1
|
Choi H, Kim Y, Kim S, Kwon SW, Lee D, Han BH, Hong SB, Naito H, Yamada T, Hamada M, Heo J. Lacticaseibacillus pabuli sp. nov., isolated from fermented cattle feed. Int J Syst Evol Microbiol 2024; 74. [PMID: 38446021 DOI: 10.1099/ijsem.0.006277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Strain BSF-3MT is a Gram-stain-positive, non-flagellated, facultative anaerobic and rod-shaped bacterium that was isolated from fermented feed collected at a cattle farm in the Daejeon region of the Republic of Korea. It was studied using polyphasic taxonomic methods. Using 16S rRNA gene sequences and the resulting phylogenetic tree, the strain was primarily identified as a member of the genus Lacticaseibacillus. Strain BSF-3MT contained a chromosome of 2.5 Mbp and a plasmid of 33.4 kbp. The G+C content of genomic DNA was 51.3 mol%. Strain BSF-3MT had the highest ortho-average nucleotide identity value of 73.7 % with Lacticaseibacillus songhuajiangensis 7-19T, its closest relative in the phylogenetic tree based on the 16S rRNA gene sequences and the phylogenomic tree based on up-to-date bacterial core genes. Based on the results of a polyphasic taxonomic study, strain BSF-3MT represents a novel species in the genus Lacticaseibacillus, for which the name Lacticaseibacillus pabuli sp. nov. is proposed. The type strain is BSF-3MT (=KACC 23028T=NBRC 116014T).
Collapse
Affiliation(s)
- Hyorim Choi
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, Republic of Korea
- Division of Biotechnology, Jeonbuk National University, Jeollabuk-do, Republic of Korea
| | - Yiseul Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, Republic of Korea
| | - Seunghwan Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, Republic of Korea
| | - Soon-Wo Kwon
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, Republic of Korea
| | - Daseul Lee
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, Republic of Korea
| | - Byeong-Hak Han
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, Republic of Korea
| | - Seung-Beom Hong
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, Republic of Korea
| | - Hanako Naito
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation, 2-5-8, Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Tomomi Yamada
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation, 2-5-8, Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Moriyuki Hamada
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation, 2-5-8, Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Jun Heo
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, Republic of Korea
| |
Collapse
|
2
|
Faponle AS, Fagbohunka BS, Gauld JW. Influence of Cysteine 440 on the Active Site Properties of 3-Deoxy-d-Arabino-Heptulosonate 7-Phosphate Synthase in Mycobacterium tuberculosis ( MtDAHPS). ACS OMEGA 2023; 8:14401-14409. [PMID: 37125090 PMCID: PMC10134247 DOI: 10.1021/acsomega.2c07662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
The shikimate pathway, which produces aromatic amino acids and key intermediates, is critical to the viability of the tuberculosis-causing pathogen Mycobacterium tuberculosis. The enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAHPS) catalyzes the first committed step of this pathway and possesses regulatory functions. Its active site contains two cysteinyls: one (Cys87) bound to a metal ion, while the other (Cys440) is in proximity to the first but is located on a connecting loop. This arrangement seemingly appeared as a disulfide linkage. However, Cys440 is not metal binding, and its positioning indicates that it could collapse the disulfide linkage. Hence, its potential role may be more than simply structural support of the active site fold. Using a multiscale computational approach, molecular dynamics (MD) simulations, and DFT-based calculations, the influence of Cys440 on the active site properties has been investigated. MD simulations reveal an unusually long disulfide bond, more than 3.0 Å, whereas DFT calculations identified two stable active site conformers in the triplet and quintet spin states. Analysis of group spin density distribution identified antiferromagnetic coupling in each conformer, which suggests their relatively low potential energy and stable conformations. The conformer in the triplet spin state could favor enzyme reactivity due to its low HOMO-LUMO energy gap. In addition, reduction of the Cys440 thiolate group results in collapse of the active site metal-ligand configuration with large exothermicity. Hence, Cys440 could activate and inactivate the enzyme. For the first time, the study revealed the role of Cys440 as being vital for the catalytic activity of the enzyme rather than solely for the structural stabilization of its active site. Thus, the findings may lead to a novel basis for antituberculosis drug design and development that would disrupt the contributions of the Cys440.
Collapse
Affiliation(s)
- Abayomi S. Faponle
- Department
of Biochemistry, Faculty of Basic Medical Sciences, Sagamu
Campus, Olabisi Onabanjo University, Ago-Iwoye 120107, Nigeria
| | - Bamidele S. Fagbohunka
- Department
of Biochemistry, Faculty of Basic Medical Sciences, Sagamu
Campus, Olabisi Onabanjo University, Ago-Iwoye 120107, Nigeria
| | - James W. Gauld
- Department
of Chemistry and Biochemistry, University
of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
3
|
Stogios PJ, Liston SD, Semper C, Quade B, Michalska K, Evdokimova E, Ram S, Otwinowski Z, Borek D, Cowen LE, Savchenko A. Molecular analysis and essentiality of Aro1 shikimate biosynthesis multi-enzyme in Candida albicans. Life Sci Alliance 2022; 5:e202101358. [PMID: 35512834 PMCID: PMC9074039 DOI: 10.26508/lsa.202101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 11/24/2022] Open
Abstract
In the human fungal pathogen Candida albicans, ARO1 encodes an essential multi-enzyme that catalyses consecutive steps in the shikimate pathway for biosynthesis of chorismate, a precursor to folate and the aromatic amino acids. We obtained the first molecular image of C. albicans Aro1 that reveals the architecture of all five enzymatic domains and their arrangement in the context of the full-length protein. Aro1 forms a flexible dimer allowing relative autonomy of enzymatic function of the individual domains. Our activity and in cellulo data suggest that only four of Aro1's enzymatic domains are functional and essential for viability of C. albicans, whereas the 3-dehydroquinate dehydratase (DHQase) domain is inactive because of active site substitutions. We further demonstrate that in C. albicans, the type II DHQase Dqd1 can compensate for the inactive DHQase domain of Aro1, suggesting an unrecognized essential role for this enzyme in shikimate biosynthesis. In contrast, in Candida glabrata and Candida parapsilosis, which do not encode a Dqd1 homolog, Aro1 DHQase domains are enzymatically active, highlighting diversity across Candida species.
Collapse
Affiliation(s)
- Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Sean D Liston
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Cameron Semper
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Bradley Quade
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Karolina Michalska
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA
| | - Elena Evdokimova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Shane Ram
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Zbyszek Otwinowski
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dominika Borek
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
4
|
Singh S, Qureshi IA. Identification of potent inhibitors against chorismate synthase of Toxoplasma gondii using molecular dynamics simulations. J Mol Graph Model 2022; 114:108183. [DOI: 10.1016/j.jmgm.2022.108183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/06/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
|
5
|
Chen J, Zhu M, Liu R, Zhang M, Lv Y, Liu Y, Xiao X, Yuan J, Cai H. BIOMASS YIELD 1 regulates sorghum biomass and grain yield via the shikimate pathway. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5506-5520. [PMID: 32497182 PMCID: PMC7501818 DOI: 10.1093/jxb/eraa275] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/28/2020] [Indexed: 05/26/2023]
Abstract
Biomass and grain yield are key agronomic traits in sorghum (Sorghum bicolor); however, the molecular mechanisms that regulate these traits are not well understood. Here, we characterized the biomass yield 1 (by1) mutant, which displays a dramatically altered phenotype that includes reduced plant height, narrow stems, erect and narrow leaves, and abnormal floral organs. Histological analysis suggested that these phenotypic defects are mainly caused by inhibited cell elongation and abnormal floral organ development. Map-based cloning revealed that BY1 encodes a 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS) that catalyses the first step of the shikimate pathway. BY1 was localized in chloroplasts and was ubiquitously distributed in the organs examined, particularly in the roots, stems, leaves, and panicles, which was consistent with its role in biomass production and grain yield. Transcriptome analysis and metabolic profiling revealed that BY1 was involved in primary metabolism and that it affected the biosynthesis of various secondary metabolites, especially flavonoids. Taken together, these findings demonstrate that BY1 affects biomass and grain yield in sorghum by regulating primary and secondary metabolism via the shikimate pathway. Moreover, our results provide important insights into the relationship between plant development and metabolism.
