1
|
Gunes Y, Blanco-Paniagua E, Anlas C, Sari AB, Bakirel T, Ustuner O, Merino G. Role of the Abcg2 transporter in plasma, milk, and tissue levels of the anthelmintic monepantel in mice. Chem Biol Interact 2024; 398:111117. [PMID: 38906501 DOI: 10.1016/j.cbi.2024.111117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024]
Abstract
Breast cancer resistance protein/ATP-binding cassette subfamily G2 (BCRP/ABCG2) is an ATP-binding cassette efflux (ABC) transporter expressed in the apical membrane of cells in tissues, such as the liver, intestine, kidney, testis, brain, and mammary gland. It is involved in xenobiotic pharmacokinetics, potentially affecting the efficacy and toxicity of many drugs. In this study, the role of ABCG2 in parasiticide monepantel (MNP) and its primary metabolite, monepantel sulfone (MNPSO2)'s systemic distribution and excretion in milk, was tested using female and male wild-type and Abcg2-/- mice. Liquid chromatography coupled with a tandem mass spectrometer (LC-MS/MS) was used for the analysis in a 10-min run time using positive-mode atmospheric pressure electrospray ionization (ESI+) and multiple reaction monitoring (MRM) scanning. For the primary metabolite tested, milk concentrations were 1.8-fold higher in wild-type mice than Abcg2-/- female lactating mice (P = 0.042) after intravenous administration of MNP. Finally, despite the lack of a difference between groups, we investigated potential differences in MNP and MNPSO2's plasma and tissue accumulation levels between wild-type and Abcg2-/- male mice. In this study, we demonstrated that MNPSO2 milk levels were affected by Abcg2, with potential pharmacological and toxicological consequences, contributing to the undesirable xenobiotic residues in milk.
Collapse
Affiliation(s)
- Yigit Gunes
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, 34500, Istanbul, Turkey.
| | - Esther Blanco-Paniagua
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of Leon, Campus de Vegazana, 24071, Leon, Spain
| | - Ceren Anlas
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, 34500, Istanbul, Turkey
| | - Ataman Bilge Sari
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, 34500, Istanbul, Turkey
| | - Tulay Bakirel
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, 34500, Istanbul, Turkey
| | - Oya Ustuner
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, 34500, Istanbul, Turkey
| | - Gracia Merino
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of Leon, Campus de Vegazana, 24071, Leon, Spain
| |
Collapse
|
2
|
Shanley HT, Taki AC, Nguyen N, Wang T, Byrne JJ, Ang CS, Leeming MG, Williamson N, Chang BCH, Jabbar A, Sleebs BE, Gasser RB. Comparative structure activity and target exploration of 1,2-diphenylethynes in Haemonchus contortus and Caenorhabditis elegans. Int J Parasitol Drugs Drug Resist 2024; 25:100534. [PMID: 38554597 PMCID: PMC10992699 DOI: 10.1016/j.ijpddr.2024.100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/01/2024]
Abstract
Infections and diseases caused by parasitic nematodes have a major adverse impact on the health and productivity of animals and humans worldwide. The control of these parasites often relies heavily on the treatment with commercially available chemical compounds (anthelmintics). However, the excessive or uncontrolled use of these compounds in livestock animals has led to major challenges linked to drug resistance in nematodes. Therefore, there is a need to develop new anthelmintics with novel mechanism(s) of action. Recently, we identified a small molecule, designated UMW-9729, with nematocidal activity against the free-living model organism Caenorhabditis elegans. Here, we evaluated UMW-9729's potential as an anthelmintic in a structure-activity relationship (SAR) study in C. elegans and the highly pathogenic, blood-feeding Haemonchus contortus (barber's pole worm), and explored the compound-target relationship using thermal proteome profiling (TPP). First, we synthesised and tested 25 analogues of UMW-9729 for their nematocidal activity in both H. contortus (larvae and adults) and C. elegans (young adults), establishing a preliminary nematocidal pharmacophore for both species. We identified several compounds with marked activity against either H. contortus or C. elegans which had greater efficacy than UMW-9729, and found a significant divergence in compound bioactivity between these two nematode species. We also identified a UMW-9729 analogue, designated 25, that moderately inhibited the motility of adult female H. contortus in vitro. Subsequently, we inferred three H. contortus proteins (HCON_00134350, HCON_00021470 and HCON_00099760) and five C. elegans proteins (F30A10.9, F15B9.8, B0361.6, DNC-4 and UNC-11) that interacted directly with UMW-9729; however, no conserved protein target was shared between the two nematode species. Future work aims to extend the SAR investigation in these and other parasitic nematode species, and validate individual proteins identified here as possible targets of UMW-9729. Overall, the present study evaluates this anthelmintic candidate and highlights some challenges associated with early anthelmintic investigation.
Collapse
Affiliation(s)
- Harrison T Shanley
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Aya C Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Nghi Nguyen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Joseph J Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ching-Seng Ang
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Michael G Leeming
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Nicholas Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Bill C H Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Brad E Sleebs
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
3
|
Mohammedsalih KM, Ibrahim AIY, Juma FR, Abdalmalaik AAH, Bashar A, Coles G, von Samson-Himmelstjerna G, Krücken J. First evaluation and detection of ivermectin resistance in gastrointestinal nematodes of sheep and goats in South Darfur, Sudan. PLoS One 2024; 19:e0301554. [PMID: 38861496 PMCID: PMC11166298 DOI: 10.1371/journal.pone.0301554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
In Sudan, resistance to benzimidazoles has been reported recently in cattle and goats from South Darfur. Herein, ivermectin efficacy against gastrointestinal nematodes (GINs) was evaluated in sheep and goats in three study areas in South Darfur. The faecal egg count reduction test (FECRT) was used to evaluate the efficacy of ivermectin in sheep and goats naturally infected with GINs in the region of Bulbul (goats: n = 106), Kass (goats: n = 40) and Nyala (Domaia (sheep: n = 47, goats: n = 77) and the University farm (goats: n = 52)), using different treatment plans, and the efficacy was evaluated 12 days after treatment. Ivermectin efficacy was also evaluated in goats experimentally infected using local Haemonchus contortus isolates from Kass and Nyala. Nematodes surviving ivermectin treatment in goats in Bulbul and Nyala were harvested and larvae used to infect worm-free male sheep (n = 6, ≤6 months old). Infected sheep were dosed subcutaneously with ivermectin every eight days with increasing doses from 0.2 mg/kg to 1.6 mg/kg bodyweight (bw). Reduced ivermectin efficacy was identified in sheep and goats in the four study locations. Using a paired statistic, the efficacy of a therapeutic dose in sheep was 75.6% (90% upper credible limit (UCrL): 77.5%), while twice the recommended dose led to a reduction of 92.6% (90% UCrL: 93.3%). In goats, the FECRs of a therapeutic dose were 72.9-95.3% (90% UCrL range: 73.6-95.7%) in Bulbul, Nyala Domaia, Nyala University farm and Kass. Twice the dose recommended for goats in Bulbul revealed a 90% UCrL of 87.6%. All post-treatment faecal cultures contained only Haemonchus spp. larvae. The experimental infection trials in sheep and goats supported our findings from field trials and calculated upper 90% CrL of below 98.9%. For the first time highly ivermectin resistant H. contortus populations have been identified in sheep and goats in Sudan, and resistance was experimentally confirmed.
Collapse
Affiliation(s)
- Khalid M. Mohammedsalih
- Central Research Laboratory of Darfur Universities, Nyala, Sudan
- Faculty of Veterinary Science, University of Nyala, Nyala, Sudan
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | | | - Fathel-Rahman Juma
- Central Research Laboratory of Darfur Universities, Nyala, Sudan
- Faculty of Veterinary Science, University of Nyala, Nyala, Sudan
| | | | - Ahmed Bashar
- Faculty of Veterinary Science, University of Nyala, Nyala, Sudan
| | - Gerald Coles
- Heronswey, Frog Lane, Ubley, Bristol, United Kingdom
| | | | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
4
|
Sadr S, Ahmadi Simab P, Niazi M, Yousefsani Z, Lotfalizadeh N, Hajjafari A, Borji H. Anti-inflammatory and immunomodulatory effects of mesenchymal stem cell therapy on parasitic drug resistance. Expert Rev Anti Infect Ther 2024; 22:435-451. [PMID: 38804866 DOI: 10.1080/14787210.2024.2360684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION The emergence of antiparasitic drug resistance poses a concerning threat to animals and humans. Mesenchymal Stem Cells (MSCs) have been widely used to treat infections in humans, pets, and livestock. Although this is an emerging field of study, the current review outlines possible mechanisms and examines potential synergism in combination therapies and the possible harmful effects of such an approach. AREAS COVERED The present study delved into the latest pre-clinical research on utilizing MSCs to treat parasitic infections. As per investigations, the introduction of MSCs to patients grappling with parasitic diseases like schistosomiasis, malaria, cystic echinococcosis, toxoplasmosis, leishmaniasis, and trypanosomiasis has shown a reduction in parasite prevalence. This intervention also alters the levels of both pro- and anti-inflammatory cytokines. Furthermore, the combined administration of MSCs and antiparasitic drugs has demonstrated enhanced efficacy in combating parasites and modulating the immune response. EXPERT OPINION Mesenchymal stem cells are a potential solution for addressing parasitic drug resistance. This is mainly because of their remarkable immunomodulatory abilities, which can potentially help combat parasites' resistance to drugs.
Collapse
Affiliation(s)
- Soheil Sadr
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Pouria Ahmadi Simab
- Department of Pathobiology, Faculty of Veterinary Medicine, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Mahta Niazi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zahra Yousefsani
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Narges Lotfalizadeh
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ashkan Hajjafari
- Department of Pathobiology, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
5
|
Mukhamedsadykova AZ, Kasela M, Kozhanova KK, Sakipova ZB, Kukuła-Koch W, Józefczyk A, Świątek Ł, Rajtar B, Iwan M, Kołodziej P, Ludwiczuk A, Kadyrbayeva GM, Kuntubek GN, Mamatova AS, Bogucka-Kocka A, Malm A. Anthelminthic and antimicrobial effects of hedge woundwort ( Stachys sylvatica L.) growing in Southern Kazakhstan. Front Pharmacol 2024; 15:1386509. [PMID: 38769997 PMCID: PMC11102979 DOI: 10.3389/fphar.2024.1386509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024] Open
Abstract
The Stachys L. genus has been widely used in traditional medicine in many countries throughout the world. The study aimed to investigate the chemical composition and bioactivity of the hydroethanolic extract (50% v/v) obtained by ultrasonication from the aerial flowering parts of Stachys sylvatica L. (SSE) collected in Almaty region (Southern Kazakhstan). According to RP-HPLC/PDA analysis the leading metabolites of the SSE belonged to polyphenols: chlorogenic acid and its isomers (2.34 mg/g dry extract) and luteolin derivatives (1.49 mg/g dry extract), while HPLC-ESI-QTOF-MS/MS-based qualitative fingerprinting revealed the presence of 17 metabolites, mainly chlorogenic acid and its isomers, flavonoid glycosides, and verbascoside with its derivatives. GC-MS analysis of the volatile metabolites showed mainly the presence of diterpenoids and fatty acid esters. A reduction in the viability of nematodes Rhabditis sp. was obtained for the SSE concentration of 3.3 mg/mL, while 11.1 mg/mL showed activity comparable to albendazole. The SSE exhibited higher activity against Gram-positive (MIC = 0.5-2 mg/mL) than Gram-negative bacteria and yeast (MIC = 8 mg/mL), exerting bactericidal and fungicidal effects but with no sporicidal activity. The SSE showed some antiviral activity against HCoV-229E replicating in MRC-5 and good protection against the cytopathic effect induced by HHV-1 in VERO. The SSE was moderately cytotoxic towards human cervical adenocarcinoma (H1HeLa) cells (CC50 of 0.127 mg/mL after 72 h). This study provides novel information on the SSE extract composition and its biological activity, especially in the context of the SSE as a promising candidate for further antiparasitic studies.
