1
|
Jakobs N, Andreotti S, Ramünke S, von Samson-Himmelstjerna G, Krücken J. Differences in constitutive gene expression of cytochrome P450 enzymes and ATP-binding cassette transporter gene expression between a susceptible and a highly macrocyclic lactone-resistant Haemonchus contortus isolate in the absence of drug-inducible expression. Parasit Vectors 2024; 17:505. [PMID: 39668355 PMCID: PMC11636055 DOI: 10.1186/s13071-024-06568-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/04/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Anthelmintic resistance in ruminants is a widespread problem that has a severe impact on productivity and animal welfare. The helminth Haemonchus contortus is generally considered the most important parasite in small ruminants due to its high pathogenicity and the widespread occurrence of anthelmintic resistance in it. Although the molecular mechanisms associated with resistance against the anthelmintics benzimidazoles (BZs) and levamisole are relatively well understood, the resistance mechanisms against the widely used anthelmintic macrocyclic lactones (MLs) ivermectin (IVM) and moxidectin (MOX) remain poorly understood. Detoxifying enzymes and xenobiotic transporters have been frequently proposed to play a role in ML resistance in multiple organisms, including nematodes. METHODS The reference genome of H. contortus was screened for cytochrome P450 genes (cyp genes) by using the Basic Local Alignment Search Tool, and maximum-likelihood phylogenetic analysis was used to assign the sequences to gene families. Fourth-stage larvae of the susceptible (McMaster) and the ML-resistant (Berlin-selected) H. contortus isolates were generated in vitro and compared regarding basal expression levels of cyp genes and ATP-binding cassette (ABC) transporters by using RNA sequencing. The resistant isolate was further incubated with 100 nM IVM or MOX for 3, 6 and 12 h, and the effects of incubation time and drugs were evaluated. RESULTS Twenty-five cyp genes were identified in the H. contortus genome and assigned to 13 different families. The ML-resistant isolate showed significantly higher and lower constitutive expression of 13 and four cyp genes, respectively. Out of the 50 ABC transporter genes, only six showed significantly higher expression in the ML-resistant isolate, while 12 showed lower expression. The fold changes were in general low (range 0.44-5.16). Only pgp-13 showed significant downregulation in response to IVM (0.77 fold change at 6 h, 0.96 fold change at 12 h) and MOX (0.84 fold change at 12 h). In contrast, mrp-5 was significantly, albeit minimally, upregulated in the presence of IVM, but not MOX, after 12 h (1.02 fold change). CONCLUSIONS Despite little observable ML-inducible gene expression in the isolate examined here, some of the changes in the baseline expression levels might well contribute to ML resistance in the context of additional changes in a multigenic resistance model. However, neither cyp genes nor the ABC transporters appear to be the main drivers that can explain the high levels of resistance observed in the resistant isolate examined here.
Collapse
Affiliation(s)
- Natalie Jakobs
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Sandro Andreotti
- Institute of Computer Science, Bioinformatics Solution Center, Freie Universität Berlin, Berlin, Germany
| | - Sabrina Ramünke
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Georg von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Sharma N, Au V, Martin K, Edgley ML, Moerman D, Mains PE, Gilleard JS. Multiple UDP glycosyltransferases modulate benzimidazole drug sensitivity in the nematode Caenorhabditis elegans in an additive manner. Int J Parasitol 2024; 54:535-549. [PMID: 38806068 DOI: 10.1016/j.ijpara.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/08/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Xenobiotic biotransformation is an important modulator of anthelmintic drug potency and a potential mechanism of anthelmintic resistance. Both the free-living nematode Caenorhabditis elegans and the ruminant parasite Haemonchus contortus biotransform benzimidazole drugs by glucose conjugation, likely catalysed by UDP-glycosyltransferase (UGT) enzymes. To identify C. elegans genes involved in benzimidazole drug detoxification, we first used a comparative phylogenetic analysis of UGTs from humans, C. elegans and H. contortus, combined with available RNAseq datasets to identify which of the 63 C. elegans ugt genes are most likely to be involved in benzimidazole drug biotransformation. RNA interference knockdown of 15 prioritized C. elegans genes identified those that sensitized animals to the benzimidazole derivative albendazole (ABZ). Genetic mutations subsequently revealed that loss of ugt-9 and ugt-11 had the strongest effects. The "ugt-9 cluster" includes these genes, together with six other closely related ugts. A CRISPR-Cas-9 deletion that removed seven of the eight ugt-9 cluster genes had greater ABZ sensitivity than the single largest-effect mutation. Furthermore, a double mutant of ugt-22 (which is not a member of the ugt-9 cluster) with the ugt-9 cluster deletion further increased ABZ sensitivity. This additivity of mutant phenotypes suggest that ugt genes act in parallel, which could have several, not mutually exclusive, explanations. ugt mutations have different effects with different benzimidazole derivatives, suggesting that enzymes with different specificities could together more efficiently detoxify drugs. Expression patterns of ugt-9, ugt-11 and ugt-22 gfp reporters differ and so likely act in different tissues which may, at least in part, explain their additive effects on drug potency. Overexpression of ugt-9 alone was sufficient to confer partial ABZ resistance, indicating increasing total UGT activity protects animals. In summary, our results suggest that the multiple UGT enzymes have overlapping but not completely redundant functions in benzimidazole drug detoxification and may represent "druggable" targets to improve benzimidazole drug potency.
