1
|
Hoshiki A, Soul W, Bernard NG. The anthelmintic activity of the white wormwood (Artemisia herba Alba) against Haemonchus contortus in beef cattle. Sci Rep 2025; 15:637. [PMID: 39754020 PMCID: PMC11698843 DOI: 10.1038/s41598-024-84656-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 12/25/2024] [Indexed: 01/06/2025] Open
Abstract
The objective of the study was to determine the efficacy of white wormwood on helminthes in beef cattle production. Water extracts of white wormwood of different levels of phytotoxicity were used to treat female adult H. contortus over 8 h under controlled laboratory conditions. The experiment was designed in a completely randomized design with six treatments replicated three times. Treatments 3-6 showed a reduction in worm motility over time (P < 0.05) while it did not change much for T1 and T2 (P < 0.05). Even after 8 h of incubation, more than 50% of the worms were still active in T1, T2 and T3. Meaningful reductions in activity were observed in T4 from 6 to 8 h, T5 form 4-8 h and T6 form 2-6 h. The highest mortality was observed in T4, T5 and T6, 8 h after incubation, however only T6 totally killed all worms 6 h after incubation. Treatments 4 and 5 only achieved 80 and 82% mortality respectively, 8 h post incubation. It is therefore concluded that wormwood aqueous extracts at 5 mg/mL and 10 mg/mL have the capability to immobilize, inactivate and kill mature H. contortus worms from beef cattle.
Collapse
Affiliation(s)
- Annamore Hoshiki
- Department of Agriculture, Women's University in Africa, 549 Arcturus Road, Harare, Zimbabwe
| | - Washaya Soul
- Gary Magadzire School of Agriculture, Department of Livestock, Wildlife, and Fisheries, Great Zimbabwe University, P O Box 1325, Masvingo, Zimbabwe.
| | | |
Collapse
|
2
|
Mandal S, Mondal C, Lyndem LM. Probiotics: an alternative anti-parasite therapy. J Parasit Dis 2024; 48:409-423. [PMID: 39145362 PMCID: PMC11319687 DOI: 10.1007/s12639-024-01680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/27/2024] [Indexed: 08/16/2024] Open
Abstract
This paper review about probiotic effects and mechanism of action against the gut and non-gut helminths and protozoan parasites. Gastrointestinal parasitic infections are considered a serious health problem and are widely distributed globally. The disease process which emanates from this parasite infection provides some of the many public and veterinary health problems in the tropical and sub-tropical countries. Prevention and control of the parasite disease is through antihelmintic and anti-protozoan drugs, but, due to the increasing emergence of such drug resistance, eradication of parasite infestation in human and livestock still lingers a challenge, which requires the development of new alternative strategies. The use of beneficial microorganisms i.e. probiotics is becoming interesting due to their prophylactic application against several diseases including parasite infections. Recent studies on the interactions between probiotics, parasites and host immune cells using animal models and in vitro culture systems has increased considerably and draw much attention, yet the mechanisms of actions mediating the positive effects of these beneficial microorganisms on the hosts remain unexplored. Therefore, the aim of the present review is to summarize the latest findings on the probiotic research against the gut and non-gut parasites of significance.
Collapse
Affiliation(s)
- Sudeshna Mandal
- Visva-Bharati, Parasitology Research Laboratory, Department of Zoology, Santiniketan, 731235 West Bengal India
| | - Chandrani Mondal
- Visva-Bharati, Parasitology Research Laboratory, Department of Zoology, Santiniketan, 731235 West Bengal India
| | - Larisha M. Lyndem
- Visva-Bharati, Parasitology Research Laboratory, Department of Zoology, Santiniketan, 731235 West Bengal India
| |
Collapse
|
3
|
Demarco GJ. Rodents Used for the Propagation of Hookworms and Haemonchus contortus. Comp Med 2024; 74:231-234. [PMID: 38901969 PMCID: PMC11373683 DOI: 10.30802/aalas-cm-24-000021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Helminthiasis due to hookworm infestations in humans and Haemonchus contortus in sheep cause untold levels of disease and economic losses worldwide. Drug resistance is an ever-growing problem with pathogenic helminths. Thus, there is a critical need for new treatment strategies for hookworms and H. contortus that depends on animal models. Because hook- worms and H. contortus are obligate parasites, they can only be maintained using live animals. This review describes use of the Syrian golden hamster to propagate hookworms and Mongolian gerbil to propagate H. contortus.
