.G.); (M.L.); (H.T.); (Z.M.); (H.P.); (X.Z.); (M.I.); (X.S.)
| |
Collapse
|
3
|
Oschmann-Kadenbach AM, Schaudinn C, Borst L, Schwarz C, Konrat K, Arvand M, Lewin A. Impact of Mycobacteroides abscessus colony morphology on biofilm formation and antimicrobial resistance. Int J Med Microbiol 2024; 314:151603. [PMID: 38246090 DOI: 10.1016/j.ijmm.2024.151603] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Mycobacteroides abscessus is one of the most resistant bacteria so far known and causes severe and hard to treat lung infections in predisposed patients such as those with Cystic Fibrosis (CF). Further, it causes nosocomial infections by forming biofilms on medical devices or water reservoirs. An eye-catching feature of M. abscessus is the growth in two colony morphotypes. Depending on the presence or absence of glycopeptidolipids on the cell surface, it forms smooth or rough colonies. In this study, a porous glass bead biofilm model was used to compare biofilm formation, biofilm organization and biofilm matrix composition in addition to the antimicrobial susceptibility of M. abscessus biofilms versus suspensions of isogenic (smooth and rough) patient isolates. Both morphotypes reached the same cell densities in biofilms. The biofilm architecture, however, was dramatically different with evenly distributed oligo-layered biofilms in smooth isolates, compared to tightly packed, voluminous biofilm clusters in rough morphotypes. Biofilms of both morphotypes contained more total biomass of the matrix components protein, lipid plus DNA than was seen in corresponding suspensions. The biofilm mode of growth of M. abscessus substantially increased resistance to the antibiotics amikacin and tigecycline. Tolerance to the disinfectant peracetic acid of both morphotypes was increased when grown as biofilm, while tolerance to glutaraldehyde was significantly increased in biofilm of smooth isolates only. Overall, smooth colony morphotypes had more pronounced antimicrobial resistance benefit when growing as biofilm than M. abscessus showing rough colony morphotypes.
Collapse
Affiliation(s)
- Anna Maria Oschmann-Kadenbach
- Unit 14 Hospital Hygiene, Infection Prevention and Control, Robert Koch Institute, Seestr. 10, Berlin, Germany; Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Seestr. 10, Berlin, Germany
| | - Christoph Schaudinn
- Unit ZBS4 Advanced Light and Electron Microscopy, Robert Koch Institute, Seestr. 10, Berlin, Germany
| | - Leonard Borst
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Seestr. 10, Berlin, Germany
| | - Carsten Schwarz
- CF Center Westbrandenburg, Division Cystic Fibrosis, Health and Medical University Potsdam and Clinic Westbrandenburg, Hebbelstraße 1, 14467 Potsdam, Germany
| | - Katharina Konrat
- Unit 14 Hospital Hygiene, Infection Prevention and Control, Robert Koch Institute, Seestr. 10, Berlin, Germany
| | - Mardjan Arvand
- Unit 14 Hospital Hygiene, Infection Prevention and Control, Robert Koch Institute, Seestr. 10, Berlin, Germany
| | - Astrid Lewin
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Seestr. 10, Berlin, Germany.
| |
Collapse
|
4
|
Bies JJ, Allen JC, Barsi ZE, Hassan M, Prakash S, Aguilar MP, Meza A, Peralta DP. Brazilian Butt Lift Gone Wrong: A Case Series of Non-Tuberculous Mycobacterial Gluteal Infection After Brazilian Butt Lifts. Cureus 2023; 15:e49881. [PMID: 38174196 PMCID: PMC10762286 DOI: 10.7759/cureus.49881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/02/2023] [Indexed: 01/05/2024] Open
Abstract
Cosmetic surgeries are very popular and glamorized by the mainstream media and celebrities. Many individuals perceive certain bodily features as appealing for physical attraction and will attempt to obtain these features by surgery. However, these surgeries are not without risk, and significant consequences can occur if not performed by qualified medical professionals under sterile procedures. The authors present novel cases of two healthy young female patients who underwent a Brazilian butt lift (BBL) procedure a week apart by the same plastic surgeon in Mexico and developed dark painful lesions secondary to Mycobacterium abscessus (M. abscessus), a multidrug-resistant non-tuberculous mycobacterium (NTM). The literature review shows a paucity of data concerning NTM infections via surgical procedures of this type. The first case was of a 31-year-old woman who underwent a BBL and presented with bilateral dark painful buttock lesions weeks later. The patient returned to the plastic surgeon, who drained some lesions and prescribed oral antibiotics. The patient's clinical status continued to deteriorate and presented to the hospital for further assessment. The patient was initially started on broad-spectrum antibiotic therapy. The patient was found to have an HIV infection with a relatively preserved CD4 lymphocyte count and was started on antiretroviral therapy (ART). Intraoperative excisional tissue sample cultures grew M. abscessus. The patient was started on empiric tigecycline, cefoxitin, and linezolid. Preliminary culture susceptibilities showed resistance to linezolid. Linezolid was discontinued, amikacin was started, and cefoxitin and tigecycline were continued. Tigecycline, cefoxitin, and amikacin were continued and final susceptibilities showed sensitivity to the current treatment. The patient received a total of four months of treatment with tigecycline, cefoxitin, and amikacin. The second case was of a 28-year-old woman who underwent a BBL a week after the first patient by the same surgeon and developed multiple gluteal and body abscesses. The patient underwent bilateral thigh and gluteal, right chest wall, and breast surgical debridements with intraoperative cultures at a different hospital facility, which grew M. abscessus. Susceptibilities were not performed there. The patient was transferred to our facility for further care. Intraoperative cultures remained negative, and the patient was treated with a six-month course of tigecycline, cefoxitin, and amikacin.
