1
|
Dendritic Cells as a Disputed Fortress on the Tick-Host Battlefield. Trends Parasitol 2020; 37:340-354. [PMID: 33303363 DOI: 10.1016/j.pt.2020.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
From seminal publications in the early 1970s, the world learned that dendritic cells (DCs) are powerful and versatile antigen-presenting cells. It took a few years until the first studies expanded our understanding of the pivotal role of these immune 'soldiers' against ticks. Advances in biochemistry, molecular biology, and bioinformatics have shed light on the identification of key salivary molecules that modulate the biology of DCs in favor of tick parasitism. Here, we present a critical overview of the discoveries accumulated on the tick-host battlefield from a DC perspective. Moreover, the clinical significance of DC-targeted tick salivary components is discussed, not only as facilitators of the transmission of tick-borne pathogens or vaccine candidates, but also as potential immunobiologics to treat immune-mediated diseases.
Collapse
|
2
|
Chandrasekhar JL, Cox KM, Erickson LD. B Cell Responses in the Development of Mammalian Meat Allergy. Front Immunol 2020; 11:1532. [PMID: 32765532 PMCID: PMC7379154 DOI: 10.3389/fimmu.2020.01532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
Studies of meat allergic patients have shown that eating meat poses a serious acute health risk that can induce severe cutaneous, gastrointestinal, and respiratory reactions. Allergic reactions in affected individuals following meat consumption are mediated predominantly by IgE antibodies specific for galactose-α-1,3-galactose (α-gal), a blood group antigen of non-primate mammals and therefore present in dietary meat. α-gal is also found within certain tick species and tick bites are strongly linked to meat allergy. Thus, it is thought that exposure to tick bites promotes cutaneous sensitization to tick antigens such as α-gal, leading to the development of IgE-mediated meat allergy. The underlying immune mechanisms by which skin exposure to ticks leads to the production of α-gal-specific IgE are poorly understood and are key to identifying novel treatments for this disease. In this review, we summarize the evidence of cutaneous exposure to tick bites and the development of mammalian meat allergy. We then provide recent insights into the role of B cells in IgE production in human patients with mammalian meat allergy and in a novel mouse model of meat allergy. Finally, we discuss existing data more generally focused on tick-mediated immunomodulation, and highlight possible mechanisms for how cutaneous exposure to tick bites might affect B cell responses in the skin and gut that contribute to loss of oral tolerance.
Collapse
Affiliation(s)
- Jessica L Chandrasekhar
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Kelly M Cox
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Loren D Erickson
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA, United States.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
3
|
Bakshi M, Kim TK, Porter L, Mwangi W, Mulenga A. Amblyomma americanum ticks utilizes countervailing pro and anti-inflammatory proteins to evade host defense. PLoS Pathog 2019; 15:e1008128. [PMID: 31756216 PMCID: PMC6897422 DOI: 10.1371/journal.ppat.1008128] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/06/2019] [Accepted: 10/05/2019] [Indexed: 02/07/2023] Open
Abstract
Feeding and transmission of tick-borne disease (TBD) agents by ticks are facilitated by tick saliva proteins (TSP). Thus, defining functional roles of TSPs in tick evasion is expected to reveal potential targets in tick-antigen based vaccines to prevent TBD infections. This study describes two types of Amblyomma americanum TSPs: those that are similar to LPS activate macrophage (MΦ) to express pro-inflammation (PI) markers and another set that suppresses PI marker expression by activated MΦ. We show that similar to LPS, three recombinant (r) A. americanum insulin-like growth factor binding-related proteins (rAamIGFBP-rP1, rAamIGFBP-rP6S, and rAamIGFBP-rP6L), hereafter designated as PI-rTSPs, stimulated both PBMC -derived MΦ and mice RAW 267.4 MΦ to express PI co-stimulatory markers, CD40, CD80, and CD86 and cytokines, TNFα, IL-1, and IL-6. In contrast, two A. americanum tick saliva serine protease inhibitors (serpins), AAS27 and AAS41, hereafter designated as anti-inflammatory (AI) rTSPs, on their own did not affect MΦ function or suppress expression of PI markers, but enhanced expression of AI cytokines (IL-10 and TGFβ) in MΦ that were pre-activated by LPS or PI-rTSPs. Mice paw edema test demonstrated that in vitro validated PI- and AI-rTSPs are functional in vivo since injection of HEK293-expressed PI-rTSPs (individually or as a cocktail) induced edema comparable to carrageenan-induced edema and was characterized by upregulation of CD40, CD80, CD86, TNF-α, IL-1, IL-6, and chemokines: CXCL1, CCL2, CCL3, CCL5, and CCL11, whereas the AI-rTSPs (individually and cocktail) were suppressive. We propose that the tick may utilize countervailing PI and AI TSPs to regulate evasion of host immune defenses whereby TSPs such as rAamIGFBP-rPs activate host immune cells and proteins such as AAS27 and AAS41 suppress the activated immune cells. Several studies have documented immuno-suppressive activities in whole tick saliva and salivary gland protein extracts. We have made contribution toward understanding the molecular basis of tick feeding, as we have described functions of defined tick saliva immuno-modulatory proteins. We have shown that A. americanum injects two groups of functionally opposed tick saliva proteins: those that could counter-intuitively be characterized as pro-host defense, and those that are expected to have anti-host immune defense functions. Based on our data, we propose that the tick evades host defense using countervailing pro- and anti- inflammatory proteins in which the pro-host defense tick saliva proteins stimulate host immune cells such as macrophages, and the anti-host defense tick saliva proteins suppress functions of the activated immune cells.
