1
|
Rodrigues JFV, dos Santos JML, Frota GA, Vieira LDS, Teixeira M, Monteiro MS, Monteiro JP. Expression of transporter genes in anthelmintic resistant isolates of Haemonchus contortus. Genet Mol Biol 2024; 47:e20230350. [PMID: 39158377 PMCID: PMC11331566 DOI: 10.1590/1678-4685-gmb-2023-0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/03/2024] [Indexed: 08/20/2024] Open
Abstract
ATP-binding cassette (ABC) transporters, including P-glycoproteins (PGP), have been implicated in drug resistance in different organisms including Haemonchus contortus. This study confirmed the resistance status of H. contortus isolates selected for ivermectin (IVM) and oxfendazole (OXF) resistances using the fecal egg count reduction test and evaluated the gene expression of seven ABC transporters using RT-qPCR for two biological scenarios: the effect of selection for anthelmintic resistance and the effect of drug exposure on gene expression. Gene expression results showed that selection for IVM resistance led to the significant upregulation of Hco-pgp-9a (1.5-fold), Hco-pgp-11 (3-fold) and Hco-haf-9 (1.5-fold) (p < 0.05). Similarly, selection for OXF resistance led to the significant upregulation of Hco-pgp-9a (3-fold), Hco-pgp-11 (4-fold) and Hco-haf-9 (2-fold) when comparing with the unselected ISE isolate (p < 0.05). Exposure of selected isolates to anthelmintics lead to no significant upregulation of the studied transporter genes. We also observed instances where there was strong intragroup variation regarding samples originating from parasites obtained from different individual hosts pointing that the interactions of the animal host with the tested anthelmintics may also play a role in the expression of the studied nematode genes.
Collapse
Affiliation(s)
| | | | - Gracielle Araújo Frota
- Universidade Estadual Vale do Acaraú (UVA), Programa de Pós-Graduação em Zootecnia, Sobral, CE, Brazil
| | - Luiz da Silva Vieira
- Universidade Estadual Vale do Acaraú (UVA), Programa de Pós-Graduação em Zootecnia, Sobral, CE, Brazil
- Embrapa Caprinos e Ovinos, Sobral, CE, Brazil
| | - Marcel Teixeira
- Centro universitário INTA (UNINTA), Programa de Pós-Graduação em Biotecnologia, Sobral, CE, Brazil
- Universidade Estadual Vale do Acaraú (UVA), Programa de Pós-Graduação em Zootecnia, Sobral, CE, Brazil
- Embrapa Caprinos e Ovinos, Sobral, CE, Brazil
| | - Magaly Sales Monteiro
- Centro universitário INTA (UNINTA), Programa de Pós-Graduação em Biotecnologia, Sobral, CE, Brazil
| | - Jomar Patrício Monteiro
- Centro universitário INTA (UNINTA), Programa de Pós-Graduação em Biotecnologia, Sobral, CE, Brazil
- Universidade Estadual Vale do Acaraú (UVA), Programa de Pós-Graduação em Zootecnia, Sobral, CE, Brazil
- Embrapa Caprinos e Ovinos, Sobral, CE, Brazil
| |
Collapse
|
2
|
Ilík V, Schwarz EM, Nosková E, Pafčo B. Hookworm genomics: dusk or dawn? Trends Parasitol 2024; 40:452-465. [PMID: 38677925 DOI: 10.1016/j.pt.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024]
Abstract
Hookworms are parasites, closely related to the model nematode Caenorhabditis elegans, that are a major economic and health burden worldwide. Primarily three hookworm species (Necator americanus, Ancylostoma duodenale, and Ancylostoma ceylanicum) infect humans. Another 100 hookworm species from 19 genera infect primates, ruminants, and carnivores. Genetic data exist for only seven of these species. Genome sequences are available from only four of these species in two genera, leaving 96 others (particularly those parasitizing wildlife) without any genomic data. The most recent hookworm genomes were published 5 years ago, leaving the field in a dusk. However, assembling genomes from single hookworms may bring a new dawn. Here we summarize advances, challenges, and opportunities for studying these neglected but important parasitic nematodes.
Collapse
Affiliation(s)
- Vladislav Ilík
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Erich M Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Eva Nosková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Barbora Pafčo
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
3
|
Mukherjee A, Kar I, Patra AK. Understanding anthelmintic resistance in livestock using "omics" approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125439-125463. [PMID: 38015400 DOI: 10.1007/s11356-023-31045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Widespread and improper use of various anthelmintics, genetic, and epidemiological factors has resulted in anthelmintic-resistant (AR) helminth populations in livestock. This is currently quite common globally in different livestock animals including sheep, goats, and cattle to gastrointestinal nematode (GIN) infections. Therefore, the mechanisms underlying AR in parasitic worm species have been the subject of ample research to tackle this challenge. Current and emerging technologies in the disciplines of genomics, transcriptomics, metabolomics, and proteomics in livestock species have advanced the understanding of the intricate molecular AR mechanisms in many major parasites. The technologies have improved the identification of possible biomarkers of resistant parasites, the ability to find actual causative genes, regulatory networks, and pathways of parasites governing the AR development including the dynamics of helminth infection and host-parasite infections. In this review, various "omics"-driven technologies including genome scan, candidate gene, quantitative trait loci, transcriptomic, proteomic, and metabolomic approaches have been described to understand AR of parasites of veterinary importance. Also, challenges and future prospects of these "omics" approaches are also discussed.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Department of Animal Biotechnology, West Bengal University of Animal and Fishery Sciences, Nadia, Mohanpur, West Bengal, India
| | - Indrajit Kar
- Department of Avian Sciences, West Bengal University of Animal and Fishery Sciences, Nadia, Mohanpur, West Bengal, India
| | - Amlan Kumar Patra
- American Institute for Goat Research, Langston University, Oklahoma, 73050, USA.
| |
Collapse
|
4
|
Luo X, Wang S, Feng Y, Wang P, Gong G, Guo T, Feng X, Yang X, Li J. Effect of Ivermectin on the Expression of P-Glycoprotein in Third-Stage Larvae of Haemonchus contortus Isolated from China. Animals (Basel) 2023; 13:1841. [PMID: 37889791 PMCID: PMC10251826 DOI: 10.3390/ani13111841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 10/29/2023] Open
Abstract
Haemonchus contortus poses a severe hazard to the healthy development of the sheep industry and threatens the welfare of sheep. Ivermectin is the primary anthelmintic used for the prevention and treatment of H. contortus parasitism. However, the widespread and uncontrolled application of ivermectin has resulted in the development and spread of resistant strains of H. contortus. P-glycoprotein (P-gp) plays important roles in the pharmacology and toxicology of ivermectin, and changes in P-gp expression levels can be used to analyze the resistance of H. contortus to ivermectin. This study aimed to analyze the effects of ivermectin on P-gp expression in H. contortus L3 larvae isolated from China and to evaluate whether changes in P-gp expression levels can be used to analyze resistant H. contortus strains. In the absence of drug treatment, the ivermectin-resistant strains isolated in China showed increased expression of P-gp11 (p < 0.01) compared with sensitive strains from elsewhere, whereas the expressions of P-gp2 and P-gp9.1 were downregulated (p < 0.01). When the same strain was compared before and after drug treatment, obvious differences in expression were observed between the different strains. Ivermectin-induced P-gp expression was found to be very complex among the L3 larvae of different strains. In addition, it was confirmed that using P-gp to determine ivermectin resistance in H. contortus strains from different geographic environments can yield different results.
Collapse
Affiliation(s)
- Xiaoping Luo
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control, Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010030, China; (X.L.); (Y.F.); (P.W.); (G.G.); (T.G.)
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China;
| | - Shuyi Wang
- Inner Mongolia Autonomous Region Comprehensive Center for Disease Control and Prevention, Hohhot 010031, China;
| | - Ying Feng
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control, Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010030, China; (X.L.); (Y.F.); (P.W.); (G.G.); (T.G.)
| | - Penglong Wang
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control, Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010030, China; (X.L.); (Y.F.); (P.W.); (G.G.); (T.G.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Gaowa Gong
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control, Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010030, China; (X.L.); (Y.F.); (P.W.); (G.G.); (T.G.)
| | - Tianlong Guo
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control, Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010030, China; (X.L.); (Y.F.); (P.W.); (G.G.); (T.G.)
| | - Xingang Feng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China;
| | - Xiaoye Yang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Junyan Li
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control, Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010030, China; (X.L.); (Y.F.); (P.W.); (G.G.); (T.G.)
| |
Collapse
|
5
|
Vinueza P, Calispa M, Condolo L, Toalombo P, Geldhof P. Benzimidazole Resistance in Cattle: The First Report of the Presence of F200Y Mutation in Cooperia in Ecuador. Vet Sci 2023; 10:378. [PMID: 37368764 DOI: 10.3390/vetsci10060378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Anthelmintic resistance among GINs in cattle is a worldwide issue. Identifying the early signs of anthelmintic resistance (AR) is necessary to sustainably manage bovine parasitic infections. This study aimed to evaluate the resistance status of bovine parasitic nematodes against FBZ on a farm with a known history of broad-spectrum anthelmintic usage in Ecuador. FBZ efficacy was analyzed using a fecal egg count reduction test (FECR test) and β-tubulin 1 mutation identification in Cooperia spp., the dominant nematode parasite identified before and after treatment. According to the FECR test, the nematode population was susceptible to FBZ. After amplifying and cloning the β-tubulin 1 of Cooperia spp., an F200Y mutation was found in 43% of the pooled larva coproculture after treatment. This study reports, for the first time, the presence of F200Y resistance-conferring mutation in Cooperia spp. in Ecuador. Although the nematode population was phenotypically susceptible to FBZ, the presence of F200Y suggests the existence of resistance in the early stages. Our findings highlight the need to implement alternative control strategies for parasitic infections besides broad-spectrum anthelmintics.
Collapse
Affiliation(s)
- Pamela Vinueza
- Escuela Superior Politécnica de Chimborazo, Facultad de Ciencias Pecuarias, Carrera de Medicina Veterinaria, Riobamba 060106, Ecuador
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133-B, 9820 Merelbeke, Belgium
| | - Marlon Calispa
- UCLouvain, Earth al Life Institute ELIE, ELI Croix du Sud 2L/L7.05.05, 1348 Louvain-la-Neuve, Belgium
| | - Luis Condolo
- Escuela Superior Politécnica de Chimborazo, Facultad de Ciencias Pecuarias, Carrera de Medicina Veterinaria, Riobamba 060106, Ecuador
| | - Paula Toalombo
- Escuela Superior Politécnica de Chimborazo, Facultad de Ciencias Pecuarias, Carrera de Medicina Veterinaria, Riobamba 060106, Ecuador
| | - Peter Geldhof
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133-B, 9820 Merelbeke, Belgium
| |
Collapse
|
6
|
Kipp K, Cummings DB, Goehl D, Wade HH, Davidson JM, Renter D, Verocai GG, Rash L. Evaluation of a refugia-based strategy for gastrointestinal nematodes on weight gain and fecal egg counts in naturally infected stocker calves administered combination anthelmintics. Vet Parasitol 2023; 319:109955. [PMID: 37201354 DOI: 10.1016/j.vetpar.2023.109955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/20/2023]
Abstract
Refugia-based strategies associated with a combination of anthelmintic drugs belonging to different drug classes are becoming more common management practices to mitigate anthelmintic resistance (AR) in gastrointestinal nematodes (GIN) in small ruminants. Though refugia-based strategies have been largely demonstrated in small ruminants, cattle veterinarians and producers are considering such management strategies in grazing cattle production systems. Implementing refugia-based strategies lowers the amount of anthelmintics used in the herd and therefore slows the progression of AR by allowing a proportion of worms to escape drug selection pressure. The objective of this study was to observe the effect of a refugia-based strategy on body weight (BW), average daily gain (ADG) and fecal egg counts (FEC) of trichostongyle-type nematodes in naturally infected beef calves over a 131-day grazing season when compared with a whole herd treatment strategy, using the same combination of drugs. Stocker calves (n = 160) were ranked by body weight within sex then allocated to 16 paddocks, which were randomly assigned to one of two treatment groups. All calves in Group 1 (n = 80) were administered treatment, while in Group 2 (n = 80) the steer with the highest FEC in eggs per gram (EPG) within the paddock was left untreated. Treated calves received an extended release injectable 5 % eprinomectin (LongRange®, Boehringer Ingelheim Animal Health USA Inc.; 1 mL/50 kg of BW) and a 22.5 % oxfendazole oral suspension (Synanthic®, Boehringer Ingelheim Animal Health USA Inc.; 1 mL/50 kg of BW). Fecal egg counts and BW were recorded on days (D) -35, 0, 21, 131, and 148 to calculate the average fecal egg count reduction (FECR) and ADG for both groups. Linear mixed models, with paddock as the experimental unit, were used for analyses. The EPG differed on D21 (p < 0.01) and D131 (p = 0.057) with Group 2 having a higher average FEC (15.2 EPG D21; 57 EPG D131) compared with Group 1 (0.4 EPG D21; 37.25 EPG D131). However, there was no significant difference in average BW or ADG between treatment groups throughout the study. Results suggest refugia-based strategies could be implemented without significant negative impacts on average BW and ADG across other calves in the herd.