Collapse
Affiliation(s)
- Aigerim Z. Mukhamedsadykova
- Department of Engineering Disciplines of Good Practices, School of Pharmacy, Kazakh National Medical University, Almaty, Kazakhstan
| | - Martyna Kasela
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Lublin, Poland
| | - Kaldanay K. Kozhanova
- Department of Engineering Disciplines of Good Practices, School of Pharmacy, Kazakh National Medical University, Almaty, Kazakhstan
| | - Zuriyadda B. Sakipova
- Department of Engineering Disciplines of Good Practices, School of Pharmacy, Kazakh National Medical University, Almaty, Kazakhstan
| | | | - Aleksandra Józefczyk
- Department of Pharmacognosy with Medicinal Plant Laboratory, Medical University of Lublin, Lublin, Poland
| | - Łukasz Świątek
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, Lublin, Poland
| | - Barbara Rajtar
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, Lublin, Poland
| | - Magdalena Iwan
- Department of Toxicology, Medical University of Lublin, Lublin, Poland
| | - Przemysław Kołodziej
- Department of Biology and Genetics, Medical University of Lublin, Lublin, Poland
| | - Agnieszka Ludwiczuk
- Department of Pharmacognosy with Medicinal Plant Laboratory, Medical University of Lublin, Lublin, Poland
| | - Gulnara M. Kadyrbayeva
- Department of Engineering Disciplines of Good Practices, School of Pharmacy, Kazakh National Medical University, Almaty, Kazakhstan
| | - Gulnur N. Kuntubek
- Department of Engineering Disciplines of Good Practices, School of Pharmacy, Kazakh National Medical University, Almaty, Kazakhstan
| | - Aliya S. Mamatova
- Department of Microbiology and Virology, Kazakh National Medical University, Almaty, Kazakhstan
| | - Anna Bogucka-Kocka
- Department of Biology and Genetics, Medical University of Lublin, Lublin, Poland
| | - Anna Malm
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
6
|
Valderas-García E, Castilla-Gómez de Agüero V, González Del Palacio L, Galli G, Escala N, Ruiz-Somacarrera M, González-Warleta M, Del Olmo E, Balaña-Fouce R, Martínez-Valladares M. New benzimidazole derivative compounds with in vitro fasciolicidal properties. Parasit Vectors 2024; 17:173. [PMID: 38570858 PMCID: PMC10993450 DOI: 10.1186/s13071-024-06224-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Control of the zoonotic food-borne parasite Fasciola hepatica remains a major challenge in humans and livestock. It is estimated that annual economic losses due to fasciolosis can reach US$3.2 billion in agriculture and livestock. Moreover, the wide distribution of drug-resistant parasite populations and the absence of a vaccine threaten sustainable control, reinforcing the need for novel flukicides. METHODS The present work analyses the flukicidal activity of a total of 70 benzimidazole derivatives on different stages of F. hepatica. With the aim to select the most potent ones, and screenings were first performed on eggs at decreasing concentrations ranging from 50 to 5 µM and then on adult worms at 10 µM. Only the most effective compounds were also evaluated using a resistant isolate of the parasite. RESULTS After the first screenings at 50 and 10 µM, four hit compounds (BZD31, BZD46, BZD56, and BZD59) were selected and progressed to the next assays. At 5 µM, all hit compounds showed ovicidal activities higher than 71% on the susceptible isolate, but only BZD31 remained considerably active (53%) when they were tested on an albendazol-resistant isolate, even with values superior to the reference drug, albendazole sulfoxide. On the other hand, BZD59 displayed a high motility inhibition when tested on adult worms from an albendazole-resistant isolate after 72 h of incubation. CONCLUSIONS BZD31 and BZD59 compounds could be promising candidates for the development of fasciolicidal compounds or as starting point for the new synthesis of structure-related compounds.
Collapse
Affiliation(s)
- Elora Valderas-García
- Departamento Sanidad Animal, Instituto de Ganadería de Montaña, CSIC-Universidad de León, Grulleros, 24346, León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - Verónica Castilla-Gómez de Agüero
- Departamento Sanidad Animal, Instituto de Ganadería de Montaña, CSIC-Universidad de León, Grulleros, 24346, León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - Laura González Del Palacio
- Departamento Sanidad Animal, Instituto de Ganadería de Montaña, CSIC-Universidad de León, Grulleros, 24346, León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - Giulio Galli
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - Nerea Escala
- Departamento de Ciencias Farmacéuticas: Química Farmacéutica, Facultad de Farmacia, Universidad de Salamanca, CIETUS, IBSAL, 37007, Salamanca, Spain
| | - Marta Ruiz-Somacarrera
- Departamento Sanidad Animal, Instituto de Ganadería de Montaña, CSIC-Universidad de León, Grulleros, 24346, León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - Marta González-Warleta
- Laboratorio de Parasitología, Centro de Investigacións Agrarias de Mabegondo, AGACAL-Xunta de Galicia, Abegondo, 15318, A Coruña, Spain
| | - Esther Del Olmo
- Departamento de Ciencias Farmacéuticas: Química Farmacéutica, Facultad de Farmacia, Universidad de Salamanca, CIETUS, IBSAL, 37007, Salamanca, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Institute of Biomedicine (IBIOMED), Universidad de León, 24071, León, Spain
| | - María Martínez-Valladares
- Departamento Sanidad Animal, Instituto de Ganadería de Montaña, CSIC-Universidad de León, Grulleros, 24346, León, Spain.
| |
Collapse
|
7
|
Doolin ML, Dearing MD. Differential Effects of Two Common Antiparasitics on Microbiota Resilience. J Infect Dis 2024; 229:908-917. [PMID: 38036425 DOI: 10.1093/infdis/jiad547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Parasitic infections challenge vertebrate health worldwide, and off-target effects of antiparasitic treatments may be an additional obstacle to recovery. However, there have been few investigations of the effects of antiparasitics on the gut microbiome in the absence of parasites. METHODS We investigated whether two common antiparasitics-albendazole (ALB) and metronidazole (MTZ)-significantly alter the gut microbiome of parasite-free mice. We treated mice with ALB or MTZ daily for 7 days and sampled the fecal microbiota immediately before and after treatment and again after a two-week recovery period. RESULTS ALB did not immediately change the gut microbiota, while MTZ decreased microbial richness by 8.5% and significantly changed community structure during treatment. The structural changes caused by MTZ included depletion of the beneficial family Lachnospiraceae, and predictive metagenomic analysis revealed that these losses likely depressed microbiome metabolic function. Separately, we compared the fecal microbiotas of treatment groups after recovery, and there were minor differences in community structure between the ALB, MTZ, and sham-treated control groups. CONCLUSIONS These results suggest that a healthy microbiome is resilient after MTZ-induced depletions of beneficial gut microbes, and ALB may cause slight, latent shifts in the microbiota but does not deplete healthy gut microbiota diversity.
Collapse
Affiliation(s)
- Margaret L Doolin
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - M Denise Dearing
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
8
|
Shanley HT, Taki AC, Byrne JJ, Nguyen N, Wells TNC, Jabbar A, Sleebs BE, Gasser RB. A phenotypic screen of the Global Health Priority Box identifies an insecticide with anthelmintic activity. Parasit Vectors 2024; 17:131. [PMID: 38486232 PMCID: PMC10938758 DOI: 10.1186/s13071-024-06183-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/06/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Infection with parasitic nematodes (helminths), particularly those of the order Strongylida (such as Haemonchus contortus), can cause significant and burdensome diseases in humans and animals. Widespread drug (anthelmintic) resistance in livestock parasites, the absence of vaccines against most of these nematodes, and a lack of new and effective chemical entities on the commercial market demands the discovery of new anthelmintics. In the present study, we searched the Global Health Priority Box (Medicines for Malaria Venture) for new candidates for anthelmintic development. METHODS We employed a whole-organism, motility-based phenotypic screening assay to identify compounds from the Global Health Priority Box with activity against larvae of the model parasite H. contortus, and the free-living comparator nematode Caenorhabditis elegans. Hit compounds were further validated via dose-response assays, with lead candidates then assessed for nematocidal activity against H. contortus adult worms, and additionally, for cytotoxic and mitotoxic effects on human hepatoma (HepG2) cells. RESULTS The primary screen against H. contortus and C. elegans revealed or reidentified 16 hit compounds; further validation established MMV1794206, otherwise known as 'flufenerim', as a significant inhibitor of H. contortus larval motility (half-maximal inhibitory concentration [IC50] = 18 μM) and development (IC50 = 1.2 μM), H. contortus adult female motility (100% after 12 h of incubation) and C. elegans larval motility (IC50 = 0.22 μM). Further testing on a mammalian cell line (human hepatoma HepG2 cells), however, identified flufenerim to be both cytotoxic (half-maximal cytotoxic concentration [CC50] < 0.7 μM) and mitotoxic (half-maximal mitotoxic concentration [MC50] < 0.7 μM). CONCLUSIONS The in vitro efficacy of MMV1794206 against the most pathogenic stages of H. contortus, as well as the free-living C. elegans, suggests the potential for development as a broad-spectrum anthelmintic compound; however, the high toxicity towards mammalian cells presents a significant hindrance. Further work should seek to establish the protein-drug interactions of MMV1794206 in a nematode model, to unravel the mechanism of action, in addition to an advanced structure-activity relationship investigation to optimise anthelmintic activity and eliminate mammalian cell toxicity.
Collapse
Affiliation(s)
- Harrison T Shanley
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Aya C Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joseph J Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Nghi Nguyen
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Tim N C Wells
- Medicines for Malaria Venture (MMV), 1215, Geneva, Switzerland
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Brad E Sleebs
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
9
|
Kamal M, Mukherjee S, Joshi B, Sindhu ZUD, Wangchuk P, Haider S, Ahmed N, Talukder MH, Geary TG, Yadav AK. Model nematodes as a practical innovation to promote high throughput screening of natural products for anthelmintics discovery in South Asia: Current challenges, proposed practical and conceptual solutions. Mol Biochem Parasitol 2023; 256:111594. [PMID: 37730126 DOI: 10.1016/j.molbiopara.2023.111594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/27/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
With the increasing prevalence of anthelmintic resistance in animals recorded globally, and the threat of resistance in human helminths, the need for novel anthelmintic drugs is greater than ever. Most research aimed at discovering novel anthelmintic leads relies on high throughput screening (HTS) of large libraries of synthetic small molecules in industrial and academic settings in developed countries, even though it is the tropical countries that are most plagued by helminth infections. Tropical countries, however, have the advantage of possessing a rich flora that may yield natural products (NP) with promising anthelmintic activity. Focusing on South Asia, which produces one of the world's highest research outputs in NP and NP-based anthelmintic discovery, we find that limited basic research and funding, a lack of awareness of the utility of model organisms, poor industry-academia partnerships and lack of technological innovations greatly limit anthelmintics research in the region. Here we propose that utilizing model organisms including the free-living nematode Caenorhabditis elegans, that can potentially allow rapid target identification of novel anthelmintics, and Oscheius tipulae, a closely related, free-living nematode which is found abundantly in soil in hotter temperatures, could be a much-needed innovation that can enable cost-effective and efficient HTS of NPs for discovering compounds with anthelmintic/antiparasitic potential in South Asia and other tropical regions that historically have devoted limited funding for such research. Additionally, increased collaborations at the national, regional and international level between parasitologists and pharmacologists/ethnobotanists, setting up government-industry-academia partnerships to fund academic research, creating a centralized, regional collection of plant extracts or purified NPs as a dereplication strategy and HTS library, and holding regional C. elegans/O. tipulae-based anthelmintics workshops and conferences to share knowledge and resources regarding model organisms may collectively promote and foster a NP-based anthelmintics landscape in South Asia and beyond.
Collapse
Affiliation(s)
- Muntasir Kamal
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.
| | - Suprabhat Mukherjee
- Department of Animal Science, Kazi Nazrul University, Asansol 713340, West Bengal, India
| | - Bishnu Joshi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Zia-Ud-Din Sindhu
- Department of Parasitology, University of Agriculture Faisalabad, Pakistan
| | - Phurpa Wangchuk
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns Campus, QLD 4878, Australia
| | | | - Nurnabi Ahmed
- Department of Parasitology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | - Timothy G Geary
- Institute of Parasitology, McGill University, Montreal, Canada; School of Biological Sciences, Queen's University-Belfast, Belfast, NI, UK
| | - Arun K Yadav
- Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
10
|
Vokřál I, Podlipná R, Matoušková P, Skálová L. Anthelmintics in the environment: Their occurrence, fate, and toxicity to non-target organisms. CHEMOSPHERE 2023; 345:140446. [PMID: 37852376 DOI: 10.1016/j.chemosphere.2023.140446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Anthelmintics are drugs used for the treatment and prevention of diseases caused by parasitic worms (helminths). While the importance of anthelmintics in human as well as in veterinary medicine is evident, they represent emerging contaminants of the environment. Human anthelmintics are mainly used in tropical and sub-tropical regions, while veterinary anthelmintics have become frequently-occurring environmental pollutants worldwide due to intensive agri- and aquaculture production. In the environment, anthelmintics are distributed in water and soil in relation to their structure and physicochemical properties. Consequently, they enter various organisms directly (e.g. plants, soil invertebrates, water animals) or indirectly through food-chain. Several anthelmintics elicit toxic effects in non-target species. Although new information has been made available, anthelmintics in ecosystems should be more thoroughly investigated to obtain complex knowledge on their impact in various environments. This review summarizes available information about the occurrence, behavior, and toxic effect of anthelmintics in environment. Several reasons why anthelmintics are dangerous contaminants are highlighted along with options to reduce contamination. Negative effects are also outlined.