Collapse
Affiliation(s)
- Jared J Bies
- Internal Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, USA
| | - Jesse C Allen
- Infectious Diseases, Texas Tech University Health Sciences Center El Paso Paul L. Foster School of Medicine, El Paso, USA
| | - Zahra E Barsi
- Infectious Diseases, Texas Tech University Health Sciences Center El Paso Paul L. Foster School of Medicine, El Paso, USA
| | - Mariam Hassan
- Internal Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, USA
| | - Swathi Prakash
- Internal Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, USA
| | - Mateo-Porres Aguilar
- Internal Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, USA
| | - Armando Meza
- Division of Infectious Diseases, Texas Tech University Health Sciences Center El Paso, El Paso, USA
| | - Diego P Peralta
- Division of Infectious Diseases, Texas Tech University Health Sciences Center El Paso, El Paso, USA
| |
Collapse
|
5
|
Asai M, Li Y, Newton SM, Robertson BD, Langford PR. Galleria mellonella-intracellular bacteria pathogen infection models: the ins and outs. FEMS Microbiol Rev 2023; 47:fuad011. [PMID: 36906279 PMCID: PMC10045907 DOI: 10.1093/femsre/fuad011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023] Open
Abstract
Galleria mellonella (greater wax moth) larvae are used widely as surrogate infectious disease models, due to ease of use and the presence of an innate immune system functionally similar to that of vertebrates. Here, we review G. mellonella-human intracellular bacteria pathogen infection models from the genera Burkholderia, Coxiella, Francisella, Listeria, and Mycobacterium. For all genera, G. mellonella use has increased understanding of host-bacterial interactive biology, particularly through studies comparing the virulence of closely related species and/or wild-type versus mutant pairs. In many cases, virulence in G. mellonella mirrors that found in mammalian infection models, although it is unclear whether the pathogenic mechanisms are the same. The use of G. mellonella larvae has speeded up in vivo efficacy and toxicity testing of novel antimicrobials to treat infections caused by intracellular bacteria: an area that will expand since the FDA no longer requires animal testing for licensure. Further use of G. mellonella-intracellular bacteria infection models will be driven by advances in G. mellonella genetics, imaging, metabolomics, proteomics, and transcriptomic methodologies, alongside the development and accessibility of reagents to quantify immune markers, all of which will be underpinned by a fully annotated genome.
Collapse
Affiliation(s)
- Masanori Asai
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Yanwen Li
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Sandra M Newton
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Brian D Robertson
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, South Kensington campus, Imperial College London, London SW7 2AZ, United Kingdom
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| |
Collapse
|
6
|
Palucci I, Salustri A, De Maio F, Pereyra Boza MDC, Paglione F, Sali M, Occhigrossi L, D’Eletto M, Rossin F, Goletti D, Sanguinetti M, Piacentini M, Delogu G. Cysteamine/Cystamine Exert Anti- Mycobacterium abscessus Activity Alone or in Combination with Amikacin. Int J Mol Sci 2023; 24:ijms24021203. [PMID: 36674717 PMCID: PMC9866335 DOI: 10.3390/ijms24021203] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Host-directed therapies are emerging as a promising tool in the curing of difficult-to-treat infections, such as those caused by drug-resistant bacteria. In this study, we aim to test the potential activity of the FDA- and EMA-approved drugs cysteamine and cystamine against Mycobacterium abscessus. In human macrophages (differentiated THP-1 cells), these drugs restricted M. abscessus growth similar to that achieved by amikacin. Here, we use the human ex vivo granuloma-like structures (GLS) model of infection with the M. abscessus rough (MAB-R) and smooth (MAB-S) variants to study the activity of new therapies against M. abscessus. We demonstrate that cysteamine and cystamine show a decrease in the number of total GLSs per well in the MAB-S and MAB-R infected human peripheral blood mononuclear cells (PBMCs). Furthermore, combined administration of cysteamine or cystamine with amikacin resulted in enhanced activity against the two M. abscessus morpho variants compared to treatment with amikacin only. Treatment with cysteamine and cystamine was more effective in reducing GLS size and bacterial load during MAB-S infection compared with MAB-R infection. Moreover, treatment with these two drugs drastically quenched the exuberant proinflammatory response triggered by the MAB-R variant. These findings showing the activity of cysteamine and cystamine against the R and S M. abscessus morphotypes support the use of these drugs as novel host-directed therapies against M. abscessus infections.
