1
|
Shirsath N, Chaudhari R, More A, Sonawane V, Ghosalkar J, Joshi K. Optimization of an in vitro method for assessing pulmonary permeability of inhaled drugs using alveolar epithelial cells. J Pharmacol Toxicol Methods 2024; 128:107526. [PMID: 38852686 DOI: 10.1016/j.vascn.2024.107526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION Inhalation of drugs for the treatment of pulmonary diseases has been used since a long time. Due to lungs' larger absorptive surface area, delivery of drugs to the lungs is the method of choice for different disorders. Here we present the establishment of a comprehensive permeability model using Type II alveolar epithelial cells and Beclomethasone Dipropionate (BDP) as a model drug delivered by pressurized metered dose inhaler (pMDI). METHODS Using Type II alveolar epithelial cells, the method was standardized for parameters viz., cell density, viability, incubation period and membrane integrity. The delivery and deposition of drug were using the pMDI device with a Twin Stage Impinger (TSI) modified to accommodate cell culture insert having monolayer of cells. The analytical method for simultaneous estimation of BDP and Beclomathasone-17-Monopropionate (17-BMP) was validated as per the bioanalytical guidelines. The extent and rate of absorption of BDP was determined by quantifying the amount of drug permeated and the data represented by calculating its apparent permeability. RESULTS Type II alveolar epithelial cells cultured at 0.55 × 105 cells/cm2 for 8-12 days under air-liquid interface were optimized for conducting permeability studies. The data obtained for absorptive transport showed a linear increase in the drug permeated against time for both BDP and 17-BMP along with proportional permeability profile. DISCUSSION We have developed a robust in vitro model to study absorptive rate of drug transport across alveolar layer. Such models would create potential value during formulation development for comparative studies and selection of clinical candidates.
Collapse
Affiliation(s)
- Nitesh Shirsath
- Discovery Biology Division, Cipla Ltd., Vikhroli, Mumbai 400083, India
| | - Rohit Chaudhari
- Discovery Biology Division, Cipla Ltd., Vikhroli, Mumbai 400083, India
| | - Avinash More
- Discovery Biology Division, Cipla Ltd., Vikhroli, Mumbai 400083, India
| | - Vinay Sonawane
- Discovery Biology Division, Cipla Ltd., Vikhroli, Mumbai 400083, India
| | - Jeevan Ghosalkar
- Discovery Biology Division, Cipla Ltd., Vikhroli, Mumbai 400083, India.
| | - Kalpana Joshi
- Discovery Biology Division, Cipla Ltd., Vikhroli, Mumbai 400083, India.
| |
Collapse
|
2
|
Vieira AC, Chaves LL, Pinheiro M, Lima SC, Neto PJR, Ferreira D, Sarmento B, Reis S. Lipid nanoparticles coated with chitosan using a one-step association method to target rifampicin to alveolar macrophages. Carbohydr Polym 2021; 252:116978. [DOI: 10.1016/j.carbpol.2020.116978] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/24/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
|
3
|
Sapich S, Hittinger M, Hendrix-Jastrzebski R, Repnik U, Griffiths G, May T, Wirth D, Bals R, Schneider-Daum N, Lehr CM. Murine alveolar epithelial cells and their lentivirus-mediated immortalisation. Altern Lab Anim 2018; 46:73-89. [PMID: 29856645 DOI: 10.1177/026119291804600207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study, we describe the isolation and immortalisation of primary murine alveolar epithelial cells (mAEpC), as well as their epithelial differentiation and barrier properties when grown on Transwell® inserts. Like human alveolar epithelial cells (hAEpC), mAEpC transdifferentiate in vitro from an alveolar type II (ATII) phenotype to an ATI-like phenotype and exhibit features of the air-blood barrier, such as the establishment of a thin monolayer with functional tight junctions (TJs). This is demonstrated by the expression of TJ proteins (ZO-1 and occludin) and the development of high transepithelial electrical resistance (TEER), peaking at 1800Ω ·cm². Transport across the air-blood barrier, for general toxicity assessments or preclinical drug development, is typically studied in mice. The aim of this work was the generation of novel immortalised murine lung cell lines, to help meet Three Rs requirements in experimental testing and research. To achieve this goal, we lentivirally transduced mAEpC of two different mouse strains with a library of 33 proliferation-promoting genes. With this immortalisation approach, we obtained two murine alveolar epithelial lentivirus-immortalised (mAELVi) cell lines. Both showed similar TJ protein localisation, but exhibited less prominent barrier properties (TEERmax ~250Ω·cm²) when compared to their primary counterparts. While mAEpC demonstrated their suitability for use in the assessment of paracellular transport rates, mAELVi cells could potentially replace mice for the prediction of acute inhalation toxicity during early ADMET studies.