Collapse
Affiliation(s)
- George J Demarco
- Department of Animal Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
4
|
Mohamed HI, Arafa WM, Ahmed OM, El-Dakhly KM. Ovicidal, larvicidal and adulticidal activity of black pepper ( Piper nigrum L.) essential oil and tea tree oil ( Melaleuca alternifolia) against Haemonchus contortus. J Parasit Dis 2024; 48:117-133. [PMID: 38440752 PMCID: PMC10908739 DOI: 10.1007/s12639-024-01650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/14/2024] [Indexed: 03/06/2024] Open
Abstract
Haemonchosis is a worldwide helminthic disease affecting ruminants. The anthelminthic resistance has become raised. Medicinal plants are safely used as synthetic anthelmintics. Currently, the efficacy of black pepper essential oil (BPO) and tea tree oil (TTO) were in vitro evaluated against Haemonchus contortus adults, eggs and larvae at concentrations of 1.25, 2.5 and 5 mg/ml in addition to the commercially used albendazole at a concentration of 10 μg/ml. Oils were used in both normal and nanoparticles-loaded forms. Oxidative stress enzymes of worms were estimated. Scanning electron microscopy (SEM) for treated worms was done. Both normal and nanoemulsion forms of both BPO and TTO stopped the adult motility [BPO 2.5 h (hrs), NBPO 1.5 h, TTO 3 h, NTTO 1.5 h] and induced a marked decrease in the oviposition. Post treatment, the egg development and hatching were significantly (P ≤ 0.05) reduced. The damage of the egg shell, embryonal cessation and destruction of larvae occurred. Noticeable elevated antioxidant enzymes (catalase CAT, glutathione transferase GST and glutathione GSH) were found, while oxidative enzymes (lipid peroxidation LPO and nitric oxide synthase NOS) decreased. Scanning electron microscopy (SEM) for both oil-treated worms revealed anterior ends damage and several cuts associated with cuticular pores. The use of albendazole induced more or less anthelmintic and enzymatic activities with less morphological alterations of adults revealed by SEM. This study proved the marked anthelmintic potency of the BPO and TTO and their nanoemulsion forms against H. contortus rather than the widely used anthelmintic drugs.
Collapse
Affiliation(s)
- Hend Ibrahim Mohamed
- Department of Parasitology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511 Egypt
| | - Waleed M. Arafa
- Department of Parasitology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511 Egypt
| | - Osama M. Ahmed
- Physiology Division, Department of Zoology, Faculty of Sciences, Beni-Suef University, P.O. Box 63521, Beni-Suef, Egypt
| | - Khaled Mohamed El-Dakhly
- Department of Parasitology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511 Egypt
| |
Collapse
|
5
|
Hosseini SH, Farhangfar A, Moradi M, Dalir-Naghadeh B. Beyond probiotics: Exploring the potential of postbiotics and parabiotics in veterinary medicine. Res Vet Sci 2024; 167:105133. [PMID: 38176207 DOI: 10.1016/j.rvsc.2023.105133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/03/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Postbiotics and parabiotics (PP) are emerging fields of study in animal nutrition, preventive veterinary medicine, and animal production. Postbiotics are bioactive compounds produced by beneficial microorganisms during the fermentation of a substrate, while parabiotics are inactivated beneficial microbial cells, either intact or broken. Unlike probiotics, which are live microorganisms, PP are produced from a fermentation process without live cells and show significant advantages in promoting animal health owing to their distinctive stability, safety, and functional diversity. PP have numerous beneficial effects on animal health, such as enhancing growth performance, improving the immune system and microbiota of the gastrointestinal tract, aiding ulcer healing, and preventing pathogenic microorganisms from colonizing in the skin. Moreover, PP have been identified as a potential alternative to traditional antibiotics in veterinary medicine due to their ability to improve animal health without the risk of antimicrobial resistance. This review comprehensively explores the current research and applications of PP in veterinary medicine. We aimed to thoroughly examine the mechanisms of action, benefits, and potential applications of PP in various species, emphasizing their use specifically in livestock and poultry. Additionally, we discuss the various routes of administration to animals, including feed, drinking water, and topical use. This review also presents in-depth information on the methodology behind the preparation of PP, outlining the criteria employed to select appropriate microorganisms, and highlighting the challenges commonly associated with PP utilization in veterinary medicine.