Collapse
Affiliation(s)
- Nidhi Sharma
- Host-Parasite Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Vinci Au
- Department of Zoology, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada
| | - Kiana Martin
- Department of Zoology, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada
| | - Mark L Edgley
- Department of Zoology, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada
| | - Don Moerman
- Department of Zoology, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada
| | - Paul E Mains
- Departments of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - John S Gilleard
- Host-Parasite Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada.
| |
Collapse
|
3
|
Mukherjee A, Kar I, Patra AK. Understanding anthelmintic resistance in livestock using "omics" approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125439-125463. [PMID: 38015400 DOI: 10.1007/s11356-023-31045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Widespread and improper use of various anthelmintics, genetic, and epidemiological factors has resulted in anthelmintic-resistant (AR) helminth populations in livestock. This is currently quite common globally in different livestock animals including sheep, goats, and cattle to gastrointestinal nematode (GIN) infections. Therefore, the mechanisms underlying AR in parasitic worm species have been the subject of ample research to tackle this challenge. Current and emerging technologies in the disciplines of genomics, transcriptomics, metabolomics, and proteomics in livestock species have advanced the understanding of the intricate molecular AR mechanisms in many major parasites. The technologies have improved the identification of possible biomarkers of resistant parasites, the ability to find actual causative genes, regulatory networks, and pathways of parasites governing the AR development including the dynamics of helminth infection and host-parasite infections. In this review, various "omics"-driven technologies including genome scan, candidate gene, quantitative trait loci, transcriptomic, proteomic, and metabolomic approaches have been described to understand AR of parasites of veterinary importance. Also, challenges and future prospects of these "omics" approaches are also discussed.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Department of Animal Biotechnology, West Bengal University of Animal and Fishery Sciences, Nadia, Mohanpur, West Bengal, India
| | - Indrajit Kar
- Department of Avian Sciences, West Bengal University of Animal and Fishery Sciences, Nadia, Mohanpur, West Bengal, India
| | - Amlan Kumar Patra
- American Institute for Goat Research, Langston University, Oklahoma, 73050, USA.
| |
Collapse
|
4
|
You J, Chen J, Hu Y, Wang S, Wang J, Sun T, Shen Z. Identification of cytochrome P450 gene family and functional analysis of HgCYP33E1 from Heterodera glycines. FRONTIERS IN PLANT SCIENCE 2023; 14:1219702. [PMID: 37692428 PMCID: PMC10485556 DOI: 10.3389/fpls.2023.1219702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023]
Abstract
The cytochrome P450 (CYP) genes of nematode play a crucial role in the metabolic detoxification of xenobiotics including pesticides. Heterodera glycines, also known as the soybean cyst nematode, is a sedentary endoparasite that infests plant roots, causing high annual economic losses in soybean production regions globally. In this study, we identified 36 CYP genes at a genome-wide level of the H. glycines isolate TN10 using all CYPs from Caenorhabditis elegans as queries. Subsequently, a full-length cDNA of HgCYP33E1 which was significantly up-regulated by the conventional nematicide abamectin was initially cloned from H. glycines. It presented significantly higher expressions in the second-stage juvenile (J2) compared to other parasitic stages of H. glycines. qRT-PCR analysis suggested that the expression of HgCYP33E1 was also xenobiotically induced by soybean root exudate and the metabolites of biocontrol agents. Using RNA interference (RNAi), we investigated the function of HgCYP33E1 in H. glycines parasitism and nematicide selectivity. Compared to the control and dsGFP-treated group, silencing of HgCYP33E1 did not affect the J2 behaviors and the early invasion ability, while it decreased the number of J4s in soybean roots after 18-d inoculation with the dsHgCYP33E1-treated nematodes. In addition, knockdown of HgCYP33E1 in H. glycines resulted in an increase in J2 mortality after 24-h incubation with abamectin compared to the GFP dsRNA-soaked and the control group. These findings revealed the potential role of HgCYP33E1 in the xenobiotic detoxification pathway of H. glycines. Moreover, our data also provided valuable gene information for studying the functions of the CYP family in H. glycines host adaption.
Collapse
Affiliation(s)
- Jia You
- Institute of Pratacultural Science, Heilongjiang Academy of Agricultural Science, Harbin, Heilongjiang, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang, China
| | - Jingsheng Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Yanfeng Hu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang, China
| | - Siru Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang, China
| | - Jianli Wang
- Institute of Pratacultural Science, Heilongjiang Academy of Agricultural Science, Harbin, Heilongjiang, China
| | - Tao Sun
- Chongqing Customs Technology Center, Chongqing, China
| | - Zhongbao Shen
- Institute of Pratacultural Science, Heilongjiang Academy of Agricultural Science, Harbin, Heilongjiang, China
| |
Collapse
|
5
|
Liu Y, Wang X, Luo X, Wang R, Zhai B, Wang P, Li J, Yang X. Transcriptomics and Proteomics of Haemonchus contortus in Response to Ivermectin Treatment. Animals (Basel) 2023; 13:ani13050919. [PMID: 36899776 PMCID: PMC10000067 DOI: 10.3390/ani13050919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
A major problem faced by the agricultural industry is the resistance of Haemonchus contortus to anthelmintic drugs. For a better understanding of the response of H. contortus to IVM and for the screening of drug-resistance-related genes, we used RNA sequencing and isobaric tags for relative and absolute quantification (iTRAQ) technology to detect the transcriptomic and proteomic changes in H. contortus after ivermectin treatment. An integrated analysis of the two omics showed that the differentially expressed genes and proteins were significantly enriched in the pathways of amino acid degradation, the metabolism of xenobiotics by cytochrome P450, the biosynthesis of amino acids, and the tricarboxylic acid cycle. We found that the upregulated UDP-glycosyltransferases (UGT), glutathione S-transferase (GST), cytochrome P450 (CYP), and p-glycoprotein (Pgp) genes play important roles in drug resistance in H. contortus. Our work will help in the understanding of the transcriptome and proteome changes in H. contortus after IVM and will facilitate the discovery of genes related to drug resistance. This information can be further applied to increase the understanding of the response of IVM in relation to H. contortus.