Collapse
Affiliation(s)
- Ivana Palucci
- Department of Laboratory Sciences and Infectious Diseases, Fondazione Policlinico Universitario “A. Gemelli”, 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alessandro Salustri
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Flavio De Maio
- Department of Laboratory Sciences and Infectious Diseases, Fondazione Policlinico Universitario “A. Gemelli”, 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria del Carmen Pereyra Boza
- Department of Laboratory Sciences and Infectious Diseases, Fondazione Policlinico Universitario “A. Gemelli”, 00168 Rome, Italy
| | - Francesco Paglione
- Department of Laboratory Sciences and Infectious Diseases, Fondazione Policlinico Universitario “A. Gemelli”, 00168 Rome, Italy
| | - Michela Sali
- Department of Laboratory Sciences and Infectious Diseases, Fondazione Policlinico Universitario “A. Gemelli”, 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Luca Occhigrossi
- Dipartimento di Biologia, Università degli Studi di Roma “Tor Vergata”, 00173 Rome, Italy
| | - Manuela D’Eletto
- Dipartimento di Biologia, Università degli Studi di Roma “Tor Vergata”, 00173 Rome, Italy
| | - Federica Rossin
- Dipartimento di Biologia, Università degli Studi di Roma “Tor Vergata”, 00173 Rome, Italy
| | - Delia Goletti
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases Translational Research Unit, IRCCS ‘Lazzaro Spallanzani’, 00149 Rome, Italy
| | - Maurizio Sanguinetti
- Department of Laboratory Sciences and Infectious Diseases, Fondazione Policlinico Universitario “A. Gemelli”, 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Mauro Piacentini
- Dipartimento di Biologia, Università degli Studi di Roma “Tor Vergata”, 00173 Rome, Italy
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases Translational Research Unit, IRCCS ‘Lazzaro Spallanzani’, 00149 Rome, Italy
| | - Giovanni Delogu
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Mater Olbia Hospital, 07026 Olbia, Italy
- Correspondence:
| |
Collapse
|
7
|
Park EJ, Silwal P, Jo EK. Host-Pathogen Interactions Operative during Mycobacteroides abscessus Infection. Immune Netw 2022; 21:e40. [PMID: 35036027 PMCID: PMC8733189 DOI: 10.4110/in.2021.21.e40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/01/2022] Open
Abstract
Mycobacteroides abscessus (previously Mycobacterium abscessus; Mabc), one of rapidly growing nontuberculous mycobacteria (NTM), is an important pathogen of NTM pulmonary diseases (NTM-PDs) in both immunocompetent and immunocompromised individuals. Mabc infection is chronic and often challenging to treat due to drug resistance, motivating the development of new therapeutics. Despite this, there is a lack of understanding of the relationship between Mabc and the immune system. This review highlights recent progress in the molecular architecture of Mabc and host interactions. We discuss several microbial components that take advantage of host immune defenses, host defense pathways that can overcome Mabc pathogenesis, and how host-pathogen interactions determine the outcomes of Mabc infection. Understanding the molecular mechanisms underlying host-pathogen interactions during Mabc infection will enable the identification of biomarkers and/or drugs to control immune pathogenesis and protect against NTM infection.