Collapse
Affiliation(s)
| | | | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Bahram Dalir-Naghadeh
- Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| |
Collapse
|
6
|
Wu S, Zhong J, Lei Q, Song H, Chen SF, Wahla AQ, Bhatt K, Chen S. New roles for Bacillus thuringiensis in the removal of environmental pollutants. ENVIRONMENTAL RESEARCH 2023; 236:116699. [PMID: 37481057 DOI: 10.1016/j.envres.2023.116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
For a long time, the well-known Gram-positive bacterium Bacillus thuringiensis (Bt) has been extensively studied and developed as a biological insecticide for Lepidoptera and Coleoptera pests due to its ability to secrete a large number of specific insecticidal proteins. In recent years, studies have found that Bt strains can also potentially biodegrade residual pollutants in the environment. Many researchers have isolated Bt strains from multiple sites polluted by exogenous compounds and characterized and identified their xenobiotic-degrading potential. Furthermore, its pathway for degradation was also investigated at molecular level, and a number of major genes/enzymes responsible for degradation have been explored. At present, a variety of xenobiotics involved in degradation in Bt have been reported, including inorganic pollutants (used in the field of heavy metal biosorption and recovery and precious metal recovery and regeneration), pesticides (chlorpyrifos, cypermethrin, 2,2-dichloropropionic acid, etc.), organic tin, petroleum and polycyclic aromatic hydrocarbons, reactive dyes (congo red, methyl orange, methyl blue, etc.), and ibuprofen, among others. In this paper, the biodegrading ability of Bt is reviewed according to the categories of related pollutants, so as to emphasize that Bt is a powerful agent for removing environmental pollutants.
Collapse
Affiliation(s)
- Siyi Wu
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Jianfeng Zhong
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Qiqi Lei
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Haoran Song
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Fang Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Abdul Qadeer Wahla
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, USA.
| | - Shaohua Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Rooney J, Cantacessi C, Sotillo J, Cortés A. Gastrointestinal worms and bacteria: From association to intervention. Parasite Immunol 2023; 45:e12955. [PMID: 36300732 DOI: 10.1111/pim.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/28/2022]
Abstract
A plethora of studies, both experimental and epidemiological, have indicated the occurrence of associations between infections by gastrointestinal (GI) helminths and the composition and function of the host gut microbiota. Given the worldwide risk and spread of anthelmintic resistance, particularly for GI parasites of livestock, a better understanding of the mechanisms underpinning the relationships between GI helminths and the gut microbiome, and between the latter and host health, may assist the development of novel microbiome-targeting and other bacteria-based strategies for parasite control. In this article, we review current and prospective methods to manipulate the host gut microbiome, and/or to exploit the immune stimulatory and modulatory properties of gut bacteria (and their products) to counteract the negative impact of GI worm infections; we also discuss the potential applications of these intervention strategies in programmes aimed to aid the fight against helminth diseases of humans and livestock.
Collapse
Affiliation(s)
- James Rooney
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Javier Sotillo
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Alba Cortés
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, València, Spain
| |
Collapse
|
8
|
Goel V, Sharma S, Chakroborty NK, Singla LD, Choudhury D. Targeting the nervous system of the parasitic worm, Haemonchus contortus with quercetin. Heliyon 2023; 9:e13699. [PMID: 36852031 PMCID: PMC9957779 DOI: 10.1016/j.heliyon.2023.e13699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/20/2023] [Accepted: 02/07/2023] [Indexed: 02/14/2023] Open
Abstract
Prevalence of infection, limited choice of drugs, and emerging resistance against contemporary medications lead to a pressing need to develop new anthelmintic drugs and drug targets. However, little understanding of worms' physiology has substantially delayed the process. Here, we are reporting the tissue morphology of Haemonchus contortus, intestinal parasitic helminths found in small ruminants, and targeting its nervous system with quercetin, a naturally occurring flavonoid. Quercetin showed anthelmintic activity against all of the developmental stages of H. contortus. Further, histological analysis demonstrated damage to various body parts, including isthmus, brut, pseudocoele, and other organs. Mechanistic studies revealed the generation of oxidative stress and alterations in the activities of the stress response enzymes, such as catalase, superoxide dismutase, and glutathione peroxidase. Moreover, the time-dependent imaging of reactive oxygen species (ROS) generated due to quercetin treatment disclosed neuropils as the primary targets of quercetin in adult worms, which eventually lead to the paralysis and death of the worms. Thus, this work demonstrates that the nervous system of the parasitic helminth, H. contortus, is a novel target of the drug quercetin.