Collapse
Affiliation(s)
- Mariam Bakshi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, TAMU, College Station, Texas, United States of America
| | - Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, TAMU, College Station, Texas, United States of America
| | - Lindsay Porter
- Department of Veterinary Pathobiology, College of Veterinary Medicine, TAMU, College Station, Texas, United States of America
| | - Waithaka Mwangi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, TAMU, College Station, Texas, United States of America
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, TAMU, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
4
|
Ellwanger JH, Chies JAB. Host immunogenetics in tick-borne encephalitis virus infection-The CCR5 crossroad. Ticks Tick Borne Dis 2019; 10:729-741. [PMID: 30879988 DOI: 10.1016/j.ttbdis.2019.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/18/2019] [Accepted: 03/10/2019] [Indexed: 12/17/2022]
Abstract
The human Tick-borne encephalitis virus (TBEV) infection is a complex event encompassing factors derived from the virus itself, the vectors, the final host, and the environment as well. Classically, genetic traits stand out among the human factors that modify the susceptibility and progression of infectious diseases. However, and although this is a changing scenario, studies evaluating the genetic factors that affect the susceptibility specifically to TBEV infection and TBEV-related diseases are still scarce. There are already some interesting pieces of evidence showing that some genes and polymorphisms have a real impact on TBEV infection. Also, the inflammatory processes involving tick-human interactions began to be understood in greater detail. This review focuses on the immunogenetic and inflammatory aspects concerning tick-host interactions, TBEV infections, and tick-borne encephalitis. Of note, it has been described that polymorphisms in CD209, GSTM1, IL-10, IL-28B, MMP9, OAS2, OAS3, and TLR3 have a statistically significant impact on TBEV infection. Besides, CCR5, its ligands, and the CCR5Δ32 genetic variant seem to have a very important influence on the infection and its immune responses. Taking this information into consideration, a special discussion regarding the effects of CCR5 on TBEV infection and tick-borne encephalitis will be presented. Emerging topics (such as exosomes, evasins, and CCR5 blockers) involving immunological and inflammatory aspects of TBEV-human interactions will also be addressed. Lastly, the current picture of TBEV infection and the importance to address the TBEV-associated problems through the One Health perspective will be discussed.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - José Artur Bogo Chies
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
5
|
Esteves E, Bizzarro B, Costa FB, Ramírez-Hernández A, Peti APF, Cataneo AHD, Wowk PF, Timóteo RP, Labruna MB, Silva Junior PI, Silva CL, Faccioli LH, Fogaça AC, Sorgi CA, Sá-Nunes A. Amblyomma sculptum Salivary PGE 2 Modulates the Dendritic Cell- Rickettsia rickettsii Interactions in vitro and in vivo. Front Immunol 2019; 10:118. [PMID: 30778355 PMCID: PMC6369204 DOI: 10.3389/fimmu.2019.00118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/15/2019] [Indexed: 01/06/2023] Open
Abstract
Amblyomma sculptum is an important vector of Rickettsia rickettsii, causative agent of Rocky Mountain spotted fever and the most lethal tick-borne pathogen affecting humans. To feed on the vertebrate host's blood, A. sculptum secretes a salivary mixture, which may interact with skin resident dendritic cells (DCs) and modulate their function. The present work was aimed at depicting the A. sculptum saliva-host DC network and the biochemical nature of the immunomodulatory component(s) involved in this interface. A. sculptum saliva inhibits the production of inflammatory cytokines by murine DCs stimulated with LPS. The fractionation of the low molecular weight salivary content by reversed-phase chromatography revealed active fractions eluting from 49 to 55% of the acetonitrile gradient. Previous studies suggested that this pattern of elution matches with that observed for prostaglandin E2 (PGE2) and the molecular identity of this lipid mediator was unambiguously confirmed by a new high-resolution mass spectrometry methodology. A productive infection of murine DCs by R. rickettsii was demonstrated for the first time leading to proinflammatory cytokine production that was inhibited by both A. sculptum saliva and PGE2, a result also achieved with human DCs. The adoptive transfer of murine DCs incubated with R. rickettsii followed by treatment with A. sculptum saliva or PGE2 did not change the cytokine profile associated to cellular recall responses while IgG2a-specific antibodies were decreased in the serum of these mice. Together, these findings emphasize the role of PGE2 as a universal immunomodulator of tick saliva. In addition, it contributes to new approaches to explore R. rickettsii-DC interactions both in vitro and in vivo.
Collapse
Affiliation(s)
- Eliane Esteves
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruna Bizzarro
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Francisco Borges Costa
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Alejandro Ramírez-Hernández
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ana Paula Ferranti Peti
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | | | - Pryscilla Fanini Wowk
- Laboratory of Molecular Virology, Carlos Chagas Institute, Fundação Oswaldo Cruz, Curitiba, Brazil
| | - Rodolfo Pessato Timóteo
- Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Marcelo Bahia Labruna
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | - Célio Lopes Silva
- Department of Biochemistry and Immunology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Lúcia Helena Faccioli
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Andréa Cristina Fogaça
- Department de Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,National Institute of Science and Technology in Molecular Entomology, National Council of Scientific and Technological Development (INCT-EM/CNPq), Rio de Janeiro, Brazil
| | - Carlos Arterio Sorgi
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Anderson Sá-Nunes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,National Institute of Science and Technology in Molecular Entomology, National Council of Scientific and Technological Development (INCT-EM/CNPq), Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Ticks and Tick-Borne Infections: Complex Ecology, Agents, and Host Interactions. Vet Sci 2018; 5:vetsci5020060. [PMID: 29925800 PMCID: PMC6024845 DOI: 10.3390/vetsci5020060] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 12/21/2022] Open
Abstract
Ticks transmit the most diverse array of infectious agents of any arthropod vector. Both ticks and the microbes they transmit are recognized as significant threats to human and veterinary public health. This article examines the potential impacts of climate change on the distribution of ticks and the infections they transmit; the emergence of novel tick-borne pathogens, increasing geographic range and incidence of tick-borne infections; and advances in the characterization of tick saliva mediated modulation of host defenses and the implications of those interactions for transmission, establishment, and control of tick infestation and tick-borne infectious agents.
Collapse
|
7
|
Kazimírová M, Thangamani S, Bartíková P, Hermance M, Holíková V, Štibrániová I, Nuttall PA. Tick-Borne Viruses and Biological Processes at the Tick-Host-Virus Interface. Front Cell Infect Microbiol 2017; 7:339. [PMID: 28798904 PMCID: PMC5526847 DOI: 10.3389/fcimb.2017.00339] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/11/2017] [Indexed: 01/08/2023] Open
Abstract
Ticks are efficient vectors of arboviruses, although less than 10% of tick species are known to be virus vectors. Most tick-borne viruses (TBV) are RNA viruses some of which cause serious diseases in humans and animals world-wide. Several TBV impacting human or domesticated animal health have been found to emerge or re-emerge recently. In order to survive in nature, TBV must infect and replicate in both vertebrate and tick cells, representing very different physiological environments. Information on molecular mechanisms that allow TBV to switch between infecting and replicating in tick and vertebrate cells is scarce. In general, ticks succeed in completing their blood meal thanks to a plethora of biologically active molecules in their saliva that counteract and modulate different arms of the host defense responses (haemostasis, inflammation, innate and acquired immunity, and wound healing). The transmission of TBV occurs primarily during tick feeding and is a complex process, known to be promoted by tick saliva constituents. However, the underlying molecular mechanisms of TBV transmission are poorly understood. Immunomodulatory properties of tick saliva helping overcome the first line of defense to injury and early interactions at the tick-host skin interface appear to be essential in successful TBV transmission and infection of susceptible vertebrate hosts. The local host skin site of tick attachment, modulated by tick saliva, is an important focus of virus replication. Immunomodulation of the tick attachment site also promotes co-feeding transmission of viruses from infected to non-infected ticks in the absence of host viraemia (non-viraemic transmission). Future research should be aimed at identification of the key tick salivary molecules promoting virus transmission, and a molecular description of tick-host-virus interactions and of tick-mediated skin immunomodulation. Such insights will enable the rationale design of anti-tick vaccines that protect against disease caused by tick-borne viruses.