Collapse
Affiliation(s)
- Eun-Jin Park
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Korea
| |
Collapse
|
8
|
Ahn JH, Park JY, Kim DY, Lee TS, Jung DH, Kim YJ, Lee YJ, Lee YJ, Seo IS, Song EJ, Jang AR, Yang SJ, Shin SJ, Park JH. Type I Interferons Are Involved in the Intracellular Growth Control of Mycobacterium abscessus by Mediating NOD2-Induced Production of Nitric Oxide in Macrophages. Front Immunol 2021; 12:738070. [PMID: 34777348 PMCID: PMC8581665 DOI: 10.3389/fimmu.2021.738070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium abscessus (MAB) is one of the rapidly growing, multidrug-resistant non-tuberculous mycobacteria (NTM) causing various diseases including pulmonary disorder. Although it has been known that type I interferons (IFNs) contribute to host defense against bacterial infections, the role of type I IFNs against MAB infection is still unclear. In the present study, we show that rIFN-β treatment reduced the intracellular growth of MAB in macrophages. Deficiency of IFN-α/β receptor (IFNAR) led to the reduction of nitric oxide (NO) production in MAB-infected macrophages. Consistently, rIFN-β treatment enhanced the expression of iNOS gene and protein, and NO production in response to MAB. We also found that NO is essential for the intracellular growth control of MAB within macrophages in an inhibitor assay using iNOS-deficient cells. In addition, pretreatment of rIFN-β before MAB infection in mice increased production of NO in the lungs at day 1 after infection and promoted the bacterial clearance at day 5. However, when alveolar macrophages were depleted by treatment of clodronate liposome, rIFN-β did not promote the bacterial clearance in the lungs. Moreover, we found that a cytosolic receptor nucleotide-binding oligomerization domain 2 (NOD2) is required for MAB-induced TANK binding kinase 1 (TBK1) phosphorylation and IFN-β gene expression in macrophages. Finally, increase in the bacterial loads caused by reduction of NO levels was reversed by rIFN-β treatment in the lungs of NOD2-deficient mice. Collectively, our findings suggest that type I IFNs act as an intermediator of NOD2-induced NO production in macrophages and thus contribute to host defense against MAB infection.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Disease Models, Animal
- Female
- Host-Pathogen Interactions
- Interferon Type I/metabolism
- Lung/immunology
- Lung/metabolism
- Lung/microbiology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/metabolism
- Macrophages, Alveolar/microbiology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mycobacterium Infections, Nontuberculous/immunology
- Mycobacterium Infections, Nontuberculous/metabolism
- Mycobacterium Infections, Nontuberculous/microbiology
- Mycobacterium abscessus/growth & development
- Mycobacterium abscessus/immunology
- Mycobacterium abscessus/metabolism
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type II/genetics
- Nitric Oxide Synthase Type II/metabolism
- Nod2 Signaling Adaptor Protein/genetics
- Nod2 Signaling Adaptor Protein/metabolism
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Jae-Hun Ahn
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, South Korea
| | - Ji-Yeon Park
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, South Korea
| | - Dong-Yeon Kim
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, South Korea
| | - Tae-Sung Lee
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, South Korea
| | - Do-Hyeon Jung
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, South Korea
| | - Yeong-Jun Kim
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, South Korea
| | - Yeon-Ji Lee
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, South Korea
| | - Yun-Ji Lee
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, South Korea
| | - In-Su Seo
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, South Korea
| | - Eun-Jung Song
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, South Korea
| | - Ah-Ra Jang
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, South Korea
| | - Soo-Jin Yang
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
9
|
Babamale AO, Chen ST. Nod-like Receptors: Critical Intracellular Sensors for Host Protection and Cell Death in Microbial and Parasitic Infections. Int J Mol Sci 2021; 22:11398. [PMID: 34768828 PMCID: PMC8584118 DOI: 10.3390/ijms222111398] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/04/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
Cell death is an essential immunological apparatus of host defense, but dysregulation of mutually inclusive cell deaths poses severe threats during microbial and parasitic infections leading to deleterious consequences in the pathological progression of infectious diseases. Nucleotide-binding oligomerization domain (NOD)-Leucine-rich repeats (LRR)-containing receptors (NLRs), also called nucleotide-binding oligomerization (NOD)-like receptors (NLRs), are major cytosolic pattern recognition receptors (PRRs), their involvement in the orchestration of innate immunity and host defense against bacteria, viruses, fungi and parasites, often results in the cleavage of gasdermin and the release of IL-1β and IL-18, should be tightly regulated. NLRs are functionally diverse and tissue-specific PRRs expressed by both immune and non-immune cells. Beyond the inflammasome activation, NLRs are also involved in NF-κB and MAPK activation signaling, the regulation of type I IFN (IFN-I) production and the inflammatory cell death during microbial infections. Recent advancements of NLRs biology revealed its possible interplay with pyroptotic cell death and inflammatory mediators, such as caspase 1, caspase 11, IFN-I and GSDMD. This review provides the most updated information that caspase 8 skews the NLRP3 inflammasome activation in PANoptosis during pathogen infection. We also update multidimensional roles of NLRP12 in regulating innate immunity in a content-dependent manner: novel interference of NLRP12 on TLRs and NOD derived-signaling cascade, and the recently unveiled regulatory property of NLRP12 in production of type I IFN. Future prospects of exploring NLRs in controlling cell death during parasitic and microbial infection were highlighted.