Collapse
Affiliation(s)
- Ivan Vokřál
- Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Radka Podlipná
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, Praha 6, CZ-165 02, Czech Republic.
| | - Petra Matoušková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| |
Collapse
|
11
|
Krautmann MJ, Edmonds M, Edmonds J, Van Engen NK, Esch K, Frank RK, Quist E, Tena JK, Saad KM, Cotey N, DeRosa AA. Reproductive and margin of safety of a fixed-dose combination injectable endectocide (0.2 mg/kg doramectin; 6.0 mg/kg levamisole hydrochloride) in cattle. Vet Parasitol 2023; 323S:110071. [PMID: 37951737 DOI: 10.1016/j.vetpar.2023.110071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/02/2023] [Accepted: 10/28/2023] [Indexed: 11/14/2023]
Abstract
We present a fixed-dose combination injectable (FDCI) solution for cattle formulated for a single subcutaneous administration at a dose rate of 1 ml/25 kg of body weight to deliver a dose of 0.2 mg/kg of doramectin and 6.0 mg/kg of levamisole hydrochloride (5.1 mg/kg base equivalent). This drug product is marketed in the United States under the tradename Valcor® and in Australia and New Zealand under the tradename Dectomax V®. Both levamisole and doramectin have histories of safe and effective use in ruminants, with safety margins of 3X and 25X, respectively. Three studies were conducted to demonstrate the safety of the new FDCI: margin of safety (Study 1), and reproductive safety in sexually nulliparous beef heifers (Studies 2 and 3). In Study 1, 3-month-old sexually intact male and female calves were given either saline (control) or 1X, 2X, or 3X FDCI on Days 0, 14, and 28. General health, clinical, and neurological observations were made throughout the study, and clinical and pathology evaluations were made at study end. Studies 2 and 3 demonstrated the reproductive safety of the FDCI on sexually nulliparous beef heifers using estrus synchronization and timed artificial insemination. Treatments of either saline (control) or 3X FDCI were administered to coincide with either folliculogenesis, implantation, organogenesis, early gestation, or late gestation. Reproductive safety was demonstrated by evaluating rates of conception, calving, abortion, and stillbirth, dystocia scores, and calf health. In all studies, the FDCI at 1X, 2X, or 3X dosages was well tolerated. In the margin of safety study, 3X calves showed increased incidence of salivation for up to 8 h post-dosing compared to other groups. Injection sites were palpable post-dosing in all three FDCI groups but resolved by Day 28 in all but one animal each in 2X and 3X. In the reproductive safety studies, the FDCI had no effect on conception, pregnancy, fetal development, or postnatal viability. Injection site swelling was increased in frequency and duration compared to controls. The studies demonstrate the safety of the new FDCI in cattle from 3 months of age and in reproducing heifers during all reproductive stages from folliculogenesis through gestation and up to a month post-partum.
Collapse
Affiliation(s)
- Matthew J Krautmann
- Zoetis, Veterinary Medicine Research and Development, 333 Portage St, Kalamazoo, MI 49007 USA
| | | | | | | | - Kevin Esch
- Zoetis, Veterinary Medicine Research and Development, 333 Portage St, Kalamazoo, MI 49007 USA.
| | - Rodney K Frank
- Zoetis, Veterinary Medicine Research and Development, 333 Portage St, Kalamazoo, MI 49007 USA
| | - Erin Quist
- Experimental Pathology Laboratories Inc, 615 Davis Drive Ste 500, Durham, NC 27713, USA
| | - Jezaniah Kira Tena
- Zoetis, Veterinary Medicine Research and Development, 333 Portage St, Kalamazoo, MI 49007 USA
| | - Kayla M Saad
- Zoetis, Veterinary Medicine Research and Development, 333 Portage St, Kalamazoo, MI 49007 USA
| | - Noelle Cotey
- Zoetis, Veterinary Medicine Research and Development, 333 Portage St, Kalamazoo, MI 49007 USA
| | - Andrew A DeRosa
- Zoetis, Veterinary Medicine Research and Development, 333 Portage St, Kalamazoo, MI 49007 USA
| |
Collapse
|
12
|
Wray E, Tucker CA, Reynolds JL, Shoulders B, Midkiff K, Powell JG. A fecal egg count reduction test in grazing beef steers using topical pioneer and generic eprinomectin and fenbendazole oral suspension. Vet Parasitol Reg Stud Reports 2023; 46:100937. [PMID: 37935538 DOI: 10.1016/j.vprsr.2023.100937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/24/2023] [Accepted: 10/05/2023] [Indexed: 11/09/2023]
Abstract
Many generic anthelmintics are commercially available; however, little information exists regarding product effectiveness compared to pioneer brands. The objective of this study was to compare the effectiveness of a generic eprinomectin to the pioneer eprinomectin, as well as to fenbendazole and fenbendazole in combination with the pioneer eprinomectin in grazing beef steers via a fecal egg count reduction test. Forty naturally infected steers were allocated into five treatment groups based on ranked fecal egg counts: 1. pioneer eprinomectin (Eprinex®, topical), 2. generic eprinomectin (Eprizero®, topical), 3. fenbendazole (Safeguard® 0.5% oral suspension), 4. combination of pioneer eprinomectin topical and fenbendazole oral suspension, 5. negative control. Fecal samples were collected on days -14, 0, 14, and 29. Data were analyzed using the MIXED procedure of SAS 9.4. Neither the pioneer nor the generic eprinomectin groups reached a 90% fecal egg count reduction (FECR) throughout the study with reductions of 50% and 11% for pioneer eprinomectin and 79% and - 5% for generic eprinomectin at days 14 and 29 post-treatment, respectively. Both the fenbendazole and combination groups showed 98% and 99% FECR, respectively, at 14 days post-treatment; these reductions dropped slightly at day 29 post-treatment to 94% and 89%, respectively. Primarily Cooperia punctata, Cooperia oncophora and Ostertagia ostertagi larvae were recovered from the coprocultures across all treatment groups. Interestingly, the proportions of C. punctata and C. oncophora essentially demonstrated a post-treatment reversal in the both the fenbendazole and combination treatment groups when comparing days 0 and 29, demonstrating prepatency period differences or a fenbendazole treatment effect.
Collapse
Affiliation(s)
- Eva Wray
- Department of Animal Science, University of Arkansas, 1120 W. Maple St., Fayetteville, AR 72701, USA.
| | - Christopher A Tucker
- Department of Animal Science, University of Arkansas, 1120 W. Maple St., Fayetteville, AR 72701, USA
| | - Jana L Reynolds
- Department of Animal Science, University of Arkansas, 1120 W. Maple St., Fayetteville, AR 72701, USA
| | - Ben Shoulders
- Department of Animal Science, University of Arkansas, 1120 W. Maple St., Fayetteville, AR 72701, USA
| | - Kirsten Midkiff
- Department of Animal Science, University of Arkansas, 1120 W. Maple St., Fayetteville, AR 72701, USA
| | - Jeremy G Powell
- Department of Animal Science, University of Arkansas, 1120 W. Maple St., Fayetteville, AR 72701, USA
| |
Collapse
|
13
|
Cao Y, Ikram AU, Chen J, Sun Z, Chen J. The marksman: Bioactivated nematicides selectively kill plant-parasitic nematodes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2239-2241. [PMID: 37477524 DOI: 10.1111/jipb.13546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
Plant-parasitic nematodes destroy crops and have a major impact on the food supply, but using chemicals to control them poses a risk to other animals and people. Selectivins kill nematodes but have little effect on other organisms.
Collapse
Affiliation(s)
- Yuwen Cao
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Aziz Ul Ikram
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
14
|
Ranasinghe S, Aspinall S, Beynon A, Ash A, Lymbery A. Traditional medicinal plants in the treatment of gastrointestinal parasites in humans: A systematic review and meta-analysis of clinical and experimental evidence. Phytother Res 2023; 37:3675-3687. [PMID: 37230485 DOI: 10.1002/ptr.7895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/22/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
Gastrointestinal (GI) parasites cause significant morbidity and mortality worldwide. The use of conventional antiparasitic drugs is often inhibited due to limited availability, side effects or parasite resistance. Medicinal plants can be used as alternatives or adjuncts to current antiparasitic therapies. This systematic review and meta-analysis aimed to critically synthesise the literature on the efficacy of different plants and plant compounds against common human GI parasites and their toxicity profiles. Searches were conducted from inception to September 2021. Of 5393 screened articles, 162 were included in the qualitative synthesis (159 experimental studies and three randomised control trials [RCTs]), and three articles were included in meta-analyses. A total of 507 plant species belonging to 126 families were tested against different parasites, and most of these (78.4%) evaluated antiparasitic efficacy in vitro. A total of 91 plant species and 34 compounds were reported as having significant in vitro efficacy against parasites. Only a few plants (n = 57) were evaluated for their toxicity before testing their antiparasitic effects. The meta-analyses revealed strong evidence of the effectiveness of Lepidium virginicum L. against Entamoeba histolytica with a pooled mean IC50 of 198.63 μg/mL (95% CI 155.54-241.72). We present summary tables and various recommendations to direct future research.
Collapse
Affiliation(s)
- Sandamalie Ranasinghe
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| | - Sasha Aspinall
- School of Allied Health, College of Health and Education, Murdoch University, Perth, Western Australia, Australia
| | - Amber Beynon
- Department of Chiropractic, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, New South Wales, Australia
| | - Amanda Ash
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| | - Alan Lymbery
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
15
|
Chylinski C, Degnes KF, Aasen IM, Ptochos S, Blomstrand BM, Mahnert KC, Enemark HL, Thamsborg SM, Steinshamn H, Athanasiadou S. Condensed tannins, novel compounds and sources of variation determine the antiparasitic activity of Nordic conifer bark against gastrointestinal nematodes. Sci Rep 2023; 13:13498. [PMID: 37596334 PMCID: PMC10439207 DOI: 10.1038/s41598-023-38476-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/09/2023] [Indexed: 08/20/2023] Open
Abstract
The antiparasitic potential of plants could offer a vital solution to alleviating the costs of gastrointestinal nematode (GIN) infections in ruminant production globally. Leveraging known bioactive molecules, however, is complex, where plant species, extraction processes and seasonality impact bioavailability and efficacy. This study assessed the impact of a comprehensive set of factors on the antiparasitic activity of Norwegian conifers to identify bark compounds specific against GIN. Antiparasitic activity was determined using in vitro assays targeting morphologically distinct life stages of ovine GIN: the egg hatch assay and larval motility assay. In depth characterisation of the chemical composition of the bark extracts was carried out using chromatographic separation, UV-absorbance, and molecular mass profiles to identify compounds implicated in the activity. Three key findings emerged: (1) the activity of bark extracts varied markedly from 0 to 100% antiparasitic efficacy, owing to tree species, extraction solvent and seasonality; (2) the GIN exhibited species-and stage-specific susceptibility to the bark extracts; (3) the presence of condensed tannins, amongst other compounds, was associated with anthelmintic activity. These findings add new insights into urgently needed alternative parasite control strategies in livestock.