Collapse
Affiliation(s)
- Mária Kazimírová
- Department of Medical Zoology, Institute of Zoology, Slovak Academy of SciencesBratislava, Slovakia
| | - Saravanan Thangamani
- Department of Pathology, University of Texas Medical BranchGalveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical BranchGalveston, TX, United States
- Center for Tropical Diseases, University of Texas Medical BranchGalveston, TX, United States
| | - Pavlína Bartíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Meghan Hermance
- Department of Pathology, University of Texas Medical BranchGalveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical BranchGalveston, TX, United States
- Center for Tropical Diseases, University of Texas Medical BranchGalveston, TX, United States
| | - Viera Holíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Iveta Štibrániová
- Biomedical Research Center, Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Patricia A. Nuttall
- Department of Zoology, University of OxfordOxford, United Kingdom
- Centre for Ecology and HydrologyWallingford, United Kingdom
| |
Collapse
|
8
|
Interaction between saliva's adenosine and tick parasitism: effects on feeding and reproduction. Parasit Vectors 2017; 10:326. [PMID: 28693553 PMCID: PMC5502490 DOI: 10.1186/s13071-017-2248-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 06/15/2017] [Indexed: 02/02/2023] Open
Abstract
Background It has recently been demonstrated that saliva from Rhipicephalus sanguineus ticks contains adenosine (ADO) and prostaglandin E2 (PGE2), two non-protein molecules that have significant immunomodulatory properties. These molecules can inhibit cytokine production by dendritic cells (DCs), while also reducing the expression of CD40 in these cells. However, more studies are needed for a better understanding of their participation in the feeding of ticks in vivo. This work, therefore, evaluated the importance of ADO during tick infestations. Mice were infested with adult ticks (3 couples/mouse), and their skin was collected at the tick-infested site (3rd and 7th day), and mRNA for receptors of ADO was quantified by real-time PCR. Results Tick infestation increased by four and two times the expression of the A2b and A3v1 receptors on day 3, respectively, while expression of other ADO receptors was unaltered. In addition, we treated mice (n = 10/group) daily with 8-(p-Sulfophenyl)theophylline, 8-pSPT, 20 mg/kg, i.p.), a non-selective antagonist of ADO receptors, and evaluated the performance of ticks during infestations. Female ticks fed on 8-pSPT-treated mice presented a reduction in their engorgement, weight and hatching rates of egg masses, and survival times of larvae compared to the same parameters presented by ticks in the control group. To investigate if these 8-pSPT-treated mice presented altered immune responses, we performed three tick infestations and collected their lymph node cells to determine the percentages and activation state of DCs and cytokine production by lymphocytes by flow cytometry (Cytometric Bead Array technique, CBA). Our data showed that 8-pSPT-treated mice presented an increase in the percentage of DCs as well as of their stimulatory and co-stimulatory molecules (CD40, CD80 and MHCII). Regarding production of T cell cytokines, we observed a significant increase in the levels of IL-2 and a significant decrease in IL-10, IL-17, TNF-α and IFN-γ cytokines. Conclusions These results suggest that ADO produced by ticks helps them feed and reproduce and that this effect may be due to modulation of host DCs and T cells.
Collapse
|
9
|
Velásquez JJ, Navarro-Vargas JR, Moncada L. Potential pharmacological use of salivary compounds from hematophagous organisms. REVISTA DE LA FACULTAD DE MEDICINA 2017. [DOI: 10.15446/revfacmed.v65n3.52835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introducción. La saliva de los artrópodos hematófagos contiene un arsenal de compuestos que les permite acceder a la sangre de sus hospederos vertebrados sin ser detectados.Objetivo. Explorar los compuestos salivares de insectos hematófagos que tienen propiedades vasodilatadoras, anticoagulantes, antiinflamatorias, inmunomoduladoras y anestésicas, las cuales se pueden aprovechar por su alto potencial farmacológico.Materiales y métodos. Se realizó una revisión no sistemática de la literatura mediante búsqueda electrónica en las bases de datos PubMed, EMBASE, OvidSP y ScienceDirect; la búsqueda no se limitó por fecha, idioma ni tipo de artículo. Se buscaron artículos sobre los compuestos salivares de los insectos hematófagos, cuyo tema central fuese los efectos en la hemostasia, inmunomodulación y uso farmacológico. Se encontraron 59 artículos que cumplían con los criterios para ser incluidos en la revisión.Conclusión. La saliva de los insectos hematófagos posee gran variedad de moléculas, lo que ofrece una fuente de investigación y un potencial incalculable para el descubrimiento de compuestos que podrían llegar a tener utilidad farmacológica.
Collapse
|
10
|
Šimo L, Kazimirova M, Richardson J, Bonnet SI. The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding and Pathogen Transmission. Front Cell Infect Microbiol 2017; 7:281. [PMID: 28690983 PMCID: PMC5479950 DOI: 10.3389/fcimb.2017.00281] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/08/2017] [Indexed: 12/30/2022] Open
Abstract
As long-term pool feeders, ticks have developed myriad strategies to remain discreetly but solidly attached to their hosts for the duration of their blood meal. The critical biological material that dampens host defenses and facilitates the flow of blood-thus assuring adequate feeding-is tick saliva. Saliva exhibits cytolytic, vasodilator, anticoagulant, anti-inflammatory, and immunosuppressive activity. This essential fluid is secreted by the salivary glands, which also mediate several other biological functions, including secretion of cement and hygroscopic components, as well as the watery component of blood as regards hard ticks. When salivary glands are invaded by tick-borne pathogens, pathogens may be transmitted via saliva, which is injected alternately with blood uptake during the tick bite. Both salivary glands and saliva thus play a key role in transmission of pathogenic microorganisms to vertebrate hosts. During their long co-evolution with ticks and vertebrate hosts, microorganisms have indeed developed various strategies to exploit tick salivary molecules to ensure both acquisition by ticks and transmission, local infection and systemic dissemination within the vertebrate host.
Collapse
Affiliation(s)
- Ladislav Šimo
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of SciencesBratislava, Slovakia
| | - Jennifer Richardson
- UMR Virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| | - Sarah I. Bonnet
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| |
Collapse
|
11
|
Mendes MT, Carvalho-Costa TM, da Silva MV, Anhê ACBM, Guimarães RM, da Costa TA, Ramirez LE, Rodrigues V, Oliveira CJF. Effect of the saliva from different triatomine species on the biology and immunity of TLR-4 ligand and Trypanosoma cruzi-stimulated dendritic cells. Parasit Vectors 2016; 9:634. [PMID: 27938380 PMCID: PMC5148907 DOI: 10.1186/s13071-016-1890-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/16/2016] [Indexed: 02/07/2023] Open
Abstract
Background Triatomines are blood-sucking vectors of Trypanosoma cruzi, the causative agent of Chagas disease. During feeding, triatomines surpass the skin host response through biomolecules present in their saliva. Dendritic cells (DCs) play a crucial role in the induction of the protection to aggressive agents, including blood-sucking arthropods. Here, we evaluated if salivary components of triatomines from different genera evade the host immunity by modulating the biology and the function of LPS- or T. cruzi-stimulated DCs. Methods Saliva of Panstrongylus lignarius, Meccus pallidipennis, Triatoma lecticularia and Rhodnius prolixus were obtained by dissection of salivary glands and the DCs were obtained from the differentiation of mouse bone marrow precursors. Results The differentiation of DCs was inhibited by saliva of all species tested. Saliva differentially inhibited the expression of MHC-II, CD40, CD80 and CD86 in LPS-matured DCs. Except for the saliva of R. prolixus, which induced IL-6 cytokine production, TNF-α, IL-12 and IL-6 were inhibited by the saliva of the other three tested species and IL-10 was increased in all of them. Saliva per se, also induced the production of IL-12, IL-6 and IL-10. Only the saliva of R. prolixus induced DCs apoptosis. The presence of PGE2 was not detected in the saliva of the four triatomines studied. Finally, T. cruzi invasion on DCs is enhanced by the presence of the triatomine saliva. Conclusions These results demonstrate that saliva from different triatomine species exhibit immunomodulatory effects on LPS and T. cruzi-stimulated DCs. These effects could be related to hematophagy and transmission of T. cruzi during feeding. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1890-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Tays Mendes
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA.,Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | | | - Marcos Vinicius da Silva
- Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil.