Collapse
Affiliation(s)
- Abdulkareem Olarewaju Babamale
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming Chiao Tung University and Academia Sinica, Taipei 11266, Taiwan;
- Parasitology Unit, Faculty of Life Sciences, University of Ilorin, Ilorin 240003, Nigeria
| | - Szu-Ting Chen
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming Chiao Tung University and Academia Sinica, Taipei 11266, Taiwan;
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei 11266, Taiwan
- Cancer Progression Research Center, National Yang-Ming Chiao Tung University, Taipei 11266, Taiwan
| |
Collapse
|
10
|
Nandanwar N, Gibson JE, Neely MN. Growth medium and nitric oxide alter Mycobacterium abscessus morphotype and virulence. Microbiol Res 2021; 253:126887. [PMID: 34628130 DOI: 10.1016/j.micres.2021.126887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/16/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
Mycobacterium abscessus complex (MABC) infections cause significant morbidity and mortality among patients with chronic lung disease, like cystic fibrosis. MABC exists in smooth (S) and rough (R) morphotypes, but triggers of morphotype switching and associated pathogenicity or antimicrobial susceptibility are poorly understood. We demonstrate that M. abscessus subspecies abscessus (Mab), massiliense (Mms), and bolletii (Mbl) cultured in Middlebrook (MB) broth exhibit S morphotype, whereas the bacteria grown in Luria Bertani (LB) broth adopt the R morphotype, characterized by low glycopeptidolipid (GPL) expression. The components of broth that mediate this selection are complex, with albumin supplementation promoting growth of S morphotype, but not sufficient for complete selection. Consistent with the findings of other groups, R forms of Mab, Mms and Mbl selected by LB broth were internalized in RAW 264.7 macrophages with higher efficiency than S. Intracellular survival of broth-selected organisms was variable and was higher for S Mab, but lower for S Mms and Mbl. It is proposed that growth in R morphotype is induced during stress conditions, such as nutrient poor environments or during inflammation. One key component of inflammation is release of nitric oxide. We demonstrated that a nitric oxide donor (DETA-NONOate) appears to induce growth in an R morphotype, as indicated by reduced GPL expression of Mab. Mab treated with DETA-NONOate also enhanced susceptibility to azithromycin at sub-MIC concentrations. In conclusion, morphotype and macrophage intracellular bacterial load of MABC subspecies can be manipulated by growing the bacteria in different culture conditions. Nitric oxide may also drive morphotype selection and enhanced azithromycin activity against Mab and macrophage killing.
Collapse
Affiliation(s)
- Nishant Nandanwar
- Division of Infectious Diseases, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.
| | - Joy E Gibson
- Division of Infectious Diseases, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Michael N Neely
- Division of Infectious Diseases, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| |
Collapse
|
11
|
Lewin A, Kamal E, Semmler T, Winter K, Kaiser S, Schäfer H, Mao L, Eschenhagen P, Grehn C, Bender J, Schwarz C. Genetic diversification of persistent Mycobacterium abscessus within cystic fibrosis patients. Virulence 2021; 12:2415-2429. [PMID: 34546836 PMCID: PMC8526041 DOI: 10.1080/21505594.2021.1959808] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium (M.) abscessus infections in Cystic Fibrosis (CF) patients cause a deterioration of lung function. Treatment of these multidrug-resistant pathogens is associated with severe side-effects, while frequently unsuccessful. Insight on M. abscessus genomic evolvement during chronic lung infection would be beneficial for improving treatment strategies. A longitudinal study enrolling 42 CF patients was performed at a CF center in Berlin, Germany, to elaborate phylogeny and genomic diversification of in-patient M. abscessus. Eleven of the 42 CF patients were infected with M. abscessus. Five of these 11 patients were infected with global human-transmissible M. abscessus cluster strains. Phylogenetic analysis of 88 genomes from isolates of the 11 patients excluded occurrence of M. abscessus transmission among members of the study group. Genome sequencing and variant analysis of 30 isolates from 11 serial respiratory samples collected over 4.5 years from a chronically infected patient demonstrated accumulation of gene mutations. In total, 53 genes exhibiting non-synonymous variations were identified. Enrichment analysis emphasized genes involved in synthesis of glycopeptidolipids, genes from the embABC (arabinosyltransferase) operon, betA (glucose-methanol-choline oxidoreductase) and choD (cholesterol oxidase). Genetic diversity evolved in a variety of virulence- and resistance-associated genes. The strategy of M. abscessus populations in chronic lung infection is not clonal expansion of dominant variants, but to sustain simultaneously a wide range of genetic variants facilitating adaptation of the population to changing living conditions in the lung. Genomic diversification during chronic infection requires increased attention when new control strategies against M. abscessus infections are explored.