Collapse
Affiliation(s)
- Jun Chen
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, Nanjing, China
- Department of Plant Genetics, Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement; Laboratory of Crop Heterosis and Utilization, MOE; Beijing China
| | - Mengjiao Zhu
- Department of Plant Genetics, Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement; Laboratory of Crop Heterosis and Utilization, MOE; Beijing China
| | - Ruixiang Liu
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, Nanjing, China
| | - Meijing Zhang
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, Nanjing, China
| | - Ya Lv
- Department of Plant Genetics, Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement; Laboratory of Crop Heterosis and Utilization, MOE; Beijing China
| | - Yishan Liu
- Department of Plant Genetics, Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement; Laboratory of Crop Heterosis and Utilization, MOE; Beijing China
| | - Xin Xiao
- Department of Plant Genetics, Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement; Laboratory of Crop Heterosis and Utilization, MOE; Beijing China
| | - Jianhua Yuan
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, Nanjing, China
| | - Hongwei Cai
- Department of Plant Genetics, Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement; Laboratory of Crop Heterosis and Utilization, MOE; Beijing China
- College of Grassland Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, China
- Forage Crop Research Institute, Japan Grassland Agricultural and Forage Seed Association, 388-5 Higashiakada, Nasushiobara, Tochigi, Japan
| |
Collapse
|
6
|
Arora Verasztó H, Logotheti M, Albrecht R, Leitner A, Zhu H, Hartmann MD. Architecture and functional dynamics of the pentafunctional AROM complex. Nat Chem Biol 2020; 16:973-978. [PMID: 32632294 DOI: 10.1038/s41589-020-0587-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 06/05/2020] [Indexed: 12/13/2022]
Abstract
The AROM complex is a multifunctional metabolic machine with ten enzymatic domains catalyzing the five central steps of the shikimate pathway in fungi and protists. We determined its crystal structure and catalytic behavior, and elucidated its conformational space using a combination of experimental and computational approaches. We derived this space in an elementary approach, exploiting an abundance of conformational information from its monofunctional homologs in the Protein Data Bank. It demonstrates how AROM is optimized for spatial compactness while allowing for unrestricted conformational transitions and a decoupled functioning of its individual enzymatic entities. With this architecture, AROM poses a tractable test case for the effects of active site proximity on the efficiency of both natural metabolic systems and biotechnological pathway optimization approaches. We show that a mere colocalization of enzymes is not sufficient to yield a detectable improvement of metabolic throughput.
Collapse
Affiliation(s)
- Harshul Arora Verasztó
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany.,Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Maria Logotheti
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Reinhard Albrecht
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Hongbo Zhu
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany.
| |
Collapse
|
7
|
Butenko A, Opperdoes FR, Flegontova O, Horák A, Hampl V, Keeling P, Gawryluk RMR, Tikhonenkov D, Flegontov P, Lukeš J. Evolution of metabolic capabilities and molecular features of diplonemids, kinetoplastids, and euglenids. BMC Biol 2020; 18:23. [PMID: 32122335 PMCID: PMC7052976 DOI: 10.1186/s12915-020-0754-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/17/2020] [Indexed: 12/24/2022] Open
Abstract
Background The Euglenozoa are a protist group with an especially rich history of evolutionary diversity. They include diplonemids, representing arguably the most species-rich clade of marine planktonic eukaryotes; trypanosomatids, which are notorious parasites of medical and veterinary importance; and free-living euglenids. These different lifestyles, and particularly the transition from free-living to parasitic, likely require different metabolic capabilities. We carried out a comparative genomic analysis across euglenozoan diversity to see how changing repertoires of enzymes and structural features correspond to major changes in lifestyles. Results We find a gradual loss of genes encoding enzymes in the evolution of kinetoplastids, rather than a sudden decrease in metabolic capabilities corresponding to the origin of parasitism, while diplonemids and euglenids maintain more metabolic versatility. Distinctive characteristics of molecular machines such as kinetochores and the pre-replication complex that were previously considered specific to parasitic kinetoplastids were also identified in their free-living relatives. Therefore, we argue that they represent an ancestral rather than a derived state, as thought until the present. We also found evidence of ancient redundancy in systems such as NADPH-dependent thiol-redox. Only the genus Euglena possesses the combination of trypanothione-, glutathione-, and thioredoxin-based systems supposedly present in the euglenozoan common ancestor, while other representatives of the phylum have lost one or two of these systems. Lastly, we identified convergent losses of specific metabolic capabilities between free-living kinetoplastids and ciliates. Although this observation requires further examination, it suggests that certain eukaryotic lineages are predisposed to such convergent losses of key enzymes or whole pathways. Conclusions The loss of metabolic capabilities might not be associated with the switch to parasitic lifestyle in kinetoplastids, and the presence of a highly divergent (or unconventional) kinetochore machinery might not be restricted to this protist group. The data derived from the transcriptomes of free-living early branching prokinetoplastids suggests that the pre-replication complex of Trypanosomatidae is a highly divergent version of the conventional machinery. Our findings shed light on trends in the evolution of metabolism in protists in general and open multiple avenues for future research.
Collapse
Affiliation(s)
- Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Fred R Opperdoes
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Olga Flegontova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Vladimír Hampl
- Faculty of Science, Charles University, Biocev, Vestec, Czech Republic
| | - Patrick Keeling
- Department of Botany, University of British Columbia, Vancouver, Canada
| | | | - Denis Tikhonenkov
- Department of Botany, University of British Columbia, Vancouver, Canada.,Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Pavel Flegontov
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic. .,Faculty of Science, University of Ostrava, Ostrava, Czech Republic. .,Present address: Department of Genetics, Harvard Medical School, Boston, USA.
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic. .,Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| |
Collapse
|
8
|
Krishnan A, Kloehn J, Lunghi M, Soldati-Favre D. Vitamin and cofactor acquisition in apicomplexans: Synthesis versus salvage. J Biol Chem 2020; 295:701-714. [PMID: 31767680 PMCID: PMC6970920 DOI: 10.1074/jbc.aw119.008150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Apicomplexa phylum comprises diverse parasitic organisms that have evolved from a free-living ancestor. These obligate intracellular parasites exhibit versatile metabolic capabilities reflecting their capacity to survive and grow in different hosts and varying niches. Determined by nutrient availability, they either use their biosynthesis machineries or largely depend on their host for metabolite acquisition. Because vitamins cannot be synthesized by the mammalian host, the enzymes required for their synthesis in apicomplexan parasites represent a large repertoire of potential therapeutic targets. Here, we review recent advances in metabolic reconstruction and functional studies coupled to metabolomics that unravel the interplay between biosynthesis and salvage of vitamins and cofactors in apicomplexans. A particular emphasis is placed on Toxoplasma gondii, during both its acute and latent stages of infection.
Collapse
Affiliation(s)
- Aarti Krishnan
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1 Rue Michel-Servet, 1211 Geneva 4 Switzerland
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1 Rue Michel-Servet, 1211 Geneva 4 Switzerland
| | - Matteo Lunghi
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1 Rue Michel-Servet, 1211 Geneva 4 Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1 Rue Michel-Servet, 1211 Geneva 4 Switzerland
| |
Collapse
|
9
|
Krishnan A, Kloehn J, Lunghi M, Soldati-Favre D. Vitamin and cofactor acquisition in apicomplexans: Synthesis versus salvage. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49928-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
10
|
Khera HK, Singh SK, Singh S. Chorismate synthase from malaria parasites is bifunctional enzyme. Mol Biochem Parasitol 2019; 233:111202. [PMID: 31381947 DOI: 10.1016/j.molbiopara.2019.111202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 07/13/2019] [Accepted: 07/31/2019] [Indexed: 11/16/2022]
Abstract
Chorismate synthase (Cs) is the last enzyme of the main trunk of shikimate pathway and catalyzes formation of chorismate, a major aromatic metabolite precursor. We have previously reported that Cs is highly conserved across different Plasmodium sp. Here we report that Cs from malaria parasites are bifunctional enzymes through expression and functional studies of two recombinant proteins rPfCs (Cs from P. falciparum) and rPvCs (Cs from P. vivax). We confirm bifunctional activity of both rPfCs and rPvCs based on their ability to catalyze formation of chorismate under aerobic conditions as well as their ability to catalyze generation of reduced flavin mononucleotide (FMN) as assessed through diaphorase assay.
Collapse
Affiliation(s)
- Harvinder Kour Khera
- Pharmacology Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, Jammu and Kashmir, 180001, India; Academy of Scientific & Innovative Research (AcSIR), New Delhi, India
| | - Susheel Kumar Singh
- Pharmacology Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, Jammu and Kashmir, 180001, India
| | - Subhash Singh
- Pharmacology Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, Jammu and Kashmir, 180001, India; Academy of Scientific & Innovative Research (AcSIR), New Delhi, India.
| |
Collapse
|
11
|
Mantravadi PK, Kalesh KA, Dobson RCJ, Hudson AO, Parthasarathy A. The Quest for Novel Antimicrobial Compounds: Emerging Trends in Research, Development, and Technologies. Antibiotics (Basel) 2019; 8:E8. [PMID: 30682820 PMCID: PMC6466574 DOI: 10.3390/antibiotics8010008] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/17/2019] [Accepted: 01/20/2019] [Indexed: 12/11/2022] Open
Abstract
Pathogenic antibiotic resistant bacteria pose one of the most important health challenges of the 21st century. The overuse and abuse of antibiotics coupled with the natural evolutionary processes of bacteria has led to this crisis. Only incremental advances in antibiotic development have occurred over the last 30 years. Novel classes of molecules, such as engineered antibodies, antibiotic enhancers, siderophore conjugates, engineered phages, photo-switchable antibiotics, and genome editing facilitated by the CRISPR/Cas system, are providing new avenues to facilitate the development of antimicrobial therapies. The informatics revolution is transforming research and development efforts to discover novel antibiotics. The explosion of nanotechnology and micro-engineering is driving the invention of antimicrobial materials, enabling the cultivation of "uncultivable" microbes and creating specific and rapid diagnostic technologies. Finally, a revival in the ecological aspects of microbial disease management, the growth of prebiotics, and integrated management based on the "One Health" model, provide additional avenues to manage this health crisis. These, and future scientific and technological developments, must be coupled and aligned with sound policy and public awareness to address the risks posed by rising antibiotic resistance.