Collapse
Affiliation(s)
- Sandra Sapich
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI ), Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | | | - Remi Hendrix-Jastrzebski
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI ), Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Urska Repnik
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | | | - Dagmar Wirth
- Research Group Model Systems for Infection and Immunity (MSYS), Helmholtz-Centre for Infection Research (HZI), Braunschweig, Germany; Institute of Experimental Haematology, Medical School Hannover, Hannover, Germany
| | - Robert Bals
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg (Saar), Germany
| | - Nicole Schneider-Daum
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI ), Saarbrücken, Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI ), Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany; PharmBioTec GmbH, Saarbrücken, Germany
| |
Collapse
|
4
|
Vieira AC, Chaves LL, Pinheiro S, Pinto S, Pinheiro M, Lima SC, Ferreira D, Sarmento B, Reis S. Mucoadhesive chitosan-coated solid lipid nanoparticles for better management of tuberculosis. Int J Pharm 2018; 536:478-485. [DOI: 10.1016/j.ijpharm.2017.11.071] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 10/18/2022]
|
5
|
Togami K, Yamaguchi K, Chono S, Tada H. Evaluation of permeability alteration and epithelial–mesenchymal transition induced by transforming growth factor-β1 in A549, NCI-H441, and Calu-3 cells: Development of an in vitro model of respiratory epithelial cells in idiopathic pulmonary fibrosis. J Pharmacol Toxicol Methods 2017; 86:19-27. [DOI: 10.1016/j.vascn.2017.02.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 11/11/2016] [Accepted: 02/27/2017] [Indexed: 10/20/2022]
|
6
|
Jin L, Zhou QT, Chan HK, Larson IC, Pennington MW, Morales RAV, Boyd BJ, Norton RS, Nicolazzo JA. Pulmonary Delivery of the Kv1.3-Blocking Peptide HsTX1[R14A] for the Treatment of Autoimmune Diseases. J Pharm Sci 2016; 105:650-656. [PMID: 26869426 DOI: 10.1016/j.xphs.2015.10.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/16/2015] [Indexed: 11/25/2022]
Abstract
HsTX1[R14A] is a potent and selective Kv1.3 channel blocker peptide with the potential to treat autoimmune diseases. Given the typically poor oral bioavailability of peptides, we evaluated pulmonary administration of HsTX1[R14A] in rats as an alternative route for systemic delivery. Plasma concentrations of HsTX1[R14A] were measured by liquid chromatography coupled with tandem mass spectrometry in rats receiving intratracheal administration of HsTX1[R14A] in solution (1-4 mg/kg) or a mannitol-based powder (1 mg/kg) and compared with plasma concentrations after intravenous administration (2 mg/kg). HsTX1[R14A] stability in rat plasma and lung tissue was also determined. HsTX1[R14A] was more stable in plasma than in lung homogenate, with more than 90% of the HsTX1[R14A] remaining intact after 5 h, compared with 40.5% remaining in lung homogenate. The terminal elimination half-life, total clearance, and volume of distribution of HsTX1[R14A] after intravenous administration were 79.6 ± 6.5 min, 8.3 ± 0.6 mL/min/kg, and 949.8 ± 71.0 mL/kg, respectively (mean ± SD). After intratracheal administration, HsTX1[R14A] in solution and dry powder was absorbed to a similar degree, with absolute bioavailability values of 39.2 ± 5.2% and 44.5 ± 12.5%, respectively. This study demonstrated that pulmonary administration is a promising alternative for systemically delivering HsTX1[R14A] for treating autoimmune diseases.