Collapse
Affiliation(s)
- Astrid Lewin
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Elisabeth Kamal
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Torsten Semmler
- Unit NG 1 Microbial Genomics, Robert Koch Institute, Berlin, Germany
| | - Katja Winter
- Unit MF1 Bioinformatics, Robert Koch Institute, Berlin, Germany
| | - Sandra Kaiser
- Unit MF1 Bioinformatics, Robert Koch Institute, Berlin, Germany
| | - Hubert Schäfer
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Lei Mao
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany.,Unit 31 Infectious Disease Data Science Unit, Robert Koch Institute, Berlin, Germany
| | - Patience Eschenhagen
- Klinikum Westbrandenburg, Campus Potsdam, Cystic Fibrosis Section, Potsdam, Germany.,Pediatric Respiratory Medicine, Immunology and Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claudia Grehn
- Department of Pediatrics, Division of Pulmonology, Immunology and Intensive Care Medicine, Division of Cystic Fibrosis, Charité - Universitätsmedizin, Berlin, Germany
| | - Jennifer Bender
- Unit 13 Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany.,ECDC Fellowship Programme, Public Health Microbiology Path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Carsten Schwarz
- Klinikum Westbrandenburg, Campus Potsdam, Cystic Fibrosis Section, Potsdam, Germany.,Pediatric Respiratory Medicine, Immunology and Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
12
|
Cruz-Aguilar M, Castillo-Rodal AI, Arredondo-Hernández R, López-Vidal Y. Non-tuberculous mycobacteria immunopathogenesis: Closer than they appear. a prime of innate immunity trade-off and NTM ways into virulence. Scand J Immunol 2021; 94:e13035. [PMID: 33655533 PMCID: PMC9285547 DOI: 10.1111/sji.13035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/16/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022]
Abstract
Introduction The growing incidence of non‐tuberculous mycobacteria (NTM) and changes in epidemiological factors have indicated that immune dysregulation may be associated with the emergence of NTM. Minireview entails to acknowledge complex interaction and new ways NTM are evolving around diverse immune status. Methods In order to perform this review, we selected peer reviewed, NLM database articles under the terms NTM, mycobacterium complex ‘AND’ ‐Host‐ immune response, immunity regulation, Disease, Single Nucleotide Polymorphism (SNP´s), and ‐pathogen‐ followed by a snow ball rolling basis search on immune components and NTM related with diseases distribution. Results The universal exposure and diversity of NTM are well‐documented; however, hospitals seldom establish vigilant control of water quality or immunodeficiencies for patients with NTM infections. Depending on the chemical structures and immune mechanisms presented by various NTM varieties, they can trigger different effects in dendritic and natural killer cells, which release interleukin (IL)‐17, tumour necrosis factor‐α (TNF‐α), interferon‐γ (IFN‐γ) and rIL‐1B. The T helper (Th)2‐acquired immune response is responsible for autoimmune responses in patients with NTM infections, and, quite disturbingly, immunocompetent patients have been reported to suffer from NTM infections. Conclusion New technologies and a comprehensive view has taught us; to acknowledge metabolic/immune determinants and trade‐offs along transit through mutualism‐parasite continuous.
Collapse
Affiliation(s)
- Marisa Cruz-Aguilar
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, Mexico City, Mexico
| | - Antonia I Castillo-Rodal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, Mexico City, Mexico
| | - René Arredondo-Hernández
- Laboratorio de Microbioma, Division de Investigación, Facultad de Medicina, UNAM, Mexico City, Mexico
| | - Yolanda López-Vidal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, Mexico City, Mexico
| |
Collapse
|
13
|
Victoria L, Gupta A, Gómez JL, Robledo J. Mycobacterium abscessus complex: A Review of Recent Developments in an Emerging Pathogen. Front Cell Infect Microbiol 2021; 11:659997. [PMID: 33981630 PMCID: PMC8108695 DOI: 10.3389/fcimb.2021.659997] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/07/2021] [Indexed: 01/04/2023] Open
Abstract
Mycobacterium abscessus complex (MABC) is one of the most clinically relevant species among nontuberculous mycobacteria. MABC's prevalence has increased over the last two decades. Although these changes can be explained by improvements in microbiological and molecular techniques for identifying species and subspecies, a higher prevalence of chronic lung diseases may contribute to higher rates of MABC. High rates of antimicrobial resistance are seen in MABC, and patients experience multiple relapses with low cure rates. This review aims to integrate existing knowledge about MABC epidemiology, microbiological identification and familiarize readers with molecular mechanisms of resistance and therapeutic options for pulmonary infections with MABC.