Collapse
Affiliation(s)
- Caroline Chylinski
- Animal and Veterinary Sciences, Scotland's Rural College, Easter Bush, Roslin, EH25 9RG, UK
| | | | - Inga Marie Aasen
- Department of Biotechnology and Nanomedicine, SINTEF, 7465, Trondheim, Norway
| | - Sokratis Ptochos
- Department of Animal Health, Animal Welfare and Food Safety, Norwegian Veterinary Institute, 1433, Ås, Norway
| | | | | | - Heidi Larsen Enemark
- Department of Animal Health, Animal Welfare and Food Safety, Norwegian Veterinary Institute, 1433, Ås, Norway
| | - Stig Milan Thamsborg
- Veterinary Parasitology, University of Copenhagen, Dyrlægevej 100, 1870, Frederiksberg, Denmark
| | - Håvard Steinshamn
- Division of Food Production and Society, Grasslands and Livestock, Norwegian Institute of Bioeconomy Research, 6630, Tingvoll, Norway
| | - Spiridoula Athanasiadou
- Animal and Veterinary Sciences, Scotland's Rural College, Easter Bush, Roslin, EH25 9RG, UK.
| |
Collapse
|
16
|
Emsley E, Matshotshi A, Mathebula E, Mohlakoana S, Ramatla T, Thekisoe O, Tsotetsi-Khambule A. Assessment of gastrointestinal nematode anthelmintic resistance and acaricidal efficacy of fluazuron-flumethrin on sheep and goat ticks in the North West province of South Africa. Vet World 2023; 16:1615-1626. [PMID: 37766712 PMCID: PMC10521178 DOI: 10.14202/vetworld.2023.1615-1626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 07/06/2023] [Indexed: 09/29/2023] Open
Abstract
Background and Aim Anthelmintic resistance (AR) and acaricide resistance (ACR) pose great economic threat to communal livestock raised by rural communities, limiting sustainable production. This study was conducted to assess the occurrence of AR and ACR against nematodes and ticks that infest small ruminants (sheep and goats) from small-scale farming communities in the North West Province of South Africa, as well as document the associated risk factors. Materials and Methods The study was conducted on small-scale farming locations in two districts of the North West Province, namely, Dr. Ruth Segomotsi Mompati district and Dr. Kenneth Kaunda district, from November 2019 to March 2020. A questionnaire survey based specifically on antiparasitic treatment and related management practices was administered to 86 small-scale farmers. A fecal egg count reduction test (FECRT) was used to determine in vivo AR in small ruminants against benzimidazole (BZD), levamisole, and macrocyclic lactone on nine ruminant farms. Then, deoxyribonucleic acid was extracted from L3 larvae and resistant nematodes were identified using a polymerase chain reaction, targeting the internal transcribed spacer 2 gene. An egg hatch assay (EHA) and a larval mortality assay (LMA) were used to determine in vitro AR against thiabendazole (TBZ and BZD) in the same farms. Acaricide resistance against fluazuron-flumethrin (Drastic Deadline eXtreme) pour-on was assessed using an adult immersion test (AIT) on Rhipicephalus evertsi. Results Questionnaire results indicated that most farmers (89%) relied solely on anthelmintics. Farmers used visual appraisal to estimate the dosage, which is the primary cause of resistance. The FECRT revealed AR in all the farms. Egg hatch assay results revealed AR development against TBZ in all districts, with >95% of the eggs hatching at variable doses. Larval mortality assay results revealed the development of resistance against BZD, with 50% of L3 larvae surviving at different doses in all farms. Adult immersion test results indicated that fluazuron-flumethrin (>99%) exhibited high acaricidal efficacy against R. evertsi by inhibiting tick oviposition. Conclusion This investigation found that sheep and goats in the studied areas are developing AR to gastrointestinal parasites. The findings of in vivo tests showed resistance with fecal egg count reduction percentage of <95% or lower confidence limit of <90%. The results of EHA and LMA revealed no evidence of inhibition of egg development and larval mortality, indicating the development of resistance. Acaricide resistance was not detected against fluazuron-flumethrin, which is commonly used in the study areas. Thus, developing management methods for these economically significant livestock nematodes, including teaching small-scale farmers how to properly administer anthelmintics and acaricides to their livestock, is urgently needed.
Collapse
Affiliation(s)
- Emily Emsley
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Asiashu Matshotshi
- Department of Life and Consumer Sciences, University of South Africa, Florida Campus, Roodepoort, 1709, South Africa
| | - Eric Mathebula
- Biometry, Agricultural Research Council, Hatfield, Pretoria, 0083, South Africa
| | - Setjhaba Mohlakoana
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Tsepo Ramatla
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Ana Tsotetsi-Khambule
- Department of Life and Consumer Sciences, University of South Africa, Florida Campus, Roodepoort, 1709, South Africa
| |
Collapse
|
17
|
Geary TG. New paradigms in research on Dirofilaria immitis. Parasit Vectors 2023; 16:247. [PMID: 37480077 PMCID: PMC10362759 DOI: 10.1186/s13071-023-05762-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/30/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Since the advent of ivermectin (along with melarsomine and doxycycline), heartworm has come to be viewed as a solved problem in veterinary medicine, diminishing investment into non-clinical research on Dirofilaria immitis. However, heartworm infections continue to pose problems for practitioners and their patients and seem to be increasing in frequency and geographic distribution. Resistance to preventative therapies (macrocyclic lactones) complicates the picture. The use of chemotherapy for other kinds of pathogens has benefitted enormously from research into the basic biology of the pathogen and on the host-pathogen interface. A lack of basic information on heartworms as parasites and how they interact with permissive and non-permissive hosts greatly limits the ability to discover new ways to prevent and treat heartworm disease. Recent advances in technical platforms will help overcome the intrinsic barriers that hamper research on D. immitis, most notably, the need for experimentally infected dogs to maintain the life cycle and provide material for experiments. Impressive achievements in the development of laboratory animal models for D. immitis will enhance efforts to discover new drugs for prevention or treatment, to characterize new diagnostic biomarkers and to identify key parasite-derived molecules that are essential for survival in permissive hosts, providing a rational basis for vaccine discovery. A 'genomics toolbox' for D. immitis could enable unprecedented insight into the negotiations between host and parasite that enable survival in a permissive host. The more we know about the pathogen and how it manipulates its host, the better able we will be to protect companion animals far into the future.
Collapse
Affiliation(s)
- Timothy G Geary
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, QC, Canada.
- School of Biological Sciences, Queen's University-Belfast, Belfast, Northern Ireland.
| |
Collapse
|
18
|
Goudarzi MH, Eagles DA, Lim J, Biggs KA, Kotze AC, Ruffell AP, Fairlie DP, King GF, Walker AA. Venom composition and bioactive RF-amide peptide toxins of the saddleback caterpillar, Acharia stimulea (Lepidoptera: Limacodidae). Biochem Pharmacol 2023; 213:115598. [PMID: 37201876 DOI: 10.1016/j.bcp.2023.115598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
Limacodidae is a family of lepidopteran insects comprising >1500 species. More than half of these species produce pain-inducing defensive venoms in the larval stage, but little is known about their venom toxins. Recently, we characterised proteinaceous toxins from the Australian limacodid caterpillar Doratifera vulnerans, but it is unknown if the venom of this species is typical of other Limacodidae. Here, we use single animal transcriptomics and venom proteomics to investigate the venom of an iconic limacodid, the North American saddleback caterpillar Acharia stimulea. We identified 65 venom polypeptides, grouped into 31 different families. Neurohormones, knottins, and homologues of the immune signaller Diedel make up the majority of A.stimulea venom, indicating strong similarities to D. vulnerans venom, despite the large geographic separation of these caterpillars. One notable difference is the presence of RF-amide peptide toxins in A. stimulea venom. Synthetic versions of one of these RF-amide toxins potently activated the human neuropeptide FF1 receptor, displayed insecticidal activity when injected into Drosophila melanogaster, and moderately inhibited larval development of the parasitic nematode Haemonchus contortus. This study provides insights into the evolution and activity of venom toxins in Limacodidae, and provides a platform for future structure-function characterisation of A.stimulea peptide toxins.
Collapse
Affiliation(s)
- Mohaddeseh H Goudarzi
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia; Australian Research Council Centre of Excellence for Innovations in Protein and Peptide Science, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - David A Eagles
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia; Australian Research Council Centre of Excellence for Innovations in Protein and Peptide Science, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Junxian Lim
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia; Australian Research Council Centre of Excellence for Innovations in Protein and Peptide Science, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia; Centre for Inflammation and Disease Research, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Kimberley A Biggs
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia; Australian Research Council Centre of Excellence for Innovations in Protein and Peptide Science, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Andrew C Kotze
- CSIRO Agriculture and Food, St Lucia, Queensland 4072, Australia
| | - Angela P Ruffell
- CSIRO Agriculture and Food, St Lucia, Queensland 4072, Australia
| | - David P Fairlie
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia; Australian Research Council Centre of Excellence for Innovations in Protein and Peptide Science, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia; Centre for Inflammation and Disease Research, The University of Queensland, St Lucia, Queensland 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia; Australian Research Council Centre of Excellence for Innovations in Protein and Peptide Science, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Andrew A Walker
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia; Australian Research Council Centre of Excellence for Innovations in Protein and Peptide Science, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
19
|
Canton C, Canton L, Lifschitz A, Paula Dominguez M, Alvarez L, Ceballos L, Mate L, Lanusse C, Ballent M. Monepantel-based anthelmintic combinations to optimize parasite control in cattle. Int J Parasitol 2023; 53:441-449. [PMID: 36963744 DOI: 10.1016/j.ijpara.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/26/2023]
Abstract
Improvement in the use of existing anthelmintics is a high priority need for the pharmaco-parasitology research field, considering the magnitude and severity of anthelmintic resistance as an important issue in livestock production. In the work described here, monepantel (MNP) was given alone or co-administered with either macrocyclic lactone (ML) or benzimidazole (BZ) anthelmintics to calves naturally infected with ML- and BZ-resistant gastrointestinal (GI) nematodes on two different commercial cattle farms. Both pharmacokinetic (PK) and efficacy assessments were performed. On Farm A, male calves (n = 15 per group) were treated with either MNP orally (2.5 mg/kg), IVM s.c. (0.2 mg/kg), ricobendazole (RBZ) s.c. (3.75 mg/kg) or remained untreated. On Farm B, eight groups (n = 15) of male calves received treatment with either: MNP, abamectin (ABM, oral, 0.2 mg/kg), RBZ (s.c., 3.75 mg/kg), albendazole (ABZ, oral, 5 mg/kg), MNP+ABM, MNP+RBZ, MNP+ABZ (all at the above-mentioned routes and doses) or remained untreated. Seven animals from each treated group (Farm B) were randomly selected to perform the PK study. MNP and its metabolite monepantel sulphone (MNPSO2) were the main analytes recovered in plasma after HPLC analysis. The combined treatments resulted in decreased systemic exposures to MNP parent drug compared with that observed after treatment with MNP alone (P < 0.05). However, the systemic availability of the main MNP metabolite (MNPSO2) was unaffected by co-administration with either ABM, RBZ or ABZ. Efficacies of 98% (Farm A) and 99% (Farm B) demonstrated the high efficacy of MNP given alone (P < 0.05) against GI nematodes resistant to ML and BZ in cattle. While the ML (IVM, ABM) failed to control Haemonchus spp., Cooperia spp. and Ostertagia spp., MNP achieved 99% to 100% efficacy against those nematode species on both commercial farms. However, MNP alone failed to control Oesophagostomum spp. (60% efficacy) on Farm A. The co-administered treatments MNP+ABZ and MNP+RBZ reached a 100% reduction against all GI nematode genera. In conclusion, the oral treatment with MNP should be considered to deal with resistant nematode parasites in cattle. The use of MNP in combination with BZ compounds could be a valid strategy to extend its lifespan for use in cattle as well as to reverse its poor activity against Oesophagostomum spp.
Collapse
Affiliation(s)
- Candela Canton
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CONICET-CICPBA, Campus Universitario, Tandil, Buenos Aires, Argentina; Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Campus Universitario, Tandil, Buenos Aires, Argentina.
| | - Lucila Canton
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CONICET-CICPBA, Campus Universitario, Tandil, Buenos Aires, Argentina; Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Campus Universitario, Tandil, Buenos Aires, Argentina
| | - Adrian Lifschitz
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CONICET-CICPBA, Campus Universitario, Tandil, Buenos Aires, Argentina; Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Campus Universitario, Tandil, Buenos Aires, Argentina
| | - Maria Paula Dominguez
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CONICET-CICPBA, Campus Universitario, Tandil, Buenos Aires, Argentina; Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Campus Universitario, Tandil, Buenos Aires, Argentina
| | - Luis Alvarez
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CONICET-CICPBA, Campus Universitario, Tandil, Buenos Aires, Argentina; Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Campus Universitario, Tandil, Buenos Aires, Argentina
| | - Laura Ceballos
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CONICET-CICPBA, Campus Universitario, Tandil, Buenos Aires, Argentina; Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Campus Universitario, Tandil, Buenos Aires, Argentina
| | - Laura Mate
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CONICET-CICPBA, Campus Universitario, Tandil, Buenos Aires, Argentina; Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Campus Universitario, Tandil, Buenos Aires, Argentina
| | - Carlos Lanusse
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CONICET-CICPBA, Campus Universitario, Tandil, Buenos Aires, Argentina; Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Campus Universitario, Tandil, Buenos Aires, Argentina
| | - Mariana Ballent
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CONICET-CICPBA, Campus Universitario, Tandil, Buenos Aires, Argentina; Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Campus Universitario, Tandil, Buenos Aires, Argentina
| |
Collapse
|
20
|
Burns AR, Baker RJ, Kitner M, Knox J, Cooke B, Volpatti JR, Vaidya AS, Puumala E, Palmeira BM, Redman EM, Snider J, Marwah S, Chung SW, MacDonald MH, Tiefenbach J, Hu C, Xiao Q, Finney CAM, Krause HM, MacParland SA, Stagljar I, Gilleard JS, Cowen LE, Meyer SLF, Cutler SR, Dowling JJ, Lautens M, Zasada I, Roy PJ. Selective control of parasitic nematodes using bioactivated nematicides. Nature 2023:10.1038/s41586-023-06105-5. [PMID: 37225985 DOI: 10.1038/s41586-023-06105-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 04/20/2023] [Indexed: 05/26/2023]
Abstract
Parasitic nematodes are a major threat to global food security, particularly as the world amasses 10 billion people amid limited arable land1-4. Most traditional nematicides have been banned owing to poor nematode selectivity, leaving farmers with inadequate means of pest control4-12. Here we use the model nematode Caenorhabditis elegans to identify a family of selective imidazothiazole nematicides, called selectivins, that undergo cytochrome-p450-mediated bioactivation in nematodes. At low parts-per-million concentrations, selectivins perform comparably well with commercial nematicides to control root infection by Meloidogyne incognita, a highly destructive plant-parasitic nematode. Tests against numerous phylogenetically diverse non-target systems demonstrate that selectivins are more nematode-selective than most marketed nematicides. Selectivins are first-in-class bioactivated nematode controls that provide efficacy and nematode selectivity.