Collapse
Affiliation(s)
- Vanshita Goel
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India
| | - Sunidhi Sharma
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India
| | - Neloy Kumar Chakroborty
- Thapar School of Liberal Arts & Sciences, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India
| | - Lachhman Das Singla
- Department of Veterinary Parasitology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141001, India
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India.,Thapar Institute of Engineering & Technology-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India
| |
Collapse
|
9
|
Efficient and Scalable Process to Produce Novel and Highly Bioactive Purified Cytosolic Crystals from Bacillus thuringiensis. Microbiol Spectr 2022; 10:e0235622. [PMID: 35946940 PMCID: PMC9430767 DOI: 10.1128/spectrum.02356-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bacillus thuringiensis (Bt) is a Gram-positive soil bacterium that is widely and safely applied in the environment as an insecticide for combatting insect pests that damage crops or are disease vectors. Dominant active ingredients made by Bt are insect-killing crystal (Cry) proteins released as crystalline inclusions upon bacterial sporulation. Some Bt Cry proteins, e.g., Cry5B (formally Cry5Ba1), target nematodes (roundworms) and show exceptional promise as anthelmintics (cures for parasitic nematode diseases). We have recently described inactivated bacteria with cytosolic crystal(s) (IBaCC) in which bioactive Bt Cry crystals (containing Cry5B) are fully contained within the cytosol of dead bacterial ghosts. Here, we demonstrate that these IBaCC-trapped Cry5B crystals can be liberated and purified away from cellular constituents, yielding purified cytosolic crystals (PCC). Cry5B PCC contains ~95% Cry5B protein out of the total protein content. Cry5B PCC is highly bioactive against parasitic nematode larvae and adults in vitro. Cry5B PCC is also highly active in vivo against experimental human hookworm and Ascaris infections in rodents. The process was scaled up to the 100-liter scale to produce PCC for a pilot study to treat two foals infected with the ascarid Parascaris spp. Single-dose Cry5B PCC brought the fecal egg counts of both foals to zero. These studies describe the process for the scalable production of purified Bt crystals and define a new and attractive pharmaceutical ingredient form of Bt Cry proteins. IMPORTANCEBacillus thuringiensis crystal proteins are widely and safely used as insecticides. Recent studies have shown they also can cure gastrointestinal parasitic worm (nematode) infections when ingested. However, reproducible, scalable, and practical techniques for purifying these proteins have been lacking. Here, we address this severe limitation and present scalable and practical methods for large-scale purification of potently bioactive B. thuringiensis crystals and crystal proteins. The resultant product, called purified cytosolic crystals (PCC), is highly compatible with ingestible drug delivery and formulation. Furthermore, there are growing applications in agriculture and insect control where access to large quantities of purified crystal proteins is desirable and where these methods will find great utility.
Collapse
|
10
|
Wen Z, Zhang Z, Aimulajiang K, Aleem MT, Feng J, Liang M, Lu M, Xu L, Song X, Li X, Yan R. Histidine acid phosphatase domain-containing protein from Haemonchus contortus is a stimulatory antigen for the Th1 immune response of goat PBMCs. Parasit Vectors 2022; 15:282. [PMID: 35933400 PMCID: PMC9356432 DOI: 10.1186/s13071-022-05411-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background Histidine acid phosphatase (HAP), a member of the histidine phosphatase superfamily, is widely found in parasites and is also a potential vaccine antigen or drug target. However, the biological function of HAP in Haemonchus contortus is still unclear. Methods We cloned the HAP gene from H. contortus (Hc-HAP) and expressed the purified recombinant Hc-HAP (rHc-HAP) protein. The transcription of the Hc-HAP gene in the eggs, infective third-stage larvae (L3s), exsheathed third-stage larvae (xL3s) and adults (females/males) was analyzed by quantitative real-time-PCR (qPCR). An immunofluorescence assay was also used to detect the localization of Hc-HAP expression in adult worms. The effect of rHc-HAP on the function of peripheral blood mononuclear cells (PBMCs) was observed by co-culture of rHc-HAP protein with goat PBMCs. Results The qPCR results revealed that the Hc-HAP gene was transcribed at a higher level in the L3 and xL3 stages that there were gender differences in transcription at the adult stage, with females exhibiting higher transcription than males. Moreover, Hc-HAP was mainly expressed in adult intestinal microvilli. Additionally, western blot results revealed that rHc-HAP could be detected in goat sera artificially infected with H. contortus. In the experiments, rHc-HAP bound to goat PBMCs and released nitric oxide. The rHc-HAP also induced the expression of interferon gamma (IFN-γ) and the phosphorylated STAT 1 transcription factor, while inhibiting interleukin-4 expression. Conclusions The results shows that rHc-HAP stimulated the IFN-γ/STAT1 signaling pathway and enabled polarization of PBMCs toward T-helper 1 immune responses. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05411-7.
