1
|
Yusof NY, Quay DHX, Kamaruddin S, Jonet MA, Md Illias R, Mahadi NM, Firdaus-Raih M, Abu Bakar FD, Abdul Murad AM. Biochemical and in silico structural characterization of a cold-active arginase from the psychrophilic yeast, Glaciozyma antarctica PI12. Extremophiles 2024; 28:15. [PMID: 38300354 DOI: 10.1007/s00792-024-01333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024]
Abstract
Glaciozyma antarctica PI12 is a psychrophilic yeast isolated from Antarctica. In this work, we describe the heterologous production, biochemical properties and in silico structure analysis of an arginase from this yeast (GaArg). GaArg is a metalloenzyme that catalyses the hydrolysis of L-arginine to L-ornithine and urea. The cDNA of GaArg was reversed transcribed, cloned, expressed and purified as a recombinant protein in Escherichia coli. The purified protein was active against L-arginine as its substrate in a reaction at 20 °C, pH 9. At 10-35 °C and pH 7-9, the catalytic activity of the protein was still present around 50%. Mn2+, Ni2+, Co2+ and K+ were able to enhance the enzyme activity more than two-fold, while GaArg is most sensitive to SDS, EDTA and DTT. The predicted structure model of GaArg showed a very similar overall fold with other known arginases. GaArg possesses predominantly smaller and uncharged amino acids, fewer salt bridges, hydrogen bonds and hydrophobic interactions compared to the other counterparts. GaArg is the first reported arginase that is cold-active, facilitated by unique structural characteristics for its adaptation of catalytic functions at low-temperature environments. The structure and function of cold-active GaArg provide insights into the potentiality of new applications in various biotechnology and pharmaceutical industries.
Collapse
Affiliation(s)
- Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia.
- Department of Biological Sciences & Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - Doris Huai Xia Quay
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| | - Shazilah Kamaruddin
- Department of Biological Sciences & Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Mohd Anuar Jonet
- Malaysia Genome and Vaccine Institute, Jalan Bangi Lama, 43000, Kajang, Selangor, Malaysia
| | - Rosli Md Illias
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81300, Skudai, Johor, Malaysia
| | - Nor Muhammad Mahadi
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Mohd Firdaus-Raih
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Farah Diba Abu Bakar
- Department of Biological Sciences & Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Abdul Munir Abdul Murad
- Department of Biological Sciences & Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| |
Collapse
|
2
|
Capparis spinosa inhibits Leishmania major growth through nitric oxide production in vitro and arginase inhibition in silico. Exp Parasitol 2023; 245:108452. [PMID: 36581148 DOI: 10.1016/j.exppara.2022.108452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Cutaneous leishmaniasis is an infectious disease, considered as a major public health problem in different regions of the world. The current treatments are limited due to their toxicity and treatment failures, which have increased the search for new substances of natural origin to control this infection. Capparis spinosa is an important medicinal plant, rich in biochemical compounds with a broad range of activities including antimicrobial effects. Nevertheless, more investigations are still needed to determine its effect on Leishmania parasites. This study aimed to evaluate the effect of C. spinosa' extracts on Leishmania major promastigotes and amastigotes growth as well as on L-arginine metabolic pathways, especially the production of leishmanicidal molecules such as nitric oxide. Our results showed that C. spinosa' methanolic and aqueous extracts contained polyphenols and flavonoids at different concentrations. The methanolic extract of C. spinosa, compared to the aqueous extract, showed significantly higher amounts of total polyphenols (21.23 ± 1.08) mg GAE/g of dw (P < 0.05), as well as a higher antioxidant activity evaluated respectively by Reducing Power and DPPH (EC50: 0.31 ± 0.02 and 7.69 ± 1.28) mg/ml. Both extracts significantly inhibited L. major promastigotes and intra-macrophagic amastigotes growth in vitro in a dose-dependent manner (P < 0.001) and induced NO production not only in Leishmania-infected macrophages but also in uninfected macrophages, without showing any cytotoxicity in vitro. Furthermore, in silico docking studies showed that C. spinosa compounds identified by RP-HPLC exhibited inhibitory activity against the arginase enzyme. The leishmanicidal effect of C. spinosa may be due to its phenolic content and its mechanism of action may be mediated by an increase in NO production and by the inhibition of arginase enzyme in silico. These findings support the hypothesis that C. spinosa might be a valuable source of new biomolecules for leishmaniasis treatment.
Collapse
|
3
|
Assouab A, El Filaly H, Akarid K. Inhibiting Human and Leishmania Arginases Using Cannabis sativa as a Potential Therapy for Cutaneous Leishmaniasis: A Molecular Docking Study. Trop Med Infect Dis 2022; 7:tropicalmed7120400. [PMID: 36548655 PMCID: PMC9783378 DOI: 10.3390/tropicalmed7120400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
Cutaneous leishmaniasis (CL), a vector-borne parasitic disease caused by the Leishmania protozoan, is a serious public health problem in Morocco. The treatment of this disease is still based on pentavalent antimonials as the primary therapy, but these have associated side effects. Thus, the development of effective, risk-free alternative therapeutics based on natural compounds against leishmaniasis is urgent. Arginase, the key enzyme in the polyamine biosynthetic pathway, plays a critical role in leishmaniasis outcome and has emerged as a potential therapeutic target. The objective of this study was to test Cannabis sativa's phytochemical components (cannabinoids and terpenoids) through molecular docking against Leishmania and human arginase enzymes. Our results showed that delta-9-tetrahydrocannabinol (THC) possessed the best binding energies of -6.02 and -6.35 kcal/mol with active sites of Leishmania and human arginases, respectively. Delta-9-THC interacted with Leishmania arginase through various amino acids including His139 and His 154 and linked to human arginase via His 126. In addition to delta-9-THC, caryophyllene oxide and cannabidiol (CBD) also showed a good inhibition of Leishmania and human arginases, respectively. Overall, the studied components were found to inhibit both arginases active sites via hydrogen bonds and hydrophobic interactions. These components may serve as therapeutic agents or in co-administrated therapy for leishmaniasis.
Collapse
|
4
|
Betancourt-Conde I, Avitia-Domínguez C, Hernández-Campos A, Castillo R, Yépez-Mulia L, Oria-Hernández J, Méndez ST, Sierra-Campos E, Valdez-Solana M, Martínez-Caballero S, Hermoso JA, Romo-Mancillas A, Téllez-Valencia A. Benzimidazole Derivatives as New and Selective Inhibitors of Arginase from Leishmania mexicana with Biological Activity against Promastigotes and Amastigotes. Int J Mol Sci 2021; 22:ijms222413613. [PMID: 34948408 PMCID: PMC8705706 DOI: 10.3390/ijms222413613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Leishmaniasis is a disease caused by parasites of the Leishmania genus that affects 98 countries worldwide, 2 million of new cases occur each year and more than 350 million people are at risk. The use of the actual treatments is limited due to toxicity concerns and the apparition of resistance strains. Therefore, there is an urgent necessity to find new drugs for the treatment of this disease. In this context, enzymes from the polyamine biosynthesis pathway, such as arginase, have been considered a good target. In the present work, a chemical library of benzimidazole derivatives was studied performing computational, enzyme kinetics, biological activity, and cytotoxic effect characterization, as well as in silico ADME-Tox predictions, to find new inhibitors for arginase from Leishmania mexicana (LmARG). The results show that the two most potent inhibitors (compounds 1 and 2) have an I50 values of 52 μM and 82 μM, respectively. Moreover, assays with human arginase 1 (HsARG) show that both compounds are selective for LmARG. According to molecular dynamics simulation studies these inhibitors interact with important residues for enzyme catalysis. Biological activity assays demonstrate that both compounds have activity against promastigote and amastigote, and low cytotoxic effect in murine macrophages. Finally, in silico prediction of their ADME-Tox properties suggest that these inhibitors support the characteristics to be considered drug candidates. Altogether, the results reported in our study suggest that the benzimidazole derivatives are an excellent starting point for design new drugs against leishmanisis.