Collapse
Affiliation(s)
- Andrew R Burns
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| | - Rachel J Baker
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Megan Kitner
- USDA-ARS Horticultural Crops Research Laboratory, Corvallis, OR, USA
| | - Jessica Knox
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Brittany Cooke
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan R Volpatti
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Aditya S Vaidya
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Emily Puumala
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bruna M Palmeira
- Department of Comparative Biology and Experimental Medicine, Host-Parasite Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Elizabeth M Redman
- Department of Comparative Biology and Experimental Medicine, Host-Parasite Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jamie Snider
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Sagar Marwah
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Sai W Chung
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Margaret H MacDonald
- USDA-ARS Mycology and Nematology Genetic Diversity and Biology Laboratory, Beltsville Agricultural Research Center, Beltsville, MD, USA
| | - Jens Tiefenbach
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Chun Hu
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Qi Xiao
- Department of Biological Sciences, Host Parasite Interactions Program, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Constance A M Finney
- Department of Biological Sciences, Host Parasite Interactions Program, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Henry M Krause
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sonya A MacParland
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Igor Stagljar
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Mediterranean Institute for Life Sciences, Split, Croatia
| | - John S Gilleard
- Department of Comparative Biology and Experimental Medicine, Host-Parasite Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Susan L F Meyer
- USDA-ARS Mycology and Nematology Genetic Diversity and Biology Laboratory, Beltsville Agricultural Research Center, Beltsville, MD, USA
| | - Sean R Cutler
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - James J Dowling
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Inga Zasada
- USDA-ARS Horticultural Crops Research Laboratory, Corvallis, OR, USA
| | - Peter J Roy
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Rooney J, Cantacessi C, Sotillo J, Cortés A. Gastrointestinal worms and bacteria: From association to intervention. Parasite Immunol 2023; 45:e12955. [PMID: 36300732 DOI: 10.1111/pim.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/28/2022]
Abstract
A plethora of studies, both experimental and epidemiological, have indicated the occurrence of associations between infections by gastrointestinal (GI) helminths and the composition and function of the host gut microbiota. Given the worldwide risk and spread of anthelmintic resistance, particularly for GI parasites of livestock, a better understanding of the mechanisms underpinning the relationships between GI helminths and the gut microbiome, and between the latter and host health, may assist the development of novel microbiome-targeting and other bacteria-based strategies for parasite control. In this article, we review current and prospective methods to manipulate the host gut microbiome, and/or to exploit the immune stimulatory and modulatory properties of gut bacteria (and their products) to counteract the negative impact of GI worm infections; we also discuss the potential applications of these intervention strategies in programmes aimed to aid the fight against helminth diseases of humans and livestock.
Collapse
Affiliation(s)
- James Rooney
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Javier Sotillo
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Alba Cortés
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, València, Spain
| |
Collapse
|
22
|
You H, Jones MK, Gordon CA, Arganda AE, Cai P, Al-Wassiti H, Pouton CW, McManus DP. The mRNA Vaccine Technology Era and the Future Control of Parasitic Infections. Clin Microbiol Rev 2023; 36:e0024121. [PMID: 36625671 PMCID: PMC10035331 DOI: 10.1128/cmr.00241-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Despite intensive long-term efforts, with very few exceptions, the development of effective vaccines against parasitic infections has presented considerable challenges, given the complexity of parasite life cycles, the interplay between parasites and their hosts, and their capacity to escape the host immune system and to regulate host immune responses. For many parasitic diseases, conventional vaccine platforms have generally proven ill suited, considering the complex manufacturing processes involved and the costs they incur, the inability to posttranslationally modify cloned target antigens, and the absence of long-lasting protective immunity induced by these antigens. An effective antiparasite vaccine platform is required to assess the effectiveness of novel vaccine candidates at high throughput. By exploiting the approach that has recently been used successfully to produce highly protective COVID mRNA vaccines, we anticipate a new wave of research to advance the use of mRNA vaccines to prevent parasitic infections in the near future. This article considers the characteristics that are required to develop a potent antiparasite vaccine and provides a conceptual foundation to promote the development of parasite mRNA-based vaccines. We review the recent advances and challenges encountered in developing antiparasite vaccines and evaluate the potential of developing mRNA vaccines against parasites, including those causing diseases such as malaria and schistosomiasis, against which vaccines are currently suboptimal or not yet available.
Collapse
Affiliation(s)
- Hong You
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Malcolm K. Jones
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - Catherine A. Gordon
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Alexa E. Arganda
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Pengfei Cai
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Harry Al-Wassiti
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Colin W. Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Donald P. McManus
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
23
|
Nagi KI, Roy B, Yadav AK. In vitro cestocidal activity of Persicaria hydropiper (L.) Delarbre, a traditionally used anthelmintic plant in India. J Parasit Dis 2023; 47:198-202. [PMID: 36910324 PMCID: PMC9998820 DOI: 10.1007/s12639-022-01559-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/27/2022] [Indexed: 12/09/2022] Open
Abstract
Persicaria hydropiper is a medicinal plant used for the treatment of helminth infections among the Naga people of India. To verify the traditional claim of the plant, an in vitro anthelmintic efficacy of the methanol extract of P. hydropiper leaves was investigated based on the paralytic and mortality effects on Raillietina echinobothrida, an intestinal cestode parasite of domestic fowl, following exposure to 10, 20 and 30 mg/ml concentrations of extract. The effects of extract were also studied on the body surface of the parasites by scanning electron microscopy (SEM). The in vitro results showed an efficacy that was dose-dependent. At the highest dose (30 mg/ml), mortality of parasites occurred in 4.79 ± 0.17 h, in comparison to control, where the parasites survived till 45.63 ± 0.18 h. The SEM observations of extract-treated parasites revealed notable impairment in scolex, with distorted suckers and eroded spines. Also, the tegument was observed to be shrunken with impaired microtriches. The results indicate that P. hydropiper leaves possess noteworthy anthelmintic efficacy and justify their use in traditional medicine against intestinal worms.
Collapse
Affiliation(s)
- Keleni-i Nagi
- Department of Zoology, North-Eastern Hill University, Shillong, 793022 India
| | - Bishnupada Roy
- Department of Zoology, North-Eastern Hill University, Shillong, 793022 India
| | - Arun K. Yadav
- Department of Zoology, North-Eastern Hill University, Shillong, 793022 India
| |
Collapse
|
24
|
Ryan KT, Wheeler NJ, Kamara IK, Johnson H, Humphries JE, Zamanian M, Chan JD. Phenotypic Profiling of Macrocyclic Lactones on Parasitic Schistosoma Flatworms. Antimicrob Agents Chemother 2023; 67:e0123022. [PMID: 36695583 PMCID: PMC9933704 DOI: 10.1128/aac.01230-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/02/2023] [Indexed: 01/26/2023] Open
Abstract
Macrocyclic lactones are front-line therapies for parasitic roundworm infections; however, there are no comprehensive studies on the activity of this drug class against parasitic flatworms. Ivermectin is well known to be inactive against flatworms. However, the structure-activity relationship of macrocyclic lactones may vary across phyla, and it is entirely possible other members of this drug class do in fact show antiparasitic activity on flatworms. For example, there are several reports hinting at the anti-schistosomal activity of doramectin and moxidectin. To explore this class further, we developed an automated imaging assay combined with measurement of lactate levels from worm media. This assay was applied to the screening of 21 macrocyclic lactones (avermectins, milbemycins, and others such as spinosyns) against adult schistosomes. These in vitro assays identified several macrocyclic lactones (emamectin, milbemycin oxime, and the moxidectin metabolite 23-ketonemadectin) that caused contractile paralysis and lack of lactate production. Several of these were also active against miracidia, which infect the snail intermediate host. Hits prioritized from these in vitro assays were administered to mice harboring patent schistosome infections. However, no reduction in worm burden was observed. Nevertheless, these data show the utility of a multiplexed in vitro screening platform to quantitatively assess drug action and exclude inactive compounds from a chemical series before proceeding to in vivo studies. While the prototypical macrocyclic lactone ivermectin displays minimal activity against adult Schistosoma mansoni, this family of compounds does contain schistocidal compounds which may serve as a starting point for development of new anti-flatworm chemotherapies.
Collapse
Affiliation(s)
- Kaetlyn T. Ryan
- Department of Pathobiological Sciences, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Nicolas J. Wheeler
- Department of Pathobiological Sciences, University of Wisconsin - Madison, Madison, Wisconsin, USA
- Department of Biology, University of Wisconsin - Eau Claire, Eau Claire, Wisconsin, USA
| | - Isaac K. Kamara
- Department of Chemistry, University of Wisconsin - Oshkosh, Oshkosh, Wisconsin, USA
| | - Hailey Johnson
- Department of Chemistry, University of Wisconsin - Oshkosh, Oshkosh, Wisconsin, USA
| | | | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - John D. Chan
- Department of Pathobiological Sciences, University of Wisconsin - Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin - Oshkosh, Oshkosh, Wisconsin, USA
| |
Collapse
|
25
|
The Effect of Pyrantel Pamoate Treatment on Fecal Pinworm (Leidynema appendiculata) Parasites of Dietary Dubia Roaches (Blaptica dubia): Efforts to Eliminate Passthrough Fecal Pseudoparasites in Lesser Hedgehog Tenrecs (Echinops telfairi). JOURNAL OF ZOOLOGICAL AND BOTANICAL GARDENS 2023. [DOI: 10.3390/jzbg4010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Pinworm ova were discovered on lesser hedgehog tenrec (Echinops telfairi) fecal exams. Ova were passthrough pseudoparasite pinworms originating from feeder roaches (Blaptica dubia). Roaches were maintained as a feeder colony and offered to tenrecs as a portion of their diet. Pinworms were identified as Leidynema appendiculata. This study aimed to determine if these pinworms could be eliminated from the roaches. Roaches were randomly assigned into groups (n = 24), including a control (A) and four treatment groups (B–E). Treatment group roaches received oral dosing of anthelmintic pyrantel pamoate at four concentrations (mg/g as offered): 3.5 (Group B), 14.0 (Group C), 26.0 (Group D), and 35.0 (Group E). Roach diets were made weekly and offered to roaches 2 consecutive days per week for 3 consecutive weeks. The total pinworm ova per gram of roach feces examined were visually reduced in all treatment groups compared to controls at the end of the feed dosing period (Day 23). Post-treatment pinworm numbers were visually reduced in all treatment groups compared to controls on Day 29 and Day 65. Groups receiving higher concentrations of the oral dosing (C–E) significantly differed from controls at Day 29 (p = 0.0086, p = 0.0045, and p = 0.0013, respectively) with a concentration-dependent response. Parasites were not eliminated in any group at Day 29 or 65 post-treatment, with an increasing visual trend indicating recontamination. This is the first report confirming a passthrough pseudoparasite in tenrecs from dubia roaches, and anthelmintic dosage research is warranted.