Collapse
Affiliation(s)
| | | | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800 Christchurch, New Zealand.
| | - André O Hudson
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, 85 Lomb Memorial Dr, Rochester, NY 14623, USA.
| | - Anutthaman Parthasarathy
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, 85 Lomb Memorial Dr, Rochester, NY 14623, USA.
| |
Collapse
|
12
|
Review on Abyssomicins: Inhibitors of the Chorismate Pathway and Folate Biosynthesis. Molecules 2018; 23:molecules23061371. [PMID: 29882815 PMCID: PMC6100094 DOI: 10.3390/molecules23061371] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 11/16/2022] Open
Abstract
Antifolates targeting folate biosynthesis within the shikimate-chorismate-folate metabolic pathway are ideal and selective antimicrobials, since higher eukaryotes lack this pathway and rely on an exogenous source of folate. Resistance to the available antifolates, inhibiting the folate pathway, underlines the need for novel antibiotic scaffolds and molecular targets. While para-aminobenzoic acid synthesis within the chorismate pathway constitutes a novel molecular target for antifolates, abyssomicins are its first known natural inhibitors. This review describes the abyssomicin family, a novel spirotetronate polyketide Class I antimicrobial. It summarizes synthetic and biological studies, structural, biosynthetic, and biological properties of the abyssomicin family members. This paper aims to explain their molecular target, mechanism of action, structure⁻activity relationship, and to explore their biological and pharmacological potential. Thirty-two natural abyssomicins and numerous synthetic analogues have been reported. The biological activity of abyssomicins includes their antimicrobial activity against Gram-positive bacteria and mycobacteria, antitumor properties, latent human immunodeficiency virus (HIV) reactivator, anti-HIV and HIV replication inducer properties. Their antimalarial properties have not been explored yet. Future analoging programs using the structure⁻activity relationship data and synthetic approaches may provide a novel abyssomicin structure that is active and devoid of cytotoxicity. Abyssomicin J and atrop-o-benzyl-desmethylabyssomicin C constitute promising candidates for such programs.
Collapse
|
13
|
Parthasarathy A, Cross PJ, Dobson RCJ, Adams LE, Savka MA, Hudson AO. A Three-Ring Circus: Metabolism of the Three Proteogenic Aromatic Amino Acids and Their Role in the Health of Plants and Animals. Front Mol Biosci 2018; 5:29. [PMID: 29682508 PMCID: PMC5897657 DOI: 10.3389/fmolb.2018.00029] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/21/2018] [Indexed: 12/19/2022] Open
Abstract
Tyrosine, phenylalanine and tryptophan are the three aromatic amino acids (AAA) involved in protein synthesis. These amino acids and their metabolism are linked to the synthesis of a variety of secondary metabolites, a subset of which are involved in numerous anabolic pathways responsible for the synthesis of pigment compounds, plant hormones and biological polymers, to name a few. In addition, these metabolites derived from the AAA pathways mediate the transmission of nervous signals, quench reactive oxygen species in the brain, and are involved in the vast palette of animal coloration among others pathways. The AAA and metabolites derived from them also have integral roles in the health of both plants and animals. This review delineates the de novo biosynthesis of the AAA by microbes and plants, and the branching out of AAA metabolism into major secondary metabolic pathways in plants such as the phenylpropanoid pathway. Organisms that do not possess the enzymatic machinery for the de novo synthesis of AAA must obtain these primary metabolites from their diet. Therefore, the metabolism of AAA by the host animal and the resident microflora are important for the health of all animals. In addition, the AAA metabolite-mediated host-pathogen interactions in general, as well as potential beneficial and harmful AAA-derived compounds produced by gut bacteria are discussed. Apart from the AAA biosynthetic pathways in plants and microbes such as the shikimate pathway and the tryptophan pathway, this review also deals with AAA catabolism in plants, AAA degradation via the monoamine and kynurenine pathways in animals, and AAA catabolism via the 3-aryllactate and kynurenine pathways in animal-associated microbes. Emphasis will be placed on structural and functional aspects of several key AAA-related enzymes, such as shikimate synthase, chorismate mutase, anthranilate synthase, tryptophan synthase, tyrosine aminotransferase, dopachrome tautomerase, radical dehydratase, and type III CoA-transferase. The past development and current potential for interventions including the development of herbicides and antibiotics that target key enzymes in AAA-related pathways, as well as AAA-linked secondary metabolism leading to antimicrobials are also discussed.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Penelope J. Cross
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Lily E. Adams
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Michael A. Savka
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
14
|
Ganley JG, Toro-Moreno M, Derbyshire ER. Exploring the Untapped Biosynthetic Potential of Apicomplexan Parasites. Biochemistry 2017; 57:365-375. [DOI: 10.1021/acs.biochem.7b00877] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jack G. Ganley
- Department
of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708, United States
| | - Maria Toro-Moreno
- Department
of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708, United States
| | - Emily R. Derbyshire
- Department
of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708, United States
- Department
of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, North Carolina 27710, United States
| |
Collapse
|
15
|
Specific chemical modification of bacterial type I dehydroquinase – opportunities for drug discovery. Future Med Chem 2015; 7:2371-83. [DOI: 10.4155/fmc.15.145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Type I dehydroquinase (DHQ1) is a class I aldolase enzyme that catalyzes the reversible dehydration of 3-dehydroquinic acid to form 3-dehydroshikimic acid by multistep mechanism that involves the formation of Schiff-base species. DHQ1 is present in plants and several bacterial sources but it does not have any counterpart in human cells. It has been suggested that DHQ1 may act as a virulence factor in vivo and therefore a promising target in the search for new antivirulence agents to combat widespread antibiotic resistance. This review covers recent progress in the structure-based design and chemical modifications caused by selective irreversible inhibitors. Computational studies aimed at understanding the experimentally obtained covalent modifications and inhibitory potencies of these inhibitors are also described.
Collapse
|
16
|
Peek J, Christendat D. The shikimate dehydrogenase family: functional diversity within a conserved structural and mechanistic framework. Arch Biochem Biophys 2014; 566:85-99. [PMID: 25524738 DOI: 10.1016/j.abb.2014.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/19/2014] [Accepted: 12/07/2014] [Indexed: 11/19/2022]
Abstract
Shikimate dehydrogenase (SDH) catalyzes the NADPH-dependent reduction of 3-deydroshikimate to shikimate, an essential reaction in the biosynthesis of the aromatic amino acids and a large number of other secondary metabolites in plants and microbes. The indispensible nature of this enzyme makes it a potential target for herbicides and antimicrobials. SDH is the archetypal member of a large protein family, which contains at least four additional functional classes with diverse metabolic roles. The different members of the SDH family share a highly similar three-dimensional structure and utilize a conserved catalytic mechanism, but exhibit distinct substrate preferences, making the family a particularly interesting system for studying modes of substrate recognition used by enzymes. Here, we review our current understanding of the biochemical and structural properties of each of the five previously identified SDH family functional classes.
Collapse
Affiliation(s)
- James Peek
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Dinesh Christendat
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada; Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada.
| |
Collapse
|
17
|
Henriquez FL, Campbell SJ, Sundararaj BK, Cano A, Muench SP, Roberts CW. The Acanthamoeba shikimate pathway has a unique molecular arrangement and is essential for aromatic amino acid biosynthesis. Protist 2014; 166:93-105. [PMID: 25576842 DOI: 10.1016/j.protis.2014.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 12/01/2014] [Accepted: 12/05/2014] [Indexed: 11/24/2022]
Abstract
The shikimate pathway is the only known biosynthetic route for de novo synthesis of aromatic compounds. It is described as an ancient eukaryotic innovation that has been retained in a subset of eukaryotes, replaced in plants through the acquisition of the chloroplast, but lost in many including humans. Herein, we demonstrate that Acanthamoeba castellanii possesses the shikimate pathway by biochemical and a combination of bioinformatics and molecular biological methods. The growth of A. castellanii (Neff strain and a recently isolated clinical specimen, both T4 genotypes) is inhibited by glyphosate [N-(phosphonomethyl) glycine], an inhibitor of EPSP synthase and the addition of phenylalanine and tryptophan, which are dependent on the shikimate pathway, rescued A. castellanii from glyphosate indicating that glyphosate was specific in action. A. castellanii has a novel complement of shikimate pathway enzymes including unique gene fusions, two Type I and one Type II DAHP synthases (for which their likely sensitivities to feedback inhibition by phenylalanine, tyrosine and tryptophan has been modelled) and a canonical chorismate synthase. The shikimate pathway in A. castellanii therefore has a novel molecular arrangement, is required for amino acid biosynthesis and represents an attractive target for antimicrobials.