Collapse
Affiliation(s)
- Liang Jin
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Qi Tony Zhou
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia; Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | - Ian C Larson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | | | - Rodrigo A V Morales
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| |
Collapse
|
7
|
Andrade F, Neves JD, Gener P, Schwartz S, Ferreira D, Oliva M, Sarmento B. Biological assessment of self-assembled polymeric micelles for pulmonary administration of insulin. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1621-31. [DOI: 10.1016/j.nano.2015.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 12/28/2022]
|
8
|
Sakamoto A, Matsumaru T, Yamamura N, Suzuki S, Uchida Y, Tachikawa M, Terasaki T. Drug Transporter Protein Quantification of Immortalized Human Lung Cell Lines Derived from Tracheobronchial Epithelial Cells (Calu-3 and BEAS2-B), Bronchiolar–Alveolar Cells (NCI-H292 and NCI-H441), and Alveolar Type II-like Cells (A549) by Liquid Chromatography–Tandem Mass Spectrometry. J Pharm Sci 2015; 104:3029-38. [DOI: 10.1002/jps.24381] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/18/2015] [Accepted: 01/20/2015] [Indexed: 01/08/2023]
|
9
|
Hittinger M, Juntke J, Kletting S, Schneider-Daum N, de Souza Carvalho C, Lehr CM. Preclinical safety and efficacy models for pulmonary drug delivery of antimicrobials with focus on in vitro models. Adv Drug Deliv Rev 2015; 85:44-56. [PMID: 25453270 DOI: 10.1016/j.addr.2014.10.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/30/2014] [Accepted: 10/07/2014] [Indexed: 12/11/2022]
Abstract
New pharmaceutical formulations must be proven as safe and effective before entering clinical trials. Also in the context of pulmonary drug delivery, preclinical models allow testing of novel antimicrobials, reducing risks and costs during their development. Such models allow reducing the complexity of the human lung, but still need to reflect relevant (patho-) physiological features. This review focuses on preclinical pulmonary models, mainly in vitro models, to assess drug safety and efficacy of antimicrobials. Furthermore, approaches to investigate common infectious diseases of the respiratory tract, are emphasized. Pneumonia, tuberculosis and infections occurring due to cystic fibrosis are in focus of this review. We conclude that especially in vitro models offer the chance of an efficient and detailed analysis of new antimicrobials, but also draw attention to the advantages and limitations of such currently available models and critically discuss the necessary steps for their future development.
Collapse
|
10
|
Takano M, Kawami M, Aoki A, Yumoto R. Receptor-mediated endocytosis of macromolecules and strategy to enhance their transport in alveolar epithelial cells. Expert Opin Drug Deliv 2014; 12:813-25. [DOI: 10.1517/17425247.2015.992778] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Prytherch Z, Bérubé K. Modelling the Human Respiratory System: Approaches for in Vitro Safety Testing and Drug Discovery. HUMAN-BASED SYSTEMS FOR TRANSLATIONAL RESEARCH 2014. [DOI: 10.1039/9781782620136-00066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Respiratory research can be broken down into two main areas: (i) exposure to airborne substances (basic toxicology assessment); and (ii) respiratory diseases (understanding disease mechanisms and development of new therapeutics, including toxicological assessment). Both have suffered from inadequate and inaccurate models used to predict human toxicological end points. A growing need therefore exists for accurate in vitro models of the respiratory system, which accurately reflect the human lung situation in vivo. Advances in cell culture techniques and accessibility of human cells/tissues have resulted in the development of increasingly in vivo-like respiratory models. This chapter will focus on the development, advantages and disadvantages of these models and what the future holds for in vitro lung toxicology.
Collapse
Affiliation(s)
- Zoë Prytherch
- School of Biosciences, Cardiff University The Sir Martin Evan Building Museum Avenue Cardiff CF10 3AX Wales UK
| | - Kelly Bérubé
- School of Biosciences, Cardiff University The Sir Martin Evan Building Museum Avenue Cardiff CF10 3AX Wales UK
| |
Collapse
|
12
|
Haghi M, Ong HX, Traini D, Young P. Across the pulmonary epithelial barrier: Integration of physicochemical properties and human cell models to study pulmonary drug formulations. Pharmacol Ther 2014; 144:235-52. [DOI: 10.1016/j.pharmthera.2014.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/30/2014] [Indexed: 11/16/2022]
|
13
|
A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules. Biotechnol Adv 2014; 32:1269-1282. [DOI: 10.1016/j.biotechadv.2014.07.006] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/21/2014] [Accepted: 07/28/2014] [Indexed: 12/26/2022]
|
14
|
Depreter F, Pilcer G, Amighi K. Inhaled proteins: Challenges and perspectives. Int J Pharm 2013; 447:251-80. [DOI: 10.1016/j.ijpharm.2013.02.031] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 02/12/2013] [Indexed: 12/26/2022]
|
15
|
Cho HJ, Balakrishnan P, Lin H, Choi MK, Kim DD. Application of biopharmaceutics classification system (BCS) in drug transport studies across human respiratory epithelial cell monolayers. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2012. [DOI: 10.1007/s40005-012-0020-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Sarmento B, Andrade F, da Silva SB, Rodrigues F, das Neves J, Ferreira D. Cell-based in vitro models for predicting drug permeability. Expert Opin Drug Metab Toxicol 2012; 8:607-21. [PMID: 22424145 DOI: 10.1517/17425255.2012.673586] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION In vitro cell models have been used to predict drug permeation in early stages of drug development, since they represent an easy and reproducible method, allowing the tracking of drug absorption rate and mechanism, with an advantageous cost-benefit ratio. Such cell-based models are mainly composed of immortalized cells with an intrinsic ability to grow in a monolayer when seeded in permeable supports, maintaining their physiologic characteristics regarding epithelium cell physiology and functionality. AREAS COVERED This review summarizes the most important intestinal, pulmonary, nasal, vaginal, rectal, ocular and skin cell-based in vitro models for predicting the permeability of drugs. Moreover, the similitude between in vitro cell models and in vivo conditions are discussed, providing evidence that each model may provisionally resemble different drug absorption route. EXPERT OPINION Despite the widespread use of in vitro cell models for drug permeability and absorption evaluation purposes, a detailed study on the properties of these models and their in vitro-in vivo correlation compared with human data are required to further use in order to consider a future drug discovery optimization and clinical development.