Collapse
Affiliation(s)
- Irene Betancourt-Conde
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitúa S/N, Durango 34000, Mexico;
| | - Claudia Avitia-Domínguez
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitúa S/N, Durango 34000, Mexico;
- Correspondence: (C.A.-D.); (A.T.-V.); Tel.: +52-618-812-1687 (A.T.-V.)
| | - Alicia Hernández-Campos
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.H.-C.); (R.C.)
| | - Rafael Castillo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.H.-C.); (R.C.)
| | - Lilián Yépez-Mulia
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Unidad Médica de Alta Especialidad-Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Jesús Oria-Hernández
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (J.O.-H.); (S.T.M.)
| | - Sara T. Méndez
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (J.O.-H.); (S.T.M.)
| | - Erick Sierra-Campos
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio 35010, Mexico; (E.S.-C.); (M.V.-S.)
| | - Mónica Valdez-Solana
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio 35010, Mexico; (E.S.-C.); (M.V.-S.)
| | - Siseth Martínez-Caballero
- Departamento de Cristalografía y Biología Estructural, Instituto Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain; (S.M.-C.); (J.A.H.)
| | - Juan A. Hermoso
- Departamento de Cristalografía y Biología Estructural, Instituto Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain; (S.M.-C.); (J.A.H.)
| | - Antonio Romo-Mancillas
- Laboratorio de Diseño Asistido por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico;
| | - Alfredo Téllez-Valencia
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitúa S/N, Durango 34000, Mexico;
- Correspondence: (C.A.-D.); (A.T.-V.); Tel.: +52-618-812-1687 (A.T.-V.)
| |
Collapse
|
5
|
Prasanna P, Kumar P, Mandal S, Payal T, Kumar S, Hossain SU, Das P, Ravichandiran V, Mandal D. 7,8-dihydroxyflavone-functionalized gold nanoparticles target the arginase enzyme of Leishmania donovani. Nanomedicine (Lond) 2021; 16:1887-1903. [PMID: 34397295 DOI: 10.2217/nnm-2021-0161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: To analyze the efficacy and possible mechanism of action of 7,8-dihydroxyflavone (DHF) and DHF synthesized gold nanoparticles (GNPs) against the parasite Leishmania donovani. Methods: GNPs were synthesized using DHF and characterized by dynamic light scattering, ζ potential, Fourier transform infrared spectroscopy, transmission electron microscopy and x-ray diffraction. The efficacy of DHF and DHF-GNP were tested against sensitive and drug-resistant parasites. GNP uptake was measured on macrophages by atomic absorption spectroscopy. Results: DHF and DHF-GNP (∼35 nm) were equally effective against sensitive and drug-resistant strains and inhibited the arginase activity of parasites. Increased IFN-γ and reduced IL-12 cytokine response showed a Th1/Th2-mediated cell death in macrophages. Conclusion: The low cytotoxicity and high biological activity of DHF-GNP may be useful for chemotherapy of leishmaniasis.
Collapse
Affiliation(s)
- Pragya Prasanna
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India
| | - Saptarshi Mandal
- Department of Chemistry, Indian Institute of Technology, Patna, 801106, India
| | - Tanvi Payal
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India.,Cognizant Technology Solution, Hyderabad, 800051, India
| | - Saurabh Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India
| | - Sk Ugir Hossain
- Department of Clinical and Translational Medicine, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Prolay Das
- Department of Chemistry, Indian Institute of Technology, Patna, 801106, India
| | - V Ravichandiran
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India.,National Institute of Pharmaceutical Education & Research (NIPER), Kolkata, 700054, India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India
| |
Collapse
|
6
|
da Silva ER, Come JAADSS, Brogi S, Calderone V, Chemi G, Campiani G, Oliveira TMFDS, Pham TN, Pudlo M, Girard C, Maquiaveli CDC. Cinnamides Target Leishmania amazonensis Arginase Selectively. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25225271. [PMID: 33198198 PMCID: PMC7696938 DOI: 10.3390/molecules25225271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 11/20/2022]
Abstract
Caffeic acid and related natural compounds were previously described as Leishmania amazonensis arginase (L-ARG) inhibitors, and against the whole parasite in vitro. In this study, we tested cinnamides that were previously synthesized to target human arginase. The compound caffeic acid phenethyl amide (CAPA), a weak inhibitor of human arginase (IC50 = 60.3 ± 7.8 μM) was found to have 9-fold more potency against L-ARG (IC50 = 6.9 ± 0.7 μM). The other compounds that did not inhibit human arginase were characterized as L-ARG, showing an IC50 between 1.3–17.8 μM, and where the most active was compound 15 (IC50 = 1.3 ± 0.1 μM). All compounds were also tested against L. amazonensis promastigotes, and only the compound CAPA showed an inhibitory activity (IC50 = 80 μM). In addition, in an attempt to gain an insight into the mechanism of competitive L-ARG inhibitors, and their selectivity over mammalian enzymes, we performed an extensive computational investigation, to provide the basis for the selective inhibition of L-ARG for this series of compounds. In conclusion, our results indicated that the compounds based on cinnamoyl or 3,4-hydroxy cinnamoyl moiety could be a promising starting point for the design of potential antileishmanial drugs based on selective L-ARG inhibitors.
Collapse
Affiliation(s)
- Edson Roberto da Silva
- Laboratório de Farmacologia e Bioquímica (LFBq), Departamento de Medicina Veterinária, Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Pirassununga, SP 13635-900, Brazil; (J.A.A.d.S.S.C.); (T.M.F.d.S.O.)
- Correspondence: (E.R.d.S.); (S.B.); (C.G.); (C.d.C.M.)
| | - Júlio Abel Alfredo dos Santos Simone Come
- Laboratório de Farmacologia e Bioquímica (LFBq), Departamento de Medicina Veterinária, Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Pirassununga, SP 13635-900, Brazil; (J.A.A.d.S.S.C.); (T.M.F.d.S.O.)
- Departamento de Pré-Clínicas, Universidade Eduardo Mondlane, Faculdade de Veterinária, Av. de Moçambique, Km 1.5, Maputo CP 257, Mozambique
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy;
- Correspondence: (E.R.d.S.); (S.B.); (C.G.); (C.d.C.M.)
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy;
| | - Giulia Chemi
- Department of Biotechnology, Chemistry, and Pharmacy, DoE Department of Excellence 2018–2022 Università degli Studi di Siena via Aldo Moro 2, 53100 Siena, Italy; (G.C.); (G.C.)
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry, and Pharmacy, DoE Department of Excellence 2018–2022 Università degli Studi di Siena via Aldo Moro 2, 53100 Siena, Italy; (G.C.); (G.C.)
| | - Trícia Maria Ferrreira de Sousa Oliveira
- Laboratório de Farmacologia e Bioquímica (LFBq), Departamento de Medicina Veterinária, Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Pirassununga, SP 13635-900, Brazil; (J.A.A.d.S.S.C.); (T.M.F.d.S.O.)
| | - Thanh-Nhat Pham
- PEPITE EA4267, University Bourgogne Franche-Comté, F-25000 Besançon, France; (T.-N.P.); (M.P.)
| | - Marc Pudlo
- PEPITE EA4267, University Bourgogne Franche-Comté, F-25000 Besançon, France; (T.-N.P.); (M.P.)
| | - Corine Girard
- PEPITE EA4267, University Bourgogne Franche-Comté, F-25000 Besançon, France; (T.-N.P.); (M.P.)
- Correspondence: (E.R.d.S.); (S.B.); (C.G.); (C.d.C.M.)
| | - Claudia do Carmo Maquiaveli
- Laboratório de Farmacologia e Bioquímica (LFBq), Departamento de Medicina Veterinária, Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Pirassununga, SP 13635-900, Brazil; (J.A.A.d.S.S.C.); (T.M.F.d.S.O.)