| | | | - Rafaela Mano Guimarães
- Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Thiago Alvares da Costa
- Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Luis Eduardo Ramirez
- Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Virmondes Rodrigues
- Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | | |
Collapse
|
12
|
Effect of O. porcinus Tick Salivary Gland Extract on the African Swine Fever Virus Infection in Domestic Pig. PLoS One 2016; 11:e0147869. [PMID: 26828597 PMCID: PMC4734713 DOI: 10.1371/journal.pone.0147869] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/13/2015] [Indexed: 02/02/2023] Open
Abstract
African swine fever is a haemorrhagic disease in pig production that can have disastrous financial consequences for farming. No vaccines are currently available and animal slaughtering or area zoning to restrict risk-related movements are the only effective measures to prevent the spread of the disease. Ornithodoros soft ticks are known to transmit the African swine fever virus (ASFV) to pigs in farms, following the natural epidemiologic cycle of the virus. Tick saliva has been shown to modulate the host physiological and immunological responses during feeding on skin, thus affecting viral infection. To better understand the interaction between soft tick, ASFV and pig at the bite location and the possible influence of tick saliva on pig infection by ASFV, salivary gland extract (SGE) of Ornithodoros porcinus, co-inoculated or not with ASFV, was used for intradermal auricular inoculation. Our results showed that, after the virus triggered the disease, pigs inoculated with virus and SGE presented greater hyperthermia than pigs inoculated with virus alone. The density of Langerhans cells was modulated at the tick bite or inoculation site, either through recruitment by ASFV or inhibition by SGE. Additionally, SGE and virus induced macrophage recruitment each. This effect was enhanced when they were co-inoculated. Finally, the co-inoculation of SGE and virus delayed the early local spread of virus to the first lymph node on the inoculation side. This study has shown that the effect of SGE was powerful enough to be quantified in pig both on the systemic and local immune response. We believe this model should be developed with infected tick and could improve knowledge of both tick vector competence and tick saliva immunomodulation.
Collapse
|
13
|
Kotál J, Langhansová H, Lieskovská J, Andersen JF, Francischetti IMB, Chavakis T, Kopecký J, Pedra JHF, Kotsyfakis M, Chmelař J. Modulation of host immunity by tick saliva. J Proteomics 2015; 128:58-68. [PMID: 26189360 PMCID: PMC4619117 DOI: 10.1016/j.jprot.2015.07.005] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/30/2015] [Accepted: 07/12/2015] [Indexed: 12/14/2022]
Abstract
UNLABELLED Next generation sequencing and proteomics have helped to comprehensively characterize gene expression in tick salivary glands at both the transcriptome and the proteome level. Functional data are, however, lacking. Given that tick salivary secretions are critical to the success of the tick transmission lifecycle and, as a consequence, for host colonization by the pathogens they spread, we thoroughly review here the literature on the known interactions between tick saliva (or tick salivary gland extracts) and the innate and adaptive vertebrate immune system. The information is intended to serve as a reference for functional characterization of the numerous genes and proteins expressed in tick salivary glands with an ultimate goal to develop novel vector and pathogen control strategies. SIGNIFICANCE We overview all the known interactions of tick saliva with the vertebrate immune system. The provided information is important, given the recent developments in high-throughput transcriptomic and proteomic analysis of gene expression in tick salivary glands, since it may serve as a guideline for the functional characterization of the numerous newly-discovered genes expressed in tick salivary glands.
Collapse
Affiliation(s)
- Jan Kotál
- Faculty of Science, University of South Bohemia in České Budějovice, Budweis, Czech Republic; Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Budweis, Czech Republic
| | - Helena Langhansová
- Faculty of Science, University of South Bohemia in České Budějovice, Budweis, Czech Republic
| | - Jaroslava Lieskovská
- Faculty of Science, University of South Bohemia in České Budějovice, Budweis, Czech Republic
| | - John F Andersen
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ivo M B Francischetti
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Germany
| | - Jan Kopecký
- Faculty of Science, University of South Bohemia in České Budějovice, Budweis, Czech Republic
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michail Kotsyfakis
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Budweis, Czech Republic.
| | - Jindřich Chmelař
- Faculty of Science, University of South Bohemia in České Budějovice, Budweis, Czech Republic; Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
14
|
Carvalho-Costa TM, Mendes MT, da Silva MV, da Costa TA, Tiburcio MGS, Anhê ACBM, Rodrigues V, Oliveira CJF. Immunosuppressive effects of Amblyomma cajennense tick saliva on murine bone marrow-derived dendritic cells. Parasit Vectors 2015; 8:22. [PMID: 25586117 PMCID: PMC4304185 DOI: 10.1186/s13071-015-0634-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/01/2015] [Indexed: 11/25/2022] Open
Abstract
Background Dendritic cells (DCs) are professional antigen-presenting cells with vital roles in the activation of host immunity. Ticks are bloodsucking arthropods that secrete bioactive compounds with immunomodulatory properties via their saliva. It is known that some tick species modulate the biology of DCs with different intensities; however, studies on Amblyomma cajennense, the Cayenne tick, have not yet been performed, although this species is considered one of the most capable of modulating immune responses of different hosts. Methods Engorged female ticks were stimulated with dopamine to induce salivation, and saliva was pooled. The effects of tick saliva on the biology of dendritic cells were assessed by examining DC differentiation, maturation, migration, cellular viability, cytokine production and expression of surface markers by flow cytometry and ELISA. Competitive enzyme immunoassays (EIA) were used to measure saliva prostaglandin-E2 (PGE2). Statistical significance was determined by ANOVA followed by Tukey’s post-test or by the Kruskal-Wallis test with the Dunns post-test. Results In this work, we demonstrated that the presence of A. cajennense saliva to bone marrow cultures inhibit DC differentiation. This inhibition was not accompanied by inhibition or induction of stimulatory and co-stimulatory molecules such as MHC-II, CD40, CD80 or CD86. Immature and mature DCs that were pre-exposed to saliva showed reduced migration toward the chemokines RANTES and MIP-3β. This inhibition was associated to a reduced expression of CCR5 (the receptor for RANTES) or CCR7 (the receptor for MIP-3β) induced by the presence of saliva in the cultures. Tick saliva also inhibited IL-12p40, IL-6 and TNF-α in a concentration-dependent manner while potentiating IL-10 cytokine production by DCs stimulated with Toll-like receptor-4 ligand. Additionally, A. cajennense tick saliva inhibited the expression of CD40 and CD86 in mature DCs while potentiating the expression of PD-L1. PGE2 was detected as one of the constituents of saliva at a concentration of ~ 80 ng/ml, and we believe that most of the results reported herein are due to the presence of PGE2. Conclusions These results help to understand the tick-host interaction and demonstrate that A. cajennense ticks appear to have mechanisms for modulating host immune cells, including DCs.