Collapse
Affiliation(s)
- Kaylee Kipp
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Daniel B Cummings
- Boehringer Ingelheim Animal Health USA Inc., 3239 Satellite Blvd., Duluth, GA 30096, USA
| | - Dan Goehl
- Professional Beef Services, LLC, Canton, MO 63435, USA
| | - H H Wade
- Boehringer Ingelheim Animal Health USA Inc., 3239 Satellite Blvd., Duluth, GA 30096, USA
| | - John M Davidson
- Boehringer Ingelheim Animal Health USA Inc., 3239 Satellite Blvd., Duluth, GA 30096, USA
| | - David Renter
- Center for Outcomes Research and Epidemiology, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Guilherme G Verocai
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Lea Rash
- Professional Beef Services, LLC, Canton, MO 63435, USA
| |
Collapse
|
7
|
Santana DAD, Machado MO, de Azevedo BZ, Weber SH, Sotomaior CS, Ollhoff RD. Influence of probiotic supplementation on parasitological parameters in lambs. Vet Parasitol 2023; 318:109934. [PMID: 37087892 DOI: 10.1016/j.vetpar.2023.109934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/15/2023] [Accepted: 04/06/2023] [Indexed: 04/25/2023]
Abstract
The control of parasitosis is based on the use of anthelmintics. However, its long-term and indiscriminate use can select populations of resistant nematodes. New alternatives such as probiotics are being studied to solve this problem. This study aimed to investigate the effects of an oral probiotic containing six different bacterial strains and the yeast Saccharomyces cerevisiae on the blood biochemistry, parasitological, and histological parameters of naturally infected lambs. Forty-two weaned Texel or Ile de France crossbred lambs aged 86.9 ± 8.0 days and weighing 27.4 ± 3.7 kg were randomly allocated into three groups (n = 14 lambs). The control group (CG) was fed a basal diet without probiotic supplementation. The treatment group 1 g (T1G) was fed a basal diet with commercial probiotic supplementation at a dose of 1 g/lamb/day. The treatment group 5 g (T5G) was fed a basal diet with commercial probiotic supplementation at a dose of 5 g/lamb/day. The experimental period was 84 days, where the groups undergo mild natural infection. Every two weeks the hematocrit, total protein, albumin, globulin, fibrinogen, plasma protein, fecal egg count (FEC), and fecal consistency score were evaluated. Twenty lambs were slaughtered for histological evaluation of the rumen and abomasal wall and for counting abomasal nematodes. The area, length, and number of eggs from the recovered Haemonchus contortus female uteri were measured. Data were analyzed using analysis of variance (ANOVA) and Tukey's test (p ≤ 0.05). The area and length of Haemonchus contortus females from T1G were smaller (p < 0.01) than those of CG and T5G. The number of eggs from the H. contortus female uterus was lower (p < 0.01) in T1G and T5G. Evaluating the incidence of diarrhea, the T1G and T5G groups had a higher prevalence with a 35% and 39% score of zero, respectively (p < 0.05), while the CG group had 22%. All other evaluated parameters showed no significant differences (p > 0.05) between the groups. The probiotic had a beneficial effect on the gastrointestinal health of the weaned lambs through a decrease of the area, length, and the number of eggs of female H. contortus and an improvement in fecal consistency.
Collapse
Affiliation(s)
| | | | | | - Saulo Henrique Weber
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | | | - Rüdiger Daniel Ollhoff
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil.
| |
Collapse
|
8
|
Thorn CS, Maness RW, Hulke JM, Delmore KE, Criscione CD. Population genomics of helminth parasites. J Helminthol 2023; 97:e29. [PMID: 36927601 DOI: 10.1017/s0022149x23000123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Next generation sequencing technologies have facilitated a shift from a few targeted loci in population genetic studies to whole genome approaches. Here, we review the types of questions and inferences regarding the population biology and evolution of parasitic helminths being addressed within the field of population genomics. Topics include parabiome, hybridization, population structure, loci under selection and linkage mapping. We highlight various advances, and note the current trends in the field, particularly a focus on human-related parasites despite the inherent biodiversity of helminth species. We conclude by advocating for a broader application of population genomics to reflect the taxonomic and life history breadth displayed by helminth parasites. As such, our basic knowledge about helminth population biology and evolution would be enhanced while the diversity of helminths in itself would facilitate population genomic comparative studies to address broader ecological and evolutionary concepts.
Collapse
Affiliation(s)
- C S Thorn
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843, USA
| | - R W Maness
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843, USA
| | - J M Hulke
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843, USA
| | - K E Delmore
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843, USA
| | - C D Criscione
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843, USA
| |
Collapse
|
9
|
Liu Y, Wang X, Luo X, Wang R, Zhai B, Wang P, Li J, Yang X. Transcriptomics and Proteomics of Haemonchus contortus in Response to Ivermectin Treatment. Animals (Basel) 2023; 13:ani13050919. [PMID: 36899776 PMCID: PMC10000067 DOI: 10.3390/ani13050919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
A major problem faced by the agricultural industry is the resistance of Haemonchus contortus to anthelmintic drugs. For a better understanding of the response of H. contortus to IVM and for the screening of drug-resistance-related genes, we used RNA sequencing and isobaric tags for relative and absolute quantification (iTRAQ) technology to detect the transcriptomic and proteomic changes in H. contortus after ivermectin treatment. An integrated analysis of the two omics showed that the differentially expressed genes and proteins were significantly enriched in the pathways of amino acid degradation, the metabolism of xenobiotics by cytochrome P450, the biosynthesis of amino acids, and the tricarboxylic acid cycle. We found that the upregulated UDP-glycosyltransferases (UGT), glutathione S-transferase (GST), cytochrome P450 (CYP), and p-glycoprotein (Pgp) genes play important roles in drug resistance in H. contortus. Our work will help in the understanding of the transcriptome and proteome changes in H. contortus after IVM and will facilitate the discovery of genes related to drug resistance. This information can be further applied to increase the understanding of the response of IVM in relation to H. contortus.
Collapse
Affiliation(s)
- Yang Liu
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaomin Wang
- The Bureau of Agriculture and Animal Husbandry of Kalaqin Banner, Chifeng 024400, China
- Correspondence: (X.W.); (X.Y.)
| | - Xiaoping Luo
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010030, China
| | - Rui Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bintao Zhai
- Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Lanzhou 730050, China
| | - Penglong Wang
- Department of Veterinary Parasitology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Junyan Li
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010030, China
| | - Xiaoye Yang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Correspondence: (X.W.); (X.Y.)
| |
Collapse
|
10
|
Doyle SR, Laing R, Bartley D, Morrison A, Holroyd N, Maitland K, Antonopoulos A, Chaudhry U, Flis I, Howell S, McIntyre J, Gilleard JS, Tait A, Mable B, Kaplan R, Sargison N, Britton C, Berriman M, Devaney E, Cotton JA. Genomic landscape of drug response reveals mediators of anthelmintic resistance. Cell Rep 2022; 41:111522. [PMID: 36261007 PMCID: PMC9597552 DOI: 10.1016/j.celrep.2022.111522] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/11/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
Like other pathogens, parasitic helminths can rapidly evolve resistance to drug treatment. Understanding the genetic basis of anthelmintic drug resistance in parasitic nematodes is key to tracking its spread and improving the efficacy and sustainability of parasite control. Here, we use an in vivo genetic cross between drug-susceptible and multi-drug-resistant strains of Haemonchus contortus in a natural host-parasite system to simultaneously map resistance loci for the three major classes of anthelmintics. This approach identifies new alleles for resistance to benzimidazoles and levamisole and implicates the transcription factor cky-1 in ivermectin resistance. This gene is within a locus under selection in ivermectin-resistant populations worldwide; expression analyses and functional validation using knockdown experiments support that cky-1 is associated with ivermectin survival. Our work demonstrates the feasibility of high-resolution forward genetics in a parasitic nematode and identifies variants for the development of molecular diagnostics to combat drug resistance in the field.
Collapse
Affiliation(s)
- Stephen R Doyle
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK.
| | - Roz Laing
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| | - David Bartley
- Moredun Research Institute, Penicuik, Midlothian EH26 0PZ, UK
| | - Alison Morrison
- Moredun Research Institute, Penicuik, Midlothian EH26 0PZ, UK
| | - Nancy Holroyd
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Kirsty Maitland
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Alistair Antonopoulos
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Umer Chaudhry
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Ilona Flis
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Sue Howell
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Jennifer McIntyre
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - John S Gilleard
- Department of Comparative Biology and Experimental Medicine, Host-Parasite Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Calgary T2N 1N4, Canada
| | - Andy Tait
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Barbara Mable
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Ray Kaplan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Neil Sargison
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Collette Britton
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | | | - Eileen Devaney
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - James A Cotton
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| |
Collapse
|
11
|
Wit J, Workentine ML, Redman E, Laing R, Stevens L, Cotton JA, Chaudhry U, Ali Q, Andersen EC, Yeaman S, Wasmuth JD, Gilleard JS. Genomic signatures of selection associated with benzimidazole drug treatments in Haemonchus contortus field populations. Int J Parasitol 2022; 52:677-689. [PMID: 36113620 DOI: 10.1016/j.ijpara.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022]
Abstract
Genome-wide methods offer a powerful approach to detect signatures of drug selection. However, limited availability of suitable reference genomes and the difficulty of obtaining field populations with well-defined, distinct drug treatment histories mean there is little information on the signatures of selection in parasitic nematodes and on how best to detect them. This study addresses these knowledge gaps by using field populations of Haemonchus contortus with well-defined benzimidazole treatment histories, leveraging a recently completed chromosomal-scale reference genome assembly. We generated a panel of 49,393 genomic markers to genotype 20 individual adult worms from each of four H. contortus populations: two from closed sheep flocks with an approximate 20 year history of frequent benzimidazole treatment, and two populations with a history of little or no treatment. Sampling occurred in the same geographical region to limit genetic differentiation and maximise the detection sensitivity. A clear signature of selection was detected on chromosome I, centred on the isotype-1 β-tubulin gene. Two additional, but weaker, signatures of selection were detected; one near the middle of chromosome I spanning 3.75 Mbp and 259 annotated genes, and one on chromosome II spanning a region of 3.3 Mbp and 206 annotated genes, including the isotype-2 β-tubulin locus. We also assessed how sensitivity was impacted by sequencing depth, worm number, and pooled versus individual worm sequence data. This study provides the first known direct genome-wide evidence for any parasitic nematode, that the isotype-1 β-tubulin gene is quantitatively the single most important benzimidazole resistance locus. It also identified two additional genomic regions that likely contain benzimidazole resistance loci of secondary importance. This study provides an experimental framework to maximise the power of genome-wide approaches to detect signatures of selection driven by anthelmintic drug treatments in field populations of parasitic nematodes.
Collapse
Affiliation(s)
- Janneke Wit
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada; Host-Parasite Interactions (HPI) Program, University of Calgary, Calgary, Alberta, Canada
| | | | - Elizabeth Redman
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Roz Laing
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, UK
| | - Lewis Stevens
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | - James A Cotton
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Umer Chaudhry
- University of Edinburgh, Roslin Institute, Easter Bush Veterinary Centre, Roslin, Midlothian, UK
| | - Qasim Ali
- Department of Parasitology FVAS, University of Agriculture, D.I. Khan, Pakistan
| | - Erik C Andersen
- Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Samuel Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - James D Wasmuth
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada; Host-Parasite Interactions (HPI) Program, University of Calgary, Calgary, Alberta, Canada
| | - John S Gilleard
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada; Host-Parasite Interactions (HPI) Program, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
12
|
Kovaļčuka L, Keidāne D, Kļaviņa A, Grasberga MB, Vekšins A. Most common inappropriate drug usage factors in anthelmintic treatment on sheep farms in Latvia. Vet World 2022; 15:244-251. [PMID: 35400951 PMCID: PMC8980379 DOI: 10.14202/vetworld.2022.244-251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/07/2022] [Indexed: 01/20/2023] Open
Abstract
Background and Aim There is little understanding about antiparasitic drug prescription trends and implementation to reduce possible drug overuse or misuse worldwide. This study aimed to review sheep parasite control strategies and antiparasitic drug use habits in Latvia. To the best of the author's knowledge, this is the first study in the world that describes how antiparasitic drugs are used and what are the most common drug usage errors in a sheep farm. Materials and Methods A semi-structured questionnaire was designed to collect relevant information from face-to-face interviews to assess 22 sheep farmers' knowledge and management procedures in farms. We collected information about animal feeding, herding, parasite diagnostics, and antiparasitic drug usage. The questionnaire summary included information on pasture use, parasite control management, and anthelmintic drug choice/use. Results Only 36% of farms regularly managed parasite control by analyzing fecal samples for parasites, but prophylactic dewormingwas employed in all farms. Ivermectin, albendazole, levamisole, and monepantel were used on the farms and most of the farms were multidrug users; 77.3% of the farms used albendazole and 72.7% used ivermectin. Conclusion The results indicated a lack of parasitological examination and parasite control of the flock, mostly empiric drug selection, incorrect dosing, inaccurate drug administration, drug storage, and use errors. A proactive approach to herd health planning, regular parasitic control, and prophylactic measures may benefit farmers and veterinarians.