Collapse
Affiliation(s)
- Fiona L Henriquez
- Institute of Biomedical Science and Environmental Health Research, School of Science, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - Sara J Campbell
- Institute of Biomedical Science and Environmental Health Research, School of Science, University of the West of Scotland, Paisley, PA1 2BE, UK; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0NR, UK
| | - Bharath K Sundararaj
- Institute of Biomedical Science and Environmental Health Research, School of Science, University of the West of Scotland, Paisley, PA1 2BE, UK; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0NR, UK
| | - Antonella Cano
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0NR, UK
| | - Stephen P Muench
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT
| | - Craig W Roberts
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0NR, UK.
| |
Collapse
|
18
|
Maguire F, Henriquez FL, Leonard G, Dacks JB, Brown MW, Richards TA. Complex patterns of gene fission in the eukaryotic folate biosynthesis pathway. Genome Biol Evol 2014; 6:2709-20. [PMID: 25252772 PMCID: PMC4224340 DOI: 10.1093/gbe/evu213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Shared derived genomic characters can be useful for polarizing phylogenetic relationships, for example, gene fusions have been used to identify deep-branching relationships in the eukaryotes. Here, we report the evolutionary analysis of a three-gene fusion of folB, folK, and folP, which encode enzymes that catalyze consecutive steps in de novo folate biosynthesis. The folK-folP fusion was found across the eukaryotes and a sparse collection of prokaryotes. This suggests an ancient derivation with a number of gene losses in the eukaryotes potentially as a consequence of adaptation to heterotrophic lifestyles. In contrast, the folB-folK-folP gene is specific to a mosaic collection of Amorphea taxa (a group encompassing: Amoebozoa, Apusomonadida, Breviatea, and Opisthokonta). Next, we investigated the stability of this character. We identified numerous gene losses and a total of nine gene fission events, either by break up of an open reading frame (four events identified) or loss of a component domain (five events identified). This indicates that this three gene fusion is highly labile. These data are consistent with a growing body of data indicating gene fission events occur at high relative rates. Accounting for these sources of homoplasy, our data suggest that the folB-folK-folP gene fusion was present in the last common ancestor of Amoebozoa and Opisthokonta but absent in the Metazoa including the human genome. Comparative genomic data of these genes provides an important resource for designing therapeutic strategies targeting the de novo folate biosynthesis pathway of a variety of eukaryotic pathogens such as Acanthamoeba castellanii.
Collapse
Affiliation(s)
- Finlay Maguire
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Fiona L Henriquez
- Infection and Microbiology Research Group, Institute of Biomedical and Environmental Health Research, School of Science, University of the West of Scotland, Paisley, Renfrewshire, United Kingdom
| | - Guy Leonard
- Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - Joel B Dacks
- Department of Life Sciences, Natural History Museum, London, United Kingdom Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University
| | - Thomas A Richards
- Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom Canadian Institute for Advanced Research, CIFAR Program in Integrated Microbial Biodiversity
| |
Collapse
|
19
|
Insights into substrate binding and catalysis in bacterial type I dehydroquinase. Biochem J 2014; 462:415-24. [DOI: 10.1042/bj20140614] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The crystal structure of S. typhi type I dehydroquinase in complex with (2R)-3-methyl-3-dehydroquinic acid is described. A previously unknown key role of several conserved residues and a detailed knowledge of the substrate binding process is detailed.
Collapse
|
20
|
Zhi XY, Yao JC, Li HW, Huang Y, Li WJ. Genome-wide identification, domain architectures and phylogenetic analysis provide new insights into the early evolution of shikimate pathway in prokaryotes. Mol Phylogenet Evol 2014; 75:154-64. [DOI: 10.1016/j.ympev.2014.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 11/30/2022]
|
21
|
Peek J, Castiglione G, Shi T, Christendat D. Isolation and molecular characterization of the shikimate dehydrogenase domain from the Toxoplasma gondii AROM complex. Mol Biochem Parasitol 2014; 194:16-9. [PMID: 24731949 DOI: 10.1016/j.molbiopara.2014.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 03/24/2014] [Accepted: 04/03/2014] [Indexed: 11/15/2022]
Abstract
The apicomplexan parasite Toxoplasma gondii, the etiologic agent of toxoplasmosis, is estimated to infect 10-80% of different human populations. T. gondii encodes a large pentafunctional polypeptide known as the AROM complex which catalyzes five reactions in the shikimate pathway, a metabolic pathway required for the biosynthesis of the aromatic amino acids and a promising target for anti-parasitic agents. Here, we present the isolation, cloning and kinetic characterization of the shikimate dehydrogenase domain (TgSDH) from the T. gondii AROM complex. Recombinant TgSDH catalyzed the NADP(+)-dependent oxidation of shikimate in the absence of the remaining AROM domains and was sensitive to inhibition by a previously identified SDH inhibitor. Analysis of the TgSDH amino acid sequence revealed a number of novel insertions not found in SDH homologs from other organisms. Nevertheless, a three-dimensional structural model of TgSDH predicts a high level of conservation in the 'core' structure of the enzyme.
Collapse
Affiliation(s)
- James Peek
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Gianni Castiglione
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Thomas Shi
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Dinesh Christendat
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2; Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada M5S 3B2.
| |
Collapse
|
22
|
Phenotypic profiling and gene expression analyses for aromatic and volatile compounds in Chamoes (Cucumis melo). Mol Biol Rep 2014; 41:3487-97. [DOI: 10.1007/s11033-014-3211-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 01/27/2014] [Indexed: 10/25/2022]
|
23
|
Blanco B, Prado V, Lence E, Otero JM, Garcia-Doval C, van Raaij MJ, Llamas-Saiz AL, Lamb H, Hawkins AR, González-Bello C. Mycobacterium tuberculosis shikimate kinase inhibitors: design and simulation studies of the catalytic turnover. J Am Chem Soc 2013; 135:12366-76. [PMID: 23889343 DOI: 10.1021/ja405853p] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Shikimate kinase (SK) is an essential enzyme in several pathogenic bacteria and does not have any counterpart in human cells, thus making it an attractive target for the development of new antibiotics. The key interactions of the substrate and product binding and the enzyme movements that are essential for catalytic turnover of the Mycobacterium tuberculosis shikimate kinase enzyme (Mt-SK) have been investigated by structural and computational studies. Based on these studies several substrate analogs were designed and assayed. The crystal structure of Mt-SK in complex with ADP and one of the most potent inhibitors has been solved at 2.15 Å. These studies reveal that the fixation of the diaxial conformation of the C4 and C5 hydroxyl groups recognized by the enzyme or the replacement of the C3 hydroxyl group in the natural substrate by an amino group is a promising strategy for inhibition because it causes a dramatic reduction of the flexibility of the LID and shikimic acid binding domains. Molecular dynamics simulation studies showed that the product is expelled from the active site by three arginines (Arg117, Arg136, and Arg58). This finding represents a previously unknown key role of these conserved residues. These studies highlight the key role of the shikimic acid binding domain in the catalysis and provide guidance for future inhibitor designs.
Collapse
Affiliation(s)
- Beatriz Blanco
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Rosado LA, Vasconcelos IB, Palma MS, Frappier V, Najmanovich RJ, Santos DS, Basso LA. The mode of action of recombinant Mycobacterium tuberculosis shikimate kinase: kinetics and thermodynamics analyses. PLoS One 2013; 8:e61918. [PMID: 23671579 PMCID: PMC3646032 DOI: 10.1371/journal.pone.0061918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 03/14/2013] [Indexed: 12/03/2022] Open
Abstract
Tuberculosis remains as one of the main cause of mortality worldwide due to a single infectious agent, Mycobacterium tuberculosis. The aroK-encoded M. tuberculosis Shikimate Kinase (MtSK), shown to be essential for survival of bacilli, catalyzes the phosphoryl transfer from ATP to the carbon-3 hydroxyl group of shikimate (SKH), yielding shikimate-3-phosphate and ADP. Here we present purification to homogeneity, and oligomeric state determination of recombinant MtSK. Biochemical and biophysical data suggest that the chemical reaction catalyzed by monomeric MtSK follows a rapid-equilibrium random order of substrate binding, and ordered product release. Isothermal titration calorimetry (ITC) for binding of ligands to MtSK provided thermodynamic signatures of non-covalent interactions to each process. A comparison of steady-state kinetics parameters and equilibrium dissociation constant value determined by ITC showed that ATP binding does not increase the affinity of MtSK for SKH. We suggest that MtSK would more appropriately be described as an aroL-encoded type II shikimate kinase. Our manuscript also gives thermodynamic description of SKH binding to MtSK and data for the number of protons exchanged during this bimolecular interaction. The negative value for the change in constant pressure heat capacity (ΔCp) and molecular homology model building suggest a pronounced contribution of desolvation of non-polar groups upon binary complex formation. Thermodynamic parameters were deconvoluted into hydrophobic and vibrational contributions upon MtSK:SKH binary complex formation. Data for the number of protons exchanged during this bimolecular interaction are interpreted in light of a structural model to try to propose the likely amino acid side chains that are the proton donors to bulk solvent following MtSK:SKH complex formation.