Collapse
Affiliation(s)
- Tamires Marielem Carvalho-Costa
- Graduate Course of Physiological Sciences, Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil.
| | - Maria Tays Mendes
- Graduate Course of Tropical Medicine and Infectology, Laboratory of Immunology, Federal University of Triângulo Mineiro, Av. Getúlio Guaritá S/N, Uberaba, Minas Gerais, 38015-050, Brazil.
| | - Marcos Vinicius da Silva
- Graduate Course of Tropical Medicine and Infectology, Laboratory of Immunology, Federal University of Triângulo Mineiro, Av. Getúlio Guaritá S/N, Uberaba, Minas Gerais, 38015-050, Brazil.
| | - Thiago Alvares da Costa
- Graduate Course of Tropical Medicine and Infectology, Laboratory of Immunology, Federal University of Triângulo Mineiro, Av. Getúlio Guaritá S/N, Uberaba, Minas Gerais, 38015-050, Brazil.
| | - Monique Gomes Salles Tiburcio
- Graduate Course of Tropical Medicine and Infectology, Laboratory of Immunology, Federal University of Triângulo Mineiro, Av. Getúlio Guaritá S/N, Uberaba, Minas Gerais, 38015-050, Brazil.
| | | | - Virmondes Rodrigues
- Graduate Course of Tropical Medicine and Infectology, Laboratory of Immunology, Federal University of Triângulo Mineiro, Av. Getúlio Guaritá S/N, Uberaba, Minas Gerais, 38015-050, Brazil.
| | - Carlo Jose Freire Oliveira
- Graduate Course of Tropical Medicine and Infectology, Laboratory of Immunology, Federal University of Triângulo Mineiro, Av. Getúlio Guaritá S/N, Uberaba, Minas Gerais, 38015-050, Brazil.
| |
Collapse
|
15
|
Mason LMK, Veerman CC, Geijtenbeek TBH, Hovius JWR. Ménage à trois: Borrelia, dendritic cells, and tick saliva interactions. Trends Parasitol 2013; 30:95-103. [PMID: 24388562 DOI: 10.1016/j.pt.2013.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 02/02/2023]
Abstract
Borrelia burgdorferi sensu lato, the causative agent of Lyme borreliosis, is inoculated into the skin during an Ixodes tick bite where it is recognised and captured by dendritic cells (DCs). However, considering the propensity of Borrelia to disseminate, it would appear that DCs fall short in mounting a robust immune response against it. Many aspects of the DC-driven immune response to Borrelia have been examined. Recently, components of tick saliva have been identified that sabotage DC responses and aid Borrelia infection. In this review, we summarise what is currently known about the immune response of DCs to Borrelia and explore the mechanisms by which Borrelia manages to circumvent this immune response, with or without the help of tick salivary proteins.
Collapse
Affiliation(s)
- Lauren M K Mason
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands.
| | - Christiaan C Veerman
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - Joppe W R Hovius
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Wikel S. Ticks and tick-borne pathogens at the cutaneous interface: host defenses, tick countermeasures, and a suitable environment for pathogen establishment. Front Microbiol 2013; 4:337. [PMID: 24312085 PMCID: PMC3833115 DOI: 10.3389/fmicb.2013.00337] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 10/25/2013] [Indexed: 11/21/2022] Open
Abstract
Ticks are unique among hematophagous arthropods by continuous attachment to host skin and blood feeding for days; complexity and diversity of biologically active molecules differentially expressed in saliva of tick species; their ability to modulate the host defenses of pain and itch, hemostasis, inflammation, innate and adaptive immunity, and wound healing; and, the diverse array of infectious agents they transmit. All of these interactions occur at the cutaneous interface in a complex sequence of carefully choreographed host defense responses and tick countermeasures resulting in an environment that facilitates successful blood feeding and establishment of tick-borne infectious agents within the host. Here, we examine diverse patterns of tick attachment to host skin, blood feeding mechanisms, salivary gland transcriptomes, bioactive molecules in tick saliva, timing of pathogen transmission, and host responses to tick bite. Ticks engage and modulate cutaneous and systemic immune defenses involving keratinocytes, natural killer cells, dendritic cells, T cell subpopulations (Th1, Th2, Th17, Treg), B cells, neutrophils, mast cells, basophils, endothelial cells, cytokines, chemokines, complement, and extracellular matrix. A framework is proposed that integrates tick induced changes of skin immune effectors with their ability to respond to tick-borne pathogens. Implications of these changes are addressed. What are the consequences of tick modulation of host cutaneous defenses? Does diversity of salivary gland transcriptomes determine differential modulation of host inflammation and immune defenses and therefore, in part, the clades of pathogens effectively transmitted by different tick species? Do ticks create an immunologically modified cutaneous environment that enhances specific pathogen establishment? Can tick saliva molecules be used to develop vaccines that block pathogen transmission?