Collapse
Affiliation(s)
- Līga Kovaļčuka
- Clinical Institute, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, K. Helmana street 8, Jelgava, LV-3004, Latvia
| | - Dace Keidāne
- Institute of Food and Environmental Hygiene, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, K. Helmana street 8, Jelgava, LV-3004, Latvia
| | - Alīna Kļaviņa
- Institute of Food and Environmental Hygiene, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, K. Helmana street 8, Jelgava, LV-3004, Latvia
| | - Marta Barbara Grasberga
- Clinical Institute, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, K. Helmana street 8, Jelgava, LV-3004, Latvia
| | - Armands Vekšins
- Clinical Institute, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, K. Helmana street 8, Jelgava, LV-3004, Latvia
| |
Collapse
|
13
|
Jimenez Castro PD, Venkatesan A, Redman E, Chen R, Malatesta A, Huff H, Zuluaga Salazar DA, Avramenko R, Gilleard JS, Kaplan RM. Multiple drug resistance in hookworms infecting greyhound dogs in the USA. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 17:107-117. [PMID: 34492564 PMCID: PMC8426179 DOI: 10.1016/j.ijpddr.2021.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 01/04/2023]
Abstract
Ancylostoma caninum is the most prevalent nematode parasite of dogs. We confirmed multiple-drug resistance (MDR) in several A. caninum isolates to all anthelmintic drug classes approved for the treatment of hookworms in dogs in the USA. Cases of MDR hookworms appear to be highly overrepresented in greyhounds. The aims of this study were to evaluate the drug-resistant phenotypes and genotypes of the A. caninum infecting greyhounds. Fecal samples from greyhounds of the USA were acquired from two greyhound adoption kennels, one active greyhound racing kennel, and three veterinary practices. Fecal egg counts (FECs) were performed on fecal samples from 219 greyhounds, and despite treatment with anthelmintics, the mean FEC was 822.4 eggs per gram (EPG). Resistance to benzimidazoles and macrocyclic lactones were measured using the egg hatch assay (EHA) and the larval development assay (LDA), respectively. We performed 23 EHA and 22 LDA on either individual or pooled feces, representing 54 animals. Mean and median IC50 and IC95 values for the EHA were 5.3 μM, 3.6 μM, and 24.5 μM, 23.4 μM, respectively. For the LDA, the median IC50 value was >1000 nM. These values ranged 62–81 times higher than our susceptible laboratory isolate. Only post-treatment samples were available. For samples collected <10 days post-treatment with albendazole, moxidectin, or a combination of febantel-pyrantel-moxidectin, the mean FEC were 349, 333, and 835 EPG, respectively. We obtained DNA from hookworm eggs isolated from 70 fecal samples, comprised of 60 individual dogs and 10 pools. Deep sequencing of the isotype 1 β-tubulin gene only revealed the presence of the F167Y (TTC>TAC) resistance polymorphism in 99% of these samples. These clinical, in vitro, and genetic data provide strong evidence that greyhound dogs in the USA are infected with MDR A. caninum at very high levels in prevalence and infection intensity. Conclusive evidence that most racing greyhounds in the USA are infected with MDR A. caninum. 79% of the samples from racing or retired greyhounds were positive. IC50 values for BZs and MLs were 62–81 times higher in greyhounds. The F167Y SNP was detected in 99% of samples, and in more than 2/3 the frequency was ≥ 75%.
Collapse
Affiliation(s)
- Pablo D Jimenez Castro
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA; Grupo de Parasitología Veterinaria, Universidad Nacional de Colombia, Colombia.
| | - Abhinaya Venkatesan
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Host-Parasite Interactions Program, University of Calgary, Alberta, Canada
| | - Elizabeth Redman
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Host-Parasite Interactions Program, University of Calgary, Alberta, Canada
| | - Rebecca Chen
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Host-Parasite Interactions Program, University of Calgary, Alberta, Canada
| | - Abigail Malatesta
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Hannah Huff
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Daniel A Zuluaga Salazar
- Laboratorio de Parasitología Veterinaria, Corporación Universitaria Santa Rosa de Cabal-UNISARC, Santa Rosa de Cabal, Risaralda, Colombia
| | - Russell Avramenko
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Host-Parasite Interactions Program, University of Calgary, Alberta, Canada
| | - John S Gilleard
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Host-Parasite Interactions Program, University of Calgary, Alberta, Canada
| | - Ray M Kaplan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
14
|
O'Halloran DM. CRISPR-PN2: a flexible and genome-aware platform for diverse CRISPR experiments in parasitic nematodes. Biotechniques 2021; 71:495-498. [PMID: 34420406 DOI: 10.2144/btn-2021-0056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Parasitic nematodes represent a significant threat to human health, causing diseases of major socioeconomic importance worldwide. Central to controlling infections of parasitic nematodes is a more detailed molecular picture of host specificity, parasite activation and immune suppression. CRISPR technology holds huge potential for researchers in the field of parasitic nematology, as it provides a powerful genetic tool to dissect questions in parasite biology. To expedite the development of CRISPR technology in parasitic nematodes, software is required to facilitate the design of effective and specific sgRNA sequences. Here, the author introduces CRISPR-PN2, a comprehensive web-based platform that provides flexible use control over the automated design of specific gRNA sequences for CRISPR experiments in parasitic nematodes.
Collapse
Affiliation(s)
- Damien M O'Halloran
- Department of Biological Sciences, The George Washington University, Science & Engineering Hall, Suite 6000, 800 22nd St. NW, Washington, DC 20052, USA
| |
Collapse
|
15
|
Kļaviņa A, Keidāne D, Šukele R, Bandere D, Kovaļčuka L. Traditional Latvian herbal medicinal plants used to treat parasite infections of small ruminants: A review. Vet World 2021; 14:1548-1558. [PMID: 34316202 PMCID: PMC8304419 DOI: 10.14202/vetworld.2021.1548-1558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/27/2021] [Indexed: 11/24/2022] Open
Abstract
Numerous treatment agents offering prophylaxis against livestock parasites are commercially available. However, because of increasing antiparasitic drug resistance, the increased popularity of environmentally friendly lifestyle choices, and organic farming, there is more demand for new alternatives to livestock anthelmintic control strategies and medications. It is important to develop antiparasitics that are safe, effective, inexpensive, and environmentally safe. Local, traditional herbal plants such as tansy, mugwort, wormwood, and heather may serve as treatments for intestinal parasites of sheep. This overview provides knowledge of traditional Latvian plants with antiparasitic activities to establish a database for further research to develop new herbal antiparasitic drugs.
Collapse
Affiliation(s)
- Alīna Kļaviņa
- Institute of Food and Environmental Hygiene, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3004, Jelgava, Latvia
| | - Dace Keidāne
- Institute of Food and Environmental Hygiene, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3004, Jelgava, Latvia
| | - Renāte Šukele
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rīga Stradiņš University, LV-1007 Riga, Latvia
- Department of Pharmacy, Red Cross Medical College of Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Dace Bandere
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rīga Stradiņš University, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Dzirciema Street 16, Riga, LV1007, Latvia
| | - Līga Kovaļčuka
- Clinical Institute, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3004, Jelgava, Latvia
| |
Collapse
|
16
|
Ali R, Rooman M, Mussarat S, Norin S, Ali S, Adnan M, Khan SN. A Systematic Review on Comparative Analysis, Toxicology, and Pharmacology of Medicinal Plants Against Haemonchus contortus. Front Pharmacol 2021; 12:644027. [PMID: 34040520 PMCID: PMC8141741 DOI: 10.3389/fphar.2021.644027] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
Background:Haemonchus contortus is an important pathogenic nematode parasite and major economic constraint of small ruminants in tropics and subtropics regions. This review is an attempt to systematically address the; (a) efficacy of different plants against H. contortus by in vitro and in vivo proof; (b) toxicology, mechanism of action, and active phyto-compounds involve in anti-haemonchiasis activity; (c) and comparative analysis of plant species evaluated both in vitro and in vivo. Methods: Online databases (Google Scholar, PubMed, Scopus, and ScienceDirect) were searched and published research articles (1980–2020) were gathered and reviewed. Results: A total of 187 plant species were reported belonging to 59 families and 145 genera with Asteraceae and Fabaceae being frequently used. Out of the total plant species, 171 species were found to be evaluated in vitro and only 40 species in vivo. Twenty-four species were commonly evaluated for in vitro and in vivo anti-haemonchiasis activity. Among the reported assays, egg hatching test (EHT) and fecal egg count reduction (FECR) were the most widely used assays in vitro and in vivo, respectively. Moreover, sheep were the frequently used experimental model in vivo. After comparative analysis, Lachesiodendron viridiflorum, Corymbia citriodora, Calotropis procera, and Artemisia herba-alba were found highly effective both in vitro and in vivo. L. viridiflorum inhibited enzymatic activities and metabolic processes of the parasite and was found to be safe without toxic effects. C. citriodora was moderately toxic in vivo, however, the plant extract produced promising nematicidal effects by causing muscular disorganization and changes in the mitochondrial profile. Additionally, C. procera and A. herba-alba despite of their high anti-haemonchiasis activity were found to be highly toxic at the tested concentrations. C. procera caused perforation and tegumental disorganization along with adult worm paralysis. Nineteen compounds were reported, among which anethole and carvone completely inhibited egg hatching in vitro and significantly reduced fecal egg count, decreased male length, and reproductive capacity of female in vivo. Conclusion: This review summarized different medicinal plants owing to nematicidal activities against H. contortus eggs, larvae, and adult worms. Plants like L. viridiflorum, C. citriodora, C. procera, and A. herba-alba, while compounds anethole and carvone having promising nematicidal activities and could be an alternative source for developing novel drugs after further investigation.
Collapse
Affiliation(s)
- Rehman Ali
- Department of Zoology, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Rooman
- Department of Zoology, Hazara University Mansehra, Kohat, Pakistan
| | - Sakina Mussarat
- Department of Botanical and Environmental Sciences, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Sadia Norin
- Department of Zoology, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Shandana Ali
- Department of Zoology, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Adnan
- Department of Botanical and Environmental Sciences, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Shahid Niaz Khan
- Department of Zoology, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| |
Collapse
|
17
|
Baltrušis P, Charvet CL, Halvarsson P, Mikko S, Höglund J. Using droplet digital PCR for the detection of hco-acr-8b levamisole resistance marker in H. contortus. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 15:168-176. [PMID: 33799059 PMCID: PMC8044644 DOI: 10.1016/j.ijpddr.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 11/19/2022]
Abstract
The nematode Haemonchus contortus is one of the most prevalent and pathogenic parasites in small ruminants. Although usually controlled using anthelmintics, the development of drug resistance by the parasite has become a major issue in livestock production. While the molecular detection of benzimidazole resistance in H. contortus is well developed, the molecular tools and protocols are far less advanced for the detection of levamisole resistance. The hco-acr-8 gene encodes a critical acetylcholine susceptible subunit that confers levamisole-sensitivity to the receptor. Here, we report the development of a droplet digital PCR assay as a molecular tool to detect a 63 bp deletion in the hco-acr-8 that has been previously associated with levamisole resistance. Sanger sequencing of single adult H. contortus yielded 56 high-quality consensus sequences surrounding the region containing the deletion. Based on the sequencing data, new primers and probes were designed and validated with a novel droplet digital PCR assay for the quantification of the deletion containing “resistant” allele in genomic DNA samples. Single adult worms from six phenotypically described isolates (n = 60) and from two Swedish sheep farms (n = 30) where levamisole was effective were tested. Even though a significant difference in genotype frequencies between the resistant and susceptible reference isolates was found (p = 0.01), the homozygous “resistant” genotype was observed to be abundantly present in both the susceptible isolates as well as in some Swedish H. contortus samples. Furthermore, field larval culture samples, collected pre- (n = 7) and post- (n = 6) levamisole treatment on seven Swedish sheep farms where levamisole was fully efficacious according to Fecal Egg Count Reduction Test results, were tested to evaluate the frequency of the “resistant” allele in each. Frequencies of the deletion ranged from 35 to 80% in the pre-treatment samples, whereas no amplifiable H. contortus genomic DNA was detected in the post-treatment samples. Together, these data reveal relatively high frequencies of the 63 bp deletion in the hco-acr-8 both on individual H. contortus and field larval culture scales, and cast doubt on the utility of the deletion in the hco-acr-8 as a molecular marker for levamisole resistance detection on sheep farms. Acr8b – levamisole resistance marker investigated in single worms and larval cultures. Individuals homozygous for acr8b found more commonly, even in susceptible isolates. Levamisole treatment efficacy was unaffected by increased acr8b frequencies in larvae.