Collapse
Affiliation(s)
- Yang Liu
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaomin Wang
- The Bureau of Agriculture and Animal Husbandry of Kalaqin Banner, Chifeng 024400, China
- Correspondence: (X.W.); (X.Y.)
| | - Xiaoping Luo
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010030, China
| | - Rui Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bintao Zhai
- Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Lanzhou 730050, China
| | - Penglong Wang
- Department of Veterinary Parasitology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Junyan Li
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010030, China
| | - Xiaoye Yang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Correspondence: (X.W.); (X.Y.)
| |
Collapse
|
6
|
Transgenic Expression of Haemonchus contortus Cytochrome P450 Hco-cyp-13A11 Decreases Susceptibility to Particular but Not All Macrocyclic Lactones in the Model Organism Caenorhabditis elegans. Int J Mol Sci 2022; 23:ijms23169155. [PMID: 36012413 PMCID: PMC9409383 DOI: 10.3390/ijms23169155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
The number of reported macrocyclic lactones (ML) resistance cases across all livestock hosts is steadily increasing. Different studies in the parasitic nematode Haemonchus contortus assume the participation of cytochrome P450s (Cyps) enzymes in ML resistance. Still, functional data about their individual contribution to resistance or substrate specificity is missing. Via microinjection, transgenic Caenorhabditis elegans expressing HCON_00141052 (transgene-Hco-cyp-13A11) from extrachromosomal arrays were generated. After 24 h of exposure to different concentrations of ivermectin (IVM), ivermectin aglycone (IVMa), selamectin (SEL), doramectin (DRM), eprinomectin (EPR), and moxidectin (MOX), motility assays were performed to determine the impact of the H. contortus Cyp to the susceptibility of the worms against each ML. While transgene-Hco-cyp-13A11 significantly decreased susceptibility to IVM (four-fold), IVMa (2-fold), and SEL (3-fold), a slight effect for DRM and no effect for MOX, and EPR was observed. This substrate specificity of Hco-cyp-13A11 could not be explained by molecular modeling and docking studies. Hco-Cyp-13A11 molecular models were obtained for alleles from isolates with different resistance statuses. Although 14 amino acid polymorphisms were detected, none was resistance specific. In conclusion, Hco-cyp-13A11 decreased IVM, IVMa, and SEL susceptibility to a different extent, but its potential impact on ML resistance is not driven by polymorphisms.
Collapse
|
7
|
Dube F, Hinas A, Roy S, Martin F, Åbrink M, Svärd S, Tydén E. Ivermectin-induced gene expression changes in adult Parascaris univalens and Caenorhabditis elegans: a comparative approach to study anthelminthic metabolism and resistance in vitro. Parasit Vectors 2022; 15:158. [PMID: 35513885 PMCID: PMC9074254 DOI: 10.1186/s13071-022-05260-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Background The nematode Parascaris univalens is one of the most prevalent parasitic pathogens infecting horses but anthelmintic resistance undermines treatment approaches. The molecular mechanisms underlying drug activity and resistance remain poorly understood in this parasite since experimental in vitro models are lacking. The aim of this study was to evaluate the use of Caenorhabditis elegans as a model for P. univalens drug metabolism/resistance studies by a comparative gene expression approach after in vitro exposure to the anthelmintic drug ivermectin (IVM). Methods Twelve adult P. univalens worms in groups of three were exposed to ivermectin (IVM, 10–13 M, 10–11 M, 10–9 M) or left unexposed for 24 h at 37 °C, and total RNA, extracted from the anterior end of the worms, was sequenced using Illumina NovaSeq. Differentially expressed genes (DEGs) involved in metabolism, transportation, or gene expression with annotated Caernorhabditis elegans orthologues were identified as candidate genes to be involved in IVM metabolism/resistance. Similarly, groups of 300 adult C. elegans worms were exposed to IVM (10–9 M, 10–8 M and 10–7 M) or left unexposed for 4 h at 20 °C. Quantitative RT-PCR of RNA extracted from the C. elegans worm pools was used to compare against the expression of selected P. univalens candidate genes after drug treatment. Results After IVM exposure, 1085 DEGs were found in adult P. univalens worms but the relative gene expression changes were small and large variabilities were found between different worms. Fifteen of the DEGs were chosen for further characterization in C. elegans after comparative bioinformatics analyses. Candidate genes, including the putative drug target lgc-37, responded to IVM in P. univalens, but marginal to no responses were observed in C. elegans despite dose-dependent behavioral effects observed in C. elegans after IVM exposure. Thus, the overlap in IVM-induced gene expression in this small set of genes was minor in adult worms of the two nematode species. Conclusion This is the first time to our knowledge that a comparative gene expression approach has evaluated C. elegans as a model to understand IVM metabolism/resistance in P. univalens. Genes in P. univalens adults that responded to IVM treatment were identified. However, identifying conserved genes in P. univalens and C. elegans involved in IVM metabolism/resistance by comparing gene expression of candidate genes proved challenging. The approach appears promising but was limited by the number of genes studied (n = 15). Future studies comparing a larger number of genes between the two species may result in identification of additional candidate genes involved in drug metabolism and/or resistance. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05260-4.
Collapse
Affiliation(s)
- Faruk Dube
- Division of Parasitology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7036, 750 07, Uppsala, Sweden.