Collapse
Affiliation(s)
- Stephen Wikel
- Department of Medical Sciences, Frank H. Netter MD School of Medicine, Quinnipiac University Hamden, CT, USA
| |
Collapse
|
17
|
Rhipicephalus microplus lipocalins (LRMs): Genomic identification and analysis of the bovine immune response using in silico predicted B and T cell epitopes. Int J Parasitol 2013; 43:739-52. [DOI: 10.1016/j.ijpara.2013.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 11/17/2022]
|
18
|
Díaz-Martín V, Manzano-Román R, Valero L, Oleaga A, Encinas-Grandes A, Pérez-Sánchez R. An insight into the proteome of the saliva of the argasid tick Ornithodoros moubata reveals important differences in saliva protein composition between the sexes. J Proteomics 2013; 80:216-35. [DOI: 10.1016/j.jprot.2013.01.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 01/11/2013] [Accepted: 01/15/2013] [Indexed: 01/04/2023]
|
19
|
Heinze DM, Wikel SK, Thangamani S, Alarcon-Chaidez FJ. Transcriptional profiling of the murine cutaneous response during initial and subsequent infestations with Ixodes scapularis nymphs. Parasit Vectors 2012; 5:26. [PMID: 22309607 PMCID: PMC3293053 DOI: 10.1186/1756-3305-5-26] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/06/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Ixodes scapularis ticks are hematophagous arthropods capable of transmitting many infectious agents to humans. The process of blood feeding is an extended and continuous interplay between tick and host responses. While this process has been studied extensively in vitro, no global understanding of the host response to ticks has emerged. METHODS To address this issue, we used PCR-arrays to measure skin-specific expression of 233 discrete genes at 8 time points during primary and secondary infestations of mice with pathogen-free I. scapularis nymphs. Selected results were then validated at the mRNA and protein levels by additional real-time PCR and bioplex assay. RESULTS Primary infestation was characterized by the late induction of an innate immune response. Lectin pattern recognition receptors, cytokines, and chemokines were upregulated consistent with increased neutrophil and macrophage migration. Gene ontology and pathway analyses of downregulated genes suggested inhibition of gene transcription and Th17 immunity. During the secondary infestation, additional genes were modulated suggesting a broader involvement of immune cells including CD8 and CD4 positive T lymphocytes. The cytokine response showed a mixed Th1/Th2 profile with a potential for T regulatory cell activity. Key gene ontology clusters observed during the secondary infestation were cell migration and activation. Matrix metalloproteinases were upregulated, apoptosis-related genes were differentially modulated, and immunoreceptor signaling molecules were upregulated. In contrast, transcripts related to mitogenic, WNT, Hedgehog, and stress pathways were downregulated. CONCLUSIONS Our results support a model of tick feeding where lectin pattern recognition receptors orchestrate an innate inflammatory response during primary infestation that primes a mixed Th1/Th2 response upon secondary exposure. Tick feeding inhibits gene transcription and Th17 immunity. Salivary molecules may also inhibit upregulation of mitogenic, WNT, Hedgehog, and stress pathways and enhance the activity of T regulatory cells, production of IL-10, and suppressors of cytokine signaling molecules (SOCS). This study provides the first comprehensive transcriptional analysis of the murine host response at the I. scapularis bite site and suggests both a potential model of the host cutaneous response and candidate genes for further description and investigation.
Collapse
Affiliation(s)
- Dar M Heinze
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | |
Collapse
|
20
|
Oliveira CJF, Sá-Nunes A, Francischetti IMB, Carregaro V, Anatriello E, Silva JS, Santos IKFDM, Ribeiro JMC, Ferreira BR. Deconstructing tick saliva: non-protein molecules with potent immunomodulatory properties. J Biol Chem 2011; 286:10960-9. [PMID: 21270122 DOI: 10.1074/jbc.m110.205047] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dendritic cells (DCs) are powerful initiators of innate and adaptive immune responses. Ticks are blood-sucking ectoparasite arthropods that suppress host immunity by secreting immunomodulatory molecules in their saliva. Here, compounds present in Rhipicephalus sanguineus tick saliva with immunomodulatory effects on DC differentiation, cytokine production, and costimulatory molecule expression were identified. R. sanguineus tick saliva inhibited IL-12p40 and TNF-α while potentiating IL-10 cytokine production by bone marrow-derived DCs stimulated by Toll-like receptor-2, -4, and -9 agonists. To identify the molecules responsible for these effects, we fractionated the saliva through microcon filtration and reversed-phase HPLC and tested each fraction for DC maturation. Fractions with proven effects were analyzed by micro-HPLC tandem mass spectrometry or competition ELISA. Thus, we identified for the first time in tick saliva the purine nucleoside adenosine (concentration of ∼110 pmol/μl) as a potent anti-inflammatory salivary inhibitor of DC cytokine production. We also found prostaglandin E(2) (PGE(2) ∼100 nM) with comparable effects in modulating cytokine production by DCs. Both Ado and PGE(2) inhibited cytokine production by inducing cAMP-PKA signaling in DCs. Additionally, both Ado and PGE(2) were able to inhibit expression of CD40 in mature DCs. Finally, flow cytometry analysis revealed that PGE(2), but not Ado, is the differentiation inhibitor of bone marrow-derived DCs. The presence of non-protein molecules adenosine and PGE(2) in tick saliva indicates an important evolutionary mechanism used by ticks to subvert host immune cells and allow them to successfully complete their blood meal and life cycle.
Collapse
Affiliation(s)
- Carlo José F Oliveira
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Tick saliva has potent immunomodulatory properties. In arthropod-borne diseases, this effect is largely used by microorganisms to increase their pathogenicity and to evade host immune responses. We show that in Lyme borreliosis, tick salivary gland extract and a tick saliva protein, Salp15, inhibit in vitro keratinocyte inflammation induced by Borrelia burgdorferi sensu stricto or by the major outer surface lipoprotein of Borrelia, OspC. Chemokines (interleukin-8 [IL-8] and monocyte chemoattractant protein 1 [MCP-1]) and several antimicrobial peptides (defensins, cathelicidin, psoriasin, and RNase 7) were downregulated. Interestingly, antimicrobial peptides (AMPs) transiently inhibited bacterial motility but did not kill the organisms when tested in vitro. We conclude that tick saliva affects the chemotactic properties of chemokines and AMPs on immune cells and has an antialarmin effect on human primary keratinocytes. Alarmins are mediators that mobilize and activate antigen-presenting cells. Inhibition of cutaneous innate immunity and of the migration of immune cells to the site of the tick bite ensures a favorable environment for Borrelia. The bacterium can then multiply locally and, subsequently, disseminate to the target organs, including joints, heart, and the central nervous system.
Collapse
|
22
|
Anatriello E, Ribeiro JMC, de Miranda-Santos IKF, Brandão LG, Anderson JM, Valenzuela JG, Maruyama SR, Silva JS, Ferreira BR. An insight into the sialotranscriptome of the brown dog tick, Rhipicephalus sanguineus. BMC Genomics 2010; 11:450. [PMID: 20650005 PMCID: PMC3091647 DOI: 10.1186/1471-2164-11-450] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 07/22/2010] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Rhipicephalus sanguineus, known as the brown dog tick, is a common ectoparasite of domestic dogs and can be found worldwide. R.sanguineus is recognized as the primary vector of the etiological agent of canine monocytic ehrlichiosis and canine babesiosis. Here we present the first description of a R. sanguineus salivary gland transcriptome by the production and analysis of 2,034 expressed sequence tags (EST) from two cDNA libraries, one consctructed using mRNA from dissected salivary glands from female ticks fed for 3-5 days (early to mid library, RsSGL1) and the another from ticks fed for 5 days (mid library, RsSGL2), identifying 1,024 clusters of related sequences. RESULTS Based on sequence similarities to nine different databases, we identified transcripts of genes that were further categorized according to function. The category of putative housekeeping genes contained approximately 56% of the sequences and had on average 2.49 ESTs per cluster, the secreted protein category contained 26.6% of the ESTs and had 2.47 EST's/clusters, while 15.3% of the ESTs, mostly singletons, were not classifiable, and were annotated as "unknown function". The secreted category included genes that coded for lipocalins, proteases inhibitors, disintegrins, metalloproteases, immunomodulatory and antiinflammatory proteins, as Evasins and Da-p36, as well as basic-tail and 18.3 kDa proteins, cement proteins, mucins, defensins and antimicrobial peptides. Comparison of the abundance of ESTs from similar contigs of the two salivary gland cDNA libraries allowed the identification of differentially expressed genes, such as genes coding for Evasins and a thrombin inhibitor, which were over expressed in the RsSGL1 (early to mid library) versus RsSGL2 (mid library), indicating their role in inhibition of inflammation at the tick feeding site from the very beginning of the blood meal. Conversely, sequences related to cement (64P), which function has been correlated with tick attachment, was largely expressed in the mid library. CONCLUSIONS Our survey provided an insight into the R. sanguineus sialotranscriptome, which can assist the discovery of new targets for anti-tick vaccines, as well as help to identify pharmacologically active proteins.