Collapse
Affiliation(s)
- Zhaohai Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Zhaoying Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Kalibixiati Aimulajiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830011, Xinjiang, People's Republic of China
| | - Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Jiajun Feng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Meng Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
11
|
Wen Z, Xie X, Aleem MT, Aimulajiang K, Chen C, Liang M, Song X, Xu L, Li X, Yan R. In vitro characterization of Haemonchus contortus trehalose-6-phosphate phosphatase and its immunomodulatory effects on peripheral blood mononuclear cells (PBMCs). Parasit Vectors 2021; 14:611. [PMID: 34930417 PMCID: PMC8685816 DOI: 10.1186/s13071-021-05115-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/04/2021] [Indexed: 12/15/2022] Open
Abstract
Background Trehalose-6-phosphate phosphatase (TPP6) is a key enzyme in the trehalose biosynthesis pathway. The accumulation of TPP6 inside the body is harmful to the pathogen, but almost nothing is currently known about the function of TPP6 from Haemonchus contortus (CRE-GOB-1). Methods The H. contortus CRE-GOB-1 (HcGOB) gene was cloned and recombinant protein of GOB (rHcGOB) was expressed; transcription of the HcGOB gene at different developmental stages of H. contortus was then studied. The spatial expression pattern of the HcGOB gene in adult female and male worms was determined by both quantitative real-time PCR (qPCR) and immunofluorescence. The binding of the rHcGOB protein to goat PBMCs was assessed by immunofluorescence assay. The immunomodulatory impacts of rHcGOB on cell proliferation, nitric oxide generation and cytokine secretion were assessed by co-culture of rHcGOB protein with goat PBMCs. Results The HcGOB protein was transcribed in eggs, infective third-stage larvae (iL3s) and adults of H. contortus, with the highest transcript levels found in the egg stage. The transcript levels were significantly elevated in iL3s after manual desheathing. HcGOB was widely distributed in adult worms where it was mainly localized in the gut and gonads. rHcGOB was observed to bind to PBMCs and also to be recognized by sera collected from a goat infected with H. contortus. rHcGOB significantly activated the interleukin-10/transforming growth factor β/signal transducer and activator of transcription 3 (IL-10/TGF-β/STAT3) pathway in PBMCs while suppressing the transcription and expression of IL-4 and IL-17. Conclusions These results suggest that the HcGOB gene plays an important role in the development, parasitism and reproduction of H. contortus. The rHcGOB protein affected the immunomodulatory function of PBMCs in the in vitro study, suggesting that this protein would be a promising vaccine target. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05115-4.
Collapse
Affiliation(s)
- ZhaoHai Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - XinRan Xie
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Kalibixiati Aimulajiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830011, Xinjiang, People's Republic of China
| | - Cheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Meng Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - XiaoKai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - LiXin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - XiangRui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - RuoFeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
12
|
Urban JF, Nielsen MK, Gazzola D, Xie Y, Beshah E, Hu Y, Li H, Rus F, Flanagan K, Draper A, Vakalapudi S, Li RW, Ostroff GR, Aroian RV. An inactivated bacterium (paraprobiotic) expressing Bacillus thuringiensis Cry5B as a therapeutic for Ascaris and Parascaris spp. infections in large animals. One Health 2021; 12:100241. [PMID: 33889707 PMCID: PMC8048022 DOI: 10.1016/j.onehlt.2021.100241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Ascaris and Parascaris are important parasites in the family Ascarididae, large, ubiquitous intestinal-dwelling nematodes infecting all classes of vertebrates. Parasitic nematode drug resistance in veterinary medicine and drug recalcitrance in human medicine are increasing worldwide, with few if any new therapeutic classes on the horizon. Some of these parasites are zoonotic, e.g., Ascaris is passed from humans to pigs and vice versa. The development of new therapies against this family of parasites would have major implications for both human and livestock health. Here we tested the therapeutic ability of a paraprobiotic or dead probiotic that expresses the Bacillus thuringiensis Cry5B protein with known anthelmintic properties, against zoonotic Ascaris suum and Parascaris spp. This paraprobiotic, known as IBaCC, intoxicated A. suum larvae in vitro and was highly effective in vivo against intestinal A. suum infections in a new mouse model for this parasite. Fermentation was scaled up to 350 l to treat pigs and horses. Single dose Cry5B IBaCC nearly completely cleared A. suum infections in pigs. Furthermore, single dose Cry5B IBaCC drove fecal egg counts in Parascaris-infected foals to zero, showing at least parity with, and potential superiority to, current efficacy of anthelmintics used against this parasite. Cry5B IBaCC therefore represents a new, paraprobiotic One Health approach towards targeting Ascarididae that is safe, effective, massively scalable, stable, and useful in human and veterinary medicine in both the developed and developing regions of the world. IBaCC is Bacillus thuringiensis Cry5B protein crystals trapped inside dead bacteria. IBaCC intoxicates Ascaris suum intestinal parasitic nematodes in vitro. IBaCC is highly effective against A. suum parasites in vivo in mice and pigs. IBaCC is highly effective against related Parascaris parasites in foals. IBaCC represents a new paradigm for treating ascarid parasites of humans and animals.