Collapse
Affiliation(s)
- Leonardo Astolfi Rosado
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Porto Alegre, RS, Brazil
| | - Igor Bordin Vasconcelos
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Porto Alegre, RS, Brazil
| | - Mário Sérgio Palma
- Laboratório de Biologia Estrutural e Zooquímica, Centro de Estudos de Insetos Sociais, Departamento de Biologia, Instituto de Biociências de Rio Claro, Universidade Estadual Paulista (UNESP), Rio Claro, SP, Brazil
| | - Vincent Frappier
- Department of Biochemistry, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Rafael Josef Najmanovich
- Department of Biochemistry, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Diógenes Santiago Santos
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, PUCRS, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Porto Alegre, RS, Brazil
| | - Luiz Augusto Basso
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, PUCRS, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Porto Alegre, RS, Brazil
| |
Collapse
|
25
|
Three Sites and You Are Out: Ternary Synergistic Allostery Controls Aromatic Amino Acid Biosynthesis in Mycobacterium tuberculosis. J Mol Biol 2013; 425:1582-92. [DOI: 10.1016/j.jmb.2012.12.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 11/19/2022]
|
26
|
Chu WT, Zheng QC, Wu YJ, Zhang JL, Liang CY, Chen L, Xue Q, Zhang HX. Molecular dynamics (MD) simulations and binding free energy calculation studies between inhibitors and type II dehydroquinase (DHQ2). MOLECULAR SIMULATION 2013. [DOI: 10.1080/08927022.2012.708416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Tizón L, Otero JM, Prazeres VFV, Llamas-Saiz AL, Fox GC, van Raaij MJ, Lamb H, Hawkins AR, Ainsa JA, Castedo L, González-Bello C. A Prodrug Approach for Improving Antituberculosis Activity of Potent Mycobacterium tuberculosis Type II Dehydroquinase Inhibitors. J Med Chem 2011; 54:6063-84. [DOI: 10.1021/jm2006063] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lorena Tizón
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares, Universidad de Santiago de Compostela, calle Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - José M. Otero
- Laboratoire des Proteines Membranaires, Institut de Biologie Structurale J. P. Ebel, 38027 Grenoble, France
| | - Verónica F. V. Prazeres
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares, Universidad de Santiago de Compostela, calle Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Antonio L. Llamas-Saiz
- Unidad de Rayos X, RIAIDT, Edificio CACTUS, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Gavin C. Fox
- Laboratoire des Proteines Membranaires, Institut de Biologie Structurale J. P. Ebel, 38027 Grenoble, France
| | - Mark J. van Raaij
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CSIC), Campus Cantoblanco, 28049 Madrid, Spain
| | - Heather Lamb
- Institute of Cell and Molecular Biosciences, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, U.K
| | - Alastair R. Hawkins
- Institute of Cell and Molecular Biosciences, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, U.K
| | - José A. Ainsa
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva y Salud Pública, Facultad de Medicina, 50009 Zaragoza, Spain, and CIBER Enfermedades Respiratorias, Spain
| | - Luis Castedo
- Departamento de Química Orgánica, Facultad de Química, Universidad de Santiago de Compostela, Avenida de las Ciencias s/n, 15782 Santiago de Compostela, Spain
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares, Universidad de Santiago de Compostela, calle Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
28
|
Fucile G, Garcia C, Carlsson J, Sunnerhagen M, Christendat D. Structural and biochemical investigation of two Arabidopsis shikimate kinases: the heat-inducible isoform is thermostable. Protein Sci 2011; 20:1125-36. [PMID: 21520319 PMCID: PMC3149186 DOI: 10.1002/pro.640] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 04/08/2011] [Accepted: 04/08/2011] [Indexed: 11/12/2022]
Abstract
The expression of plant shikimate kinase (SK; EC 2.7.1.71), an intermediate step in the shikimate pathway to aromatic amino acid biosynthesis, is induced under specific conditions of environmental stress and developmental requirements in an isoform-specific manner. Despite their important physiological role, experimental structures of plant SKs have not been determined and the biochemical nature of plant SK regulation is unknown. The Arabidopsis thaliana genome encodes two SKs, AtSK1 and AtSK2. We demonstrate that AtSK2 is highly unstable and becomes inactivated at 37 °C whereas the heat-induced isoform, AtSK1, is thermostable and fully active under identical conditions at this temperature. We determined the crystal structure of AtSK2, the first SK structure from the plant kingdom, and conducted biophysical characterizations of both AtSK1 and AtSK2 towards understanding this mechanism of thermal regulation. The crystal structure of AtSK2 is generally conserved with bacterial SKs with the addition of a putative regulatory phosphorylation motif forming part of the adenosine triphosphate binding site. The heat-induced isoform, AtSK1, forms a homodimer in solution, the formation of which facilitates its relative thermostability compared to AtSK2. In silico analyses identified AtSK1 site variants that may contribute to AtSK1 stability. Our findings suggest that AtSK1 performs a unique function under heat stress conditions where AtSK2 could become inactivated. We discuss these findings in the context of regulating metabolic flux to competing downstream pathways through SK-mediated control of steady state concentrations of shikimate.
Collapse
Affiliation(s)
- Geoffrey Fucile
- Department of Cell and Systems Biology, University of TorontoOntario, Canada
| | - Christel Garcia
- Department of Cell and Systems Biology, University of TorontoOntario, Canada
| | - Jonas Carlsson
- Department of Physics, Chemistry and Biology, Linköping UniversityLinköping, Sweden
| | - Maria Sunnerhagen
- Department of Physics, Chemistry and Biology, Linköping UniversityLinköping, Sweden
| | - Dinesh Christendat
- Department of Cell and Systems Biology, University of TorontoOntario, Canada
- Center for the Analysis of Genome Evolution and Function, University of TorontoOntario, Canada
| |
Collapse
|
29
|
Reichau S, Jiao W, Walker SR, Hutton RD, Baker EN, Parker EJ. Potent inhibitors of a shikimate pathway enzyme from Mycobacterium tuberculosis: combining mechanism- and modeling-based design. J Biol Chem 2011; 286:16197-207. [PMID: 21454647 PMCID: PMC3093739 DOI: 10.1074/jbc.m110.211649] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/07/2011] [Indexed: 11/06/2022] Open
Abstract
Tuberculosis remains a serious global health threat, with the emergence of multidrug-resistant strains highlighting the urgent need for novel antituberculosis drugs. The enzyme 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAH7PS) catalyzes the first step of the shikimate pathway for the biosynthesis of aromatic compounds. This pathway has been shown to be essential in Mycobacterium tuberculosis, the pathogen responsible for tuberculosis. DAH7PS catalyzes a condensation reaction between P-enolpyruvate and erythrose 4-phosphate to give 3-deoxy-D-arabino-heptulosonate 7-phosphate. The enzyme reaction mechanism is proposed to include a tetrahedral intermediate, which is formed by attack of an active site water on the central carbon of P-enolpyruvate during the course of the reaction. Molecular modeling of this intermediate into the active site reported in this study shows a configurational preference consistent with water attack from the re face of P-enolpyruvate. Based on this model, we designed and synthesized an inhibitor of DAH7PS that mimics this reaction intermediate. Both enantiomers of this intermediate mimic were potent inhibitors of M. tuberculosis DAH7PS, with inhibitory constants in the nanomolar range. The crystal structure of the DAH7PS-inhibitor complex was solved to 2.35 Å. Both the position of the inhibitor and the conformational changes of active site residues observed in this structure correspond closely to the predictions from the intermediate modeling. This structure also identifies a water molecule that is located in the appropriate position to attack the re face of P-enolpyruvate during the course of the reaction, allowing the catalytic mechanism for this enzyme to be clearly defined.
Collapse
Affiliation(s)
- Sebastian Reichau
- From the Biomolecular Interaction Centre and Department of Chemistry, University of Canterbury, Christchurch 8140 and
| | - Wanting Jiao
- From the Biomolecular Interaction Centre and Department of Chemistry, University of Canterbury, Christchurch 8140 and
| | - Scott R. Walker
- From the Biomolecular Interaction Centre and Department of Chemistry, University of Canterbury, Christchurch 8140 and
| | - Richard D. Hutton
- From the Biomolecular Interaction Centre and Department of Chemistry, University of Canterbury, Christchurch 8140 and
| | - Edward N. Baker
- the Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Emily J. Parker
- From the Biomolecular Interaction Centre and Department of Chemistry, University of Canterbury, Christchurch 8140 and
| |
Collapse
|
30
|
Webby CJ, Jiao W, Hutton RD, Blackmore NJ, Baker HM, Baker EN, Jameson GB, Parker EJ. Synergistic allostery, a sophisticated regulatory network for the control of aromatic amino acid biosynthesis in Mycobacterium tuberculosis. J Biol Chem 2010; 285:30567-76. [PMID: 20667835 DOI: 10.1074/jbc.m110.111856] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The shikimate pathway, responsible for aromatic amino acid biosynthesis, is required for the growth of Mycobacterium tuberculosis and is a potential drug target. The first reaction is catalyzed by 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS). Feedback regulation of DAH7PS activity by aromatic amino acids controls shikimate pathway flux. Whereas Mycobacterium tuberculosis DAH7PS (MtuDAH7PS) is not inhibited by the addition of Phe, Tyr, or Trp alone, combinations cause significant loss of enzyme activity. In the presence of 200 μm Phe, only 2.4 μm Trp is required to reduce enzymic activity to 50%. Reaction kinetics were analyzed in the presence of inhibitory concentrations of Trp/Phe or Trp/Tyr. In the absence of inhibitors, the enzyme follows Michaelis-Menten kinetics with respect to substrate erythrose 4-phosphate (E4P), whereas the addition of inhibitor combinations caused significant homotropic cooperativity with respect to E4P, with Hill coefficients of 3.3 (Trp/Phe) and 2.8 (Trp/Tyr). Structures of MtuDAH7PS/Trp/Phe, MtuDAH7PS/Trp, and MtuDAH7PS/Phe complexes were determined. The MtuDAH7PS/Trp/Phe homotetramer binds four Trp and six Phe molecules. Binding sites for both aromatic amino acids are formed by accessory elements to the core DAH7PS (β/α)(8) barrel that are unique to the type II DAH7PS family and contribute to the tight dimer and tetramer interfaces. A comparison of the liganded and unliganded MtuDAH7PS structures reveals changes in the interface areas associated with inhibitor binding and a small displacement of the E4P binding loop. These studies uncover a previously unrecognized mode of control for the branched pathways of aromatic amino acid biosynthesis involving synergistic inhibition by specific pairs of pathway end products.