- Correspondence: (E.R.d.S.); (S.B.); (C.G.); (C.d.C.M.)
| |
Collapse
|
7
|
Differential Regulation of l-Arginine Metabolism through Arginase 1 during Infection with Leishmania mexicana Isolates Obtained from Patients with Localized and Diffuse Cutaneous Leishmaniasis. Infect Immun 2020; 88:IAI.00963-19. [PMID: 32312763 DOI: 10.1128/iai.00963-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/31/2020] [Indexed: 01/08/2023] Open
Abstract
l-Arginine metabolism through arginase 1 (Arg-1) and inducible nitric oxide synthase (NOS2) constitutes a fundamental axis for the resolution or progression of leishmaniasis. Infection with Leishmania mexicana can cause two distinct clinical manifestations: localized cutaneous leishmaniasis (LCL) and diffuse cutaneous leishmaniasis (DCL). In this work, we analyzed in an in vivo model the capacity of two L. mexicana isolates, one obtained from a patient with LCL and the other from a patient with DCL, to regulate the metabolism of l-arginine through Arg-1 and NOS2. Susceptible BALB/c mice were infected with L. mexicana isolates from both clinical manifestations, and the evolution of the infection as well as protein presence and activity of Arg-1 and NOS2 were evaluated. The lesions of mice infected with the DCL isolate were bigger, had higher parasite loads, and showed greater protein presence and enzymatic activity of Arg-1 than the lesions of mice infected with the LCL isolate. In contrast, NOS2 protein synthesis was poorly or not induced in the lesions of mice infected with the LCL or DCL isolate. The immunochemistry analysis of the lesions allowed the identification of highly parasitized macrophages positive for Arg-1, while no staining for NOS2 was found. In addition, we observed in lesions of patients with DCL macrophages with higher parasite loads and stronger Arg-1 staining than those in lesions of patients with LCL. Our results suggest that L. mexicana isolates obtained from patients with LCL or DCL exhibit different virulence or pathogenicity degrees and differentially regulate l-arginine metabolism through Arg-1.
Collapse
|
8
|
Nahidi S, Gholami E, Taslimi Y, Habibzadeh S, Seyed N, Davarpanah E, Ghanadan A, Rafati S, Taheri T. The outcome of arginase activity inhibition in BALB/c mice hosting Leishmania tropica. Parasite Immunol 2020; 42:e12691. [PMID: 31811772 DOI: 10.1111/pim.12691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 11/29/2022]
Abstract
Two species of Leishmania (L), L. tropica and L. major, are among the main causative agents of cutaneous leishmaniasis. Arginase (ARG) is an essential enzyme for cell growth, thus an attractive drug target. In this study, we tried to survey the inhibitory impact of ARG by nor-NOHA (N-ω-hydroxy-L-nor-arginine) on in vivo infection caused by L. tropica. BALB/c mice were inoculated with L. tropicaEGFP-LUC (Ltrop) or L. majorEGFP-LUC (Lmj) and then were treated by nor-NOHA. ARG inhibitor only indicated a delay in generation of a cutaneous lesion in inoculated footpad with nor-NOHA-Ltrop and nor-NOHA-Lmj. ARG activity has been significantly reduced in nor-NOHA-Ltrop group. In this group, ARG activity inhibition correlated with increased levels of nitric oxide (NO). In both inoculated mice with Ltrop or Lmj, parasite load showed a significant decrease at later steps during the CL course post-treatment. In vivo bioluminescence intensity did not show any ARG's inhibitory effect on treated-Ltrop. The findings verified that the ARG activity may partially control the L. tropica infection in BALB/c mice through reduction of parasite proliferation and parasite killing through NO generation. This effect is dose-dependent.
Collapse
Affiliation(s)
- Shima Nahidi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Gholami
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Yasaman Taslimi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Habibzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Elaheh Davarpanah
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Ghanadan
- Depatment of Dermatopathology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pathology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
9
|
Crizanto de Lima E, Castelo-Branco FS, Maquiaveli CC, Farias AB, Rennó MN, Boechat N, Silva ER. Phenylhydrazides as inhibitors of Leishmania amazonensis arginase and antileishmanial activity. Bioorg Med Chem 2019; 27:3853-3859. [PMID: 31311700 DOI: 10.1016/j.bmc.2019.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/03/2019] [Accepted: 07/10/2019] [Indexed: 01/20/2023]
Abstract
Searching for new substances with antileishmanial activity, we synthesized and evaluated a series of α,α-difluorohydrazide and α,α-difluoramides against Leishmania amazonensis arginase (LaArg). Four α,α-difluorohydrazide derivatives showed activity against LaArg with Ki in the range of 1.3-26 μM. The study of the kinetics of LaArg inhibition showed that these substances might act via different inhibitory mechanisms or even by a combination of these. The compounds were tested against L. amazonensis promastigotes and the best result was obtained to the compound 4 (EC50 of 12.7 ± 0.3 μM). In addition, in order to obtain further insight into the binding mode of such compounds, molecular docking studies were performed to obtain additional validation of experimental results. Considering these results, it is possible to conclude that α,α-difluorohydrazide derivatives are a promising scaffold in the development of new substances against the etiological agent of leishmaniasis by targeting LaArg.
Collapse
Affiliation(s)
- Evanoel Crizanto de Lima
- Laboratório de Catálise e Síntese de Substâncias Bioativas, Universidade Federal do Rio de Janeiro Campus Macaé Professor Aloísio Teixeira, Estrada do Imburo s/n - Ajuda de Baixo, Macaé, RJ CEP 27979-000, Brazil
| | - Frederico S Castelo-Branco
- Departamento de Sintese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos - FIOCRUZ, Rio de Janeiro, RJ 21041-250, Brazil
| | - Claudia C Maquiaveli
- Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Laboratório de Farmacologia e Bioquímica (LFBq), Av. Duque de Caxias Norte, 225, Pirassununga, SP 13635-900, Brazil
| | - André B Farias
- Instituto de Biodiversidade e Sustentabilidade NUPEM/UFRJ, Universidade Federal do Rio de Janeiro, Campus Macaé Professor Aloísio Teixeira, Av. São José do Barreto, 764, Macaé, RJ 27965-045, Brazil
| | - Magdalena N Rennó
- Instituto de Biodiversidade e Sustentabilidade NUPEM/UFRJ, Universidade Federal do Rio de Janeiro, Campus Macaé Professor Aloísio Teixeira, Av. São José do Barreto, 764, Macaé, RJ 27965-045, Brazil
| | - Nubia Boechat
- Departamento de Sintese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos - FIOCRUZ, Rio de Janeiro, RJ 21041-250, Brazil.
| | - Edson R Silva
- Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Laboratório de Farmacologia e Bioquímica (LFBq), Av. Duque de Caxias Norte, 225, Pirassununga, SP 13635-900, Brazil.
| |
Collapse
|
10
|
Garcia AR, Oliveira DMP, Claudia F Amaral A, Jesus JB, Rennó Sodero AC, Souza AMT, Supuran CT, Vermelho AB, Rodrigues IA, Pinheiro AS. Leishmania infantum arginase: biochemical characterization and inhibition by naturally occurring phenolic substances. J Enzyme Inhib Med Chem 2019; 34:1100-1109. [PMID: 31124384 PMCID: PMC6534257 DOI: 10.1080/14756366.2019.1616182] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Inhibition of Leishmania arginase leads to a decrease in parasite growth and infectivity and thus represents an attractive therapeutic strategy. We evaluated the inhibitory potential of selected naturally occurring phenolic substances on Leishmania infantum arginase (ARGLi) and investigated their antileishmanial activity in vivo. ARGLi exhibited a Vmax of 0.28 ± 0.016 mM/min and a Km of 5.1 ± 1.1 mM for L-arginine. The phenylpropanoids rosmarinic acid and caffeic acid (100 µM) showed percentages of inhibition of 71.48 ± 0.85% and 56.98 ± 5.51%, respectively. Moreover, rosmarinic acid and caffeic acid displayed the greatest effects against L. infantum with IC50 values of 57.3 ± 2.65 and 60.8 ± 11 μM for promastigotes, and 7.9 ± 1.7 and 21.9 ± 5.0 µM for intracellular amastigotes, respectively. Only caffeic acid significantly increased nitric oxide production by infected macrophages. Altogether, our results broaden the current spectrum of known arginase inhibitors and revealed promising drug candidates for the therapy of visceral leishmaniasis.