Collapse
Affiliation(s)
- Bruno Sarmento
- Department of Pharmaceutical Technology, LTF/CICF, Faculty of Pharmacy, University of Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
17
|
Angelo R, Rousseau K, Grant M, Leone-Bay A, Richardson P. Technosphere insulin: defining the role of Technosphere particles at the cellular level. J Diabetes Sci Technol 2009; 3:545-54. [PMID: 20144294 PMCID: PMC2769873 DOI: 10.1177/193229680900300320] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Technosphere Insulin (TI) is a novel inhalation powder for the treatment of diabetes mellitus. Technosphere Insulin delivers insulin with an ultra rapid pharmacokinetic profile that is distinctly different from all other insulin products but similar to natural insulin release. Such rapid absorption is often associated with penetration enhancers that disrupt cellular integrity. METHODS Technosphere Insulin was compared to a panel of known penetration enhancers in vitro using the Calu-3 lung cell line to investigate the effects of TI on insulin transport. RESULTS Measures of tight junction integrity such as transepithelial electrical resistance, Lucifer yellow permeability, and F-actin staining patterns were all unaffected by TI. Cell viability and plasma membrane integrity were also not affected by TI. In contrast, cells treated with comparable (or lower) concentrations of penetration enhancers showed elevated Lucifer yellow permeability, disruption of the F-actin network, reduced cell viability, and compromised plasma membranes. CONCLUSIONS These results demonstrate that TI is not cytotoxic in an in vitro human lung cell model and does not function as a penetration enhancer. Furthermore, TI does not appear to affect the transport of insulin across cellular barriers.
Collapse
|
18
|
Sporty JL, Horálková L, Ehrhardt C. In vitrocell culture models for the assessment of pulmonary drug disposition. Expert Opin Drug Metab Toxicol 2008; 4:333-45. [DOI: 10.1517/17425255.4.4.333] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Mac Gabhann F, Demetriades AM, Deering T, Packer JD, Shah SM, Duh E, Campochiaro PA, Popel AS. Protein transport to choroid and retina following periocular injection: theoretical and experimental study. Ann Biomed Eng 2007; 35:615-30. [PMID: 17277991 DOI: 10.1007/s10439-006-9238-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 11/16/2006] [Indexed: 11/30/2022]
Abstract
Ocular neovascularization is a major cause of blindness in several diseases including age-related macular degeneration (choroidal neovascularization) and diabetic retinopathy (retinal neovascularization). Antiangiogenic agents with clinically significant effects exist, but a key question remains: how to effectively deliver drugs to the site of neovascularization. Periocular delivery of drugs or proteins is less invasive and safer than intravitreous delivery, but little is known regarding how and to what extent agents access intraocular tissues after periocular injection. We present a computational model of drug or protein transport into the eye following periocular injection to quantify movement of macromolecules across the sclera of the mouse eye. We apply this model to the movement of green fluorescent protein (GFP) across the mouse eye and fit the results of in vivo experiments to find transport parameters. Using these parameters, the model gives the profile of interstitial GFP concentration across the sclera, choroid and retina. We compare this to predictions of transport following intravitreous injections. We then scale up the model to estimate the transport of GFP into the human choroid and retina; the thicker sclera decreases transscleral delivery. This is the first model of ocular drug delivery to explicitly account for transport properties of each eye layer.