| | - Andrea Hinas
- Department of Cell and Molecular Biology, Uppsala University, 751 24, Uppsala, Sweden
| | - Shweta Roy
- Department of Cell and Molecular Biology, Uppsala University, 751 24, Uppsala, Sweden
| | - Frida Martin
- Division of Parasitology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7036, 750 07, Uppsala, Sweden
| | - Magnus Åbrink
- Section of Immunology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7036, 750 07, Uppsala, Sweden
| | - Staffan Svärd
- Department of Cell and Molecular Biology, Uppsala University, 751 24, Uppsala, Sweden
| | - Eva Tydén
- Division of Parasitology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7036, 750 07, Uppsala, Sweden
| |
Collapse
|
8
|
Fissiha W, Kinde MZ. Anthelmintic Resistance and Its Mechanism: A Review. Infect Drug Resist 2021; 14:5403-5410. [PMID: 34938088 PMCID: PMC8687516 DOI: 10.2147/idr.s332378] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/25/2021] [Indexed: 11/27/2022] Open
Abstract
Helminths are a various types of parasites causing a major health problem for animals in different parts of the globe. Control of helminthiasis has largely relied on the use of pharmaceutical anthelmintics. Unfortunately, the exhaustive use of anthelmintic drugs has led to a serious and dramatic level of anthelmintic resistance. Anthelmintic resistance is a heritable loss of sensitivity of an anthelmintic in a parasite population that was in the past susceptible to the same anthelmintic. The development of anthelmintic resistance is evident to different helminths of almost every animal species and to different groups of anthelmintic in several continents. Frequent treatment, underdosing, genetics of the parasite, and targeting and timing of mass treatment are predisposing factors for anthelmintic resistance. Upregulation of cellular efflux mechanisms, an increase in drug metabolism, a change in drug receptor sites that reduces drug binding or the functional consequences of drug binding, and a decrease in drug receptor abundance through reduced expression within the parasite are the main mechanisms of anthelmintic resistance. In vivo method like fecal egg count reduction test and in vitro method such as egg hatch assays, larval motility test, larval development test and PCR can be used for the detection of anthelmintic resistance. Proper utilization of anthelmintic drugs, using combined anthelmintic and applying other alternatives are essential strategies to slow down the development of anthelmintic resistance. As anthelmintic resistance is a serious challenge throughout the world, proper utilization of the existing anthelmintics and reducing dependence on anthelmintics should be implemented to reduce its challenge.
Collapse
Affiliation(s)
- Workye Fissiha
- Department of Epidemiology and Public Health, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Amhara Regional State, Ethiopia
| | - Mebrie Zemene Kinde
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Amhara Regional State, Ethiopia
| |
Collapse
|
9
|
Zajíčková M, Prchal L, Navrátilová M, Vodvárková N, Matoušková P, Vokřál I, Nguyen LT, Skálová L. Sertraline as a new potential anthelmintic against Haemonchus contortus: toxicity, efficacy, and biotransformation. Vet Res 2021; 52:143. [PMID: 34895342 PMCID: PMC8666012 DOI: 10.1186/s13567-021-01012-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/12/2021] [Indexed: 11/10/2022] Open
Abstract
Haemonchus contortus is a parasitic nematode of ruminants which causes significant losses to many farmers worldwide. Since the drugs currently in use for the treatment of haemonchosis are losing their effectiveness due to the drug-resistance of this nematode, a new or repurposed drug is highly needed. As the antipsychotic drug sertraline (SRT) has been shown to be effective against the parasitic nematodes Trichuris muris, Ancylostoma caninum and Schistosoma mansoni, the aim of the present study was to evaluate the possible effect of SRT on H. contortus. The potential hepatotoxicity of SRT was tested in sheep, a common H. contortus host. In addition, the main metabolic pathways of SRT in H. contortus and the ovine liver were identified. While no effect of SRT on H. contortus egg hatching was observed, SRT was found to significantly decrease the viability of H. contortus adults in drug-sensitive and resistant strains, with its effect comparable to the commonly used anthelmintics levamisole and monepantel. Moreover, SRT in anthelmintically active concentrations showed no toxicity to the ovine liver. Biotransformation of SRT in H. contortus was weak, with most of the drug remaining unmetabolized. Production of the main metabolite hydroxy-SRT did not differ significantly between strains. Other minor metabolites such as SRT-O-glucoside, dihydroxy-SRT, and SRT-ketone were also identified in H. contorts adults. Compared to H. contortus, the ovine liver metabolized SRT more extensively, mainly via desmethylation and glucuronidation. In conclusion, the potency of SRT against H. contortus was proven, and it should be tested further toward possible repurposing.
Collapse
Affiliation(s)
- Markéta Zajíčková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Lukáš Prchal
- Biomedical Research Centre, University Hospital in Hradec Králové, Hradec Králové, Czech Republic
| | - Martina Navrátilová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Nikola Vodvárková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Ivan Vokřál
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Linh Thuy Nguyen
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
10
|
Garge RK, Cha HJ, Lee C, Gollihar JD, Kachroo AH, Wallingford JB, Marcotte EM. Discovery of new vascular disrupting agents based on evolutionarily conserved drug action, pesticide resistance mutations, and humanized yeast. Genetics 2021; 219:iyab101. [PMID: 34849907 PMCID: PMC8633126 DOI: 10.1093/genetics/iyab101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Thiabendazole (TBZ) is an FDA-approved benzimidazole widely used for its antifungal and antihelminthic properties. We showed previously that TBZ is also a potent vascular disrupting agent and inhibits angiogenesis at the tissue level by dissociating vascular endothelial cells in newly formed blood vessels. Here, we uncover TBZ's molecular target and mechanism of action. Using human cell culture, molecular modeling, and humanized yeast, we find that TBZ selectively targets only 1 of 9 human β-tubulin isotypes (TUBB8) to specifically disrupt endothelial cell microtubules. By leveraging epidemiological pesticide resistance data and mining chemical features of commercially used benzimidazoles, we discover that a broader class of benzimidazole compounds, in extensive use for 50 years, also potently disrupt immature blood vessels and inhibit angiogenesis. Thus, besides identifying the molecular mechanism of benzimidazole-mediated vascular disruption, this study presents evidence relevant to the widespread use of these compounds while offering potential new clinical applications.