Collapse
Affiliation(s)
- Andreza R Garcia
- a Graduate Program in Pharmaceutical Sciences , School of Pharmacy, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Danielle M P Oliveira
- b Department of Biochemistry , Institute of Chemistry, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Ana Claudia F Amaral
- c Department of Natural Products , Farmanguinhos, FIOCRUZ , Rio de Janeiro , Brazil
| | - Jéssica B Jesus
- d Department of Drugs and Medicines , School of Pharmacy, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Ana Carolina Rennó Sodero
- d Department of Drugs and Medicines , School of Pharmacy, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Alessandra M T Souza
- d Department of Drugs and Medicines , School of Pharmacy, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Claudiu T Supuran
- e Neurofarba Department , Università degli Studi di Firenze, Sezione di Scienze Farmaceutiche , Florence , Italy
| | - Alane B Vermelho
- f Department of General Microbiology , Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Igor A Rodrigues
- a Graduate Program in Pharmaceutical Sciences , School of Pharmacy, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil.,g Department of Natural Products and Food , School of Pharmacy, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Anderson S Pinheiro
- b Department of Biochemistry , Institute of Chemistry, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| |
Collapse
|
11
|
Feitosa LM, da Silva ER, Hoelz LVB, Souza DL, Come JAASS, Cardoso-Santos C, Batista MM, Soeiro MDNC, Boechat N, Pinheiro LCS. New pyrazolopyrimidine derivatives as Leishmania amazonensis arginase inhibitors. Bioorg Med Chem 2019; 27:3061-3069. [PMID: 31176565 DOI: 10.1016/j.bmc.2019.05.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 11/26/2022]
Abstract
Arginase performs the first enzymatic step in polyamine biosynthesis in Leishmania and represents a promising target for drug development. Polyamines in Leishmania are involved in trypanothione synthesis, which neutralize the oxidative burst of reactive oxygen species (ROS) and nitric oxide (NO) that are produced by host macrophages to kill the parasite. In an attempt to synthesize arginase inhibitors, six 1-phenyl-1H-pyrazolo[3,4-d]pyrimidine derivatives with different substituents at the 4-position of the phenyl group were synthesized. All compounds were initially tested at 100 µM concentration against Leishmania amazonensis ARG (LaARG), showing inhibitory activity ranging from 36 to 74%. Two compounds, 1 (R=H) and 6 (R=CF3), showed arginase inhibition >70% and IC50 values of 12 µM and 47 µM, respectively. Thus, the kinetics of LaARG inhibition were analyzed for compounds 1 and 6 and revealed that these compounds inhibit the enzyme by an uncompetitive mechanism, showing Kis values, and dissociation constants for ternary complex enzyme-substrate-inhibitor, of 8.5 ± 0.9 µM and 29 ± 5 µM, respectively. Additionally, the molecular docking studies proposed that these two uncompetitive inhibitors interact with different LaARG binding sites, where compound 1 forms more H-bond interactions with the enzyme than compound 6. These compounds showed low activity against L. amazonensis free amastigotes obtained from mice lesions when assayed with as much as 30 µM. The maximum growth inhibition reached was between 20 and 30% after 48 h of incubation. These results suggest that this system can be promising for the design of potential antileishmanial compounds.
Collapse
Affiliation(s)
- Livia M Feitosa
- Departamento de Sintese de Farmacos, Instituto de Tecnologia em Farmacos, Farmanguinhos - FIOCRUZ, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro, RJ 21041-250, Brazil; Programa de Pos-graduacao em Quimica, PGQu Instituto de Quimica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Edson R da Silva
- Departamento de Medicina Veterinaria, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de Sao Paulo, Pirassununga, SP, Brazil.
| | - Lucas V B Hoelz
- Departamento de Sintese de Farmacos, Instituto de Tecnologia em Farmacos, Farmanguinhos - FIOCRUZ, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro, RJ 21041-250, Brazil
| | - Danielle L Souza
- Departamento de Sintese de Farmacos, Instituto de Tecnologia em Farmacos, Farmanguinhos - FIOCRUZ, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro, RJ 21041-250, Brazil
| | - Julio A A S S Come
- Programa de Pos-graduacao em Biociencia Animal, Faculdade de Zootecnia e Engenahria de alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Camila Cardoso-Santos
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz, IOC - FIOCRUZ, Fundacao Oswaldo Cruz, Avenida Brasil 4365, Rio de Janeiro, RJ, Brazil
| | - Marcos M Batista
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz, IOC - FIOCRUZ, Fundacao Oswaldo Cruz, Avenida Brasil 4365, Rio de Janeiro, RJ, Brazil
| | - Maria de Nazare C Soeiro
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz, IOC - FIOCRUZ, Fundacao Oswaldo Cruz, Avenida Brasil 4365, Rio de Janeiro, RJ, Brazil
| | - Nubia Boechat
- Departamento de Sintese de Farmacos, Instituto de Tecnologia em Farmacos, Farmanguinhos - FIOCRUZ, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro, RJ 21041-250, Brazil.
| | - Luiz C S Pinheiro
- Departamento de Sintese de Farmacos, Instituto de Tecnologia em Farmacos, Farmanguinhos - FIOCRUZ, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro, RJ 21041-250, Brazil
| |
Collapse
|
12
|
da Silva ER, Brogi S, Grillo A, Campiani G, Gemma S, Vieira PC, Maquiaveli CDC. Cinnamic acids derived compounds with antileishmanial activity target Leishmania amazonensis arginase. Chem Biol Drug Des 2018; 93:139-146. [PMID: 30216691 DOI: 10.1111/cbdd.13391] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/16/2018] [Accepted: 08/26/2018] [Indexed: 12/28/2022]
Abstract
This study describes the activity of five natural hydroxycinnamic acids and derived compound: caffeic (1), rosmarinic (2), chlorogenic (3), and cryptochlorogenic (4), acids and isoverbascoside (5). All compounds inhibited Leishmania amazonensis arginase with IC50 -in range of 1.5-11 μM. Compounds 2 and 5 also showed activity against promastigotes of L. amazonensis with IC50 = 61 (28-133) μM and IC50 = 14 (9-24) μM, respectively. Further computational studies applying molecular docking simulations were performed on the competitive inhibitors to gain insight into the molecular basis for arginase inhibition and could be exploited to the development of new antileishmanials drug targeting parasite arginase.