Collapse
Affiliation(s)
- Celia J Webby
- From the Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Prazeres VFV, Castedo L, Lamb H, Hawkins AR, González-Bello C. 2-substituted-3-dehydroquinic acids as potent competitive inhibitors of type II dehydroquinase. ChemMedChem 2010; 4:1980-4. [PMID: 19856378 DOI: 10.1002/cmdc.200900319] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Verónica F V Prazeres
- Laboratorio de Química Orgánica (CSIC) y Departamento de Química Orgánica, Facultad de Química, Universidad de Santiago de Compostela, Avenida de las Ciencias s/n, 15782 Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
32
|
Prazeres VFV, Tizón L, Otero JM, Guardado-Calvo P, Llamas-Saiz AL, van Raaij MJ, Castedo L, Lamb H, Hawkins AR, González-Bello C. Synthesis and Biological Evaluation of New Nanomolar Competitive Inhibitors of Helicobacter pylori Type II Dehydroquinase. Structural Details of the Role of the Aromatic Moieties with Essential Residues. J Med Chem 2009; 53:191-200. [DOI: 10.1021/jm9010466] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Verónica F. V. Prazeres
- Laboratorio de Química Orgánica (CSIC) y Departamento de Química Orgánica, Facultad de Química, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Lorena Tizón
- Laboratorio de Química Orgánica (CSIC) y Departamento de Química Orgánica, Facultad de Química, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José M. Otero
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pablo Guardado-Calvo
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Antonio L. Llamas-Saiz
- Unidad de Rayos X, Edificio CACTUS, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mark J. van Raaij
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), Parc Científic de Barcelona, Baldiri Reixach 10-12, E-08028 Barcelona, Spain
| | - Luis Castedo
- Laboratorio de Química Orgánica (CSIC) y Departamento de Química Orgánica, Facultad de Química, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Heather Lamb
- Institute of Cell and Molecular Biosciences, Medical School, University, Newcastle upon Tyne, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Alastair R. Hawkins
- Institute of Cell and Molecular Biosciences, Medical School, University, Newcastle upon Tyne, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Concepción González-Bello
- Laboratorio de Química Orgánica (CSIC) y Departamento de Química Orgánica, Facultad de Química, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
33
|
Henriquez FL, McBride J, Campbell SJ, Ramos T, Ingram PR, Roberts F, Tinney S, Roberts CW. Acanthamoeba alternative oxidase genes: Identification, characterisation and potential as antimicrobial targets. Int J Parasitol 2009; 39:1417-24. [DOI: 10.1016/j.ijpara.2009.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 04/15/2009] [Accepted: 04/28/2009] [Indexed: 11/24/2022]
|
34
|
Abstract
A plastid-like organelle, the apicoplast, is essential to the majority of medically and veterinary important apicomplexan protozoa including Toxoplasma gondii and Plasmodium. The apicoplast contains multiple copies of a 35 kb genome, the replication of which is dependent upon nuclear-encoded proteins that are imported into the organelle. In P. falciparum an unusual multi-functional gene, pfprex, was previously identified and inferred to encode a protein with DNA primase, DNA helicase and DNA polymerase activities. Herein, we report the presence of a prex orthologue in T. gondii. The protein is predicted to have a bi-partite apicoplast targeting sequence similar to that demonstrated on the PfPREX polypeptide, capable of delivering marker proteins to the apicoplast. Unlike the P. falciparum gene that is devoid of introns, the T. gondii prex gene carries 19 introns, which are spliced to produce a contiguous mRNA. Bacterial expression of the polymerase domain reveals the protein to be active. Consistent with the reported absence of a plastid in Cryptosporidium species, in silico analysis of their genomes failed to demonstrate an orthologue of prex. These studies indicate that prex is conserved across the plastid-bearing apicomplexans and may play an important role in the replication of the plastid genome.
Collapse
|
35
|
Whitaker JW, Letunic I, McConkey GA, Westhead DR. metaTIGER: a metabolic evolution resource. Nucleic Acids Res 2008; 37:D531-8. [PMID: 18953037 PMCID: PMC2686446 DOI: 10.1093/nar/gkn826] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Metabolic networks are a subject that has received much attention, but existing web resources do not include extensive phylogenetic information. Phylogenomic approaches (phylogenetics on a genomic scale) have been shown to be effective in the study of evolution and processes like horizontal gene transfer (HGT). To address the lack of phylogenomic information relating to eukaryotic metabolism, metaTIGER (www.bioinformatics.leeds.ac.uk/metatiger) has been created, using genomic information from 121 eukaryotes and 404 prokaryotes and sensitive sequence search techniques to predict the presence of metabolic enzymes. These enzyme sequences were used to create a comprehensive database of 2257 maximum-likelihood phylogenetic trees, some containing over 500 organisms. The trees can be viewed using iTOL, an advanced interactive tree viewer, enabling straightforward interpretation of large trees. Complex high-throughput tree analysis is also available through user-defined queries, allowing the rapid identification of trees of interest, e.g. containing putative HGT events. metaTIGER also provides novel and easy-to-use facilities for viewing and comparing the metabolic networks in different organisms via highlighted pathway images and tables. metaTIGER is demonstrated through evolutionary analysis of Plasmodium, including identification of genes horizontally transferred from chlamydia.
Collapse
Affiliation(s)
- John W Whitaker
- Institute of Molecular and Cellular Biology, Garstang Building, University of Leeds, Leeds, W. Yorks, LS2 9JT, UK
| | | | | | | |
Collapse
|
36
|
Sánchez-Sixto C, Prazeres VF, Castedo L, Suh S, Lamb H, Hawkins A, Cañada F, Jiménez-Barbero J, González-Bello C. Competitive Inhibitors ofHelicobacter pylori Type II Dehydroquinase: Synthesis, Biological Evaluation, and NMR Studies. ChemMedChem 2008; 3:756-70. [DOI: 10.1002/cmdc.200700307] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Ehammer H, Rauch G, Prem A, Kappes B, Macheroux P. Conservation of NADPH utilization by chorismate synthase and its implications for the evolution of the shikimate pathway. Mol Microbiol 2007; 65:1249-57. [PMID: 17662045 DOI: 10.1111/j.1365-2958.2007.05861.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The shikimate pathway is essential for the biosynthesis of aromatic compounds. The seventh and last step is catalysed by chorismate synthase, which has an absolute requirement for reduced FMN in its active site. There are two classes of this enzyme, which are distinguished according to the origin of the reduced cofactor. Monofunctional chorismate synthases sequester it from the cellular environment whereas bifunctional enzymes can generate reduced FMN at the expense of NADPH. These bifunctional enzymes are found in fungi and the ciliated protozoan Euglena gracilis while all bacterial and plant enzymes are monofunctional. In this study, we introduce an in vivo screen, which is based on a chorismate synthase-deficient Saccharomyces cerevisiae strain, allowing the classification of hitherto uncharacterized chorismate synthases. This analysis revealed that bifunctionality is present in the enzymes of protozoan species. In contrast, all bacterial and plant enzymes tested are monofunctional. In addition, we demonstrate that a monofunctional chorismate synthase confers prototrophy in conjunction with a NADPH : FMN oxidoreductase indicating that bifunctionality is required due to the lack of free reduced FMN in fungal and possibly protozoan species. Interestingly, the distribution of bifunctional chorismate synthase concurs with the presence of a pentafunctional enzyme complex.
Collapse
Affiliation(s)
- Heidemarie Ehammer
- Graz University of Technology, Institute of Biochemistry, A-8010 Graz, Austria
| | | | | | | | | |
Collapse
|
38
|
Prazeres VFV, Sánchez-Sixto C, Castedo L, Lamb H, Hawkins AR, Riboldi-Tunnicliffe A, Coggins JR, Lapthorn AJ, González-Bello C. Nanomolar Competitive Inhibitors ofMycobacterium tuberculosis andStreptomyces coelicolor Type II Dehydroquinase. ChemMedChem 2007; 2:194-207. [PMID: 17245805 DOI: 10.1002/cmdc.200600208] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Isomeric nitrophenyl and heterocyclic analogues of the known inhibitor (1S,3R,4R)-1,3,4-trihydroxy-5-cyclohexene-1-carboxylic acid have been synthesized and tested as inhibitors of M. tuberculosis and S. coelicolor type II dehydroquinase, the third enzyme of the shikimic acid pathway. The target compounds were synthesized by a combination of Suzuki and Sonogashira cross-coupling and copper(I)-catalyzed 2,3-dipolar cycloaddition reactions from a common vinyl triflate intermediate. These studies showed that a para-nitrophenyl derivative is almost 20-fold more potent as a competitive inhibitor against the S. coelicolor enzyme than that of M. tuberculosis. The opposite results were obtained with the meta isomer. Five of the bicyclic analogues reported herein proved to be potent competitive inhibitors of S. coelicolor dehydroquinase, with inhibition constants in the low nanomolar range (4-30 nM). These derivatives are also competitive inhibitors of the M. tuberculosis enzyme, but with lower affinities. The most potent inhibitor against the S. coelicolor enzyme, a 6-benzothiophenyl derivative, has a K(i) value of 4 nM-over 2000-fold more potent than the best previously known inhibitor, (1R,4R,5R)-1,5-dihydroxy-4-(2-nitrophenyl)cyclohex-2-en-1-carboxylic acid (8 microM), making it the most potent known inhibitor against any dehydroquinase. The binding modes of the analogues in the active site of the S. coelicolor enzyme (GOLD 3.0.1), suggest a key pi-stacking interaction between the aromatic rings and Tyr 28, a residue that has been identified as essential for enzyme activity.