Collapse
Affiliation(s)
- Paulius Baltrušis
- Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | - Peter Halvarsson
- Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sofia Mikko
- Department of Animal Breeding & Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johan Höglund
- Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
18
|
Gerhard AP, Krücken J, Heitlinger E, Janssen IJI, Basiaga M, Kornaś S, Beier C, Nielsen MK, Davis RE, Wang J, von Samson-Himmelstjerna G. The P-glycoprotein repertoire of the equine parasitic nematode Parascaris univalens. Sci Rep 2020; 10:13586. [PMID: 32788636 PMCID: PMC7423980 DOI: 10.1038/s41598-020-70529-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
P-glycoproteins (Pgp) have been proposed as contributors to the widespread macrocyclic lactone (ML) resistance in several nematode species including a major pathogen of foals, Parascaris univalens. Using new and available RNA-seq data, ten different genomic loci encoding Pgps were identified and characterized by transcriptome-guided RT-PCRs and Sanger sequencing. Phylogenetic analysis revealed an ascarid-specific Pgp lineage, Pgp-18, as well as two paralogues of Pgp-11 and Pgp-16. Comparative gene expression analyses in P. univalens and Caenorhabditis elegans show that the intestine is the major site of expression but individual gene expression patterns were not conserved between the two nematodes. In P. univalens, PunPgp-9, PunPgp-11.1 and PunPgp-16.2 consistently exhibited the highest expression level in two independent transcriptome data sets. Using RNA-Seq, no significant upregulation of any Pgp was detected following in vitro incubation of adult P. univalens with ivermectin suggesting that drug-induced upregulation is not the mechanism of Pgp-mediated ML resistance. Expression and functional analyses of PunPgp-2 and PunPgp-9 in Saccharomyces cerevisiae provide evidence for an interaction with ketoconazole and ivermectin, but not thiabendazole. Overall, this study established reliable reference gene models with significantly improved annotation for the P. univalens Pgp repertoire and provides a foundation for a better understanding of Pgp-mediated anthelmintic resistance.
Collapse
Affiliation(s)
- Alexander P Gerhard
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Emanuel Heitlinger
- Institute of Biology, Molecular Parasitology, Humboldt-Universität Zu Berlin, Berlin, Germany.,Leibniz Institute for Zoo and Wildlife Research, Research Group Ecology and Evolution of Parasite Host Interactions, Berlin, Germany
| | - I Jana I Janssen
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Marta Basiaga
- Department of Zoology and Animal Welfare, University of Agriculture in Kraków, Kraków, Poland
| | - Sławomir Kornaś
- Department of Zoology and Animal Welfare, University of Agriculture in Kraków, Kraków, Poland
| | - Céline Beier
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Martin K Nielsen
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, USA
| | - Richard E Davis
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, USA
| | - Jianbin Wang
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, USA.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | | |
Collapse
|
19
|
Host specificity and phylogeny of Trichostrongylidae of domestic ruminants in the Guinea savannah of the Adamawa plateau in Cameroon. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2020; 21:100412. [PMID: 32862899 DOI: 10.1016/j.vprsr.2020.100412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/08/2020] [Accepted: 05/06/2020] [Indexed: 11/24/2022]
Abstract
Gastro-intestinal tracts were examined from thirteen Gudali zebu cattle, ten goats and ten sheep from the Adamawa highland in Northern Cameroon. A total of 28,325 adult helminths were recovered from the abomasa, small and large intestines. Five trichostrongylid genera were identified by their morphology: Haemonchus, Trichostrongylus and Oesophagostomum were predominant in both cattle and small ruminants, whilst Cooperia was only found in cattle both in the abomasum and small intestines. The molecular species identification and the inference of their phylogenetic relationships was based on the analysis of the hypervariable region I of the small subunit 18S rDNA (SSU) and the Second Internal Transcribed Spacer (ITS-2) of 408 adult trichostrongylid worms, which were PCR-amplified, sequenced, and compared with available database entries. Consistent with earlier findings, the SSU was invariable within the Haemonchus and Trichostrongylus genera, confirming the prior classification based on the morphology of the worms, but the ITS-2 was highly inter- and intraspecifically variable and thus allowed to distinguish individual species and to study the haplotype diversity within the different species. In cattle, we report for the first time in Cameroon co-infection with two species of Haemonchus (H. placei and H. similis), together with two species of Cooperia (C. punctata and C. pectinata) and one species of Trichostrongylus (T. axei). In goats and sheep, we found one highly polymorphic clade of Haemonchus contortus and two Trichostrongylus species (T. axei and T. colubriformis). When compared with other Trichostrongylidae from different regions of the world and wildlife, the analysis of haplotypes did not indicate any host and geographical isolation, but a very high haplotype diversity among H. contortus. These findings illustrate the complexity of trichostrongylid populations in domestic ruminants and suggest grazing overlap between domestic and wildlife hosts.
Collapse
|
20
|
Abstract
Helminth parasitology is an important discipline, which poses often unique technical challenges. One challenge is that helminth parasites, particularly those in humans, are often difficult to obtain alive and in sufficient quantities for study; another is the challenge of studying these organisms in vitro – no helminth parasite life cycle has been fully recapitulated outside of a host. Arguably, the key issue retarding progress in helminth parasitology has been a lack of experimental tools and resources, certainly relative to the riches that have driven many parasitologists to adopt free-living model organisms as surrogate systems. In response to these needs, the past 10–12 years have seen the beginnings of helminth parasitology's journey into the ‘omics’ era, with the release of abundant sequencing resources, and the functional genomics tools with which to test biological hypotheses. To reflect this progress, the 2019 Autumn Symposium of the British Society for Parasitology was held in Queen's University Belfast on the topic of ‘post-genomic progress in helminth parasitology’. This issue presents examples of the current state of play in the field, while this editorial summarizes how genomic datasets and functional genomic tools have stimulated impressive recent progress in our understanding of parasite biology.
Collapse
|
21
|
Ehsan M, Gadahi JA, Liu T, Lu M, Wang Y, Hasan MW, Haseeb M, Yan R, Xu L, Song X, Zhu XQ, Li X. Identification of a novel methyltransferase-type 12 protein from Haemonchus contortus and its effects on functions of goat PBMCs. Parasit Vectors 2020; 13:154. [PMID: 32228657 PMCID: PMC7106832 DOI: 10.1186/s13071-020-04028-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/17/2020] [Indexed: 01/06/2023] Open
Abstract
Background Methyltransferases (MTFs) are broad range of enzymes, which are ubiquitously expressed in diverse organisms ranging from bacteria to animals. MTFs proteins have been associated with various biological/cellular processes including transcriptional regulation, subcellular protein and RNA localization, signal transduction and DNA-damage repair. However, the role of MTFs in immune mechanism during host–parasite interaction has not been addressed yet. Results An open reading frame (764 bp) of methyltransferase-type 12 gene of H. contortus denoted as HcMTF-12, was successfully cloned using reverse transcriptase-polymerase chain reaction (RT-PCR) followed by prokaryotic expression in Escherichia coli BL21 (DE3 strain). The recombinant HcMTF-12 protein (rHcMTF-12) was about 47 kDa along with a fusion vector protein of 18 kDa. Immunoblot results identified the native protein MTF-12 with antibodies produced in rats against rHcMT-12, whereas rHcMTF-12 protein was recognized with sera of goat experimentally infected with H. contortus. Immunohistochemical analysis revealed that the native MTF-12 protein was mainly located in the periphery (cuticle) of parasite sections as well as within the pharynx and intestinal region. An immunofluorescence assay validated that rHcMTF-12 attached to the surface of goat PBMCs. Furthermore, the cytokines transcription of IL-2, IFN-γ and IL-4 transcripts of PBMCs incubated with rHcMTF-12 were enhanced in a dose-dependent manner. The secretion of TGF-β1 and IL-10 was significantly decreased. However, IL-6 production was not significantly different as compared to the control groups. Moreover, the migration activity and nitric oxide (NO) production by PBMCs were induced considerably, whereas the proliferation of PBMCs cells was negatively affected when incubated with the rHcMTF-12 protein. Conclusions Our findings suggest that HcMTF-12 significantly mediated the functions of PBMCs, and it might be a potential candidate for therapeutic interventions against haemonchosis.![]()
Collapse
Affiliation(s)
- Muhammad Ehsan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Javaid A Gadahi
- Department of Veterinary Parasitology, Sindh Agriculture University Tandojam, Hyderabad, Pakistan
| | - Tingqi Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Yujian Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Muhammad W Hasan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Muhammad Haseeb
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
22
|
Assessing anthelmintic resistance risk in the post-genomic era: a proof-of-concept study assessing the potential for widespread benzimidazole-resistant gastrointestinal nematodes in North American cattle and bison. Parasitology 2020; 147:897-906. [PMID: 32138794 PMCID: PMC7391874 DOI: 10.1017/s0031182020000426] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As genomic research continues to improve our understanding of the genetics of anthelmintic drug resistance, the revolution in DNA sequencing technologies will provide increasing opportunities for large-scale surveillance for the emergence of drug resistance. In most countries, parasite control in cattle and bison has mainly depended on pour-on macrocyclic lactone formulations resulting in widespread ivermectin resistance. Consequently, there is an increased interest in using benzimidazole drugs which have been used comparatively little in cattle and bison in recent years. This situation, together with our understanding of benzimidazole resistance genetics, provides a practical opportunity to use deep-amplicon sequencing to assess the risk of drug resistance emergence. In this paper, we use deep-amplicon sequencing to scan for those mutations in the isotype-1 β-tubulin gene previously associated with benzimidazole resistance in many trichostrongylid nematode species. We found that several of these mutations occur at low frequency in many cattle and bison parasite populations in North America, suggesting increased use of benzimidazole drugs in cattle has the potential to result in widespread emergence of resistance in multiple parasite species. This work illustrates a post-genomic approach to large-scale surveillance of early emergence of anthelmintic resistance in the field.
Collapse
|
23
|
Jiao Y, Preston S, Hofmann A, Taki A, Baell J, Chang BCH, Jabbar A, Gasser RB. A perspective on the discovery of selected compounds with anthelmintic activity against the barber's pole worm-Where to from here? ADVANCES IN PARASITOLOGY 2020; 108:1-45. [PMID: 32291083 DOI: 10.1016/bs.apar.2019.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parasitic roundworms (nematodes) cause substantial morbidity and mortality in animals worldwide. Anthelmintic treatment is central to controlling these worms, but widespread resistance to most of the commercially available anthelmintics for veterinary and agricultural use is compromising control, such that there is an urgency to discover new and effective drugs. The purpose of this article is to review information on parasitic nematodes, the treatment and control of parasitic nematode infections and aspects of discovering new anthelmintics in the context of anthelmintic resistance problems, and then to discuss some progress that our group has made in identifying selected compounds with activity against nematodes. The focus of our recent work has been on discovering new chemical entities and known drugs with anthelmintic activities against Haemonchus contortus as well as other socioeconomically important parasitic nematodes for subsequent development. Using whole worm-based phenotypic assays, we have been screening compound collections obtained via product-development-partnerships and/or collaborators, and active compounds have been assessed for their potential as anthelmintic candidates. Following the screening of 15,333 chemicals from five distinct compound collections against H. contortus, we have discovered one new chemical entity (designated SN00797439), two human kinase inhibitors (SNS-032 and AG-1295), 14 tetrahydroquinoxaline analogues, one insecticide (tolfenpyrad) and two tolfenpyrad (pyrazole-5-carboxamide) derivatives (a-15 and a-17) with anthelmintic activity in vitro. Some of these 20 'hit' compounds have selectivity against H. contortus in vitro when compared to particular human cell lines. In our opinion, some of these compounds could represent starting points for 'lead' development. Accordingly, the next research steps to be pursued include: (i) chemical optimisation of representative chemicals via structure-activity relationship (SAR) evaluations; (ii) assessment of the breadth of spectrum of anthelmintic activity on a range of other parasitic nematodes, such as strongyloids, ascaridoids, enoplids and filarioids; (iii) detailed investigations of the absorption, distribution, metabolism, excretion and toxicity (ADMET) of optimised chemicals with broad nematocidal or nematostatic activity; and (iv) establishment of the modes of action of lead candidates.