Collapse
Affiliation(s)
- Elen Anatriello
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - José MC Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8132, USA
| | - Isabel KF de Miranda-Santos
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
- Embrapa Recursos Genéticos e Biotecnologia, 70770-900, Brasília, DF, Brazil
| | - Lucinda G Brandão
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
- Universidade Paulista, Avenida Baguaçu, 1939, 16018-280, Araçatuba, SP, Brasil
| | - Jennifer M Anderson
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8132, USA
| | - Jesus G Valenzuela
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8132, USA
| | - Sandra R Maruyama
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - João S Silva
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Beatriz R Ferreira
- Department of Maternal and Child and Public Health Nursing, Ribeirão Preto School of Nursing, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| |
Collapse
|
23
|
Flad HD, Brandt E. Platelet-derived chemokines: pathophysiology and therapeutic aspects. Cell Mol Life Sci 2010; 67:2363-86. [PMID: 20213276 PMCID: PMC11115602 DOI: 10.1007/s00018-010-0306-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 01/28/2010] [Accepted: 02/05/2010] [Indexed: 02/05/2023]
Abstract
The identification of chemokines in blood platelets has strengthened our view of these cells as participants in immune host defense. Platelet chemokines representing prestored and rapidly releasable proteins may play a major role as first-line inflammatory mediators. This is evident from their capability to recruit early inflammatory cells such as neutrophil granulocytes and monocytes and even to exhibit direct antimicrobial activity. However, insight is growing that platelet chemokines may be also long-term regulators, e.g., by activating T lymphocytes, by modulating the formation of endothelium and even thrombocytopoiesis itself. This review deals with the individual and cooperative functionality of platelet chemokines, as well as their potential as a basis for therapeutic intervention in the pathology of inflammation, infection, allergy and tumors. Within this context, therapeutic strategies based on the use of antibodies, modified chemokines, chemokine-binding proteins and chemokine receptor antagonists as well as first clinical studies will be addressed.
Collapse
Affiliation(s)
- Hans-Dieter Flad
- Department of Immunology and Cell Biology, Research Center Borstel, Borstel, Germany.
| | | |
Collapse
|
24
|
Castor MGM, Rezende B, Resende CB, Alessandri AL, Fagundes CT, Sousa LP, Arantes RME, Souza DG, Silva TA, Proudfoot AEI, Teixeira MM, Pinho V. The CCL3/macrophage inflammatory protein-1alpha-binding protein evasin-1 protects from graft-versus-host disease but does not modify graft-versus-leukemia in mice. THE JOURNAL OF IMMUNOLOGY 2010; 184:2646-54. [PMID: 20100934 DOI: 10.4049/jimmunol.0902614] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CCL3 is a protein of the CC chemokine family known to be important for T cell recruitment in inflammatory diseases. The aim of the current study was to evaluate the effects and putative mechanism of action of evasin-1, a novel CCL3-binding protein, in the pathogenesis of acute graft-versus-host disease (GVHD). GVHD was induced by the transplantation of splenocytes from C57BL/6J to B6D2F1 mice. Treatment of recipient mice with evasin-1 prevented mortality associated with GVHD. This was correlated with reduced weight loss and clinical disease severity. Analysis of the small intestine showed that evasin-1 treatment reduced the histopathological score and decreased levels of IFN-gamma and CCL5. Mechanistically, evasin-1 treatment reduced the number of CD4(+) and CD8(+) T cells infiltrating the small intestine, as assessed by immunohistochemistry, and the adhesion of leukocytes to intestinal venules of recipient mice, as assessed by intravital microscopy. Evasin-1 was also able to decrease liver damage, as seen by reduction of inflammatory infiltrate and IFN-gamma levels. Treatment with evasin-1 did not interfere with graft-versus-leukemia. Altogether, our studies demonstrate that CCL3 plays a major role in mediating GVHD, but not graft-versus-leukemia in mice and suggest that blockade of CCL3 with evasin-1 has potential therapeutic application in patients undergoing bone marrow transplantation.
Collapse
Affiliation(s)
- Marina G M Castor
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, BeloHorizonte, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Neospora caninum excreted/secreted antigens trigger CC-chemokine receptor 5-dependent cell migration. Int J Parasitol 2010; 40:797-805. [PMID: 20060395 DOI: 10.1016/j.ijpara.2009.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Revised: 12/04/2009] [Accepted: 12/06/2009] [Indexed: 01/10/2023]
Abstract
Neospora caninum, the causative agent of neosporosis, is an obligate intracellular parasite considered to be a major cause of abortion in cattle throughout the world. Most studies concerning N. caninum have focused on life cycle, seroepidemiology, pathology and vaccination, while data on host-parasite interaction, such as host cell migration, mechanisms of evasion and dissemination of this parasite during the early phase of infection are still poorly understood. Here we show the ability of excreted/secreted antigens from N. caninum (NcESAs) to attract monocytic cells to the site of primary infection in both in vitro and in vivo assays. Molecules from the family of cyclophilins present on the NcESAs were shown to work as chemokine-like proteins and NcESA-induced chemoattraction involved G(i) protein signaling and participation of CC-chemokine receptor 5 (CCR5). Additionally, we demonstrate the ability of NcESAs to enhance the expression of CCR5 on monocytic cells and this increase occurred in parallel with the chemotactic activity of NcESAs by increasing cell migration. These results suggest that during the first days of infection, N. caninum produces molecules capable of inducing monocytic cell migration to the sites of infection, which will consequently enhance initial parasite invasion and proliferation. Altogether, these results help to clarify some key features involved in the process of cell migration and may reveal virulence factors and therapeutic targets to control neosporosis.