Collapse
Affiliation(s)
- Verónica F V Prazeres
- Laboratorio de Química Orgánica, CSIC and Departamento de Química Orgánica, Facultad de Química, Universidad de Santiago de Compostela, Avenida de las Ciencias s/n, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Toscano MD, Payne RJ, Chiba A, Kerbarh O, Abell C. Nanomolar Inhibition of Type II Dehydroquinase Based on the Enolate Reaction Mechanism. ChemMedChem 2007; 2:101-12. [PMID: 17068841 DOI: 10.1002/cmdc.200600194] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We describe the rational design of a novel, highly potent inhibitor of type II dehydroquinase, the dicarboxylate 6. The incorporation of a carboxylate at the 3-position mimics the putative enolate intermediate in the reaction mechanism, and allows a potential electrostatic binding interaction with the arginine on the active site flap. This results in a 1000-fold increase in potency, making the dicarboxylate 6 the most potent inhibitor of type II dehydroquinase reported to date, with a high ligand efficiency of -0.68 kcal mol(-1) per nonhydrogen atom. The systematic dissection of 6 in compounds 7-12, all of which show a drop in potency, confirm the synergistic importance of the two carboxylates, the C3 and C4 hydroxyl groups, and the anhydroquinate ring structure for the potency of 6.
Collapse
Affiliation(s)
- Miguel D Toscano
- Department of Chemistry, University of Cambridge, University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | | | | | |
Collapse
|
40
|
González-Bello C, Castedo L. Progress in type II dehydroquinase inhibitors: From concept to practice. Med Res Rev 2007; 27:177-208. [PMID: 17004270 DOI: 10.1002/med.20076] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Scientists are concerned by an ever-increasing rise in bacterial resistance to antibiotics, particularly in diseases such as malaria, toxoplasmosis, tuberculosis, and pneumonia, where the currently used therapies become progressively less efficient. It is therefore necessary to develop new, safe, and more efficient antibiotics. Recently, the existence of the shikimic acid pathway has been demonstrated in certain parasites such as the malaria parasite. These types of parasites cause more than a million casualties per year, and their effects are particularly strong in people with a compromised immune system such as HIV patients. In such cases it is possible that inhibitors of this pathway could be active against a large variety of microorganisms responsible for the more opportunistic infections in HIV patients. Interest in this pathway has resulted in the development of a wide variety of inhibitors for the enzymes involved. This review covers recent progress made in the development of inhibitors of the third enzyme of this pathway, i.e., the type II dehydroquinase. The X-ray crystal structures of several dehydroquinases (Streptomyces coelicolor, Mycobacterium tuberculosis, etc.) with an inhibitor bound in the active site have recently been solved. These complexes identified a number of key interactions involved in inhibitor binding and have shed light on several aspects of the catalytic mechanism. These crystal structures have also proven to be a useful tool for the design of potent and selective enzyme inhibitors, a feature that will also be discussed.
Collapse
Affiliation(s)
- Concepción González-Bello
- Departamento de Química Orgánica, Facultad de Química, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | | |
Collapse
|
41
|
Richards TA, Dacks JB, Campbell SA, Blanchard JL, Foster PG, McLeod R, Roberts CW. Evolutionary origins of the eukaryotic shikimate pathway: gene fusions, horizontal gene transfer, and endosymbiotic replacements. EUKARYOTIC CELL 2006; 5:1517-31. [PMID: 16963634 PMCID: PMC1563581 DOI: 10.1128/ec.00106-06] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Currently the shikimate pathway is reported as a metabolic feature of prokaryotes, ascomycete fungi, apicomplexans, and plants. The plant shikimate pathway enzymes have similarities to prokaryote homologues and are largely active in chloroplasts, suggesting ancestry from the plastid progenitor genome. Toxoplasma gondii, which also possesses an alga-derived plastid organelle, encodes a shikimate pathway with similarities to ascomycete genes, including a five-enzyme pentafunctional arom. These data suggests that the shikimate pathway and the pentafunctional arom either had an ancient origin in the eukaryotes or was conveyed by eukaryote-to-eukaryote horizontal gene transfer (HGT). We expand sampling and analyses of the shikimate pathway genes to include the oomycetes, ciliates, diatoms, basidiomycetes, zygomycetes, and the green and red algae. Sequencing of cDNA from Tetrahymena thermophila confirmed the presence of a pentafused arom, as in fungi and T. gondii. Phylogenies and taxon distribution suggest that the arom gene fusion event may be an ancient eukaryotic innovation. Conversely, the Plantae lineage (represented here by both Viridaeplantae and the red algae) acquired different prokaryotic genes for all seven steps of the shikimate pathway. Two of the phylogenies suggest a derivation of the Plantae genes from the cyanobacterial plastid progenitor genome, but if the full Plantae pathway was originally of cyanobacterial origin, then the five other shikimate pathway genes were obtained from a minimum of two other eubacterial genomes. Thus, the phylogenies demonstrate both separate HGTs and shared derived HGTs within the Plantae clade either by primary HGT transfer or secondarily via the plastid progenitor genome. The shared derived characters support the holophyly of the Plantae lineage and a single ancestral primary plastid endosymbiosis. Our analyses also pinpoints a minimum of 50 gene/domain loss events, demonstrating that loss and replacement events have been an important process in eukaryote genome evolution.
Collapse
Affiliation(s)
- Thomas A Richards
- Deparment of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
42
|
Prazeres VFV, Sánchez-Sixto C, Castedo L, Canales A, Cañada FJ, Jiménez-Barbero J, Lamb H, Hawkins AR, González-Bello C. Determination of the Bound Conformation of a Competitive Nanomolar Inhibitor ofMycobacterium tuberculosis Type II Dehydroquinase by NMR Spectroscopy. ChemMedChem 2006; 1:990-6. [PMID: 16952136 DOI: 10.1002/cmdc.200600100] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The synergy between tuberculosis and the AIDS epidemic, along with the surge of multidrug-resistant isolates of M. tuberculosis, has reaffirmed tuberculosis as a primary public health threat. It is therefore necessary to discover new, safe, and more efficient antibiotics against this disease. On the other hand, mapping the dynamic interactions of inhibitors of a target protein can provide information for the development of more potent inhibitors and consequently, more potent potential drugs. In this context, the conformational binding of our previously reported nanomolar inhibitor of M. tuberculosis type II dehydroquinase, the 3-nitrophenyl derivative 1, was studied using saturation transfer difference (STD) and transferred NOESY experiments. These studies have shown that in the bound state, one conformation of those present in solution of the competitive nanomolar inhibitor 3-nitrophenyl derivative 1 is selected. In the bound conformation, the aromatic ring is slightly shifted from coplanarity, with the double bond and the nitro group of 1 oriented towards the double bond side.
Collapse
Affiliation(s)
- Verónica F V Prazeres
- Laboratorio de Química Orgánica, CSIC and Departamento de Química Orgánica, Facultad de Química, Universidad de Santiago de Compostela, Avenida de las Ciencias s/n, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hartmann MD, Bourenkov GP, Oberschall A, Strizhov N, Bartunik HD. Mechanism of phosphoryl transfer catalyzed by shikimate kinase from Mycobacterium tuberculosis. J Mol Biol 2006; 364:411-23. [PMID: 17020768 DOI: 10.1016/j.jmb.2006.09.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Revised: 08/31/2006] [Accepted: 09/01/2006] [Indexed: 10/24/2022]
Abstract
The structural mechanism of the catalytic functioning of shikimate kinase from Mycobacterium tuberculosis was investigated on the basis of a series of high-resolution crystal structures corresponding to individual steps in the enzymatic reaction. The catalytic turnover of shikimate and ATP into the products shikimate-3-phosphate and ADP, followed by release of ADP, was studied in the crystalline environment. Based on a comparison of the structural states before initiation of the reaction and immediately after the catalytic step, we derived a structural model of the transition state that suggests that phosphoryl transfer proceeds with inversion by an in-line associative mechanism. The random sequential binding of shikimate and nucleotides is associated with domain movements. We identified a synergic mechanism by which binding of the first substrate may enhance the affinity for the second substrate.
Collapse
Affiliation(s)
- Marcus D Hartmann
- Max Planck Unit for Structural Molecular Biology, MPG-ASMB c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany
| | | | | | | | | |
Collapse
|
44
|
Waller RF, Slamovits CH, Keeling PJ. Lateral gene transfer of a multigene region from cyanobacteria to dinoflagellates resulting in a novel plastid-targeted fusion protein. Mol Biol Evol 2006; 23:1437-43. [PMID: 16675503 DOI: 10.1093/molbev/msl008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The number of cases of lateral or horizontal gene transfer in eukaryotic genomes is growing steadily, but in most cases, neither the donor nor the recipient is known, and the biological implications of the transfer are not clear. We describe a relatively well-defined case of transfer from a cyanobacterial source to an ancestor of dinoflagellates that diverged before Oxyrrhis but after Perkinsus. This case is also exceptional in that 2 adjacent genes, a paralogue of the shikimate biosynthetic enzyme AroB and an O-methyltransferase (OMT) were transferred together and formed a fusion protein that was subsequently targeted to the dinoflagellate plastid. Moreover, this fusion subsequently reverted to 2 individual genes in the genus Karlodinium, but both proteins maintained plastid localization with the OMT moiety acquiring its own plastid-targeting peptide. The presence of shikimate biosynthetic enzymes in the plastid is not unprecedented as this is a plastid-based pathway in many eukaryotes, but this species of OMT has not been associated with the plastid previously. It appears that the OMT activity was drawn into the plastid simply by virtue of its attachment to the AroB paralogue resulting from their cotransfer and once in the plastid performed some essential function so that it remained plastid targeted after it separated from AroB. Gene fusion events are considered rare and likely stable, and such an event has recently been used to argue for a root of the eukaryotic tree. Our data, however, show that exact reversals of fusion events do take place, and hence gene fusion data are difficult to interpret without knowledge of the phylogeny of the organisms--therefore their use as phylogenetic markers must be considered carefully.