Collapse
Affiliation(s)
- Yaqing Jiao
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Sarah Preston
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia; Faculty of Science and Technology, Federation University, Ballarat, VIC, Australia
| | - Andreas Hofmann
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Aya Taki
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Jonathan Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Bill C H Chang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Abdul Jabbar
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
24
|
Molecular method for the semiquantitative identification of gastrointestinal nematodes in domestic ruminants. Parasitol Res 2019; 119:529-543. [PMID: 31834492 DOI: 10.1007/s00436-019-06569-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/26/2019] [Indexed: 12/27/2022]
Abstract
Standard diagnostic methods currently in use for the identification of helminth infections in ruminants are based on the morphological analysis of immature and adult stages of parasites. This paper describes a method for the semiquantitative identification of nematodes, mainly Trichostrongyloidea, at species-level resolution. The method is based on amplification and fragment analysis followed by minisequencing of the ITS-2 region (internal transcribed spacer 2) of the ribosomal DNA of parasite eggs or larvae. This method allows for the identification of seven genera (Chabertia, Cooperia, Haemonchus, Oesophagostomum, Ostertagia, Teladorsagia, and Trichostrongylus) and 12 species (Chabertia ovina, Cooperia curticei, Cooperia punctata, Cooperia oncophora/Cooperia surnabada, Haemonchus contortus, Haemonchus placei, Haemonchus longistipes, Oesophagostomum asperum, Oesophagostomum radiatum, Ostertagia ostertagi, Trichostrongylus axei, and Trichostrongylus colubriformis) of infectious nematodes of domestic ruminants. The concordance between the morphological and molecular analyses in the detection of genera ranged from 0.84 to 0.99, suggesting the proposed detection method is specific, semiquantitative, less laborious, and highly cost-efficient.
Collapse
|
25
|
Rezansoff AM, Laing R, Martinelli A, Stasiuk S, Redman E, Bartley D, Holroyd N, Devaney E, Sargison ND, Doyle S, Cotton JA, Gilleard JS. The confounding effects of high genetic diversity on the determination and interpretation of differential gene expression analysis in the parasitic nematode Haemonchus contortus. Int J Parasitol 2019; 49:847-858. [PMID: 31525371 DOI: 10.1016/j.ijpara.2019.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 11/24/2022]
Abstract
Differential expression analysis between parasitic nematode strains is commonly used to implicate candidate genes in anthelmintic resistance or other biological functions. We have tested the hypothesis that the high genetic diversity of an organism such as Haemonchus contortus could complicate such analyses. First, we investigated the extent to which sequence polymorphism affects the reliability of differential expression analysis between the genetically divergent H. contortus strains MHco3(ISE), MHco4(WRS) and MHco10(CAVR). Using triplicates of 20 adult female worms from each population isolated under parallel experimental conditions, we found that high rates of sequence polymorphism in RNAseq reads were associated with lower efficiency read mapping to gene models under default TopHat2 parameters, leading to biased estimates of inter-strain differential expression. We then showed it is possible to largely compensate for this bias by optimising the read mapping single nucleotide polymorphism (SNP) allowance and filtering out genes with particularly high single nucleotide polymorphism rates. Once the sequence polymorphism biases were removed, we then assessed the genuine transcriptional diversity between the strains, finding ≥824 differentially expressed genes across all three pairwise strain comparisons. This high level of inter-strain transcriptional diversity not only suggests substantive inter-strain phenotypic variation but also highlights the difficulty in reliably associating differential expression of specific genes with phenotypic differences. To provide a practical example, we analysed two gene families of potential relevance to ivermectin drug resistance; the ABC transporters and the ligand-gated ion channels (LGICs). Over half of genes identified as differentially expressed using default TopHat2 parameters were shown to be an artifact of sequence polymorphism differences. This work illustrates the need to account for sequence polymorphism in differential expression analysis. It also demonstrates that a large number of genuine transcriptional differences can occur between H. contortus strains and these must be considered before associating the differential expression of specific genes with phenotypic differences between strains.
Collapse
Affiliation(s)
- Andrew M Rezansoff
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Roz Laing
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, United Kingdom
| | - Axel Martinelli
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Susan Stasiuk
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Elizabeth Redman
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Dave Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, United Kingdom
| | - Nancy Holroyd
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Eileen Devaney
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, United Kingdom
| | - Neil D Sargison
- University of Edinburgh, Royal (Dick) School of Veterinary Studies, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG, United Kingdom
| | - Stephen Doyle
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - James A Cotton
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - John S Gilleard
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada.
| |
Collapse
|
26
|
Similarities and differences in the biotransformation and transcriptomic responses of Caenorhabditis elegans and Haemonchus contortus to five different benzimidazole drugs. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 11:13-29. [PMID: 31542693 PMCID: PMC6796749 DOI: 10.1016/j.ijpddr.2019.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 01/07/2023]
Abstract
We have undertaken a detailed analysis of the biotransformation of five of the most therapeutically important benzimidazole anthelmintics - albendazole (ABZ), mebendazole (MBZ), thiabendazole (TBZ), oxfendazole (OxBZ) and fenbendazole (FBZ) - in Caenorhabditis elegans and the ruminant parasite Haemonchus contortus. Drug metabolites were detected by LC-MS/MS analysis in supernatants of C. elegans cultures with a hexose conjugate, most likely glucose, dominating for all five drugs. This work adds to a growing body of evidence that glucose conjugation is a major pathway of xenobiotic metabolism in nematodes and may be a target for enhancement of anthelmintic potency. Consistent with this, we found that biotransformation of albendazole by C. elegans reduced drug potency. Glucose metabolite production by C. elegans was reduced in the presence of the pharmacological inhibitor chrysin suggesting that UDP-glucuronosyl/glucosyl transferase (UGT) enzymes may catalyze benzimidazole glucosidation. Similar glucoside metabolites were detected following ex vivo culture of adult Haemonchus contortus. As a step towards identifying nematode enzymes potentially responsible for benzimidazole biotransformation, we characterised the transcriptomic response to each of the benzimidazole drugs using the C. elegans resistant strain CB3474 ben-1(e1880)III. In the case of albendazole, mebendazole, thiabendazole, and oxfendazole the shared transcriptomic response was dominated by the up-regulation of classical xenobiotic response genes including a shared group of UGT enzymes (ugt-14/25/33/34/37/41/8/9). In the case of fenbendazole, a much greater number of genes were up-regulated, as well as developmental and brood size effects suggesting the presence of secondary drug targets in addition to BEN-1. The transcriptional xenobiotic response of a multiply resistant H. contortus strain UGA/2004 was essentially undetectable in the adult stage but present in the L3 infective stage, albeit more muted than C. elegans. This suggests that xenobiotic responses may be less efficient in stages of parasitic nematodes that reside in the host compared with the free-living stages. C. e. & H. c. display hexose conjugation (likely glucose) and excretion of 5 BZs. C. elegans (C.e.) biotransformation of ABZ reduces drug potency. UGT inhibitor chrysin reduces ABZ biotransformation by C. elegans. Transcriptomic response of C. e. (ben-1) to 5 BZs dominated by xenobiotic response and additional targets for FBZ. Minimal transcriptomic response of H. contortus to ABZ exposure.
Collapse
|
27
|
Extreme-QTL mapping of monepantel resistance in Haemonchus contortus. Parasit Vectors 2019; 12:403. [PMID: 31412938 PMCID: PMC6693152 DOI: 10.1186/s13071-019-3663-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/09/2019] [Indexed: 11/25/2022] Open
Abstract
Background Haemonchus contortus, a gastrointestinal nematode parasite of sheep, is mainly controlled by anthelmintics; the occurrence of anthelmintic resistance leads to treatment failures and increases economic burden. Because molecular mechanisms involved in drug resistance can be elucidated by genomic studies, an extreme quantitative trait locus (X-QTL) mapping approach was used to identify co-segregation of the resistance phenotype with genetic markers to detect the genome-wide variants associated with monepantel resistance in H. contortus. Methods A cross between H. contortus isolates using parental susceptible (Par-S) males and monepantel resistant (Par-R) females resulted in SR progeny, while reciprocal cross resulted in RS progeny. Pools (n = 30,000) of infective larvae (L3) recovered from Par-R, and from SR and RS populations in the F3 generation, collected both before (unselected group) and 7 days after (selected group) selection with monepantel treatment in sheep hosts, were subjected to genome sequencing (Pool-Seq). Pairwise comparisons of allele frequencies between unselected and selected groups were performed for each population by Fisher’s exact test (FET) and for both populations combined by a Cochran-Mantel-Haenszel (CMH) test. Results Mapping rates varied from 80.29 to 81.77% at a 90.4X mean coverage of aligned reads. After correction for multiple testing, significant (P < 0.05) changes in allele frequencies were detected by FET for 6 and 57 single nucleotide polymorphisms (SNPs) in the SR and RS populations, respectively, and by the CMH test for 124 SNPs in both populations. The significant variants located on chromosome 2 generated a selection signal in a genomic region harboring the mptl-1, deg-3 and des-2 genes, previously reported as candidates for monepantel resistance. In addition, three new variants were identified in the mptl-1 gene. Conclusions This study expands knowledge on genome-wide molecular events underlying H. contortus resistance to monepantel. The identification of a genome region harboring major genes previously associated with monepantel resistance supports the results of the employed X-QTL approach. In addition, a deletion in exon 11 of the mptl-1 gene should be further investigated as the putative causal mutation leading to monepantel resistance. Electronic supplementary material The online version of this article (10.1186/s13071-019-3663-9) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Al Kalaldeh M, Gibson J, Lee SH, Gondro C, van der Werf JHJ. Detection of genomic regions underlying resistance to gastrointestinal parasites in Australian sheep. Genet Sel Evol 2019; 51:37. [PMID: 31269896 PMCID: PMC6609385 DOI: 10.1186/s12711-019-0479-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study aimed at identifying genomic regions that underlie genetic variation of worm egg count, as an indicator trait for parasite resistance in a large population of Australian sheep, which was genotyped with the high-density 600 K Ovine single nucleotide polymorphism array. This study included 7539 sheep from different locations across Australia that underwent a field challenge with mixed gastrointestinal parasite species. Faecal samples were collected and worm egg counts for three strongyle species, i.e. Teladorsagia circumcincta, Haemonchus contortus and Trichostrongylus colubriformis were determined. Data were analysed using genome-wide association studies (GWAS) and regional heritability mapping (RHM). RESULTS Both RHM and GWAS detected a region on Ovis aries (OAR) chromosome 2 that was highly significantly associated with parasite resistance at a genome-wise false discovery rate of 5%. RHM revealed additional significant regions on OAR6, 18, and 24. Pathway analysis revealed 13 genes within these significant regions (SH3RF1, HERC2, MAP3K, CYFIP1, PTPN1, BIN1, HERC3, HERC5, HERC6, IBSP, SPP1, ISG20, and DET1), which have various roles in innate and acquired immune response mechanisms, as well as cytokine signalling. Other genes involved in haemostasis regulation and mucosal defence were also detected, which are important for protection of sheep against invading parasites. CONCLUSIONS This study identified significant genomic regions on OAR2, 6, 18, and 24 that are associated with parasite resistance in sheep. RHM was more powerful in detecting regions that affect parasite resistance than GWAS. Our results support the hypothesis that parasite resistance is a complex trait and is determined by a large number of genes with small effects, rather than by a few major genes with large effects.