Collapse
Affiliation(s)
- Riddhiman K Garge
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hye Ji Cha
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Chanjae Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jimmy D Gollihar
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
- US Army Research Laboratory—South, Austin, TX 78758, USA
| | - Aashiq H Kachroo
- The Department of Biology, Centre for Applied Synthetic Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - John B Wallingford
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
11
|
Hahnel SR, Dilks CM, Heisler I, Andersen EC, Kulke D. Caenorhabditis elegans in anthelmintic research - Old model, new perspectives. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 14:237-248. [PMID: 33249235 PMCID: PMC7704361 DOI: 10.1016/j.ijpddr.2020.09.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/13/2022]
Abstract
For more than four decades, the free-living nematode Caenorhabditis elegans has been extensively used in anthelmintic research. Classic genetic screens and heterologous expression in the C. elegans model enormously contributed to the identification and characterization of molecular targets of all major anthelmintic drug classes. Although these findings provided substantial insights into common anthelmintic mechanisms, a breakthrough in the treatment and control of parasitic nematodes is still not in sight. Instead, we are facing increasing evidence that the enormous diversity within the phylum Nematoda cannot be recapitulated by any single free-living or parasitic species and the development of novel broad-spectrum anthelmintics is not be a simple goal. In the present review, we summarize certain milestones and challenges of the C. elegans model with focus on drug target identification, anthelmintic drug discovery and identification of resistance mechanisms. Furthermore, we present new perspectives and strategies on how current progress in C. elegans research will support future anthelmintic research.
Collapse
Affiliation(s)
| | - Clayton M Dilks
- Northwestern University, Department of Molecular Biosciences, Evanston, IL, USA.
| | | | - Erik C Andersen
- Northwestern University, Department of Molecular Biosciences, Evanston, IL, USA.
| | | |
Collapse
|
12
|
Martínez-Valladares M, Valderas-García E, Gandasegui J, Skuce P, Morrison A, Castilla Gómez de Agüero V, Cambra-Pellejà M, Balaña-Fouce R, Rojo-Vázquez FA. Teladorsagia circumcincta beta tubulin: the presence of the E198L polymorphism on its own is associated with benzimidazole resistance. Parasit Vectors 2020; 13:453. [PMID: 32894163 PMCID: PMC7487696 DOI: 10.1186/s13071-020-04320-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/30/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Benzimidazole resistance is associated with isotype-1 β-tubulin gene F200Y, E198A and F167Y SNPs. In this study, the recently described polymorphism E198L was reported and analysed in Teladorsagia circumcincta. METHODS The benzimidazole phenotypic resistance was measured by the faecal egg count reduction test (FECRT) and the egg hatch test (EHT) using a discriminating dose (DD) in 39 sheep flocks. Around 1000 larvae collected before and after treatment were used for DNA extraction. The resistant species identified in all flocks was T. circumcincta. The resistance alleles frequencies were measured for F200Y and E198A. A 371-bp fragment of the isotype-1 β-tubulin gene was analysed, including the three codons of interest, and a new pyrosequencing assay was designed for testing E198L. RESULTS The percentage of resistant flocks was 35% by FECRT or 26% by EHT; however, F200Y and E198A SNPs were absent in T. circumcincta. The amplification of a 371-bp fragment confirmed the absence of F167Y and F200Y in 6 resistant flocks. Regarding codon 198, all samples after treatment carried a leucine (CTA). A pyrosequencing assay analysed the allele frequencies for the first two bases at codon 198 independently, G/C and A/T. The correlation between C and T frequencies was almost 1 (r = 0.929, P < 0.0001) and the mean value of both was calculated to measure the leucine frequency; this value ranged between 10.4-80.7% before treatment, and 82.3-92.8% after treatment. High and similar correlations were reported between the genotypic variables (C frequency, T frequency or mean of both frequencies) and phenotypic resistance (r > 0.720, P < 0.0001), although negatively associated with the FECRT and positively with the EHT. According to multivariate linear regression analysis, the T frequency was the most significant variable influencing the phenotypic resistance (FECRT or EHT; P < 0.0001). In the EHT, 67.1% of the phenotypic variability is associated with the T frequency but in the FECRT only 33.4%; therefore, the EHT using a DD seems to detect the genotypic resistance more accurately than the FECRT. CONCLUSIONS The E198L polymorphism can confer BZ resistance on its own in T. circumcincta.
Collapse
Affiliation(s)
- María Martínez-Valladares
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Grulleros, 24346, León, Spain. .,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, 24071, León, Spain.
| | - Elora Valderas-García
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Grulleros, 24346, León, Spain.,Departmento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| | | | - Philip Skuce
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | - Alison Morrison
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | - Verónica Castilla Gómez de Agüero
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Grulleros, 24346, León, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, 24071, León, Spain
| | - Maria Cambra-Pellejà
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Grulleros, 24346, León, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, 24071, León, Spain
| | - Rafael Balaña-Fouce
- Departmento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| | - Francisco A Rojo-Vázquez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, 24071, León, Spain
| |
Collapse
|
13
|
Kellerová P, Raisová Stuchlíková L, Matoušková P, Štěrbová K, Lamka J, Navrátilová M, Vokřál I, Szotáková B, Skálová L. Sub-lethal doses of albendazole induce drug metabolizing enzymes and increase albendazole deactivation in Haemonchus contortus adults. Vet Res 2020; 51:94. [PMID: 32703268 PMCID: PMC7379777 DOI: 10.1186/s13567-020-00820-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
The efficacy of anthelmintic therapy of farm animals rapidly decreases due to drug resistance development in helminths. In resistant isolates, the increased expression and activity of drug-metabolizing enzymes (DMEs), e.g. cytochromes P450 (CYPs), UDP-glycosyltransferases (UGTs) and P-glycoprotein transporters (P-gps), in comparison to sensitive isolates have been described. However, the mechanisms and circumstances of DMEs induction are not well known. Therefore, the present study was designed to find the changes in expression of CYPs, UGTs and P-gps in adult parasitic nematodes Haemonchus contortus exposed to sub-lethal doses of the benzimidazole anthelmintic drug albendazole (ABZ) and its active metabolite ABZ-sulfoxide (ABZSO). In addition, the effect of ABZ at sub-lethal doses on the ability to deactivate ABZ during consequent treatment was studied. The results showed that contact of H. contortus adults with sub-lethal doses of ABZ and ABZSO led to a significant induction of several DMEs, particularly cyp-2, cyp-3, cyp-6, cyp-7, cyp-8, UGT10B1, UGT24C1, UGT26A2, UGT365A1, UGT366C1, UGT368B2, UGT367A1, UGT371A1, UGT372A1 and pgp-3, pgp-9.1, pgp-9.2, pgp-10. This induction led to increased formation of ABZ metabolites (especially glycosides) and their increased export from the helminths' body into the medium. The present study demonstrates for the first time that contact of H. contortus with sub-lethal doses of ABZ (e.g. during underdose treatment) improves the ability of H. contortus adults to deactivate ABZ in consequent therapy.