Collapse
|
26
|
Laohapaisan P, Reamtong O, Tummatorn J, Thongsornkleeb C, Thaenkham U, Adisakwattana P, Ruchirawat S. Discovery of N-methylbenzo[d]oxazol-2-amine as new anthelmintic agent through scalable protocol for the synthesis of N-alkylbenzo[d]oxazol-2-amine and N-alkylbenzo[d]thiazol-2-amine derivatives. Bioorg Chem 2023; 131:106287. [PMID: 36455482 DOI: 10.1016/j.bioorg.2022.106287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
We discovered a lead compound, N-methylbenzo[d]oxazol-2-amine (2a), which had comparable potency to albendazole, an orally administered anthelminticdrug, against Gnathostoma spinigerum, Caenorhabditis elegans and Trichinella spiralis. Compound 2a showed about 10 times lower cytotoxicity towards normal human cell line (HEK293) than albendazole. Moreover, we have developed new processes for the synthesis of N-alkylbenzo[d]oxazol-2-amine and N-alkylbenzo[d]thiazol-2-amine derivatives via metal-free conditions. This protocol could serve as a robust and scalable method, especially, to synthesize N-methylbenzo[d]oxazol-2-amine and N-methylbenzo[d]thiazol-2-amine derivatives which were difficult to prepare using other metal-free conditions. The method employed benzoxazole-2-thiol or benzothiazole-2-thiol as the substrate. The reaction was triggered by methylation of the thiol functional group to form the methyl sulfide intermediate, a crucial tactic, which facilitated in a smooth nucleophilic addition-elimination reaction with gaseous methylamine generated in situ from N-methylformamide. In addition, the proteomic analysis of compound 2a was also studied in this work.
Collapse
Affiliation(s)
- Pavitra Laohapaisan
- Program on Chemical Sciences, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jumreang Tummatorn
- Program on Chemical Sciences, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand; Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand.
| | - Charnsak Thongsornkleeb
- Program on Chemical Sciences, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand; Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Urusa Thaenkham
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Somsak Ruchirawat
- Program on Chemical Sciences, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand; Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| |
Collapse
|
27
|
Gallo KJ, Wheeler NJ, Elmi AM, Airs PM, Zamanian M. Pharmacological Profiling of a Brugia malayi Muscarinic Acetylcholine Receptor as a Putative Antiparasitic Target. Antimicrob Agents Chemother 2023; 67:e0118822. [PMID: 36602350 PMCID: PMC9872666 DOI: 10.1128/aac.01188-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
The diversification of anthelmintic targets and mechanisms of action will help ensure the sustainable control of nematode infections in response to the growing threat of drug resistance. G protein-coupled receptors (GPCRs) are established drug targets in human medicine but remain unexploited as anthelmintic substrates despite their important roles in nematode neuromuscular and physiological processes. Bottlenecks in exploring the druggability of parasitic nematode GPCRs include a limited helminth genetic toolkit and difficulties establishing functional heterologous expression. In an effort to address some of these challenges, we profile the function and pharmacology of muscarinic acetylcholine receptors in the human parasite Brugia malayi, an etiological agent of human lymphatic filariasis. While acetylcholine-gated ion channels are intensely studied as targets of existing anthelmintics, comparatively little is known about metabotropic receptor contributions to parasite cholinergic signaling. Using multivariate phenotypic assays in microfilariae and adults, we show that nicotinic and muscarinic compounds disparately affect parasite fitness traits. We identify a putative G protein-linked acetylcholine receptor of B. malayi (Bma-GAR-3) that is highly expressed across intramammalian life stages and adapt spatial RNA in situ hybridization to map receptor transcripts to critical parasite tissues. Tissue-specific expression of Bma-gar-3 in Caenorhabditis elegans (body wall muscle, sensory neurons, and pharynx) enabled receptor deorphanization and pharmacological profiling in a nematode physiological context. Finally, we developed an image-based feeding assay as a reporter of pharyngeal activity to facilitate GPCR screening in parasitized strains. We expect that these receptor characterization approaches and improved knowledge of GARs as putative drug targets will further advance the study of GPCR biology across medically important nematodes.
Collapse
Affiliation(s)
- Kendra J. Gallo
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Nicolas J. Wheeler
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Abdifatah M. Elmi
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Paul M. Airs
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
28
|
Johnson H, VanHooreweghe M, Satori JA, Chan JD. Schistosomes contain divergent ligand-gated ion channels with an atypical Cys-loop motif. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000694. [PMID: 36713055 PMCID: PMC9874803 DOI: 10.17912/micropub.biology.000694] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/01/1970] [Accepted: 12/20/2022] [Indexed: 01/31/2023]
Abstract
Ligand-gated ion channels (LGICs) are important regulators of neuromuscular function, making them attractive antiparasitic drug targets. While roundworm LGICs are targeted by several anthelmintic classes, flatworm LGICs are less studied. Chromosome-level genome assemblies have recently been released for Schistosoma flatworm species that cause the disease schistosomiasis. These have allowed us to comprehensively predict schistosome LGICs, adding to prior annotations. Analysis of LGIC sequences revealed a clade of receptors lacking cysteines at the eponymous Cys-loop region of the channel. Since these atypical channels are divergent from mammalian LGICs, they may be promising targets to treat diseases caused by parasitic flatworms.
Collapse
Affiliation(s)
| | | | | | - John D Chan
- University of Wisconsin - Oshkosh, Oshkosh, WI, USA
| |
Collapse
|
29
|
Essential Oils as Novel Anthelmintic Drug Candidates. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238327. [PMID: 36500419 PMCID: PMC9735941 DOI: 10.3390/molecules27238327] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 12/02/2022]
Abstract
Helminths, with an estimated 1.5 billion annual global infections, are one of the major health challenges worldwide. The current strategy of the World Health Organization to prevent helminth infection includes increasing hygienic awareness, providing better sanitation and preventative anthelmintic drug therapy in vulnerable populations. Nowadays, anthelmintic drugs are used heavily in livestock, both in case of infection and as a preventative measure. However, this has led to the development of resistance against several of the most common drugs, such as levamisole, ivermectin and thiabendazole. As many as 70% of the livestock in developed countries now has helminths that are drug resistant, and multiple resistance is common. Because of this, novel anthelmintics are urgently needed to help combat large-scale production losses. Prior to this review, no comprehensive review of the anthelmintic effects of essential oils and their components existed. Multiple review articles have been published on the uses of a single plant and its extracts that only briefly touch upon their anthelmintic activity. This review aims to provide a detailed overview of essential oils and their components as anthelmintic treatment against a wider variety of helminths.
Collapse
|
30
|
Hernandez SR, Davis DB, Credille BC, Tucker JJ, Stewart RL. Assessment of effectiveness of deworming options in recently weaned beef cattle utilizing different anthelmintic programs in the southeast. Transl Anim Sci 2022; 6:txac148. [PMID: 36479383 PMCID: PMC9721382 DOI: 10.1093/tas/txac148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/01/2022] [Indexed: 11/05/2022] Open
Abstract
This study evaluated the effects of three different anthelmintic strategies on animal performance and anthelmintic effectiveness in weaned calves during a 42-d preconditioning period. The study was conducted at four locations over 2 yr and included a total of 797 recently weaned spring-born calves (initial BW 260 ± 37.7 kg). At the start of each year, at each location, calves were weaned and randomly assigned to one of four treatments: 1) oxfendazole (ORAL); 2) transdermal eprinomectin (POUR); 3) both anthelmintic treatments (BOTH); and 4) the control (CONT) group who did not receive treatment. Anthelmintic was applied per the manufacturer recommendation, the transdermal eprinomectin was administered at 1 mL per 10 kg and oxfendazole was administered orally at 1 mL per 50 kg. Weights were measured at the start of the study (day 0) and again at the end of the preconditioning phase (day 42). Fecal samples were collected at the start of the study prior to treatment application (day 0) and again on day 14. Rumen fluid was collected at the start of the study prior to treatment (day 0) and again on day 6. There were treatment effects for all performance metrics (P < 0.001). All treatments had greater weight gain and value of weight gained (P < 0.024), and all three strategies did not differ from each other (P > 0.420). On day 0, there were no (P = 0.795) treatment effects detected for fecal eggs per gram (EPG) counts. On day 14, there were (P < 0.001) treatment effects for EPG counts with feces from CONT calves containing greater (P < 0.014) EPG than feces from treated calves. EPG in feces from BOTH calves did not differ (P > 0.123) from the other two treated groups and feces from POUR calves tended (P = 0.052) to contain greater EPG counts than feces from ORAL calves. Volatile fatty acids were similar across treatments on days 0 and 6 (P > 0.115). Butyrate tended (P = 0.063) to be lower in ORAL on day 6. These results suggest that using eprinomectin and oxfendazole in combination was an effective strategy for reducing EPG and improving performance during a 42-d preconditioning phase.
Collapse
Affiliation(s)
- Shane R Hernandez
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Dylan B Davis
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Brent C Credille
- Department of Population Health, Food Animal Health and Management Program, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Jennifer J Tucker
- Department of Animal and Dairy Science, University of Georgia, Tifton, GA, 31793, USA
| | - Robert Lawton Stewart
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
31
|
Schmidt H, Mauer K, Glaser M, Dezfuli BS, Hellmann SL, Silva Gomes AL, Butter F, Wade RC, Hankeln T, Herlyn H. Identification of antiparasitic drug targets using a multi-omics workflow in the acanthocephalan model. BMC Genomics 2022; 23:677. [PMID: 36180835 PMCID: PMC9523657 DOI: 10.1186/s12864-022-08882-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/12/2022] [Indexed: 08/30/2023] Open
Abstract
Background With the expansion of animal production, parasitic helminths are gaining increasing economic importance. However, application of several established deworming agents can harm treated hosts and environment due to their low specificity. Furthermore, the number of parasite strains showing resistance is growing, while hardly any new anthelminthics are being developed. Here, we present a bioinformatics workflow designed to reduce the time and cost in the development of new strategies against parasites. The workflow includes quantitative transcriptomics and proteomics, 3D structure modeling, binding site prediction, and virtual ligand screening. Its use is demonstrated for Acanthocephala (thorny-headed worms) which are an emerging pest in fish aquaculture. We included three acanthocephalans (Pomphorhynchus laevis, Neoechinorhynchus agilis, Neoechinorhynchus buttnerae) from four fish species (common barbel, European eel, thinlip mullet, tambaqui). Results The workflow led to eleven highly specific candidate targets in acanthocephalans. The candidate targets showed constant and elevated transcript abundances across definitive and accidental hosts, suggestive of constitutive expression and functional importance. Hence, the impairment of the corresponding proteins should enable specific and effective killing of acanthocephalans. Candidate targets were also highly abundant in the acanthocephalan body wall, through which these gutless parasites take up nutrients. Thus, the candidate targets are likely to be accessible to compounds that are orally administered to fish. Virtual ligand screening led to ten compounds, of which five appeared to be especially promising according to ADMET, GHS, and RO5 criteria: tadalafil, pranazepide, piketoprofen, heliomycin, and the nematicide derquantel. Conclusions The combination of genomics, transcriptomics, and proteomics led to a broadly applicable procedure for the cost- and time-saving identification of candidate target proteins in parasites. The ligands predicted to bind can now be further evaluated for their suitability in the control of acanthocephalans. The workflow has been deposited at the Galaxy workflow server under the URL tinyurl.com/yx72rda7. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08882-1.
Collapse
Affiliation(s)
- Hanno Schmidt
- Institute of Organismic and Molecular Evolution (iomE), Anthropology, Johannes Gutenberg University Mainz, Mainz, Germany. .,Present address: Institute for Virology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Katharina Mauer
- Institute of Organismic and Molecular Evolution (iomE), Anthropology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Manuel Glaser
- Molecular and Cellular Modeling, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | | | - Sören Lukas Hellmann
- Institute of Organismic and Molecular Evolution (iomE), Molecular Genetics and Genomic Analysis, Johannes Gutenberg University Mainz, Mainz, Germany.,Present address: Nucleic Acids Core Facility, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Falk Butter
- Quantitative Proteomics, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.,Center for Molecular Biology (ZMBH) and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution (iomE), Molecular Genetics and Genomic Analysis, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Holger Herlyn
- Institute of Organismic and Molecular Evolution (iomE), Anthropology, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
32
|
Babić B, Andrić D, Farkaš A, Vuk D, Ašperger D, Dolar D. Behavior of Mebendazole during NF/RO Adsorption and Photolysis. MEMBRANES 2022; 12:888. [PMID: 36135907 PMCID: PMC9503556 DOI: 10.3390/membranes12090888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The idea of using drugs from the benzimidazole group as potential antitumor agents is becoming increasingly popular and widespread in research. However, their use as antiparasitics and in cancer treatment will increase their already recorded occurrence in the aquatic environment. In this study, the removal of the anthelmintic mebendazole from aqueous solution was investigated using nanofiltration and reverse osmosis membranes, adsorption on granular activated carbon (GAC), and photolytic degradation. The dense NF90 and reverse osmosis XLE membranes showed almost complete removal (>97.7%), while the NF270 membrane showed a large dependence of removal on initial concentration from 41.9% to 96.6%. Adsorption in the column resulted in complete removal of mebendazole at the highest GAC height used (40 cm) from the solution with the lowest concentration (1 mg/L). Photolytic degradation by artificial light for 2 and 12 h resulted in photodegradation of mebendazole in the range of 23.5−61.4%, forming a new degradation or transformation compound with an m/z ratio of 311. Mebendazole is a photosensitive drug whose photodegradation follows first-order kinetics and depends on the drug concentration. Toxicity was studied with Vibrio fischeri before and after photolysis, and showed a decrease in inhibition after 12 h.