Collapse
Affiliation(s)
- Mohammad Al Kalaldeh
- Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia. .,School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia.
| | - John Gibson
- Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia.,School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Sang Hong Lee
- Australian Centre for Precision Health, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, 5000, Australia
| | - Cedric Gondro
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia.,College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48824, USA
| | - Julius H J van der Werf
- Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia.,School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| |
Collapse
|
29
|
Łopieńska-Biernat E, Paukszto Ł, Jastrzębski JP, Makowczenko K, Stryiński R. Genes expression and in silico studies of functions of trehalases, a highly dispersed Anisakis simplex s. l. specific gene family. Int J Biol Macromol 2019; 129:957-964. [DOI: 10.1016/j.ijbiomac.2019.02.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
|
30
|
Genome-wide Approaches to Investigate Anthelmintic Resistance. Trends Parasitol 2019; 35:289-301. [DOI: 10.1016/j.pt.2019.01.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 01/09/2023]
|
31
|
Deep amplicon sequencing as a powerful new tool to screen for sequence polymorphisms associated with anthelmintic resistance in parasitic nematode populations. Int J Parasitol 2019; 49:13-26. [DOI: 10.1016/j.ijpara.2018.10.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/09/2018] [Accepted: 10/16/2018] [Indexed: 11/17/2022]
|
32
|
Hahnel SR, Zdraljevic S, Rodriguez BC, Zhao Y, McGrath PT, Andersen EC. Extreme allelic heterogeneity at a Caenorhabditis elegans beta-tubulin locus explains natural resistance to benzimidazoles. PLoS Pathog 2018; 14:e1007226. [PMID: 30372484 PMCID: PMC6224181 DOI: 10.1371/journal.ppat.1007226] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/08/2018] [Accepted: 10/01/2018] [Indexed: 12/22/2022] Open
Abstract
Benzimidazoles (BZ) are essential components of the limited chemotherapeutic arsenal available to control the global burden of parasitic nematodes. The emerging threat of BZ resistance among multiple nematode species necessitates the development of novel strategies to identify genetic and molecular mechanisms underlying this resistance. All detection of parasitic helminth resistance to BZ is focused on the genotyping of three variant sites in the orthologs of the β-tubulin gene found to confer resistance in the free-living nematode Caenorhabditis elegans. Because of the limitations of laboratory and field experiments in parasitic nematodes, it is difficult to look beyond these three sites to identify additional mechanisms that might contribute to BZ resistance in the field. Here, we took an unbiased genome-wide mapping approach in the free-living nematode species C. elegans to identify the genetic underpinnings of natural resistance to the commonly used BZ, albendazole (ABZ). We found a wide range of natural variation in ABZ resistance in natural C. elegans populations. In agreement with known mechanisms of BZ resistance in parasites, we found that a majority of the variation in ABZ resistance among wild C. elegans strains is caused by variation in the β-tubulin gene ben-1. This result shows empirically that resistance to ABZ naturally exists and segregates within the C. elegans population, suggesting that selection in natural niches could enrich for resistant alleles. We identified 25 distinct ben-1 alleles that are segregating at low frequencies within the C. elegans population, including many novel molecular variants. Population genetic analyses indicate that ben-1 variation arose multiple times during the evolutionary history of C. elegans and provide evidence that these alleles likely occurred recently because of local selective pressures. Additionally, we find purifying selection at all five β-tubulin genes, despite predicted loss-of-function variants in ben-1, indicating that BZ resistance in natural niches is a stronger selective pressure than loss of one β-tubulin gene. Furthermore, we used genome-editing to show that the most common parasitic nematode β-tubulin allele that confers BZ resistance, F200Y, confers resistance in C. elegans. Importantly, we identified a novel genomic region that is correlated with ABZ resistance in the C. elegans population but independent of ben-1 and the other β-tubulin loci, suggesting that there are multiple mechanisms underlying BZ resistance. Taken together, our results establish a population-level resource of nematode natural diversity as an important model for the study of mechanisms that give rise to BZ resistance.
Collapse
Affiliation(s)
- Steffen R. Hahnel
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| | - Stefan Zdraljevic
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States of America
| | - Briana C. Rodriguez
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| | - Yuehui Zhao
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Patrick T. McGrath
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Erik C. Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States of America
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
33
|
Somarathne MBCL, Gunawardene YINS, Chandrasekharan NV, Ellepola ANB, Dassanayake RS. Functional analysis of a novel parasitic nematode-specific protein of Setaria digitata larvae in Culex quinquefasciatus by siRNA mediated RNA interference. Parasit Vectors 2018; 11:541. [PMID: 30314510 PMCID: PMC6186027 DOI: 10.1186/s13071-018-3096-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/04/2018] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Functional analysis of animal parasitic nematode genes is often quite challenging due to the unavailability of standardised in vitro culture conditions and lack of adequate tools to manipulate these genes. Therefore, this study was undertaken to investigate the suitability of Culex quinquefasciatus, as an in vivo culture platform for Setaria digitata larvae and RNA interference (RNAi), as a post-transcriptional gene silencing tool to study the roles of a vital gene that encodes a novel parasitic nematode-specific protein (SDNP). RESULTS The red colour fluorescence detected following RNAi injection to the thorax of C. quinquefasciatus indicated the uptake of dsRNA by S. digitata larvae. The reduction of SDNP transcripts in siRNA treated larvae compared to non-treated larvae, as determined by qPCR, indicated that the siRNA pathway is operational in S. digitata larvae. The observation of motility reductions and deformities during the development indicated the association of SDNP in larvae locomotion and development processes, respectively. The irregularities in the migration of larvae in mosquitoes and elevated survival rates of mosquitoes compared to their untreated counterparts indicated reduced parasitism of S. digitata larvae in mosquitoes upon targeted downregulation of SDNP by siRNA treatment. CONCLUSION SDNP plays vital roles in muscle contraction, locomotion, development processes, larval development and parasitism of S. digitata. Its ubiquitous presence in parasitic nematodes and its absence in their hosts provide a tantalising prospect of the possibility of targeting SDNP for future development of anthelmintic drugs. The susceptibility of the larval stages of S. digitata for RNAi in Culex quinquefasciatus was also demonstrated for the first time in this study.
Collapse
|
34
|
Zhang L, Mou L, Chen X, Yang Y, Hu M, Li X, Suo X, Zhu XQ, Du A. Identification and preliminary characterization of Hc-clec-160, a novel C-type lectin domain-containing gene of the strongylid nematode Haemonchus contortus. Parasit Vectors 2018; 11:430. [PMID: 30029661 PMCID: PMC6054721 DOI: 10.1186/s13071-018-3005-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/09/2018] [Indexed: 11/10/2022] Open
Abstract
Background The strongylid parasite Haemonchus contortus causes severe anemia in domestic animals worldwide. Effective preventive and therapeutical agents are lacking, because of drug resistance and that little is known about the molecular mechanism of the interaction between H. contortus and host cells. Methods A new gene, Hc-clec-160, was discovered with RT-PCR. Transcriptional levels of Hc-clec-160 and Ce-clec-160 throughout different growth phases of corresponding nematodes were assayed by qPCR. Immunofluorescence staining of paraffin section were performed to determine the protein localization in adult worms of H. contortus. To monitor the promoter capacity of the 5'-flanking region of Ce-clec-160, micro-injection was used. Overexpression and RNAi constructs was carried out in the N2 strain of Caenorhabditis elegans to find out the gene function of Hc-clec-160. Results The full-length cDNA of 1224 bp of Hc-clec-160 was cloned by RT-PCR. The corresponding gene contained twelve exons. Its transcripts peaked in male adult worms. Hc-CLEC-160 was predicted to have a Willebrand factor type A (vWA) domain and a C-type lectin domain. The proteins were not detected by expression in C. elegans or paraffin section experiments in adult of H. contortus. Knockdown of Ce-clec-160 expression in C. elegans by RNAi resulted in shortened body length and decreased brood size. Conclusions In this experiment, a new gene Hc-clec-160 was obtained in H. contortus and its function was addressed using a model organism: C. elegans. Our study showed that Hc-clec-160 possesses characteristics similar to those of Ce-clec-160 and plays an important role in the growth and reproduction of this parasitic nematode. Electronic supplementary material The online version of this article (10.1186/s13071-018-3005-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ling Zhang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Lingyun Mou
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Xueqiu Chen
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Yi Yang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xun Suo
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, China
| | - Aifang Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
35
|
|
36
|
Ranjan P, Athar M, Jha PC, Krishna KV. Probing the opportunities for designing anthelmintic leads by sub-structural topology-based QSAR modelling. Mol Divers 2018; 22:669-683. [PMID: 29611020 DOI: 10.1007/s11030-018-9825-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 03/16/2018] [Indexed: 12/30/2022]
Abstract
A quantitative structure-activity (QSAR) model has been developed for enriched tubulin inhibitors, which were retrieved from sequence similarity searches and applicability domain analysis. Using partial least square (PLS) method and leave-one-out (LOO) validation approach, the model was generated with the correlation statistics of [Formula: see text] and [Formula: see text] of 0.68 and 0.69, respectively. The present study indicates that topological descriptors, viz. BIC, CH_3_C, IC, JX and Kappa_2 correlate well with biological activity. ADME and toxicity (or ADME/T) assessment showed that out of 260 molecules, 255 molecules successfully passed the ADME/T assessment test, wherein the drug-likeness attributes were exhibited. These results showed that topological indices and the colchicine binding domain directly influence the aetiology of helminthic infections. Further, we anticipate that our model can be applied for guiding and designing potential anthelmintic inhibitors.
Collapse
Affiliation(s)
- Prabodh Ranjan
- CCG@CUG, School of Chemical Sciences, Central University of Gujarat, Sector-30, Gandhinagar, Gujarat, 382030, India
| | - Mohd Athar
- CCG@CUG, School of Chemical Sciences, Central University of Gujarat, Sector-30, Gandhinagar, Gujarat, 382030, India
| | - Prakash Chandra Jha
- CCG@CUG, Centre for Applied Chemistry, Central University of Gujarat, Sector-30, Gandhinagar, Gujarat, 382030, India.
| | - Kari Vijaya Krishna
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
37
|
Yanola J, Nachaiwieng W, Duangmano S, Prasannarong M, Somboon P, Pornprasert S. Current prevalence of intestinal parasitic infections and their impact on hematological and nutritional status among Karen hill tribe children in Omkoi District, Chiang Mai Province, Thailand. Acta Trop 2018; 180:1-6. [PMID: 29306723 DOI: 10.1016/j.actatropica.2018.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 11/18/2022]
Abstract
Intestinal parasitic infection represents a substantial problem for children living in rural or limited resources areas and significantly relates to anemia and nutritional status. This study aimed to determine the current prevalence of intestinal parasitic infections among school-age children of Karen hill tribe population in Omkoi District, Chiang Mai Province, Thailand and assess the impact of intestinal parasitic infection on hematological and nutritional status in those children. A total of 375 Karen hill tribe children, 6-14 years of age, in Omkoi District were randomly selected to participate in this study. Stool samples were collected and examined for intestinal parasitic infection through formalin-ether concentration method. Blood samples were collected for hematological and iron analysis. The overall prevalence of intestinal parasitic infection was 47.7% (179/375), with single infections (29.3%) and polyparatism (18.4%). The most common pathogenic parasite was Trichuris trichiura (16.0%), followed by Ascaris lumbricoides (13%) and Giardia lamblia (3.5%). In addition, non-pathogenic amoeba, Entamoeba coli was observed with a high prevalence rate (31.2%). Anemia and eosinophilia prevalence were 6.40% (24/375) and 74.7% (280/375), respectively. Eosinophilia was significantly more prevalent in children with intestinal parasitic infection compared to uninfected children. Among 249 children, 13.7% were iron deficiency, 9.6% were thalassemia and hemoglobinophathy and 8% were G-6-PD deficiency. A high prevalence infection rate was significantly associated with eosinophilia, but independently related to anemia and iron deficiency. Intestinal parasitic infections are endemic in school-age children of Karen hill tribe population in Omkoi District. These data highlight the need for an integrated approach to control transmission of intestinal parasites and improve the health and sanitation status of Karen hill tribe children in Thailand.
Collapse
Affiliation(s)
- Jintana Yanola
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Woottichai Nachaiwieng
- Department of Public Health, School of Health Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Suwit Duangmano
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Mujalin Prasannarong
- Department of Physical Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Pradya Somboon
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sakorn Pornprasert
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
38
|
Santos JMLD, Vasconcelos JF, Frota GA, Ribeiro WLC, André WPP, Vieira LDS, Teixeira M, Bevilaqua CML, Monteiro JP. Haemonchus contortus β-tubulin isotype 1 gene F200Y and F167Y SNPs are both selected by ivermectin and oxfendazole treatments with differing impacts on anthelmintic resistance. Vet Parasitol 2017; 248:90-95. [DOI: 10.1016/j.vetpar.2017.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/13/2017] [Accepted: 11/06/2017] [Indexed: 11/15/2022]
|
39
|
Gadahi JA, Ehsan M, Wang S, Zhang Z, Yan R, Song X, Xu L, Li X. Recombinant protein of Haemonchus contortus small GTPase ADP-ribosylation factor 1 (HcARF1) modulate the cell mediated immune response in vitro. Oncotarget 2017; 8:112211-112221. [PMID: 29348819 PMCID: PMC5762504 DOI: 10.18632/oncotarget.22662] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 11/03/2017] [Indexed: 01/08/2023] Open
Abstract
ADP-ribosylation factors (ARFs) are members of the Ras-related small GTPase family involved in the vesicular trafficking regulation. Immunomodulatory effects of these proteinson host cell arenot being addressed yet. H. contortus small GTPase ADP-ribosylation 1 gene (HcARF1) was cloned and recombinant protein of HcARF1 (rHcARF1) was successfully expressed in Escherichia coli. Binding activity of rHcARF1 to goat PBMCs was confirmed by immunofluorescence assay (IFA) and its immunomudulatory effects on cytokine secretion, cell proliferation, cell migration and nitric oxide production (NO) were observed by co-incubation of rHcARF1. IFA results revealed that rHcARF1 could bind to the PBMCs. The interaction of rHcARF1 modulated the cytokine production, the production of IL-4, IL-10 and IL-17 was increased in a dose dependent manner, however, the IFN-γ production was significantly decreased. Cell migration and NO production were significantly increased by rHcARF1, whereas, rHcARF1 treatment significantly suppressed the proliferation of the PBMC in a dose dependent manner. Our findings showed that the rHcARF1 play important roles on the goat PBMCs.