Collapse
Affiliation(s)
| | - Simone Brogi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Department of Biotechnology, Chemistry, and Pharmacy, Università degli Studi di Siena via Aldo Moro 2, Siena, Italy
| | - Alessandro Grillo
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Department of Biotechnology, Chemistry, and Pharmacy, Università degli Studi di Siena via Aldo Moro 2, Siena, Italy
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Department of Biotechnology, Chemistry, and Pharmacy, Università degli Studi di Siena via Aldo Moro 2, Siena, Italy
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Department of Biotechnology, Chemistry, and Pharmacy, Università degli Studi di Siena via Aldo Moro 2, Siena, Italy
| | - Paulo Cezar Vieira
- Department of Chemistry, Universidade Federal de São Carlos, São Carlos, Brazil
| | | |
Collapse
|
13
|
Badirzadeh A, Taheri T, Abedi-Astaneh F, Taslimi Y, Abdossamadi Z, Montakhab-Yeganeh H, Aghashahi M, Niyyati M, Rafati S. Arginase activity of Leishmania isolated from patients with cutaneous leishmaniasis. Parasite Immunol 2017; 39. [PMID: 28731592 DOI: 10.1111/pim.12454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 07/17/2017] [Indexed: 01/15/2023]
Abstract
Cutaneous leishmaniasis (CL) is one of the most important vector-borne parasitic diseases, highly endemic in Iran, and its prevalence is increasing all over the country. Arginase (ARG) activity in isolated Leishmania parasites from CL patients is yet to be explored. This study aimed to compare the ARG activity of isolated Leishmania promastigotes from CL patients with a standard strain of Leishmania major and its influences on the disease pathogenesis. We recruited 16 confirmed CL patients from Qom Province, in central Iran; after detection of Leishmania species using PCR-RFLP, we assessed the levels of ARG in the isolated promastigotes and determined the parasites' growth rate. Only L. major was identified from CL patients. The level of ARG activity in the isolated Leishmania promastigotes from CL patients was significantly higher than that obtained from the standard strain of L. major. No significant correlations between ARG activity and lesion size, number or duration were observed; in contrast, a significant negative correlation was seen between ARG level and Leishmania' growth rate. The obtained results suggest that increased ARG expression and activity in the isolated Leishmania promastigotes might contribute to the higher parasite infectivity and play a major role in the pathogenicity of the CL.
Collapse
Affiliation(s)
- A Badirzadeh
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - T Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - F Abedi-Astaneh
- Department of Communicable Disease, Deputy of Health, Qom University of Medical Sciences, Qom, Iran
| | - Y Taslimi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Z Abdossamadi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - H Montakhab-Yeganeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - M Aghashahi
- Department of Communicable Disease, Deputy of Health, Qom University of Medical Sciences, Qom, Iran
| | - M Niyyati
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - S Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
14
|
Nieto-Meneses R, Castillo R, Hernández-Campos A, Maldonado-Rangel A, Matius-Ruiz JB, Trejo-Soto PJ, Nogueda-Torres B, Dea-Ayuela MA, Bolás-Fernández F, Méndez-Cuesta C, Yépez-Mulia L. In vitro activity of new N-benzyl-1H-benzimidazol-2-amine derivatives against cutaneous, mucocutaneous and visceral Leishmania species. Exp Parasitol 2017; 184:82-89. [PMID: 29191699 DOI: 10.1016/j.exppara.2017.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/20/2017] [Accepted: 11/25/2017] [Indexed: 12/14/2022]
Abstract
The identification of specific therapeutic targets and the development of new drugs against leishmaniasis are urgently needed, since chemotherapy currently available for its treatment has several problems including many adverse side effects. In an effort to develop new antileishmanial drugs, in the present study a series of 28 N-benzyl-1H-benzimidazol-2-amine derivatives was synthesized and evaluated in vitro against Leishmania mexicana promastigotes. Compounds 7 and 8 with the highest antileishmanial activity (micromolar) and lower cytotoxicity than miltefosine and amphotericin B were selected to evaluate their activity against L. braziliensis 9and L. donovani, species causative of mucocutaneous and visceral leishmaniasis, respectively. Compound 7 showed significantly higher activity against L. braziliensis promastigotes than compound 8 and slightly lower than miltefosine. Compounds 7 and 8 had IC50 values in the micromolar range against the amastigote of L. mexicana and L. braziliensis. However, both compounds did not show better activity against L. donovani than miltefosine. Compound 8 showed the highest SI against both parasite stages of L. mexicana. In addition, compound 8 inhibited 68.27% the activity of recombinant L. mexicana arginase (LmARG), a therapeutic target for the treatment of leishmaniasis. Docking studies were also performed in order to establish the possible mechanism of action by which this compound exerts its inhibitory effect. Compound 8 shows promising potential for the development of more potent antileishmanial benzimidazole derivatives.
Collapse
Affiliation(s)
- Rocío Nieto-Meneses
- Departamento de Parasitología, ENCB-IPN, 11340 Mexico City, Mexico; Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias-Pediatría, Instituto Mexicano del Seguro Social, 06720 Mexico City, Mexico
| | - Rafael Castillo
- Departamento de Farmacia, Facultad de Química, UNAM, 04510 Mexico City, Mexico
| | | | | | | | | | | | - Ma Auxiliadora Dea-Ayuela
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad CEU-Cardenal Herrera, Avda. Seminario s/n, 46113 Moncada, Spain
| | - Francisco Bolás-Fernández
- Departamento de Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid Spain
| | | | - Lilián Yépez-Mulia
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias-Pediatría, Instituto Mexicano del Seguro Social, 06720 Mexico City, Mexico.
| |
Collapse
|
15
|
Mandal A, Das S, Kumar A, Roy S, Verma S, Ghosh AK, Singh R, Abhishek K, Saini S, Sardar AH, Purkait B, Kumar A, Mandal C, Das P. l-Arginine Uptake by Cationic Amino Acid Transporter Promotes Intra-Macrophage Survival of Leishmania donovani by Enhancing Arginase-Mediated Polyamine Synthesis. Front Immunol 2017; 8:839. [PMID: 28798743 PMCID: PMC5526900 DOI: 10.3389/fimmu.2017.00839] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/03/2017] [Indexed: 11/24/2022] Open
Abstract
The survival of intracellular protozoan parasite, Leishmania donovani, the causative agent of Indian visceral leishmaniasis (VL), depends on the activation status of macrophages. l-Arginine, a semi-essential amino acid plays a crucial regulatory role for activation of macrophages. However, the role of l-arginine transport in VL still remains elusive. In this study, we demonstrated that intra-macrophage survival of L. donovani depends on the availability of extracellular l-arginine. Infection of THP-1-derived macrophage/human monocyte-derived macrophage (hMDM) with Leishmania, resulted in upregulation of l-arginine transport. While investigating the involvement of the transporters, we observed that Leishmania survival was greatly impaired when the transporters were blocked either using inhibitor or siRNA-mediated downregulation. CAT-2 was found to be the main isoform associated with l-arginine transport in L. donovani-infected macrophages. l-arginine availability and its transport regulated the host arginase in Leishmania infection. Arginase and inducible nitric oxide synthase (iNOS) expression were reciprocally regulated when assayed using specific inhibitors and siRNA-mediated downregulation. Interestingly, induction of iNOS expression and nitric oxide production were observed in case of inhibition of arginase in infected macrophages. Furthermore, inhibition of l-arginine transport as well as arginase resulted in decreased polyamine production, limiting parasite survival inside macrophages. l-arginine availability and transport regulated Th1/Th2 cytokine levels in case of Leishmania infection. Upregulation of l-arginine transport, induction of host arginase, and enhanced polyamine production were correlated with increased level of IL-10 and decreased level of IL-12 and TNF-α in L. donovani-infected macrophages. Our findings provide clear evidence for targeting the metabolism of l-arginine and l-arginine-metabolizing enzymes as an important therapeutic and prophylactic strategy to treat VL.