Collapse
Affiliation(s)
- Ross F Waller
- Canadian Institute for Advanced Research, Botany Department, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|
45
|
Lakshman DK, Liu C, Mishra PK, Tavantzis S. Characterization of the arom gene in Rhizoctonia solani, and transcription patterns under stable and induced hypovirulence conditions. Curr Genet 2006; 49:166-77. [PMID: 16479402 DOI: 10.1007/s00294-005-0005-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 05/19/2005] [Accepted: 06/11/2005] [Indexed: 10/25/2022]
Abstract
The quinate pathway is induced by quinate in the wild-type virulent Rhizoctonia solani isolate Rhs 1AP but is constitutive in the hypovirulent, M2 dsRNA-containing isolate Rhs 1A1. Constitutive expression of the quinate pathway results in downregulation of the shikimate pathway, which includes the pentafunctional arom gene in Rhs 1A1. The arom gene has 5,323 bp including five introns as opposed to a single intron found in arom in ascomycetes. A 199-bp upstream sequence has a GC box, no TATAA box, but two GTATTAGA repeats. The largest arom transcript is 5,108 nucleotides long, excluding the poly(A) tail. It contains an open reading frame of 4,857 bases, coding for a putative 1,618-residue pentafunctional AROM protein. A Kozak sequence (GCGCCATGG) is present between +127 and +135. The 5'-end of the arom mRNA includes two nucleotides (UA) that are not found in the genomic sequence, and are probably added post-transcriptionally. Size and sequence heterogeneity were observed at both 5'- and 3'-end of the mRNA. Northern blot and suppression subtractive hybridization analyses showed that presence of a low amount of quinate, inducer of the quinate pathway, resulted in increased levels of arom mRNA, consistent with the compensation effect observed in ascomycetes.
Collapse
Affiliation(s)
- Dilip K Lakshman
- Department of Biological Sciences, University of Maine, Orono, ME 04469-5735, USA
| | | | | | | |
Collapse
|
46
|
Webby CJ, Baker HM, Lott JS, Baker EN, Parker EJ. The structure of 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase from Mycobacterium tuberculosis reveals a common catalytic scaffold and ancestry for type I and type II enzymes. J Mol Biol 2005; 354:927-39. [PMID: 16288916 DOI: 10.1016/j.jmb.2005.09.093] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 09/28/2005] [Accepted: 09/29/2005] [Indexed: 11/28/2022]
Abstract
The shikimate pathway, responsible for the biosynthesis of aromatic compounds, is essential for the growth of Mycobacterium tuberculosis and is a potential target for the design of new anti-tuberculosis drugs. The first step of this pathway is catalyzed by 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS). The DAH7PSs have been classified into two apparently unrelated types and, whereas structural data have been obtained for the type I DAH7PSs, no structural information is available for their type II counterparts. The type II DAH7PS from M.tuberculosis has been expressed in Escherichia coli, purified, functionally characterized and crystallized. It is found to be metal ion-dependent and subject to feedback inhibition by phenylalanine, tryptophan, tyrosine and chorismate, with a significant synergistic effect when tryptophan is used in combination with phenylalanine. The crystal structure of M.tuberculosis DAH7PS has been determined by single-wavelength anomalous diffraction and refined at 2.3A in complex with substrate phosphoenolpyruvate and Mn(2+). The structure reveals a tightly associated dimer of (beta/alpha)(8) TIM barrels. The monomer fold, the arrangement of key residues in the active site, and the binding modes of PEP and Mn(2+), all match those of the type I enzymes, and indicate a common ancestry for the type I and type II DAH7PSs, despite their minimal sequence identity. In contrast, the structural elements that decorate the core (beta/alpha)(8) fold differ from those in the type I enzymes, consistent with their different regulatory and oligomeric properties.
Collapse
Affiliation(s)
- Celia J Webby
- Centre of Structural Biology, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | | | | | | | | |
Collapse
|
47
|
Williamson RM, Pietersma AL, Jameson GB, Parker EJ. Stereospecific deuteration of 2-deoxyerythrose 4-phosphate using 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase. Bioorg Med Chem Lett 2005; 15:2339-42. [PMID: 15837321 DOI: 10.1016/j.bmcl.2005.02.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 02/24/2005] [Accepted: 02/28/2005] [Indexed: 11/29/2022]
Abstract
Racemic 2-deoxyerythrose 4-phosphate was synthesized and one enantiomer of this compound was found to be a substrate for Escherichia coli 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase, the first enzyme of the shikimate pathway. When the reaction was carried out in deuterium oxide, an enzyme-catalyzed regio- and stereoselective incorporation of deuterium into the product was observed.
Collapse
Affiliation(s)
- Rachel M Williamson
- Institute of Fundamental Sciences, Massey University, Palmerston North 5301, New Zealand
| | | | | | | |
Collapse
|
48
|
McRobert L, Jiang S, Stead A, McConkey GA. Plasmodium falciparum: interaction of shikimate analogues with antimalarial drugs. Exp Parasitol 2005; 111:178-81. [PMID: 16140296 DOI: 10.1016/j.exppara.2005.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 07/19/2005] [Accepted: 07/20/2005] [Indexed: 10/25/2022]
Abstract
The shikimate pathway for aromatic biosynthesis presents a target for antimalarial drug development as this pathway is absent from animals. This study extends previous work on inhibitors of the shikimate pathway, by examining their interaction with the antimalarial drugs pyrimethamine and atovaquone. Combinations of atovaquone with several shikimate analogues exhibited synergistic effects. These findings highlight potential use of shikimate pathway inhibitors in combination therapy.
Collapse
|
49
|
Sonda S, Sala G, Ghidoni R, Hemphill A, Pieters J. Inhibitory effect of aureobasidin A on Toxoplasma gondii. Antimicrob Agents Chemother 2005; 49:1794-801. [PMID: 15855498 PMCID: PMC1087623 DOI: 10.1128/aac.49.5.1794-1801.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The apicomplexan parasite Toxoplasma gondii is a leading opportunistic pathogen associated with AIDS and congenital birth defects. Due to the need for identifying new parasite-specific treatments, the possibility of targeting sphingolipid biosynthesis in the parasite was investigated. Aureobasidin A, an inhibitor of the enzyme synthesizing the sphingolipid inositol phosphorylceramide, which is present in fungi, plants, and some protozoa but absent in mammalian cells, was found to block in vitro T. gondii replication without affecting host cell metabolism. Aureobasidin A treatment did not induce tachyzoite to bradyzoite stage conversion in T. gondii but resulted in a loss of intracellular structures and vacuolization within the parasite. In addition, aureobasidin A inhibited sphingolipid synthesis in T. gondii. Sphingolipid biosynthetic pathways may therefore be considered targets for the development of anti-T. gondii agents.
Collapse
Affiliation(s)
- Sabrina Sonda
- Department of Biochemistry, Biozentrum, University of Basel, Switzerland.
| | | | | | | | | |
Collapse
|
50
|
Elandalloussi LM, Rodrigues PM, Afonso R, Leite RB, Nunes PA, Cancela ML. Shikimate and folate pathways in the protozoan parasite, Perkinsus olseni. Mol Biochem Parasitol 2005; 142:106-9. [PMID: 15907564 DOI: 10.1016/j.molbiopara.2005.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Revised: 03/15/2005] [Accepted: 03/15/2005] [Indexed: 10/25/2022]
Abstract
We have exploited the experimental accessibility of the protozoan parasite Perkinsus olseni and its similarities to apicomplexan parasites to investigate the influence of specific drugs on its proliferation. For this purpose, shikimate and folate pathways present an attractive target for parasitic therapy given their major differences with mammalian pathways. Glyphosate, a potent inhibitor of the shikimate pathway enzyme EPSP synthase inhibited the in vitro proliferation of P. olseni in a dose-dependent manner and this effect was reversed by addition of chorismate, indicating the presence of a shikimate pathway. However, this effect was not antagonised by p-aminobenzoate or folic acid. Furthermore, antagonism was observed, via pyrimethamine to glyphosate inhibitory effect, suggesting that the shikimate pathway is not essential for the biosynthesis of folate precursors and is therefore crucial for another pathway downstream from chorismate. In addition, sulfadiazine, a well known inhibitor of dihydropteorate synthase, an enzyme of the folate biosynthetic pathway,had no inhibitory effect on P. olseni proliferation. In view of these results, the parasite does not appear to require the folate biosynthesis pathway for its survival and is most likely able to use exogenous folate. Even though pyrimethamine was found to inhibit P. atlanticus growth, this inhibitory effect could not be reversed by co-addition of folic acid. Therefore, we propose that the effect of pyrimethamine observed in this study results from the inhibition of a target other than dihydrofolate reductase. Similarly, proguanil target is likely to be separate from DHFR since only its metabolite cycloguanil has been shown to have inhibitory properties on DHFR.
Collapse
|