Collapse
Affiliation(s)
- Javaid Ali Gadahi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China.,Department of Veterinary Parasitology, Sindh Agriculture University, Tando Jam, Pakistan
| | - Muhammad Ehsan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Shuai Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Zhenchao Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Ruofeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Xiaokai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Lixin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
40
|
RNA-Seq de novo assembly and differential transcriptome analysis of the nematode Ascaridia galli in relation to in vivo exposure to flubendazole. PLoS One 2017; 12:e0185182. [PMID: 29099835 PMCID: PMC5669496 DOI: 10.1371/journal.pone.0185182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/07/2017] [Indexed: 11/19/2022] Open
Abstract
The nematode Ascaridia galli (order Ascaridida) is an economically important intestinal parasite responsible for increased food consumption, reduced performance and elevated mortality in commercial poultry production. This roundworm is an emerging problem in several European countries on farms with laying hens, as a consequence of the recent European Union (EU) ban on conventional battery cages. As infection is associated with slow development of low levels of acquired protective immunity, parasite control relies on repeated use of dewormers (anthelmintics). Benzimidazoles (BZ) are currently the only anthelmintic registered in the EU for use in controlling A. galli and there is an obvious risk of overuse of one drug class, selecting for resistance. Thus we developed a reference transcriptome of A. galli to investigate the response in gene expression before and after exposure to the BZ drug flubendazole (FLBZ). Transcriptional variations between treated and untreated A. galli showed that transcripts annotated as mitochondrial glutamate dehydrogenase and cytochrome P450 were significantly down-regulated in treated worms, whereas transcripts homologous to heat shock proteins (HSP), catalase, phosphofructokinase, and a multidrug resistance P-glycoprotein (PGP1) were significantly up-regulated in treated worms. Investigation of candidate transcripts responsible for anthelmintic resistance in livestock nematodes led to identification of several tubulins, including six new isoforms of beta-tubulin, and several ligand-gated ionotropic receptors and ABC-transporters. We discovered several transcripts associated with drug binding and processing genes, but further characterisation using a larger set of worms exposed to BZs in functional assays is required to determine how these are involved in drug binding and metabolism.
Collapse
|
41
|
Jamous RM, Ali-Shtayeh MS, Abu-Zaitoun SY, Markovics A, Azaizeh H. Effects of selected Palestinian plants on the in vitro exsheathment of the third stage larvae of gastrointestinal nematodes. BMC Vet Res 2017; 13:308. [PMID: 29100544 PMCID: PMC5670504 DOI: 10.1186/s12917-017-1237-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/30/2017] [Indexed: 01/24/2023] Open
Abstract
Background Gastrointestinal parasites are one of the main restrictions to small ruminant production. Their pathological importance is primarily related to the major production losses, in quantity or quality, induced by the direct action of worms. Control of these parasites is based exclusively on the frequent use of anthelmintic drugs. However, the resistance to anthelmintics in worm populations after commercialisation of chemical drugs is now widespread. Therefore, there is a need to find new natural resources to ensure sustainable and effective treatment and control of these parasites. The aim of this study was to evaluate the anthelmintic activity, as minimum inhibitory concentration (IC50 mg/mL), of different plant extracts using larval exsheathment inhibition assay using a two-species but steady population of parasitic nematodes (ca. 20% Teladorsagia circumcinta and 80% Trichostrongylus colubriformis). Results The study showed that the ethanolic extracts of 22 out of the 48 plant extracts, obtained from 46 plant species, have an inhibitory effect >50% (at concentrations of 100 mg/mL) on the third stage larvae (L3) of the nematodes exhibited the strongest inhibition activity (94%) with IC50 of 0.02 mg/mL, where other members of the Rhamnaceae family have shown to possess strong anthelmintic activity (70–89%). Conclusions Plant extracts are potential rich resources of anthelmintics to combat helminthic diseases. Our results suggest that extracts from Rhamnus elaternus, Epilobium hirsutum, Leucaena leucocephala and Rhamnus palaestinus have promising anthelmintic activity, with potential applications in animal therapeutics and feed.
Collapse
Affiliation(s)
- Rana Majed Jamous
- Biodiversity& Environmental Research Center -BERC, Til, Nablus, Palestine
| | | | | | - Alex Markovics
- Kimron Veterinary Institute, Ministry of Agriculture and Rural Development, Jerusalem, Israel
| | - Hassan Azaizeh
- The Institute of Applied Research, The Galilee Society, P.O.B. 437, 20200, Shefa-Amr, Israel.,Tel Hai College, Department of Environmental Science, 2208, Upper Galilee, Israel
| |
Collapse
|
42
|
Development of Haemonchus contortus resistance in sheep under suppressive or targeted selective treatment with monepantel. Vet Parasitol 2017; 246:112-117. [DOI: 10.1016/j.vetpar.2017.09.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/05/2017] [Accepted: 09/10/2017] [Indexed: 01/11/2023]
|
43
|
Mizani A, Gill P, Daryani A, Sarvi S, Amouei A, Katrimi AB, Soleymani E, Mirshafiee S, Gholami S, Hosseini SA, Gholami S, Rahimi MT, Hashemi-Soteh MB, Sharif M. A multiplex restriction enzyme-PCR for unequivocal identification and differentiation of Trichostrongylus species in human samples. Acta Trop 2017; 173:180-184. [PMID: 28595822 DOI: 10.1016/j.actatropica.2017.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 05/10/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
Abstract
Trichostrongylus species remain one of the major health challenges in the tropical and summer rainfall regions worldwide. Identification of strongylid species diagnostic methods is vital for obtaining a deep understanding of the epidemiology, population biology, anthelmintic treatment efficacy, and drug resistance in order to design effective parasite control strategies. We evaluated a multiplex RE-PCR for the diagnosis of key Trichostrongylus spp. Genomic DNA amplification of Trichostrongylus colubriformis, Trichostrongylus axei and Trichostrongylus vitrinus was achieved as standard sample using specific primers located in the second internal transcribed spacer (ITSII) of nuclear ribosomal DNA (rDNA). The mentioned method was based on isolation of Trichostrongylus ova from human fecal samples using Willis method, the extraction of ova genomic DNA samples, followed by rDNA ITSII PCR and one-step multiplex RE-PCR using three restriction enzymes of HinfI, DraI, and MseI. The multiplex RE-PCR technique provides a useful tool for discriminating all Trichostrongylus spp., being useful for diagnostic, epidemiological, ecological studies, and control programs. This method is rapid, especially when numerous restriction enzymes are required for species differentiation or identification.
Collapse
|
44
|
Doyle SR, Bourguinat C, Nana-Djeunga HC, Kengne-Ouafo JA, Pion SDS, Bopda J, Kamgno J, Wanji S, Che H, Kuesel AC, Walker M, Basáñez MG, Boakye DA, Osei-Atweneboana MY, Boussinesq M, Prichard RK, Grant WN. Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity. PLoS Negl Trop Dis 2017; 11:e0005816. [PMID: 28746337 PMCID: PMC5546710 DOI: 10.1371/journal.pntd.0005816] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/07/2017] [Accepted: 07/19/2017] [Indexed: 12/30/2022] Open
Abstract
Background Treatment of onchocerciasis using mass ivermectin administration has reduced morbidity and transmission throughout Africa and Central/South America. Mass drug administration is likely to exert selection pressure on parasites, and phenotypic and genetic changes in several Onchocerca volvulus populations from Cameroon and Ghana—exposed to more than a decade of regular ivermectin treatment—have raised concern that sub-optimal responses to ivermectin's anti-fecundity effect are becoming more frequent and may spread. Methodology/Principal findings Pooled next generation sequencing (Pool-seq) was used to characterise genetic diversity within and between 108 adult female worms differing in ivermectin treatment history and response. Genome-wide analyses revealed genetic variation that significantly differentiated good responder (GR) and sub-optimal responder (SOR) parasites. These variants were not randomly distributed but clustered in ~31 quantitative trait loci (QTLs), with little overlap in putative QTL position and gene content between the two countries. Published candidate ivermectin SOR genes were largely absent in these regions; QTLs differentiating GR and SOR worms were enriched for genes in molecular pathways associated with neurotransmission, development, and stress responses. Finally, single worm genotyping demonstrated that geographic isolation and genetic change over time (in the presence of drug exposure) had a significantly greater role in shaping genetic diversity than the evolution of SOR. Conclusions/Significance This study is one of the first genome-wide association analyses in a parasitic nematode, and provides insight into the genomics of ivermectin response and population structure of O. volvulus. We argue that ivermectin response is a polygenically-determined quantitative trait (QT) whereby identical or related molecular pathways but not necessarily individual genes are likely to determine the extent of ivermectin response in different parasite populations. Furthermore, we propose that genetic drift rather than genetic selection of SOR is the underlying driver of population differentiation, which has significant implications for the emergence and potential spread of SOR within and between these parasite populations. Onchocerciasis is a human parasitic disease endemic across large areas of Sub-Saharan Africa, where more than 99% of the estimated 100 million people globally at-risk live. The microfilarial stage of Onchocerca volvulus causes pathologies ranging from mild itching to visual impairment and ultimately, irreversible blindness. Mass administration of ivermectin kills microfilariae and has an anti-fecundity effect on adult worms by temporarily inhibiting the development in utero and/or release into the skin of new microfilariae, thereby reducing morbidity and transmission. Phenotypic and genetic changes in some parasite populations that have undergone multiple ivermectin treatments in Cameroon and Ghana have raised concern that sub-optimal response to ivermectin's anti-fecundity effect may increase in frequency, reducing the impact of ivermectin-based control measures. We used next generation sequencing of small pools of parasites to define genome-wide genetic differences between phenotypically characterised good and sub-optimal responder parasites from Cameroon and Ghana, and identified multiple regions of the genome that differentiated the response types. These regions were largely different between parasites from these two countries but revealed common molecular pathways that might be involved in determining the extent of response to ivermectin's anti-fecundity effect. These data reveal a more complex than previously described pattern of genetic diversity among O. volvulus populations that differ in their geography and response to ivermectin treatment.
Collapse
Affiliation(s)
- Stephen R. Doyle
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Australia
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- * E-mail: (SRD); (RKP); (WNG)
| | - Catherine Bourguinat
- Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, Québec, Canada
| | - Hugues C. Nana-Djeunga
- Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaoundé, Cameroon
| | - Jonas A. Kengne-Ouafo
- Research Foundation in Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Sébastien D. S. Pion
- Institut de Recherche pour le Développement (IRD), IRD UMI 233 TransVIHMI – Université Montpellier – INSERM U1175, Montpellier, France
| | - Jean Bopda
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - Joseph Kamgno
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - Samuel Wanji
- Research Foundation in Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Hua Che
- Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, Québec, Canada
| | - Annette C. Kuesel
- UNICEF/UNDP/World Bank/World Health Organization Special Programme for Research and Training in Tropical Diseases (WHO/TDR), World Health Organization, Geneva, Switzerland
| | - Martin Walker
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, Faculty of Medicine, School of Public Health, Imperial College London, United Kingdom
| | - Maria-Gloria Basáñez
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, Faculty of Medicine, School of Public Health, Imperial College London, United Kingdom
| | - Daniel A. Boakye
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Mike Y. Osei-Atweneboana
- Department of Environmental Biology and Health Water Research Institute, Council for Scientific and Industrial Research (CSIR), Accra, Ghana
| | - Michel Boussinesq
- Institut de Recherche pour le Développement (IRD), IRD UMI 233 TransVIHMI – Université Montpellier – INSERM U1175, Montpellier, France
| | - Roger K. Prichard
- Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, Québec, Canada
- * E-mail: (SRD); (RKP); (WNG)
| | - Warwick N. Grant
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Australia
- * E-mail: (SRD); (RKP); (WNG)
| |
Collapse
|
45
|
Choi YJ, Bisset SA, Doyle SR, Hallsworth-Pepin K, Martin J, Grant WN, Mitreva M. Genomic introgression mapping of field-derived multiple-anthelmintic resistance in Teladorsagia circumcincta. PLoS Genet 2017. [PMID: 28644839 PMCID: PMC5507320 DOI: 10.1371/journal.pgen.1006857] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Preventive chemotherapy has long been practiced against nematode parasites of livestock, leading to widespread drug resistance, and is increasingly being adopted for eradication of human parasitic nematodes even though it is similarly likely to lead to drug resistance. Given that the genetic architecture of resistance is poorly understood for any nematode, we have analyzed multidrug resistant Teladorsagia circumcincta, a major parasite of sheep, as a model for analysis of resistance selection. We introgressed a field-derived multiresistant genotype into a partially inbred susceptible genetic background (through repeated backcrossing and drug selection) and performed genome-wide scans in the backcross progeny and drug-selected F2 populations to identify the major genes responsible for the multidrug resistance. We identified variation linking candidate resistance genes to each drug class. Putative mechanisms included target site polymorphism, changes in likely regulatory regions and copy number variation in efflux transporters. This work elucidates the genetic architecture of multiple anthelmintic resistance in a parasitic nematode for the first time and establishes a framework for future studies of anthelmintic resistance in nematode parasites of humans. Teladorsagia circumcincta is an economically significant nematode (roundworm) pathogen affecting sheep and goats in temperate regions of the world. The widespread use of prophylactic treatment has resulted in rapid selection for anthelmintic (anti-worm drug) resistance in this and other species of livestock parasites. The mechanism of resistance is not well understood because most studies have focused on the role of candidate genes using simplistic models of single gene selection, despite evidence that the evolution of resistance is more complex. Here, we report on a comprehensive whole-genome analysis that elucidated resistance-associated genes, which was facilitated by developing a pair of T. circumcincta strains sharing a largely common genetic background but differing markedly in their susceptibility to anthelmintic drugs. The results show that multiple genetic factors contribute to anthelmintic resistance in a variety of ways, including possible reduction/modulation in target site sensitivity, reduced target site expression, and increased drug efflux, to name a few. This suggests that drug resistance in these parasites is a multifactorial quantitative trait rather than a simple discrete Mendelian character. With this study, we established a genomics-based experimental paradigm for investigating anthelmintic resistance, at a time when its medical importance is rapidly increasing.