Collapse
Affiliation(s)
- Abhishek Mandal
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Patna, India
| | - Ajay Kumar
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Saptarshi Roy
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sudha Verma
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Ayan Kumar Ghosh
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Ruby Singh
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Kumar Abhishek
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Savita Saini
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Abul Hasan Sardar
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Bidyut Purkait
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Ashish Kumar
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Chitra Mandal
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pradeep Das
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| |
Collapse
|
16
|
Adinehbeigi K, Razi Jalali MH, Shahriari A, Bahrami S. In vitro antileishmanial activity of fisetin flavonoid via inhibition of glutathione biosynthesis and arginase activity in Leishmania infantum. Pathog Glob Health 2017; 111:176-185. [PMID: 28385129 PMCID: PMC5498762 DOI: 10.1080/20477724.2017.1312777] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
With the increasing emergence of drug resistant Leishmania sp. in recent years, combination therapy has been considered as a useful way to treat and control of Leishmaniasis. The present study was designed to evaluate the antileishmanial effects of the fisetin alone and combination of fisetin plus Meglumine antimoniate (Fi-MA) against Leishmania infantum. The IC50 values for fisetin were obtained 0.283 and 0.102 μM against promastigotes and amastigote forms, respectively. Meglumine antimoniate (MA, Glucantime) as control drug also revealed IC50 values of 0.247 and 0.105 μM for promastigotes and amastigotes of L. infantum, respectively. In order to determine the mode of action of fisetin and Meglumine antimoniate (MA, Glucantime), the activities of arginase (ARG), catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) were measured. Moreover, intracellular glutathione (GSH) and nitric oxide (NO) levels in L. infantum-infected macrophages and L. infantum promastigotes which were treated with IC50 concentrations of fisetin, MA and Fi-MA were investigated. Our results showed that MA decreased CAT and SOD activity and increased NO levels in L. infantum-infected macrophages. In promastigotes, MA inhibited parasite SOD activity and reduced parasite NO production. The decreased levels of most of the antioxidant enzymes, accompanying by the raised level of NO in treated macrophages with MA, were observed to regain their normal profiles due to Fi-MA treatment. Furthermore, fisetin could prevent the growth of promastigotes by inhibition of ARG activity and reduction of GSH levels and NO production. In conclusion, these findings showed that fisetin improves MA side effects.
Collapse
Affiliation(s)
- Keivan Adinehbeigi
- Faculty of Veterinary Medicine, Pathobiology Department, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Ali Shahriari
- Faculty of Veterinary Medicine, Pathobiology Department, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Faculty of Veterinary Medicine, Basic sciences Department, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Somayeh Bahrami
- Faculty of Veterinary Medicine, Pathobiology Department, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
17
|
Antileishmanial activity of verbascoside: Selective arginase inhibition of intracellular amastigotes of Leishmania (Leishmania) amazonensis with resistance induced by LPS plus IFN-γ. Biochem Pharmacol 2017; 127:28-33. [DOI: 10.1016/j.bcp.2016.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/20/2016] [Indexed: 11/27/2022]
|
18
|
Arginase Is Essential for Survival of Leishmania donovani Promastigotes but Not Intracellular Amastigotes. Infect Immun 2016; 85:IAI.00554-16. [PMID: 27795357 PMCID: PMC5203656 DOI: 10.1128/iai.00554-16] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/16/2016] [Indexed: 12/12/2022] Open
Abstract
Studies of Leishmania donovani have shown that both ornithine decarboxylase and spermidine synthase, two enzymes of the polyamine biosynthetic pathway, are critical for promastigote proliferation and required for maximum infection in mice. However, the importance of arginase (ARG), the first enzyme of the polyamine pathway in Leishmania, has not been analyzed in L. donovani. To test ARG function in intact parasites, we generated Δarg null mutants in L. donovani and evaluated their ability to proliferate in vitro and trigger infections in mice. The Δarg knockout was incapable of growth in the absence of polyamine supplementation, but the auxotrophic phenotype could be bypassed by addition of either millimolar concentrations of ornithine or micromolar concentrations of putrescine or by complementation with either glycosomal or cytosolic versions of ARG. Spermidine supplementation of the medium did not circumvent the polyamine auxotrophy of the Δarg line. Although ARG was found to be essential for ornithine and polyamine synthesis, ornithine decarboxylase appeared to be the rate-limiting enzyme for polyamine production. Mouse infectivity studies revealed that the Δarg lesion reduced parasite burdens in livers by an order of magnitude but had little impact on the numbers of parasites recovered from spleens. Thus, ARG is essential for proliferation of promastigotes but not intracellular amastigotes. Coupled with previous studies, these data support a model in which L. donovani amastigotes readily salvage ornithine and have some access to host spermidine pools, while host putrescine appears to be unavailable for salvage by the parasite.
Collapse
|
19
|
Hai Y, Christianson DW. Crystal structures of Leishmania mexicana arginase complexed with α,α-disubstituted boronic amino-acid inhibitors. Acta Crystallogr F Struct Biol Commun 2016; 72:300-6. [PMID: 27050264 PMCID: PMC4822987 DOI: 10.1107/s2053230x16003630] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/01/2016] [Indexed: 02/06/2023] Open
Abstract
Leishmania arginase is a potential drug target for the treatment of leishmaniasis because this binuclear manganese metalloenzyme initiates de novo polyamine biosynthesis by catalyzing the hydrolysis of L-arginine to generate L-ornithine and urea. The product L-ornithine subsequently undergoes decarboxylation to yield putrescine, which in turn is utilized for spermidine biosynthesis. Polyamines such as spermidine are essential for the growth and survival of the parasite, so inhibition of enzymes in the polyamine-biosynthetic pathway comprises an effective strategy for treating parasitic infections. To this end, two X-ray crystal structures of L. mexicana arginase complexed with α,α-disubstituted boronic amino-acid inhibitors based on the molecular scaffold of 2-(S)-amino-6-boronohexanoic acid are now reported. Structural comparisons with human and parasitic arginase complexes reveal interesting differences in the binding modes of the additional α-substituents, i.e. the D side chains, of these inhibitors. Subtle differences in the three-dimensional contours of the outer active-site rims among arginases from different species lead to different conformations of the D side chains and thus different inhibitor-affinity trends. The structures suggest that it is possible to maintain affinity while fine-tuning intermolecular interactions of the D side chain of α,α-disubstituted boronic amino-acid inhibitors in the search for isozyme-specific and species-specific arginase inhibitors.
Collapse
Affiliation(s)
- Yang Hai
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Radcliffe Institute for Advanced Study and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
20
|
da Silva ER, Boechat N, Pinheiro LCS, Bastos MM, Costa CCP, Bartholomeu JC, da Costa TH. Novel Selective Inhibitor of Leishmania (Leishmania) amazonensis
Arginase. Chem Biol Drug Des 2015; 86:969-78. [DOI: 10.1111/cbdd.12566] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/09/2015] [Accepted: 03/25/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Edson R. da Silva
- Departamento de Medicina Veterinária; Faculdade de Zootecnia e Engenharia de Alimentos; Universidade de São Paulo; Pirassununga SP 13635-900 Brazil
| | - Nubia Boechat
- Departamento de Síntese de Fármacos; Instituto de Tecnologia em Fármacos; Farmanguinhos - FIOCRUZ; Rio de Janeiro RJ 21041-250 Brazil
| | - Luiz C. S. Pinheiro
- Departamento de Síntese de Fármacos; Instituto de Tecnologia em Fármacos; Farmanguinhos - FIOCRUZ; Rio de Janeiro RJ 21041-250 Brazil
| | - Monica M. Bastos
- Departamento de Síntese de Fármacos; Instituto de Tecnologia em Fármacos; Farmanguinhos - FIOCRUZ; Rio de Janeiro RJ 21041-250 Brazil
| | - Carolina C. P. Costa
- Departamento de Síntese de Fármacos; Instituto de Tecnologia em Fármacos; Farmanguinhos - FIOCRUZ; Rio de Janeiro RJ 21041-250 Brazil
| | - Juliana C. Bartholomeu
- Departamento de Medicina Veterinária; Faculdade de Zootecnia e Engenharia de Alimentos; Universidade de São Paulo; Pirassununga SP 13635-900 Brazil
| | - Talita H. da Costa
- Departamento de Medicina Veterinária; Faculdade de Zootecnia e Engenharia de Alimentos; Universidade de São Paulo; Pirassununga SP 13635-900 Brazil
| |
Collapse
|
21
|
Hai Y, Edwards JE, Van Zandt MC, Hoffmann KF, Christianson DW. Crystal structure of Schistosoma mansoni arginase, a potential drug target for the treatment of schistosomiasis. Biochemistry 2014; 53:4671-84. [PMID: 25007099 PMCID: PMC4138072 DOI: 10.1021/bi5004519] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The X-ray crystal structure of arginase from Schistosoma mansoni (SmARG) and the structures of its complexes with several amino acid inhibitors have been determined at atomic resolution. SmARG is a binuclear manganese metalloenzyme that catalyzes the hydrolysis of l-arginine to form l-ornithine and urea, and this enzyme is upregulated in all forms of the parasite that interact with the human host. Current hypotheses suggest that parasitic arginases could play a role in host immune evasion by depleting pools of substrate l-arginine that would otherwise be utilized for NO biosynthesis and NO-dependent processes in the immune response. Although the amino acid sequence of SmARG is only 42% identical with that of human arginase I, residues important for substrate binding and catalysis are strictly conserved. In general, classical amino acid inhibitors such as 2(S)-amino-6-boronohexanoic acid (ABH) tend to bind more weakly to SmARG than to human arginase I despite identical inhibitor binding modes in each enzyme active site. The identification of a patch on the enzyme surface capable of accommodating the additional Cα substitutent of an α,α-disubstituted amino acid inhibitor suggests that such inhibitors could exhibit higher affinity and biological activity. The structures of SmARG complexed with two different α,α-disubstituted derivatives of ABH are presented and provide a proof of concept for this approach in the enhancement of enzyme-inhibitor affinity.