Collapse
Affiliation(s)
- Joseph F Urban
- U. S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal and Parasitic Diseases Laboratory, Beltsville, MD, United States of America.,U. S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, United States of America
| | - Martin K Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States of America
| | - David Gazzola
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Yue Xie
- U. S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal and Parasitic Diseases Laboratory, Beltsville, MD, United States of America.,U. S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, United States of America.,Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, China
| | - Ethiopia Beshah
- U. S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal and Parasitic Diseases Laboratory, Beltsville, MD, United States of America.,U. S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, United States of America
| | - Yan Hu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Hanchen Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Florentina Rus
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Kelly Flanagan
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Austin Draper
- Synthetic Biomanufacturing Facility, Utah State University, Logan, UT, United States of America
| | - Sridhar Vakalapudi
- Synthetic Biomanufacturing Facility, Utah State University, Logan, UT, United States of America
| | - Robert W Li
- U. S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal and Parasitic Diseases Laboratory, Beltsville, MD, United States of America
| | - Gary R Ostroff
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Raffi V Aroian
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| |
Collapse
|
13
|
Recombinant Paraprobiotics as a New Paradigm for Treating Gastrointestinal Nematode Parasites of Humans. Antimicrob Agents Chemother 2021; 65:AAC.01469-20. [PMID: 33318013 PMCID: PMC8092541 DOI: 10.1128/aac.01469-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022] Open
Abstract
Gastrointestinal nematodes (GINs) of humans, e.g., hookworms, negatively impact childhood growth, cognition, nutrition, educational attainment, income, productivity, and pregnancy. Hundreds of millions of people are targeted with mass drug administration (MDA) of donated benzimidazole anthelmintics. Gastrointestinal nematodes (GINs) of humans, e.g., hookworms, negatively impact childhood growth, cognition, nutrition, educational attainment, income, productivity, and pregnancy. Hundreds of millions of people are targeted with mass drug administration (MDA) of donated benzimidazole anthelmintics. However, benzimidazole efficacy against GINs is suboptimal, and reduced/low efficacy has been seen. Developing an anthelmintic for human MDA is daunting: it must be safe, effective, inexpensive, stable without a cold chain, and massively scalable. Bacillus thuringiensis crystal protein 5B (Cry5B) has anthelmintic properties that could fill this void. Here, we developed an active pharmaceutical ingredient (API) containing B. thuringiensis Cry5B compatible with MDA. We expressed Cry5B in asporogenous B. thuringiensis during vegetative phase, forming cytosolic crystals. These bacteria with cytosolic crystals (BaCC) were rendered inviable (inactivated BaCC [IBaCC]) with food-grade essential oils. IBaCC potency was validated in vitro against nematodes. IBaCC was also potent in vivo against human hookworm infections in hamsters. IBaCC production was successfully scaled to 350 liters at a contract manufacturing facility. A simple fit-for-purpose formulation to protect against stomach digestion and powdered IBaCC were successfully made and used against GINs in hamsters and mice. A pilot histopathology study and blood chemistry workup showed that five daily consecutive doses of 200 mg/kg body weight Cry5B IBaCC (the curative single dose is 40 mg/kg) was nontoxic to hamsters and completely safe. IBaCC is a safe, inexpensive, highly effective, easy-to-manufacture, and scalable anthelmintic that is practical for MDA and represents a new paradigm for treating human GINs.
Collapse
|