Collapse
Affiliation(s)
- Pavlína Kellerová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Lucie Raisová Stuchlíková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Karolína Štěrbová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jiří Lamka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Martina Navrátilová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Ivan Vokřál
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Barbora Szotáková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
14
|
Assessment of the F200Y mutation frequency in the β tubulin gene of Haemonchus contortus following the exposure to a discriminating concentration of thiabendazole in the egg hatch test. Exp Parasitol 2020; 217:107957. [PMID: 32687847 DOI: 10.1016/j.exppara.2020.107957] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 02/01/2023]
Abstract
The ruminant livestock production sector is under threat due to the infections with gastrointestinal nematode parasites and the subsequent development of anthelmintic resistance. One of most common and pathogenic species in small ruminants is Haemonchus contortus. The ability to control the infections with this and other gastrointestinal nematodes relies heavily on the use of anthelmintic drugs. Although resistance to all major classes of anthelmintics has been shown in H. contortus, the precise mechanism of resistance acquisition is only known for benzimidazoles. F200Y (TAC) is a common point mutation in the isotype 1 β tubulin gene which is associated with an effective increase in the resistance towards benzimidazole drugs. Here, we show the utility of using this mutation as a marker in a droplet digital PCR assay to track how two H. contortus laboratory strains, characterized by different resistance levels, change with respect to this mutation, when subjected to increasing concentrations of thiabendazole. Additionally, we wanted to investigate whether exposure to a discriminating dose of thiabendazole in the egg hatch test resulted in the death of all H. contortus eggs with a susceptible genotype. We found the MHco5 strain to maintain an overall higher frequency of the F200Y mutation (80-100%) over all drug concentrations, whilst a steady, gradual increase from around 30%-60% was observed in the case of the MHco4 strain. This is further supported by the dose-response curves, displaying a much higher tolerance of the MHco5 strain (LD50 = 0.38 μg/ml) in comparison to the MHco4 strain (LD50 = 0.07 μg/ml) to the effects of thiabendazole. All things considered, we show that the F200Y mutation is still a viable and reliable marker for the detection and surveillance of benzimidazole drug resistance in H. contortus in Europe.
Collapse
|
15
|
Martin F, Dube F, Karlsson Lindsjö O, Eydal M, Höglund J, Bergström TF, Tydén E. Transcriptional responses in Parascaris univalens after in vitro exposure to ivermectin, pyrantel citrate and thiabendazole. Parasit Vectors 2020; 13:342. [PMID: 32646465 PMCID: PMC7346371 DOI: 10.1186/s13071-020-04212-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022] Open
Abstract
Background Parascaris univalens is a pathogenic parasite of foals and yearlings worldwide. In recent years, Parascaris spp. worms have developed resistance to several of the commonly used anthelmintics, though currently the mechanisms behind this development are unknown. The aim of this study was to investigate the transcriptional responses in adult P. univalens worms after in vitro exposure to different concentrations of three anthelmintic drugs, focusing on drug targets and drug metabolising pathways. Methods Adult worms were collected from the intestines of two foals at slaughter. The foals were naturally infected and had never been treated with anthelmintics. Worms were incubated in cell culture media containing different concentrations of either ivermectin (10−9 M, 10−11 M, 10−13 M), pyrantel citrate (10−6 M, 10−8 M, 10−10 M), thiabendazole (10−5 M, 10−7 M, 10−9 M) or without anthelmintics (control) at 37 °C for 24 h. After incubation, the viability of the worms was assessed and RNA extracted from the anterior region of 36 worms and sequenced on an Illumina NovaSeq 6000 system. Results All worms were alive at the end of the incubation but showed varying degrees of viability depending on the drug and concentration used. Differential expression (Padj < 0.05 and log2 fold change ≥ 1 or ≤ − 1) analysis showed similarities and differences in the transcriptional response after exposure to the different drug classes. Candidate genes upregulated or downregulated in drug exposed worms include members of the phase I metabolic pathway short-chain dehydrogenase/reductase superfamily (SDR), flavin containing monooxygenase superfamily (FMO) and cytochrome P450-family (CYP), as well as members of the membrane transporters major facilitator superfamily (MFS) and solute carrier superfamily (SLC). Generally, different targets of the anthelmintics used were found to be upregulated and downregulated in an unspecific pattern after drug exposure, apart from the GABA receptor subunit lgc-37, which was upregulated only in worms exposed to 10−9 M of ivermectin. Conclusions To our knowledge, this is the first time the expression of lgc-37 and members of the FMO, SDR, MFS and SLC superfamilies have been described in P. univalens and future work should be focused on characterising these candidate genes to further explore their potential involvement in drug metabolism and anthelmintic resistance.![]()
Collapse
Affiliation(s)
- Frida Martin
- Division of Parasitology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7036, 750 07, Uppsala, Sweden.