Collapse
|
26
|
Oliveira CJF, Carvalho WA, Garcia GR, Gutierrez FRS, de Miranda Santos IKF, Silva JS, Ferreira BR. Tick saliva induces regulatory dendritic cells: MAP-kinases and Toll-like receptor-2 expression as potential targets. Vet Parasitol 2009; 167:288-97. [PMID: 19836139 DOI: 10.1016/j.vetpar.2009.09.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Ticks (Acari: Ixodidae) are bloodsucking ectoparasitic arthropods of human and veterinary medical importance. Tick saliva has been shown to contain a wide range of bioactive molecules with vasodilatory, antihemostatic, and immunomodulatory activities. We have previously demonstrated that saliva from Rhipicephalus sanguineus ticks inhibits the maturation of dendritic cells (DCs) stimulated with LPS. Here we examined the mechanism of this immune subversion, evaluating the effect of tick saliva on Toll-like receptor (TLR)-4 signalling pathway in bone marrow-derived DCs. We demonstrated that R. sanguineus tick saliva impairs maturation of DCs stimulated with LPS, a TLR-4 ligand, leading to increased production of interleukin (IL)-10 and reduced synthesis of IL-12p70 and TNF-alpha. The immunomodulatory effect of the tick saliva on the production of pro-inflammatory cytokines by DCs stimulated with LPS was associated with the observation that tick saliva inhibits the activation of the ERK 1/2 and p38 MAP kinases. These effects were independent of the expression of TLR-4 on the surface of DCs. Additionally, saliva-treated DCs also presented a similar pattern of cytokine modulation in response to other TLR ligands. Since the recent literature reports that several parasites evade immune responses through TLR-2-mediated production of IL-10, we evaluated the effect of tick saliva on the percentage of TLR-2(+) DCs stimulated with the TLR-2 ligand lipoteicoic acid (LTA). The data showed that the population of DCs expressing TLR-2 was significantly increased in DCs treated with LTA plus saliva. In addition, tick saliva alone increased the expression of TLR-2 in a dose- and time-dependent manner. Our data suggest that tick saliva induces regulatory DCs, which secrete IL-10 and low levels of IL-12 and TNF-alpha when stimulated by TLR ligands. Such regulatory DCs are associated with expression of TLR-2 and inhibition of ERK and p38, which promotes the production of IL-10 and thus down-modulates the host's immune response, possibly favouring susceptibility to tick infestations.
Collapse
Affiliation(s)
- Carlo José F Oliveira
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The saliva of hematophagous arthropods contains potent anti-inflammatory and antihemostatic activities that promote acquisition of the blood meal and enhance infection with pathogens. We have shown that polymorphonuclear leukocytes (PMN) treated with the saliva of the tick Ixodes scapularis have reduced expression of beta(2) integrins, impaired PMN adherence, and reduced killing of Borrelia burgdorferi, the causative agent of Lyme disease. Here we describe two Ixodes proteins that are induced upon tick feeding and expressed predominantly in the salivary glands. Using saliva harvested from ticks with reduced levels of ISL 929 and ISL 1373 through targeted RNA interference knockdown, as well as purified recombinant proteins, we show the effects of these proteins on downregulation of PMN integrins and inhibition of the production of O(2)(-) by PMN in vitro. Mice immunized with ISL 929/1373 had increased numbers of PMN at the site of tick attachment and a lower spirochete burden in the skin and joints 21 days after infection compared to control-immunized animals. Our results suggest that ISL 929 and ISL 1373 contribute to the inhibition of PMN functions shown previously with tick saliva and support important roles for these inhibitory proteins in the modulation of PMN function in vivo.
Collapse
|
28
|
Francischetti IMB, Sa-Nunes A, Mans BJ, Santos IM, Ribeiro JMC. The role of saliva in tick feeding. FRONT BIOSCI-LANDMRK 2009; 14:2051-88. [PMID: 19273185 PMCID: PMC2785505 DOI: 10.2741/3363] [Citation(s) in RCA: 376] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
When attempting to feed on their hosts, ticks face the problem of host hemostasis (the vertebrate mechanisms that prevent blood loss), inflammation (that can produce itching or pain and thus initiate defensive behavior on their hosts) and adaptive immunity (by way of both cellular and humoral responses). Against these barriers, ticks evolved a complex and sophisticated pharmacological armamentarium, consisting of bioactive lipids and proteins, to assist blood feeding. Recent progress in transcriptome research has uncovered that hard ticks have hundreds of different proteins expressed in their salivary glands, the majority of which have no known function, and include many novel protein families (e.g., their primary structure is unique to ticks). This review will address the vertebrate mechanisms of these barriers as a guide to identify the possible targets of these large numbers of known salivary proteins with unknown function. We additionally provide a supplemental Table that catalogues over 3,500 putative salivary proteins from various tick species, which might assist the scientific community in the process of functional identification of these unique proteins. This supplemental file is accessble fromhttp://exon.niaid.nih.gov/transcriptome/tick_review/Sup-Table-1.xls.gz.
Collapse
Affiliation(s)
- Ivo M B Francischetti
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda MD, USA
| | | | | | | | | |
Collapse
|
29
|
Carregaro V, Valenzuela JG, Cunha TM, Verri WA, Grespan R, Matsumura G, Ribeiro JMC, Elnaiem DE, Silva JS, Cunha FQ. Phlebotomine salivas inhibit immune inflammation-induced neutrophil migration via an autocrine DC-derived PGE2/IL-10 sequential pathway. J Leukoc Biol 2008; 84:104-14. [PMID: 18390928 DOI: 10.1189/jlb.1107797] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the present study, we investigated whether saliva from Phlebotomus papatasi and Phlebotomus duboscqi inhibited antigen-induced neutrophil migration and the mechanisms involved in these effects. The pretreatment of immunized mice with salivary gland extracts (SGE) of both phlebotomines inhibited OVA challenge-induced neutrophil migration and release of the neutrophil chemotactic mediators, MIP-1alpha, TNF-alpha, and leukotriene B4 (LTB4). Furthermore, SGE treatment enhanced the production of anti-inflammatory mediators, IL-10 and PGE2. SGE treatments failed to inhibit neutrophil migration and MIP-1alpha and LTB4 production in IL-10-/- mice, also failing in mice treated with nonselective (indomethacin) or selective (rofecoxibe) cyclooxygenase (COX) inhibitors. COX inhibition resulted in diminished SGE-induced IL-10 production, and PGE2 release triggered by SGE remained increased in IL-10-/- mice, suggesting that prostanoids are acting through an IL-10-dependent mechanism. SGE treatments in vivo reduced the OVA-induced lymphoproliferation of spleen-derived cells. Further, the in vitro incubation of bone marrow-derived dendritic cells (DC) with SGE inhibited the proliferation of CD4+T cells from OVA-immunized mice, which was reversed by indomethacin and anti-IL-10 antibody treatments. Supporting these results, SGE induced the production of PGE2 and IL-10 by DC, which were blocked by COX inhibition. These effects were associated with the reduction of DC-membrane expression of MHC-II and CD86 by SGE treatment. Altogether, the results showed that Phlebotomine saliva inhibits immune inflammation-induced neutrophil migration by an autocrine DC sequential production of PGE2/IL-10, suggesting that the saliva constituents might be promising therapeutic molecules to target immune inflammatory diseases.
Collapse
Affiliation(s)
- Vanessa Carregaro
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Av Bandeirantes, 3900, Ribeirão Preto, SP, Brazil, 14049-900
| | | | | | | | | | | | | | | | | | | |
Collapse
|