Collapse
Affiliation(s)
- Laura Victoria
- Laboratory of Bacteriology and Mycobacteria, Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia.,Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Amolika Gupta
- Pulmonary, Critical Care and Sleep Medicine Section, Yale University School of Medicine, New Haven, CT, United States
| | - Jose Luis Gómez
- Pulmonary, Critical Care and Sleep Medicine Section, Yale University School of Medicine, New Haven, CT, United States
| | - Jaime Robledo
- Laboratory of Bacteriology and Mycobacteria, Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia.,Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana, Medellín, Colombia
| |
Collapse
|
14
|
Peignier A, Parker D. Impact of Type I Interferons on Susceptibility to Bacterial Pathogens. Trends Microbiol 2021; 29:823-835. [PMID: 33546974 DOI: 10.1016/j.tim.2021.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/30/2022]
Abstract
Interferons (IFNs) are a broad class of cytokines that have multifaceted roles. Type I IFNs have variable effects when it comes to host susceptibility to bacterial infections, that is, the resulting outcomes can be either protective or deleterious. The mechanisms identified to date have been wide and varied between pathogens. In this review, we discuss recent literature that provides new insights into the mechanisms of how type I IFN signaling exerts its effects on the outcome of infection from the host's point of view.
Collapse
Affiliation(s)
- Adeline Peignier
- Department of Pathology, Immunology, and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Dane Parker
- Department of Pathology, Immunology, and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
15
|
Bonhomme D, Santecchia I, Vernel-Pauillac F, Caroff M, Germon P, Murray G, Adler B, Boneca IG, Werts C. Leptospiral LPS escapes mouse TLR4 internalization and TRIF‑associated antimicrobial responses through O antigen and associated lipoproteins. PLoS Pathog 2020; 16:e1008639. [PMID: 32790743 PMCID: PMC7447051 DOI: 10.1371/journal.ppat.1008639] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/25/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Leptospirosis is a worldwide re-emerging zoonosis caused by pathogenic Leptospira spp. All vertebrate species can be infected; humans are sensitive hosts whereas other species, such as rodents, may become long-term renal carrier reservoirs. Upon infection, innate immune responses are initiated by recognition of Microbial Associated Molecular Patterns (MAMPs) by Pattern Recognition Receptors (PRRs). Among MAMPs, the lipopolysaccharide (LPS) is recognized by the Toll-Like-Receptor 4 (TLR4) and activates both the MyD88-dependent pathway at the plasma membrane and the TRIF-dependent pathway after TLR4 internalization. We previously showed that leptospiral LPS is not recognized by the human-TLR4, whereas it signals through mouse-TLR4 (mTLR4), which mediates mouse resistance to acute leptospirosis. However, although resistant, mice are known to be chronically infected by leptospires. Interestingly, the leptospiral LPS has low endotoxicity in mouse cells and is an agonist of TLR2, the sensor for bacterial lipoproteins. Here, we investigated the signaling properties of the leptospiral LPS in mouse macrophages. Using confocal microscopy and flow cytometry, we showed that the LPS of L. interrogans did not induce internalization of mTLR4, unlike the LPS of Escherichia coli. Consequently, the LPS failed to induce the production of the TRIF-dependent nitric oxide and RANTES, both important antimicrobial responses. Using shorter LPS and LPS devoid of TLR2 activity, we further found this mTLR4-TRIF escape to be dependent on both the co-purifying lipoproteins and the full-length O antigen. Furthermore, our data suggest that the O antigen could alter the binding of the leptospiral LPS to the co-receptor CD14 that is essential for TLR4-TRIF activation. Overall, we describe here a novel leptospiral immune escape mechanism from mouse macrophages and hypothesize that the LPS altered signaling could contribute to the stealthiness and chronicity of the leptospires in mice. Leptospira interrogans is a bacterial pathogen, responsible for leptospirosis, a worldwide neglected reemerging disease. L. interrogans may cause an acute severe disease in humans, whereas rodents and other animals asymptomatically carry the leptospires in their kidneys. They can therefore excrete live bacteria in urine and contaminate the environment. Leptospires are stealth pathogens known to escape the innate immune defenses of their hosts. They are covered in lipopolysaccharide (LPS), a bacterial motif recognized in mammals through the Toll-like receptor 4 (TLR4), which triggers two different signaling pathways. We showed previously that pathogenic leptospires fully escape TLR4 recognition in humans. Here we focused on the LPS signaling in mice that are, although resistant to acute leptospirosis, chronically infected. We showed in mouse cells that the leptospiral LPS triggers only one arm of the TLR4 pathway and escapes the other, hence avoiding production of antimicrobial compounds. Removing the lipoproteins that always co-purify with the leptospiral LPS, or using shorter LPS, restores the stimulation of both pathways. This suggests a novel escape mechanism linked to the LPS and involving lipoproteins that could be instrumental for leptospires to escape the mouse defense and to allow for their chronic renal colonization.