Collapse
Affiliation(s)
- Bruna Babić
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Darko Andrić
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Anamarija Farkaš
- The Institute for Development and International Relations, Ljudevita Farkaša Vukotinovića 2, 10000 Zagreb, Croatia
| | - Dragana Vuk
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Danijela Ašperger
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Davor Dolar
- Department of Physical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| |
Collapse
|
33
|
Harrington S, Knox JJ, Burns AR, Choo KL, Au A, Kitner M, Haeberli C, Pyche J, D'Amata C, Kim YH, Volpatti JR, Guiliani M, Snider J, Wong V, Palmeira BM, Redman EM, Vaidya AS, Gilleard JS, Stagljar I, Cutler SR, Kulke D, Dowling JJ, Yip CM, Keiser J, Zasada I, Lautens M, Roy PJ. Egg-laying and locomotory screens with C. elegans yield a nematode-selective small molecule stimulator of neurotransmitter release. Commun Biol 2022; 5:865. [PMID: 36002479 PMCID: PMC9402605 DOI: 10.1038/s42003-022-03819-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/08/2022] [Indexed: 12/05/2022] Open
Abstract
Nematode parasites of humans, livestock and crops dramatically impact human health and welfare. Alarmingly, parasitic nematodes of animals have rapidly evolved resistance to anthelmintic drugs, and traditional nematicides that protect crops are facing increasing restrictions because of poor phylogenetic selectivity. Here, we exploit multiple motor outputs of the model nematode C. elegans towards nematicide discovery. This work yielded multiple compounds that selectively kill and/or immobilize diverse nematode parasites. We focus on one compound that induces violent convulsions and paralysis that we call nementin. We find that nementin stimulates neuronal dense core vesicle release, which in turn enhances cholinergic signaling. Consequently, nementin synergistically enhances the potency of widely-used non-selective acetylcholinesterase (AChE) inhibitors, but in a nematode-selective manner. Nementin therefore has the potential to reduce the environmental impact of toxic AChE inhibitors that are used to control nematode infections and infestations. A C. elegans-based screening approach identifies nementin as a nematode-selective nematicide that can be used synergistically with acetylcholinesterase inhibitors
Collapse
Affiliation(s)
- Sean Harrington
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada.,The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Jessica J Knox
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Andrew R Burns
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Ken-Loon Choo
- The Department of Chemistry, University of Toronto, Toronto, Canada
| | - Aaron Au
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Megan Kitner
- USDA-ARS Horticultural Crops Research Laboratory, Corvallis, OR, USA
| | - Cecile Haeberli
- Department of Medical Parasitology and Infection Biology, Swiss-Tropical and Public Health Institute, (Swiss TPH), Basel, Switzerland.,Faculty of Science, University of Basel, Basel, Switzerland
| | - Jacob Pyche
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada.,The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Cassandra D'Amata
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Yong-Hyun Kim
- The Department of Chemistry, University of Toronto, Toronto, Canada
| | - Jonathan R Volpatti
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Maximillano Guiliani
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Jamie Snider
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Victoria Wong
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Bruna M Palmeira
- Department of Comparative Biology and Experimental Medicine, Host-Parasite Interactions (HPI) Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Elizabeth M Redman
- Department of Comparative Biology and Experimental Medicine, Host-Parasite Interactions (HPI) Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Aditya S Vaidya
- Institute for Integrative Genome Biology, University of California, Riverside, CA, USA.,Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - John S Gilleard
- Department of Comparative Biology and Experimental Medicine, Host-Parasite Interactions (HPI) Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Igor Stagljar
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada.,Mediterranean Institute for Life Sciences, Split, Croatia.,School of Medicine, University of Split, Split, Croatia
| | - Sean R Cutler
- Institute for Integrative Genome Biology, University of California, Riverside, CA, USA.,Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Daniel Kulke
- Research Parasiticides, Bayer Animal Health GmbH, Monheim, Germany.,Department of Biomedical Sciences, Iowa State University, Ames, IA, USA.,Global Innovation, Boehringer Ingelheim Vetmedica GmbH, Ingelheim am Rhein, Germany
| | - James J Dowling
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Christopher M Yip
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss-Tropical and Public Health Institute, (Swiss TPH), Basel, Switzerland.,Faculty of Science, University of Basel, Basel, Switzerland
| | - Inga Zasada
- USDA-ARS Horticultural Crops Research Laboratory, Corvallis, OR, USA
| | - Mark Lautens
- The Department of Chemistry, University of Toronto, Toronto, Canada
| | - Peter J Roy
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada. .,The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, Canada.
| |
Collapse
|
34
|
Calahorro F, Chapman M, Dudkiewicz K, Holden-Dye L, O'Connor V. PharmacoGenetic targeting of a C. elegans essential neuron provides an in vivo screening for novel modulators of nematode ion channel function. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 186:105152. [PMID: 35973757 DOI: 10.1016/j.pestbp.2022.105152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/18/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Chemical or drug treatments are successfully used to treat parasitic nematode infections that impact human, animal and plant health. Many of these exert their effects through modifying neural function underpinning behaviours essential for parasite viability. Selectivity against the parasite may be achieved through distinct pharmacological properties of the parasite nervous system, as exemplified by the success of the ivermectin which target a glutamate-gated chloride channel found only in invertebrates. Despite the success of the ivermectins, emerging resistance and concerns around eco-toxicity are driving the search for new nematocidal chemicals or drugs. Here, we describe the potential of a 5-HT-gated chloride channel MOD-1, which is involved in vital parasite behaviours with constrained distribution in the invertebrate phyla. This ion channel has potential pharmacophores that could be targeted by new nematocidal chemicals and drugs. We have developed a microtiter based bioassay for MOD-1 pharmacology based on its ectopic expression in the Caenorhabditis elegans essential neuron M4. We have termed this technology 'PhaGeM4' for 'Pharmacogenetic targeting of M4 neuron'. Exposure of transgenic worms harbouring ectopically expressed MOD-1 to 5-HT results in developmental arrest. By additional expression of a fluorescence marker in body wall muscle to monitor growth we demonstrate that this assay is suitable for the identification of receptor agonists and antagonists. Indeed, the developmental progression is a robustly quantifiable bioassay that resolves MOD-1 activation by quipazine, 5-carboxyamidotryptamine and fluoxetine and highlight methiothepin as a potent antagonist. This assay has the intrinsic ability to highlight compounds with optimal bioavailability and furthermore to filter out off-target effects. It can be extended to the investigation of other classes of membrane receptors and modulators of neuronal excitation. This approach based on heterologous modulation of the essential M4 neuron function offers a route to discover new effective and selective anthelmintics potentially less confounded by disruptive environmental impact.
Collapse
Affiliation(s)
- Fernando Calahorro
- School of Biological Sciences, University of Southampton, Life Sciences Building 85, Southampton SO17 1BJ, UK.
| | - Mark Chapman
- School of Biological Sciences, University of Southampton, Life Sciences Building 85, Southampton SO17 1BJ, UK
| | - Katarzyna Dudkiewicz
- School of Biological Sciences, University of Southampton, Life Sciences Building 85, Southampton SO17 1BJ, UK
| | - Lindy Holden-Dye
- School of Biological Sciences, University of Southampton, Life Sciences Building 85, Southampton SO17 1BJ, UK
| | - Vincent O'Connor
- School of Biological Sciences, University of Southampton, Life Sciences Building 85, Southampton SO17 1BJ, UK
| |
Collapse
|
35
|
Novel compound shows in vivo anthelmintic activity in gerbils and sheep infected by Haemonchus contortus. Sci Rep 2022; 12:13004. [PMID: 35906366 PMCID: PMC9338094 DOI: 10.1038/s41598-022-17112-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/20/2022] [Indexed: 11/08/2022] Open
Abstract
The control of gastrointestinal nematodes in livestock is becoming increasingly difficult due to the limited number of available drugs and the rapid development of anthelmintic resistance. Therefore, it is imperative to develop new anthelmintics that are effective against nematodes. Under this context, we tested the potential toxicity of three compounds in mice and their potential anthelmintic efficacy in Mongolian gerbils infected with Haemonchus contortus. The compounds were selected from previous in vitro experiments: two diamine (AAD-1 and AAD-2) and one benzimidazole (2aBZ) derivatives. 2aBZ was also selected to test its efficacy in sheep. In Mongolian gerbils, the benzimidazole reduced the percentage of pre-adults present in the stomach of gerbils by 95% at a dose of 200 mg/kg. In sheep, there was a 99% reduction in the number of eggs shed in faeces after 7 days at a dose of 120 mg/kg and a 95% reduction in the number of worm adults present in the abomasum. In conclusion, 2aBZ could be considered a promising candidate for the treatment of helminth infections in small ruminants.
Collapse
|
36
|
Paprocka R, Kołodziej P, Wiese-Szadkowska M, Helmin-Basa A, Bogucka-Kocka A. Evaluation of Anthelmintic and Anti-Inflammatory Activity of 1,2,4-Triazole Derivatives. Molecules 2022; 27:molecules27144488. [PMID: 35889357 PMCID: PMC9323247 DOI: 10.3390/molecules27144488] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 01/25/2023] Open
Abstract
Parasitic diseases, caused by intestinal helminths, remain a very serious problem in both human and veterinary medicine. While searching for new nematicides we examined a series of 1,2,4-triazole derivatives 9–22, obtained during reactions of N3-substituted amidrazones with itaconic anhydride. Two groups of compounds, 9–16 and 17–22, differed in the position of the double bond on the methacrylic acid moiety. The toxicity of derivatives 9–22 and the anti-inflammatory activity of 12 and 19–22 were studied on peripheral blood mononuclear cells (PBMC). Antiproliferative activity of compounds 12 and 19–22 was tested cytometrically in PBMC cultures stimulated by phytohemagglutinin. The influence of derivatives 12 and 19–22 on the TNF-α, IL-6, IL-10 and IFN-γ production was determined by ELISA in lipopolysaccharide-stimulated PBMC cultures. Anthelmintic activity of compounds 10–22 was studied in the Rhabditis sp. nematodes model. Most compounds (11–22) proved to be non-toxic to human PBMC. Derivatives 19–22 showed anti-inflammatory activity by inhibiting the proliferation of lymphocytes. Moreover, compounds 12 and 19–22 significantly reduced the production of TNF-α and derivatives 19–21 decreased the level of INF-γ. The strongest anti-inflammatory activity was observed for compound 21. Compounds 12 and 14 demonstrated anthelmintic activity higher than albendazole and may become promising candidates for anthelmintic drugs.
Collapse
Affiliation(s)
- Renata Paprocka
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
- Correspondence: (R.P.); (P.K.)
| | - Przemysław Kołodziej
- Chair and Department of Biology and Genetics, Faculty of Pharmacy, Medical University in Lublin, Chodźki Str. 4A, 20-093 Lublin, Poland;
- Correspondence: (R.P.); (P.K.)
| | - Małgorzata Wiese-Szadkowska
- Department of Immunology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Curie-Sklodowska Str. 9, 85-094 Bydgoszcz, Poland; (M.W.-S.); (A.H.-B.)
| | - Anna Helmin-Basa
- Department of Immunology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Curie-Sklodowska Str. 9, 85-094 Bydgoszcz, Poland; (M.W.-S.); (A.H.-B.)
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Faculty of Pharmacy, Medical University in Lublin, Chodźki Str. 4A, 20-093 Lublin, Poland;
| |
Collapse
|
37
|
Ajendra J. Lessons in type 2 immunity: Neutrophils in Helminth infections. Semin Immunol 2021; 53:101531. [PMID: 34836773 DOI: 10.1016/j.smim.2021.101531] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/20/2022]
Abstract
Neutrophils constitute the body's first line of defense against invading pathogens. Equipped with a large array of tools, these immune cells are highly efficient in eliminating bacterial and viral infections, yet their activity can at the same time be detrimental to the host itself - this is the broad consensus on these granulocytes. However, the last decade has proven that neutrophils are a much more sophisticated cell type with unexpected and underappreciated functions in health and disease. In this review, we look at the latest discoveries in neutrophil biology with a focus on their role during the hallmark setting of type 2 immunity - helminth infection. We discuss the involvement of neutrophils in various helminth infection models and summarize the latest findings regarding neutrophil regulation and effector function. We will show that neutrophils have much more to offer than previously thought and while studies of neutrophils in helminth infections are still in its infancy, recent discoveries highlight more than ever that these cells are a key cog of the immune system, even during type 2 responses.