Collapse
Affiliation(s)
- Yang Hai
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | | | | | | | | |
Collapse
|
22
|
dos Reis MBG, Manjolin LC, Maquiaveli CDC, Santos-Filho OA, da Silva ER. Inhibition of Leishmania (Leishmania) amazonensis and rat arginases by green tea EGCG, (+)-catechin and (-)-epicatechin: a comparative structural analysis of enzyme-inhibitor interactions. PLoS One 2013; 8:e78387. [PMID: 24260115 PMCID: PMC3832641 DOI: 10.1371/journal.pone.0078387] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/17/2013] [Indexed: 11/21/2022] Open
Abstract
Epigallocatechin-3-gallate (EGCG), a dietary polyphenol (flavanol) from green tea, possesses leishmanicidal and antitrypanosomal activity. Mitochondrial damage was observed in Leishmania treated with EGCG, and it contributed to the lethal effect. However, the molecular target has not been defined. In this study, EGCG, (+)-catechin and (−)-epicatechin were tested against recombinant arginase from Leishmania amazonensis (ARG-L) and rat liver arginase (ARG-1). The compounds inhibit ARG-L and ARG-1 but are more active against the parasite enzyme. Enzyme kinetics reveal that EGCG is a mixed inhibitor of the ARG-L while (+)-catechin and (−)-epicatechin are competitive inhibitors. The most potent arginase inhibitor is (+)-catechin (IC50 = 0.8 µM) followed by (−)-epicatechin (IC50 = 1.8 µM), gallic acid (IC50 = 2.2 µM) and EGCG (IC50 = 3.8 µM). Docking analyses showed different modes of interaction of the compounds with the active sites of ARG-L and ARG-1. Due to the low IC50 values obtained for ARG-L, flavanols can be used as a supplement for leishmaniasis treatment.
Collapse
Affiliation(s)
- Matheus Balduíno Goncalves dos Reis
- Programa de Iniciação Científica da Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Letícia Correa Manjolin
- Programa de Iniciação Científica da Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Claudia do Carmo Maquiaveli
- Programa de pós-graduação em Fisiologia, Departamento de Fisiologia, Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Osvaldo Andrade Santos-Filho
- Laboratório de Modelagem Molecular, Departamento de Síntese Orgânica, Farmanguinhos/Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Edson Roberto da Silva
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
23
|
Cruz EDM, da Silva ER, Maquiaveli CDC, Alves ESS, Lucon JF, dos Reis MBG, de Toledo CEM, Cruz FG, Vannier-Santos MA. Leishmanicidal activity of Cecropia pachystachya flavonoids: arginase inhibition and altered mitochondrial DNA arrangement. PHYTOCHEMISTRY 2013; 89:71-77. [PMID: 23453911 DOI: 10.1016/j.phytochem.2013.01.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 01/12/2013] [Accepted: 01/29/2013] [Indexed: 06/01/2023]
Abstract
The plant Cecropia pachystachya Trécul is widely used in Brazilian ethnomedicine to treat hypertension, asthma, and diabetes. Arginase is an enzyme with levels that are elevated in these disorders, and it is central to Leishmania polyamine biosynthesis. The aims of this study were to evaluate antileishmanial activity and inhibition of the arginase enzyme by C. pachystachya extracts, and to study changes in cellular organization using electron microscopy. The ethanol extract of C. pachystachya was tested on Leishmania (Leishmania) amazonensis promastigote survival/proliferation and arginase activity in vitro. Qualitative ultrastructural analysis was also used to observe changes in cell organization. The major bioactive molecules of the ethanol extract were characterized using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). The ethyl acetate fraction of the ethanol extract diminished promastigote axenic growth/survival, inhibited arginase activity, and altered a mitochondrial kinetoplast DNA (K-DNA) array. The bioactive compounds of C. pachystachya were characterized as glucoside flavonoids. Orientin (9) (luteolin-8-C-glucoside) was the main component of the methanol-soluble ethyl acetate fraction obtained from the ethanol extract and is an arginase inhibitor (IC50 15.9 μM). The ethyl acetate fraction was not cytotoxic to splenocytes at a concentration of 200 μg/mL. In conclusion, C. pachystachya contains bioactive compounds that reduce the growth of L. (L.) amazonensis promastigotes, altering mitochondrial K-DNA arrangement and inhibiting arginase.
Collapse
Affiliation(s)
- Ebenézer de Mello Cruz
- Fundação Oswaldo Cruz, Centro de Pesquisa Gonçalo Moniz, CPqGM-FIOCRUZ, Laboratório de Biologia Parasitária, Rua Waldemar Falcão 121, Candeal, CEP 40296-710 Salvador, BA, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
D'Antonio EL, Ullman B, Roberts SC, Dixit UG, Wilson ME, Hai Y, Christianson DW. Crystal structure of arginase from Leishmania mexicana and implications for the inhibition of polyamine biosynthesis in parasitic infections. Arch Biochem Biophys 2013; 535:163-76. [PMID: 23583962 DOI: 10.1016/j.abb.2013.03.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 02/06/2023]
Abstract
Arginase from parasitic protozoa belonging to the genus Leishmania is a potential drug target for the treatment of leishmaniasis because this binuclear manganese metalloenzyme catalyzes the first committed step in the biosynthesis of polyamines that enable cell growth and survival. The high resolution X-ray crystal structures of the unliganded form of Leishmania mexicana arginase (LmARG) and four inhibitor complexes are now reported. These complexes include the reactive substrate analogue 2(S)-amino-6-boronohexanoic acid (ABH) and the hydroxylated substrate analogue nor-N(ω)-hydroxy-l-arginine (nor-NOHA), which are the most potent arginase inhibitors known to date. Comparisons of the LmARG structure with that of the archetypal arginase, human arginase I, reveal that all residues important for substrate binding and catalysis are strictly conserved. However, three regions of tertiary structure differ between the parasitic enzyme and the human enzyme corresponding to the G62 - S71, L161 - C172, and I219 - V230 segments of LmARG. Additionally, variations are observed in salt link interactions that stabilize trimer assembly in LmARG. We also report biological studies in which we demonstrate that localization of LmARG to the glycosome, a unique subcellular organelle peculiar to Leishmania and related parasites, is essential for robust pathogenesis.