Collapse
Affiliation(s)
- Young-Jun Choi
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Stewart A Bisset
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand
| | - Stephen R Doyle
- Department of Animal, Plant and Soil Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Kymberlie Hallsworth-Pepin
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - John Martin
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Warwick N Grant
- Department of Animal, Plant and Soil Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Makedonka Mitreva
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, Missouri, United States of America.,Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| |
Collapse
|
46
|
Abongwa M, Martin RJ, Robertson AP. A BRIEF REVIEW ON THE MODE OF ACTION OF ANTINEMATODAL DRUGS. ACTA VET-BEOGRAD 2017; 67:137-152. [PMID: 29416226 DOI: 10.1515/acve-2017-0013] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Anthelmintics are some of the most widely used drugs in veterinary medicine. Here we review the mechanism of action of these compounds on nematode parasites. Included are the older classes of compounds; the benzimidazoles, cholinergic agonists and macrocyclic lactones. We also consider newer anthelmintics, including emodepside, derquantel and tribendimidine. In the absence of vaccines for most parasite species, control of nematode parasites will continue to rely on anthelmintic drugs. As a consequence, vigilance in detecting drug resistance in parasite populations is required. Since resistance development appears almost inevitable, there is a continued and pressing need to fully understand the mode of action of these compounds. It is also necessary to identify new drug targets and drugs for the continued effective control of nematode parasites.
Collapse
Affiliation(s)
- Melanie Abongwa
- Department of Biomedical Sciences, College of Veterinary Medicine , Iowa State University , Ames , IA 50011 , United States of America
| | - Richard J. Martin
- Department of Biomedical Sciences, College of Veterinary Medicine , Iowa State University , Ames , IA 50011 , United States of America
| | - Alan P. Robertson
- Department of Biomedical Sciences, College of Veterinary Medicine , Iowa State University , Ames , IA 50011 , United States of America
| |
Collapse
|
47
|
Herrera-Manzanilla FA, Ojeda-Robertos NF, González-Garduño R, Cámara-Sarmiento R, Torres-Acosta JFJ. Gastrointestinal nematode populations with multiple anthelmintic resistance in sheep farms from the hot humid tropics of Mexico. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2017; 9:29-33. [PMID: 31014838 DOI: 10.1016/j.vprsr.2017.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/24/2017] [Accepted: 04/06/2017] [Indexed: 11/24/2022]
Abstract
This study evaluated the status of anthelmintic resistance against the three available classes of commercial drugs in seven sheep farms in the hot humid tropics of Mexico. Drug classes included benzimidazole (BZ), ivermectin (IVM) and levamisole (LV). Respective faecal egg count reduction tests (FECRT) were performed in each farm. Faecal samples were obtained from the rectum of >100 sheep in each farm. Adult sheep shedding >150 eggs per gram of faeces (EPG) were included. In each farm, animals were allotted to one of four groups with similar mean EPG: Control Group (untreated), BZ group (albendazole sulfoxide 5mg/kg LW), IVM group (ivermectin, 0.2mg/kg LW) and LEV group (levamisole 7.5mg/kg LW). Drugs were administered subcutaneously. A second faecal sampling was performed on the same animals of each farm 14days post-treatment. The GIN genera obtained from faecal cultures were identified for each group in different farms. Percentage faecal egg count reduction (%R) and 95% confidence intervals were estimated using the RESO© software. A questionnaire was applied to farm owners to describe anthelmintic management practices. All sheep farms had GIN populations with multiple resistance to the three anthelmintic classes tested. The %R ranged from 0 to 48% for BZ, 29 to 82% for IVM and 1 to 88% for LEV. Haemonchus spp. and Trichostongylus spp. were found in all treated groups of the study farms. Resistant Oesophagostomum spp. larvae (BZ or IVM) were found in respective farms. Treatment practices in study farms included frequent mass treatment every two months with extra treatments applied individually in the presence of clinical signs. Drug dosage used visual estimation of body weight rather than the exact weight of each animal. Quarantine anthelmintic treatment of incoming stock was used but efficacy was not confirmed.
Collapse
Affiliation(s)
- F A Herrera-Manzanilla
- Campus de Ciencias Biológicas y Agropecuarias, FMVZ, Universidad Autónoma de Yucatán, Carretera Mérida-Xmatkuil, Km. 15.5, Mérida, Yucatán, C.P. 97315, México
| | - N F Ojeda-Robertos
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco. La Huasteca 2da, Sección, Carretera Villahermosa-Teapa, Km. 25, Centro, Tabasco, C.P. 86298, México
| | - R González-Garduño
- Unidad Regional Universitaria Sur-sureste, Universidad Autónoma Chapingo, Km 7.5, CarreteraTeapa-Vicente Guerrero, P.O.Box 29, Teapa, Tabasco, CP. 86800, México
| | - R Cámara-Sarmiento
- Campus de Ciencias Biológicas y Agropecuarias, FMVZ, Universidad Autónoma de Yucatán, Carretera Mérida-Xmatkuil, Km. 15.5, Mérida, Yucatán, C.P. 97315, México
| | - J F J Torres-Acosta
- Campus de Ciencias Biológicas y Agropecuarias, FMVZ, Universidad Autónoma de Yucatán, Carretera Mérida-Xmatkuil, Km. 15.5, Mérida, Yucatán, C.P. 97315, México.
| |
Collapse
|
48
|
Ranjan P, Kumar SP, Kari V, Jha PC. Exploration of interaction zones of β-tubulin colchicine binding domain of helminths and binding mechanism of anthelmintics. Comput Biol Chem 2017; 68:78-91. [PMID: 28259774 DOI: 10.1016/j.compbiolchem.2017.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 01/27/2017] [Accepted: 02/21/2017] [Indexed: 12/20/2022]
Abstract
Numerous studies postulated the possible modes of anthelmintic activity by targeting alternate or extended regions of colchicine binding domain of helminth β-tubulin. We present three interaction zones (zones vide -1 to -3) in the colchicine binding domain of Haemonchus contortus (a helminth) β-tubulin homology model and developed zone-wise structure-based pharmacophore models coupled with molecular docking technique to unveil the binding hypotheses. The resulted ten structure-based hypotheses were then refined to essential three point pharmacophore features that captured recurring and crucial non-covalent receptor contacts and proposed three characteristics necessary for optimal zone-2 binding: a conserved pair of H bond acceptor (HBA to form H bond with Asn226 residue) and an aliphatic moiety of molecule separated by 3.75±0.44Å. Further, an aliphatic or a heterocyclic group distant (11.75±1.14Å) to the conserved aliphatic site formed the third feature component in the zone-2 specific anthelmintic pharmacophore model. Alternatively, an additional HBA can be substituted as a third component to establish H bonding with Asn204. We discern that selective zone-2 anthelmintics can be designed effectively by closely adapting the pharmacophore feature patterns and its geometrical constraints.
Collapse
Affiliation(s)
- Prabodh Ranjan
- School of Chemical Sciences, Central University of Gujarat, Sector-30, Gandhinagar, 382030, Gujarat, India
| | - Sivakumar Prasanth Kumar
- School of Chemical Sciences, Central University of Gujarat, Sector-30, Gandhinagar, 382030, Gujarat, India
| | - Vijayakrishna Kari
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Prakash Chandra Jha
- Centre for Applied Chemistry, Central University of Gujarat, Sector-30, Gandhinagar, 382030, Gujarat, India.
| |
Collapse
|
49
|
Modelling the consequences of targeted selective treatment strategies on performance and emergence of anthelmintic resistance amongst grazing calves. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2016; 6:258-271. [PMID: 27915061 PMCID: PMC5137182 DOI: 10.1016/j.ijpddr.2016.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 11/20/2022]
Abstract
The development of anthelmintic resistance by helminths can be slowed by maintaining refugia on pasture or in untreated hosts. Targeted selective treatments (TST) may achieve this through the treatment only of individuals that would benefit most from anthelmintic, according to certain criteria. However TST consequences on cattle are uncertain, mainly due to difficulties of comparison between alternative strategies. We developed a mathematical model to compare: 1) the most 'beneficial' indicator for treatment selection and 2) the method of selection of calves exposed to Ostertagia ostertagi, i.e. treating a fixed percentage of the population with the lowest (or highest) indicator values versus treating individuals who exceed (or are below) a given indicator threshold. The indicators evaluated were average daily gain (ADG), faecal egg counts (FEC), plasma pepsinogen, combined FEC and plasma pepsinogen, versus random selection of individuals. Treatment success was assessed in terms of benefit per R (BPR), the ratio of average benefit in weight gain to change in frequency of resistance alleles R (relative to an untreated population). The optimal indicator in terms of BPR for fixed percentages of calves treated was plasma pepsinogen and the worst ADG; in the latter case treatment was applied to some individuals who were not in need of treatment. The reverse was found when calves were treated according to threshold criteria, with ADG being the best target indicator for treatment. This was also the most beneficial strategy overall, with a significantly higher BPR value than any other strategy, but its degree of success depended on the chosen threshold of the indicator. The study shows strong support for TST, with all strategies showing improvements on calves treated selectively, compared with whole-herd treatment at 3, 8, 13 weeks post-turnout. The developed model appeared capable of assessing the consequences of other TST strategies on calf populations.
Collapse
|
50
|
Gadahi JA, Ehsan M, Wang S, Zhang Z, Wang Y, Yan R, Song X, Xu L, Li X. Recombinant protein of Haemonchus contortus 14-3-3 isoform 2 (rHcftt-2) decreased the production of IL-4 and suppressed the proliferation of goat PBMCs in vitro. Exp Parasitol 2016; 171:57-66. [PMID: 27751769 DOI: 10.1016/j.exppara.2016.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 10/09/2016] [Accepted: 10/13/2016] [Indexed: 12/12/2022]
Abstract
14-3-3 proteins have been found to be an excreted/secreted antigen and assumed to be released into the host-parasite interface and described in several unicellular and multicellular parasites. However, little is known about the immunomodulatory effects of H. controtus 14-3-3 protein on host cell. In present study, 14-3-3 isoform 2 gene, designated as Hcftt-2, was amplified by reverse transcription-polymerase chain reaction (RT-PCR) from the adult H. contortus cDNA and cloned into expression plasmid pET32a (+) and expression of the recombinant protein (rHcftt-2) was induced by IPTG. Binding activity of rHcftt-2 to goat peripheral blood mononuclear cells (PBMCs) was confirmed by immunofluorescence assay (IFA) and modulatory effects on cytokine production, cell proliferation, cell migration and nitric oxide (NO) production were observed by co-incubation of rHcftt-2 with goat PBMCs. Sequence analysis showed that it had significant homology with the known 14-3-3 protein isoform 2. Results of IFA revealed that, the rHcftt-2 was bound to the cell surface. We found that, the productions of IL10, IL-17, IFN-γ and cell migration of PBMCs were increased after the cells were incubated with rHCftt-2. However, the productions of IL-4, NO and cell proliferation of the PBMCs were significantly decreased in dose depended manner. Our results showed that the Hcftt-2 played important suppressive regulatory effects on the goat PBMCs.
Collapse
Affiliation(s)
- Javaid Ali Gadahi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Muhammad Ehsan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Shuai Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - ZhenChao Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Yujian Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - RuoFeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - XiaoKai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - LiXin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - XiangRui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|