| | - Faruk Dube
- Division of Parasitology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7036, 750 07, Uppsala, Sweden
| | - Oskar Karlsson Lindsjö
- SLU-Global Bioinformatics Centre, Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 750 07, Uppsala, Sweden
| | - Matthías Eydal
- Institute for Experimental Pathology at Keldur, University of Iceland, Keldnavegur 3, 112, Reykjavik, Iceland
| | - Johan Höglund
- Division of Parasitology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7036, 750 07, Uppsala, Sweden
| | - Tomas F Bergström
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 750 07, Uppsala, Sweden
| | - Eva Tydén
- Division of Parasitology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7036, 750 07, Uppsala, Sweden
| |
Collapse
|
16
|
Hinney B, Schoiswohl J, Melville L, Ameen VJ, Wille-Piazzai W, Bauer K, Joachim A, Krücken J, Skuce PJ, Krametter-Frötscher R. High frequency of benzimidazole resistance alleles in trichostrongyloids from Austrian sheep flocks in an alpine transhumance management system. BMC Vet Res 2020; 16:132. [PMID: 32393382 PMCID: PMC7216349 DOI: 10.1186/s12917-020-02353-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
Background Infections of small ruminants with trichostrongyloid nematodes often result in reduced productivity and may be detrimental to the host. Anthelmintic resistance (AR) against most anthelmintic drug classes is now widespread amongst the trichostrongyloids. Baseline establishment, followed by regular monitoring of the level of AR, is necessary for farmers and veterinarians to make informed decisions about parasite management. The detection of single nucleotide polymorphisms (SNPs) is a sensitive method to detect AR against benzimidazoles (BZs), one of the most widely used anthelmintic classes. Alpine transhumance constitutes a special type of pasturing of sheep from many different farms, the aim of this study was to investigate the prevalence of benzimidazole resistance alleles in this particular management system. Results Sixteen sheep flocks in Styria and Salzburg in Austria were examined by pyrosequencing for SNPs at codons 167, 198 and 200 of the isotype-1 β-tubulin gene. The frequency of the resistance-associated exchange F200Y was 87–100% for H. contortus, 77–100% for T. colubriformis and < 5–66% for T. circumcincta. Additionally, the F167Y polymorphism was detected in T. colubriformis from two farms at a frequency of 19 and 23% respectively. Conclusions The high resistance allele frequency in H. contortus and T. colubriformis in the examined sheep population urgently calls for the development of new treatment strategies to sustainably control trichostrongyloid infections for this kind of pasturing, since the frequent mixing of flocks during the alpine summer grazing must be considered an important risk factor for the spread of resistant nematodes to a large number of farms.
Collapse
Affiliation(s)
- Barbara Hinney
- Department of Pathobiology, Institute of Parasitology, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Julia Schoiswohl
- Department for Farm Animals and Veterinary Public Health, University Clinic for Ruminants, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Lynsey Melville
- Moredun Research Institute, Pentlands Science Parks, Bush Loan, Penicuik, Edinburgh, EH26 OPZ, UK
| | - Vahel J Ameen
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.,College of Veterinary Medicine, University of Duhok, Duhok, Kurdistan Region, Iraq
| | - Walpurga Wille-Piazzai
- Department of Pathobiology, Institute of Parasitology, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Karl Bauer
- Animal Health Service Styria, Friedrichgasse 11, 8010, Graz, Austria
| | - Anja Joachim
- Department of Pathobiology, Institute of Parasitology, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Jürgen Krücken
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Philip J Skuce
- Moredun Research Institute, Pentlands Science Parks, Bush Loan, Penicuik, Edinburgh, EH26 OPZ, UK
| | - Reinhild Krametter-Frötscher
- Department for Farm Animals and Veterinary Public Health, University Clinic for Ruminants, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| |
Collapse
|
17
|
Khan S, Nisar A, Yuan J, Luo X, Dou X, Liu F, Zhao X, Li J, Ahmad H, Mehmood SA, Feng X. A Whole Genome Re-Sequencing Based GWA Analysis Reveals Candidate Genes Associated with Ivermectin Resistance in Haemonchus contortus. Genes (Basel) 2020; 11:E367. [PMID: 32231078 PMCID: PMC7230667 DOI: 10.3390/genes11040367] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/11/2020] [Accepted: 03/26/2020] [Indexed: 11/23/2022] Open
Abstract
The most important and broad-spectrum drug used to control the parasitic worms to date is ivermectin (IVM). Resistance against IVM has emerged in parasites, and preserving its efficacy is now becoming a serious issue. The parasitic nematode Haemonchus contortus (Rudolphi, 1803) is economically an important parasite of small ruminants across the globe, which has a successful track record in IVM resistance. There are growing evidences regarding the multigenic nature of IVM resistance, and although some genes have been proposed as candidates of IVM resistance using lower magnification of genome, the genetic basis of IVM resistance still remains poorly resolved. Using the full magnification of genome, we herein applied a population genomics approach to characterize genome-wide signatures of selection among pooled worms from two susceptible and six ivermectin-resistant isolates of H. contortus, and revealed candidate genes under selection in relation to IVM resistance. These candidates also included a previously known IVM-resistance-associated candidate gene HCON_00148840, glc-3. Finally, an RNA-interference-based functional validation assay revealed the HCON_00143950 as IVM-tolerance-associated gene in H. contortus. The possible role of this gene in IVM resistance could be detoxification of xenobiotic in phase I of xenobiotic metabolism. The results of this study further enhance our understanding on the IVM resistance and continue to provide further evidence in favor of multigenic nature of IVM resistance.