Collapse
Affiliation(s)
- Jesuthas Ajendra
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK; Wellcome Centre for Cell-Matrix Research, Manchester, M13 9PT, UK.
| |
Collapse
|
38
|
New Insights into Anthelmintic Mechanisms of Action of a Synthetic Peptide: An Ultrastructural and Nanomechanical Approach. Polymers (Basel) 2021; 13:polym13142370. [PMID: 34301127 PMCID: PMC8309597 DOI: 10.3390/polym13142370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 11/18/2022] Open
Abstract
Resistant nematodes are not affected by the most common drugs commercially available. In the search for new anthelmintics, peptides have been investigated. Here, a linear synthetic peptide named RcAlb-PepIII bioinspired from the antimicrobial protein Rc-2S-Alb was designed, synthesized, and tested against barber pole worm Haemonchus contortus. The physicochemical properties of the peptide, the 3D structure model, the egg hatch inhibition, and larval development inhibition of H. contortus were carried out. Additionally, the ultrastructure of the nematode after treatment with the peptide was evaluated by atomic force microscopy. The RcAlb-PepIII inhibited the larval development of H. contortus with an EC50 of 90 µM and did not affect egg hatch. Atomic force microscopy reveals the high affinity of RcAlb-PepIII with the cuticle of H. contortus in the L2 stage. It also shows the deposition of RcAlb-PepIII onto the surface of the cuticle, forming a structure similar to a film that reduces the roughness and mean square roughness (Rq) of it. In conclusion, the bioinspired RcAlb-PepIII has the potential to be used as a new anthelmintic compound to control gastrointestinal nematode parasites.
Collapse
|
39
|
High-content approaches to anthelmintic drug screening. Trends Parasitol 2021; 37:780-789. [PMID: 34092518 DOI: 10.1016/j.pt.2021.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 11/23/2022]
Abstract
Most anthelmintics were discovered through in vivo screens using animal models of infection. Developing in vitro assays for parasitic worms presents several challenges. The lack of in vitro life cycle culture protocols requires harvesting worms from vertebrate hosts or vectors, limiting assay throughput. Once worms are removed from the host environment, established anthelmintics often show no obvious phenotype - raising concerns about the predictive value of many in vitro assays. However, with recent progress in understanding how anthelmintics subvert host-parasite interactions, and breakthroughs in high-content imaging and machine learning, in vitro assays have the potential to discern subtle cryptic parasite phenotypes. These may prove better endpoints than conventional in vitro viability assays.
Collapse
|
40
|
McDermott‐Rouse A, Minga E, Barlow I, Feriani L, Harlow PH, Flemming AJ, Brown AEX. Behavioral fingerprints predict insecticide and anthelmintic mode of action. Mol Syst Biol 2021; 17:e10267. [PMID: 34031985 PMCID: PMC8144879 DOI: 10.15252/msb.202110267] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/26/2022] Open
Abstract
Novel invertebrate-killing compounds are required in agriculture and medicine to overcome resistance to existing treatments. Because insecticides and anthelmintics are discovered in phenotypic screens, a crucial step in the discovery process is determining the mode of action of hits. Visible whole-organism symptoms are combined with molecular and physiological data to determine mode of action. However, manual symptomology is laborious and requires symptoms that are strong enough to see by eye. Here, we use high-throughput imaging and quantitative phenotyping to measure Caenorhabditis elegans behavioral responses to compounds and train a classifier that predicts mode of action with an accuracy of 88% for a set of ten common modes of action. We also classify compounds within each mode of action to discover substructure that is not captured in broad mode-of-action labels. High-throughput imaging and automated phenotyping could therefore accelerate mode-of-action discovery in invertebrate-targeting compound development and help to refine mode-of-action categories.
Collapse
Affiliation(s)
- Adam McDermott‐Rouse
- MRC London Institute of Medical SciencesLondonUK
- Faculty of MedicineInstitute of Clinical SciencesImperial College LondonLondonUK
| | - Eleni Minga
- MRC London Institute of Medical SciencesLondonUK
- Faculty of MedicineInstitute of Clinical SciencesImperial College LondonLondonUK
| | - Ida Barlow
- MRC London Institute of Medical SciencesLondonUK
- Faculty of MedicineInstitute of Clinical SciencesImperial College LondonLondonUK
| | - Luigi Feriani
- MRC London Institute of Medical SciencesLondonUK
- Faculty of MedicineInstitute of Clinical SciencesImperial College LondonLondonUK
| | | | | | - André E X Brown
- MRC London Institute of Medical SciencesLondonUK
- Faculty of MedicineInstitute of Clinical SciencesImperial College LondonLondonUK
| |
Collapse
|
41
|
Production, composition, and mode of action of the painful defensive venom produced by a limacodid caterpillar, Doratifera vulnerans. Proc Natl Acad Sci U S A 2021; 118:2023815118. [PMID: 33893140 DOI: 10.1073/pnas.2023815118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Venoms have evolved independently several times in Lepidoptera. Limacodidae is a family with worldwide distribution, many of which are venomous in the larval stage, but the composition and mode of action of their venom is unknown. Here, we use imaging technologies, transcriptomics, proteomics, and functional assays to provide a holistic picture of the venom system of a limacodid caterpillar, Doratifera vulnerans Contrary to dogma that defensive venoms are simple in composition, D. vulnerans produces a complex venom containing 151 proteinaceous toxins spanning 59 families, most of which are peptides <10 kDa. Three of the most abundant families of venom peptides (vulnericins) are 1) analogs of the adipokinetic hormone/corazonin-related neuropeptide, some of which are picomolar agonists of the endogenous insect receptor; 2) linear cationic peptides derived from cecropin, an insect innate immune peptide that kills bacteria and parasites by disrupting cell membranes; and 3) disulfide-rich knottins similar to those that dominate spider venoms. Using venom fractionation and a suite of synthetic venom peptides, we demonstrate that the cecropin-like peptides are responsible for the dominant pain effect observed in mammalian in vitro and in vivo nociception assays and therefore are likely to cause pain after natural envenomations by D. vulnerans Our data reveal convergent molecular evolution between limacodids, hymenopterans, and arachnids and demonstrate that lepidopteran venoms are an untapped source of novel bioactive peptides.
Collapse
|
42
|
The Prospective Use of Brazilian Marine Macroalgae in Schistosomiasis Control. Mar Drugs 2021; 19:md19050234. [PMID: 33922065 PMCID: PMC8143572 DOI: 10.3390/md19050234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
Schistosomiasis is a parasitic disease that affects more than 250 million people. The treatment is limited to praziquantel and the control of the intermediate host with the highly toxic molluscicidal niclosamide. Marine algae are a poorly explored and promising alternative that can provide lead compounds, and the use of multivariate analysis could contribute to quicker discovery. As part of our search for new natural compounds with which to control schistosomiasis, we screened 45 crude extracts obtained from 37 Brazilian seaweed species for their molluscicidal activity against Biomphalaria glabrata embryos and schistosomicidal activities against Schistosoma mansoni. Two sets of extracts were taxonomically grouped for metabolomic analysis. The extracts were analyzed by GC–MS, and the data were subjected to Pattern Hunter and Pearson correlation tests. Overall, 22 species (60%) showed activity in at least one of the two models. Multivariate analysis pointed towards 3 hits against B. glabrata veliger embryos in the Laurencia/Laurenciella set, 5 hits against B. glabrata blastula embryos, and 31 against S. mansoni in the Ochrophyta set. Preliminary annotations suggested some compounds such as triquinane alcohols, prenylated guaianes, dichotomanes, and xenianes. Despite the putative identification, this work presents potential candidates and can guide future isolation and identification.
Collapse
|
43
|
Combination of synthetic anthelmintics and monoterpenes: Assessment of efficacy, and ultrastructural and biophysical properties of Haemonchus contortus using atomic force microscopy. Vet Parasitol 2021; 290:109345. [PMID: 33482425 DOI: 10.1016/j.vetpar.2021.109345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 01/03/2023]
Abstract
The resistance of Haemonchus contortus to synthetic anthelmintics is of increasing concern; and different strategies are being evaluated to improve parasite control. The present study investigated the in vitro effects of combinations of synthetic compounds and monoterpenes. Additionally, the chemical association of the best combinations and their impact on the ultrastructural and biophysical properties of H. contortus eggs was evaluated. We assessed the efficacy of the monoterpenes, carvacrol, thymol, r-carvone, s-carvone, citral, and p-cymene and the anthelmintics, albendazole and levamisole using the egg hatch test (EHT) and the larval migration inhibition test (LMIT), respectively. The minimum effective concentrations of the monoterpenes, according to the EHT (efficacy ranging from 4.4%-11.8%) and LMIT (efficacy ranging from 5.6%-7.4%), were used in combination with different concentrations of synthetic compounds, and the IC50 and synergism rate (SR) were calculated. Fourier-transform infrared spectroscopy (FTIR) was used to analyze the chemical association between the best combinations as revealed by the in vitro tests (albendazole and levamisole with r-carvone or s-carvone). Atomic force microscopy (AFM) was used to assess the ultrastructural and biophysical properties of H. contortus eggs treated with the albendazole and r-carvone combination. Among the monoterpenes, the highest efficacies were exhibited by carvacrol (IC50 = 185.9 μg/mL) and thymol (IC50 = 187.0 μg/mL), according to the EHT, and s-carvone and carvacrol (IC50 = 1526.0 and 1785.3 μg/mL, respectively), according to the LMIT. According to the EHT, albendazole showed a slight statistically significant synergism in combination with r-carvone (SR = 3.8) and s-carvone (SR = 3.0). According to the LMIT, among the monoterpenes, r-carvone (SR = 1.7) and s-carvone (SR = 1.7) showed an increase in efficacy with levamisole; however, this was not statistically significant. The FTIR spectra of albendazole and levamisole, in association with r-carvone and s-carvone, indicated the presence of chemical interactions between the synthetic and natural molecules, contributing to the possible synergistic effects of these associations. Eggs treated with albendazole and r-carvone showed an increase in roughness and a decrease in height, suggesting that the treatment induced damage to the egg surface and an overflow of its internal contents. Overall, the combination of albendazole with r-carvone and s-carvone was efficacious against H. contortus, demonstrating a chemical association between the compounds; the significant changes in the egg ultrastructure justify this efficacy.
Collapse
|
44
|
Kotze AC, Gilleard JS, Doyle SR, Prichard RK. Challenges and opportunities for the adoption of molecular diagnostics for anthelmintic resistance. Int J Parasitol Drugs Drug Resist 2020; 14:264-273. [PMID: 33307336 PMCID: PMC7726450 DOI: 10.1016/j.ijpddr.2020.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Anthelmintic resistance is a significant threat to livestock production systems worldwide and is emerging as an important issue in companion animal parasite management. It is also an emerging concern for the control of human soil-transmitted helminths and filaria. An important aspect of managing anthelmintic resistance is the ability to utilise diagnostic tests to detect its emergence at an early stage. In host-parasite systems where resistance is already widespread, diagnostics have a potentially important role in determining those drugs that remain the most effective. The development of molecular diagnostics for anthelmintic resistance is one focus of the Consortium for Anthelmintic Resistance and Susceptibility (CARS) group. The present paper reflects discussions of this issue that occurred at the most recent meeting of the group in Wisconsin, USA, in July 2019. We compare molecular resistance diagnostics with in vivo and in vitro phenotypic methods, and highlight the advantages and disadvantages of each. We assess whether our knowledge on the identity of molecular markers for resistance towards the different drug classes is sufficient to provide some expectation that molecular tests for field use may be available in the short-to-medium term. We describe some practical aspects of such tests and how our current capabilities compare to the requirements of an 'ideal' test. Finally, we describe examples of drug class/parasite species interactions that provide the best opportunity for commercial use of molecular tests in the near future. We argue that while such prototype tests may not satisfy the requirements of an 'ideal' test, their potential to provide significant advances over currently-used phenotypic methods warrants their development as field diagnostics.
Collapse
Affiliation(s)
- Andrew C. Kotze
- CSIRO Agriculture and Food, St. Lucia, Brisbane, 4072, QLD, Australia,Corresponding author. , CSIRO Agriculture and Food, St. Lucia, Brisbane, 4072, QLD, Australia.
| | - John S. Gilleard
- Department of Comparative Biology and Experimental Medicine, Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Stephen R. Doyle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Roger K. Prichard
- Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, QC, H9X 3V9, Canada
| |
Collapse
|