Collapse
Affiliation(s)
- Delphine Bonhomme
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France; CNRS, UMR 2001 « Microbiologie intégrative et Moléculaire », Paris, France; INSERM, Equipe Avenir, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Ignacio Santecchia
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France; CNRS, UMR 2001 « Microbiologie intégrative et Moléculaire », Paris, France; INSERM, Equipe Avenir, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Frédérique Vernel-Pauillac
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France; CNRS, UMR 2001 « Microbiologie intégrative et Moléculaire », Paris, France; INSERM, Equipe Avenir, Paris, France
| | - Martine Caroff
- LPS-BioSciences, Université de Paris-Saclay, Orsay, France
| | - Pierre Germon
- INRAE, UMR ISP, Université François Rabelais de Tours, Nouzilly, France
| | - Gerald Murray
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Ben Adler
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Ivo G. Boneca
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France; CNRS, UMR 2001 « Microbiologie intégrative et Moléculaire », Paris, France; INSERM, Equipe Avenir, Paris, France
| | - Catherine Werts
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France; CNRS, UMR 2001 « Microbiologie intégrative et Moléculaire », Paris, France; INSERM, Equipe Avenir, Paris, France
- * E-mail:
| |
Collapse
|
16
|
Liu H, Xiong X, Zhu T, Zhu Y, Peng Y, Zhu X, Wang J, Chen H, Chen Y, Guo A. Differential nitric oxide induced by Mycobacterium bovis and BCG leading to dendritic cells apoptosis in a caspase dependent manner. Microb Pathog 2020; 149:104303. [PMID: 32504845 DOI: 10.1016/j.micpath.2020.104303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/14/2020] [Accepted: 05/29/2020] [Indexed: 12/25/2022]
Abstract
Dendritic cells (DCs) are critical for both innate and adaptive immunity. Meanwhile, nitric oxide (NO) is a member of reactive nitrogen species (RNS) generally considered to play a key role in the bactericidal process in innate immunity against Mycobacterium tuberculosis complex infection. The present study therefore investigated the mechanism of NO production in murine DCs induced by Mycobacterium bovis (M.bovis) and its attenuated strain Bacillus Calmette-Guérin (BCG) infection. The expression of genes Slc7A1, Slc7A2, iNOS, and ArgI essential to NO synthesis was up-regulated in M.bovis/BCG infected DCs. IFN-γ addition further increased, while the iNOS inhibitor L-NMMA significantly inhibited their expression. Accordingly, the end products of arginine metabolism, NO and urea, were found to be significantly increased. In addition, BCG induced significantly higher levels of apoptosis in DCs compared to M.bovis shown by higher levels of DNA fragmentation using flow cytometry and release of mitochondrial Cytochrome C, and up-regulation of the genes caspase-3, caspase-8, caspase-9 and dffa critical to apoptosis by qRT-PCR detection and western blot analysis. Furthermore, IFN-γ increased, but L-NMMA decreased apoptosis of M.bovis/BCG infected DCs. In addition, mycobacterial intracellular survival was significantly reduced by IFN-γ treatment in BCG infected DCs, while slightly increased by L-NMMA treatment. Taken altogether, our data show that NO synthesis was differentially increased and associated with apoptosis in M.bovis/BCG infected DCs. These findings may significantly contribute to elucidate the pathogenesis of M.bovis.
Collapse
Affiliation(s)
- Han Liu
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Xuekai Xiong
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Tingting Zhu
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Yifan Zhu
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Yongchong Peng
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Xiaojie Zhu
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Jieru Wang
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Huanchun Chen
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Yingyu Chen
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Aizhen Guo
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-products, Huazhong Agricultural University, Wuhan, 430070, China; Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
17
|
Wang Y, Jiang W, Xia B, Zhang M, Wang Y. MicroRNA-146a attenuates the development of morphine analgesic tolerance in a rat model. Neurol Res 2020; 42:415-421. [PMID: 32131713 DOI: 10.1080/01616412.2020.1735818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ying Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Wei Jiang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Bin Xia
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Mengyuan Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yan Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|