Collapse
Affiliation(s)
- Sawar Khan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, China
| | - Ayesha Nisar
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, China
| | - Jianqi Yuan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, China
| | - Xiaoping Luo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, China
- Veterinary Research Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
| | - Xueqin Dou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, China
| | - Fei Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, China
| | - Xiaochao Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, China
| | - Junyan Li
- Veterinary Research Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
| | - Habib Ahmad
- Department of Genetics, Hazara University, Mansehra 21300, Pakistan
| | | | - Xingang Feng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, China
| |
Collapse
|
18
|
Kellerová P, Matoušková P, Lamka J, Vokřál I, Szotáková B, Zajíčková M, Pasák M, Skálová L. Ivermectin-induced changes in the expression of cytochromes P450 and efflux transporters in Haemonchus contortus female and male adults. Vet Parasitol 2019; 273:24-31. [DOI: 10.1016/j.vetpar.2019.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/12/2019] [Accepted: 07/20/2019] [Indexed: 12/12/2022]
|
19
|
Hahnel SR, Zdraljevic S, Rodriguez BC, Zhao Y, McGrath PT, Andersen EC. Extreme allelic heterogeneity at a Caenorhabditis elegans beta-tubulin locus explains natural resistance to benzimidazoles. PLoS Pathog 2018; 14:e1007226. [PMID: 30372484 PMCID: PMC6224181 DOI: 10.1371/journal.ppat.1007226] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/08/2018] [Accepted: 10/01/2018] [Indexed: 12/22/2022] Open
Abstract
Benzimidazoles (BZ) are essential components of the limited chemotherapeutic arsenal available to control the global burden of parasitic nematodes. The emerging threat of BZ resistance among multiple nematode species necessitates the development of novel strategies to identify genetic and molecular mechanisms underlying this resistance. All detection of parasitic helminth resistance to BZ is focused on the genotyping of three variant sites in the orthologs of the β-tubulin gene found to confer resistance in the free-living nematode Caenorhabditis elegans. Because of the limitations of laboratory and field experiments in parasitic nematodes, it is difficult to look beyond these three sites to identify additional mechanisms that might contribute to BZ resistance in the field. Here, we took an unbiased genome-wide mapping approach in the free-living nematode species C. elegans to identify the genetic underpinnings of natural resistance to the commonly used BZ, albendazole (ABZ). We found a wide range of natural variation in ABZ resistance in natural C. elegans populations. In agreement with known mechanisms of BZ resistance in parasites, we found that a majority of the variation in ABZ resistance among wild C. elegans strains is caused by variation in the β-tubulin gene ben-1. This result shows empirically that resistance to ABZ naturally exists and segregates within the C. elegans population, suggesting that selection in natural niches could enrich for resistant alleles. We identified 25 distinct ben-1 alleles that are segregating at low frequencies within the C. elegans population, including many novel molecular variants. Population genetic analyses indicate that ben-1 variation arose multiple times during the evolutionary history of C. elegans and provide evidence that these alleles likely occurred recently because of local selective pressures. Additionally, we find purifying selection at all five β-tubulin genes, despite predicted loss-of-function variants in ben-1, indicating that BZ resistance in natural niches is a stronger selective pressure than loss of one β-tubulin gene. Furthermore, we used genome-editing to show that the most common parasitic nematode β-tubulin allele that confers BZ resistance, F200Y, confers resistance in C. elegans. Importantly, we identified a novel genomic region that is correlated with ABZ resistance in the C. elegans population but independent of ben-1 and the other β-tubulin loci, suggesting that there are multiple mechanisms underlying BZ resistance. Taken together, our results establish a population-level resource of nematode natural diversity as an important model for the study of mechanisms that give rise to BZ resistance.
Collapse
Affiliation(s)
- Steffen R. Hahnel
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| | - Stefan Zdraljevic
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States of America
| | - Briana C. Rodriguez
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| | - Yuehui Zhao
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Patrick T. McGrath
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Erik C. Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States of America
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
20
|
UDP-glycosyltransferase family in Haemonchus contortus: Phylogenetic analysis, constitutive expression, sex-differences and resistance-related differences. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:420-429. [PMID: 30293057 PMCID: PMC6174829 DOI: 10.1016/j.ijpddr.2018.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/26/2022]
Abstract
UDP-glycosyltransferases (UGT), catalysing conjugation of UDP-activated sugar donors to small lipophilic chemicals, are widespread in living organisms from bacteria to fungi, plant, or animals. The progress of genome sequencing has enabled an assessment of the UGT multigene family in Haemonchus contortus (family Trichostrongylidae, Nematoda), a hematophagous gastrointestinal parasite of small ruminants. Here we report 32 putative UGT genes divided into 15 UGT families. Phylogenetic analysis in comparison with UGTs from Caenorhabditis elegans, a free-living model nematode, revealed several single member homologues, a lack of the dramatic gene expansion seen in C. elegans, but also several families (UGT365, UGT366, UGT368) expanded in H. contortus only. The assessment of constitutive UGT mRNA expression in H. contortus adults identified significant differences between females and males. In addition, we compared the expression of selected UGTs in the drug-sensitive ISE strain to two benzimidazole-resistant strains, IRE and WR, with different genetic backgrounds. Constitutive expression of UGT368B2 was significantly higher in both resistant strains than in the sensitive strain. As resistant strains were able to deactivate benzimidazole anthelmintics via glycosylation more effectively then the sensitive strain, UGT368B2 enhanced constitutive expression might contribute to drug resistance in H. contortus.
Collapse
|
21
|
Metabolism of albendazole, ricobendazole and flubendazole in Haemonchus contortus adults: Sex differences, resistance-related differences and the identification of new metabolites. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:50-58. [PMID: 29414106 PMCID: PMC6114105 DOI: 10.1016/j.ijpddr.2018.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/22/2022]
Abstract
Haemonchus contortus (family Trichostrongylidae, Nematoda), a hematophagous gastrointestinal parasite found in small ruminants, has a great ability to develop resistance to anthelmintic drugs. We studied the biotransformation of the three benzimidazole anthelmintics: albendazole (ABZ), ricobendazole (albendazole S-oxide; RCB) and flubendazole (FLU) in females and males of H. contortus in both a susceptible ISE strain and resistant IRE strain. The ex vivo cultivation of living nematodes in culture medium with or without the anthelmintics was used. Ultrasensitive UHPLC/MS/MS analysis revealed 9, 7 and 12 metabolites of ABZ, RCB and FLU, respectively, with most of these metabolites now described in the present study for the first time in H. contortus. The structure of certain metabolites shows the presence of biotransformation reactions not previously reported in nematodes. There were significant qualitative and semi-quantitative differences in the metabolites formed by male and female worms. In most cases, females metabolized drugs more extensively than males. Adults of the IRE strain were able to form many more metabolites of all the drugs than adults of the ISE strain. Some metabolites were even found only in adults of the IRE strain. These findings suggest that increased drug metabolism may play a role in resistance to benzimidazole drugs in H. contortus.
Collapse
|