Collapse
Affiliation(s)
- Feilim Mac Gabhann
- Department of Biomedical Engineering, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 720 Rutland Ave, #613 Traylor, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Sakagami M. In vivo, in vitro and ex vivo models to assess pulmonary absorption and disposition of inhaled therapeutics for systemic delivery. Adv Drug Deliv Rev 2006; 58:1030-60. [PMID: 17010473 DOI: 10.1016/j.addr.2006.07.012] [Citation(s) in RCA: 223] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 07/25/2006] [Indexed: 11/27/2022]
Abstract
Despite the interest in systemic delivery of therapeutic molecules including macromolecular proteins and peptides via the lung, the accurate assessment of their pulmonary biopharmaceutics is a challenging experimental task. This article reviews in vivo, in vitro and ex vivo models currently available for studying lung absorption and disposition for inhaled therapeutic molecules. The general methodologies are discussed with recent advances, current challenges and perspectives, especially in the context of their use in systemic pulmonary delivery research. In vivo approaches in small rodents continue to be the mainstay of assessment by virtue of the acquisition of direct pharmacokinetic data, more meaningful when attention is given to reproducible dosing and control of lung-regional distribution through use of more sophisticated lung-dosing methods, such as forced instillation, microspray, nebulization and aerosol puff. A variety of in vitro lung epithelial cell lines models and primary cultured alveolar epithelial (AE) cells when grown to monolayer status offer new opportunity to clarify the more detailed kinetics and mechanisms of transepithelial drug transport. While continuous cell lines, Calu-3 and 16HBE14o-, show potential, primary cultured AE cell models from rat and human origins may be of greater use, by virtue of their universally tight intercellular junctions that discriminate the transport kinetics of different therapeutic entities. Nevertheless, the relevance of using these reconstructed barriers to represent complex disposition of intact lung may still be debatable. Meanwhile, the intermediate ex vivo model of the isolated perfused lung (IPL) appears to resolve deficiencies of these in vivo and in vitro models. While controlling lung-regional distributions, the preparation alongside a novel kinetic modeling analysis enables separate determinations of kinetic descriptors for lung absorption and non-absorptive clearances, i.e., mucociliary clearance, phagocytosis and/or metabolism. This ex vivo model has been shown to be kinetically predictive of in vivo, with respect to macromolecular disposition, despite limitations concerning short viable periods of 2-3 h and likely absence of tracheobronchial circulation. Given the advantages and disadvantages of each model, scientists must make appropriate selection and timely exploitation of the best model at each stage of the research and development program, affording efficient progress toward clinical trials for future inhaled therapeutic entities for systemic delivery.
Collapse
Affiliation(s)
- Masahiro Sakagami
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 North 12th Street, P.O. Box 980533, Richmond, VA 23298-0533, USA.
| |
Collapse
|
21
|
Forbes B, Ehrhardt C. Human respiratory epithelial cell culture for drug delivery applications. Eur J Pharm Biopharm 2005; 60:193-205. [PMID: 15939233 DOI: 10.1016/j.ejpb.2005.02.010] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 02/01/2005] [Accepted: 02/02/2005] [Indexed: 11/24/2022]
Abstract
Recent developments in delivering drugs to the lung are driving the need for in vitro methods to evaluate the fate of inhaled medicines. Constraints on experimentation using animals have promoted the use of human respiratory epithelial cell cultures to model the absorption barrier of the lung; with two airway cell lines, 16HBE14o- and Calu-3, and primary cultured human alveolar type I-like cells (hAEpC) gaining prominence. These in vitro models develop permeability properties which are comparable to those reported for native lung epithelia. This is in contrast to the high permeability of the A549 human alveolar cell line, which is unsuitable for use in drug permeability experiments. Tabulation of apparent permeability coefficients (Papp) of compounds measured in 'absorptive' and 'secretory' directions reveals that fewer compounds (< 15) have been evaluated in 16HBE14o- cells and hAEpC compared to Calu-3 cells (> 50). Vectorial (asymmetric) transport of compounds is reported in the three cell types with P-glycoprotein, the most studied transport mechanism, being reported in all. Progress is being made towards in vitro-in vivo-correlation for pulmonary absorption and in the use of cultured respiratory cells to evaluate drug metabolism, toxicity and targeting strategies. In summary, methods for the culture of human respiratory epithelial cell layers have been established and data regarding their permeability characteristics and suitability to model the lung is becoming available. Discerning the circumstances under which the use of human respiratory cell models will be essential, or offers advantages over non-organ, non-species specific cell models, is the next challenge.
Collapse
Affiliation(s)
- Ben Forbes
- Pharmaceutical Sciences Research Division, King's College London, London, UK.
| | | |
Collapse
|