Collapse
Affiliation(s)
- Edward L D'Antonio
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Vincent IM, Creek DJ, Burgess K, Woods DJ, Burchmore RJS, Barrett MP. Untargeted metabolomics reveals a lack of synergy between nifurtimox and eflornithine against Trypanosoma brucei. PLoS Negl Trop Dis 2012; 6:e1618. [PMID: 22563508 PMCID: PMC3341325 DOI: 10.1371/journal.pntd.0001618] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 03/05/2012] [Indexed: 01/08/2023] Open
Abstract
A non-targeted metabolomics-based approach is presented that enables the study of pathways in response to drug action with the aim of defining the mode of action of trypanocides. Eflornithine, a polyamine pathway inhibitor, and nifurtimox, whose mode of action involves its metabolic activation, are currently used in combination as first line treatment against stage 2, CNS-involved, human African trypanosomiasis (HAT). Drug action was assessed using an LC-MS based non-targeted metabolomics approach. Eflornithine revealed the expected changes to the polyamine pathway as well as several unexpected changes that point to pathways and metabolites not previously described in bloodstream form trypanosomes, including a lack of arginase activity and N-acetylated ornithine and putrescine. Nifurtimox was shown to be converted to a trinitrile metabolite indicative of metabolic activation, as well as inducing changes in levels of metabolites involved in carbohydrate and nucleotide metabolism. However, eflornithine and nifurtimox failed to synergise anti-trypanosomal activity in vitro, and the metabolomic changes associated with the combination are the sum of those found in each monotherapy with no indication of additional effects. The study reveals how untargeted metabolomics can yield rapid information on drug targets that could be adapted to any pharmacological situation.
Collapse
Affiliation(s)
- Isabel M. Vincent
- The Wellcome Trust Centre for Molecular Parasitology, Institute for Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Darren J. Creek
- The Wellcome Trust Centre for Molecular Parasitology, Institute for Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics Facility, University of Glasgow, Glasgow, United Kingdom
| | - Karl Burgess
- The Wellcome Trust Centre for Molecular Parasitology, Institute for Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics Facility, University of Glasgow, Glasgow, United Kingdom
| | - Debra J. Woods
- Pfizer Animal Health, Pfizer Inc, Kalamazoo, Michigan, United States of America
| | - Richard J. S. Burchmore
- The Wellcome Trust Centre for Molecular Parasitology, Institute for Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics Facility, University of Glasgow, Glasgow, United Kingdom
| | - Michael P. Barrett
- The Wellcome Trust Centre for Molecular Parasitology, Institute for Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics Facility, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
26
|
Leishmania amazonensis arginase compartmentalization in the glycosome is important for parasite infectivity. PLoS One 2012; 7:e34022. [PMID: 22479507 PMCID: PMC3316525 DOI: 10.1371/journal.pone.0034022] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 02/20/2012] [Indexed: 11/19/2022] Open
Abstract
In Leishmania, de novo polyamine synthesis is initiated by the cleavage of L-arginine to urea and L-ornithine by the action of arginase (ARG, E.C. 3.5.3.1). Previous studies in L. major and L. mexicana showed that ARG is essential for in vitro growth in the absence of polyamines and needed for full infectivity in animal infections. The ARG protein is normally found within the parasite glycosome, and here we examined whether this localization is required for survival and infectivity. First, the localization of L. amazonensis ARG in the glycosome was confirmed in both the promastigote and amastigote stages. As in other species, arg− L. amazonensis required putrescine for growth and presented an attenuated infectivity. Restoration of a wild type ARG to the arg− mutant restored ARG expression, growth and infectivity. In contrast, restoration of a cytosol-targeted ARG lacking the glycosomal SKL targeting sequence (argΔSKL) restored growth but failed to restore infectivity. Further study showed that the ARGΔSKL protein was found in the cytosol as expected, but at very low levels. Our results indicate that the proper compartmentalization of L. amazonensis arginase in the glycosome is important for enzyme activity and optimal infectivity. Our conjecture is that parasite arginase participates in a complex equilibrium that defines the fate of L-arginine and that its proper subcellular location may be essential for this physiological orchestration.
Collapse
|
27
|
The leishmanicidal flavonols quercetin and quercitrin target Leishmania (Leishmania) amazonensis arginase. Exp Parasitol 2012; 130:183-8. [DOI: 10.1016/j.exppara.2012.01.015] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 11/24/2011] [Accepted: 01/19/2012] [Indexed: 01/26/2023]
|
28
|
Osorio EY, Zhao W, Espitia C, Saldarriaga O, Hawel L, Byus CV, Travi BL, Melby PC. Progressive visceral leishmaniasis is driven by dominant parasite-induced STAT6 activation and STAT6-dependent host arginase 1 expression. PLoS Pathog 2012; 8:e1002417. [PMID: 22275864 PMCID: PMC3261917 DOI: 10.1371/journal.ppat.1002417] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 10/19/2011] [Indexed: 01/11/2023] Open
Abstract
The clinicopathological features of the hamster model of visceral leishmaniasis (VL) closely mimic active human disease. Studies in humans and hamsters indicate that the inability to control parasite replication in VL could be related to ineffective classical macrophage activation. Therefore, we hypothesized that the pathogenesis of VL might be driven by a program of alternative macrophage activation. Indeed, the infected hamster spleen showed low NOS2 but high arg1 enzyme activity and protein and mRNA expression (p<0.001) and increased polyamine synthesis (p<0.05). Increased arginase activity was also evident in macrophages isolated from the spleens of infected hamsters (p<0.05), and arg1 expression was induced by L. donovani in primary hamster peritoneal macrophages (p<0.001) and fibroblasts (p<0.01), and in a hamster fibroblast cell line (p<0.05), without synthesis of endogenous IL-4 or IL-13 or exposure to exogenous cytokines. miRNAi-mediated selective knockdown of hamster arginase 1 (arg1) in BHK cells led to increased generation of nitric oxide and reduced parasite burden (p<0.005). Since many of the genes involved in alternative macrophage activation are regulated by Signal Transducer and Activator of Transcription-6 (STAT6), and because the parasite-induced expression of arg1 occurred in the absence of exogenous IL-4, we considered the possibility that L. donovani was directly activating STAT6. Indeed, exposure of hamster fibroblasts or macrophages to L. donovani resulted in dose-dependent STAT6 activation, even without the addition of exogenous cytokines. Knockdown of hamster STAT6 in BHK cells with miRNAi resulted in reduced arg1 mRNA expression and enhanced control of parasite replication (p<0.0001). Collectively these data indicate that L. donovani infection induces macrophage STAT6 activation and STAT6-dependent arg1 expression, which do not require but are amplified by type 2 cytokines, and which contribute to impaired control of infection. Visceral leishmaniasis (VL), caused by the intracellular protozoan Leishmania donovani, is a progressive, potentially fatal infection found in many resource-poor regions of the world. We initiated these studies of an experimental model of VL to better understand the molecular and cellular determinants underlying this disease. We found that host macrophages or fibroblasts, when infected with Leishmania donovani or exposed to products secreted by the parasite, are permissive to infection because they fail to metabolize arginine to generate nitric oxide, the effector molecule needed to kill the intracellular parasites. Instead, the infected host cells are activated in a way that leads to the expression of arginase, an enzyme that metabolizes arginine to produce polyamines, which support parasite growth. This detrimental activation pathway was dependent on the parasite-induced activation of the transcription factor STAT6, but contrary to the previously accepted paradigm, did not require (but was amplified by) the presence of polarized Th2 cells or type 2 cytokines. Knockdown of host arginase or STAT6 enhanced control of the infection, indicating that this activation pathway has a critical role in the pathogenesis of the disease. Interventions designed to inhibit the STAT6-arginase-polyamine pathway could help in the treatment or prevention of VL.
Collapse
Affiliation(s)
- E. Yaneth Osorio
- Research Service, Department of Veterans Affairs Medical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Weiguo Zhao
- Research Service, Department of Veterans Affairs Medical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Claudia Espitia
- Research Service, Department of Veterans Affairs Medical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Omar Saldarriaga
- Research Service, Department of Veterans Affairs Medical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Microbiology and Immunology, The University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Leo Hawel
- Division of Biomedical Sciences, University of California, Riverside, California, United States of America
| | - Craig V. Byus
- Division of Biomedical Sciences, University of California, Riverside, California, United States of America
| | - Bruno L. Travi
- Research Service, Department of Veterans Affairs Medical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Peter C. Melby
- Research Service, Department of Veterans Affairs Medical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas, United States of America
- Department of Microbiology and Immunology, The University of Texas Health Science Center, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|