1
|
You X, Liu H, Chen Y, Zhao G. Multifunctional Liposomes Co-Modified with Ginsenoside Compound K and Hyaluronic Acid for Tumor-Targeted Therapy. Polymers (Basel) 2024; 16:405. [PMID: 38337294 DOI: 10.3390/polym16030405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Liposomes show promise for anti-cancer drug delivery and tumor-targeted therapy. However, complex tumor microenvironments and the performance limitations of traditional liposomes restrict clinical translation. Hyaluronic acid (HA)-modified nanoliposomes effectively target CD44-overexpressing tumor cells. Combination therapy enhances treatment efficacy and delays drug resistance. Here, we developed paclitaxel (PTX) liposomes co-modified with ginsenoside compound K (CK) and HA using film dispersion. Compared to cholesterol (Ch), CK substantially improved encapsulation efficiency and stability. In vitro release studies revealed pH-responsive behavior, with slower release at pH 7.4 versus faster release at pH 5. In vitro cytotoxicity assays demonstrated that replacing Ch with CK in modified liposomes considerably decreased HCT-116 cell viability. Furthermore, flow cytometry and fluorescence microscopy showed a higher cellular uptake of PTX-CK-Lip-HA in CD44-high cells, reflected in the lower half maximal inhibitory concentrations. Overall, CK/HA-modified liposomes represent an innovative, targeted delivery system for enhanced tumor therapy via pH-triggered drug release and CD44 binding.
Collapse
Affiliation(s)
- Xiaoyan You
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hui Liu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
| | - Yue Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guoping Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
2
|
Breusa S, Zilio S, Catania G, Bakrin N, Kryza D, Lollo G. Localized chemotherapy approaches and advanced drug delivery strategies: a step forward in the treatment of peritoneal carcinomatosis from ovarian cancer. Front Oncol 2023; 13:1125868. [PMID: 37287910 PMCID: PMC10242058 DOI: 10.3389/fonc.2023.1125868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/04/2023] [Indexed: 06/09/2023] Open
Abstract
Peritoneal carcinomatosis (PC) is a common outcome of epithelial ovarian carcinoma and is the leading cause of death for these patients. Tumor location, extent, peculiarities of the microenvironment, and the development of drug resistance are the main challenges that need to be addressed to improve therapeutic outcome. The development of new procedures such as HIPEC (Hyperthermic Intraperitoneal Chemotherapy) and PIPAC (Pressurized Intraperitoneal Aerosol Chemotherapy) have enabled locoregional delivery of chemotherapeutics, while the increasingly efficient design and development of advanced drug delivery micro and nanosystems are helping to promote tumor targeting and penetration and to reduce the side effects associated with systemic chemotherapy administration. The possibility of combining drug-loaded carriers with delivery via HIPEC and PIPAC represents a powerful tool to improve treatment efficacy, and this possibility has recently begun to be explored. This review will discuss the latest advances in the treatment of PC derived from ovarian cancer, with a focus on the potential of PIPAC and nanoparticles in terms of their application to develop new therapeutic strategies and future prospects.
Collapse
Affiliation(s)
- Silvia Breusa
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Institut PLAsCAN, Centre de Recherche en Cancérologie de Lyon, Institut national de santé et de la recherche médicale (INSERM) U1052-Centre National de la Recherche Scientifique - Unité Mixte de Recherche (CNRS UMR)5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Serena Zilio
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
- Sociétés d'Accélération du Transfert de Technologies (SATT) Ouest Valorisation, Rennes, France
| | - Giuseppina Catania
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
| | - Naoual Bakrin
- Department of Surgical Oncology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Lyon, France
- Centre pour l'Innovation en Cancérologie de Lyon (CICLY), Claude Bernard University Lyon 1, Lyon, France
| | - David Kryza
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
- Imthernat Plateform, Hospices Civils de Lyon, Lyon, France
| | - Giovanna Lollo
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
| |
Collapse
|
3
|
Mojarad-Jabali S, Mahdinloo S, Farshbaf M, Sarfraz M, Fatahi Y, Atyabi F, Valizadeh H. Transferrin receptor-mediated liposomal drug delivery: recent trends in targeted therapy of cancer. Expert Opin Drug Deliv 2022; 19:685-705. [PMID: 35698794 DOI: 10.1080/17425247.2022.2083106] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Compared to normal cells, malignant cancer cells require more iron for their growth and rapid proliferation, which can be supplied by a high expression level of transferrin receptor (TfR). It is well known that the expression of TfR on the tumor cells is considerably higher than that of normal cells, which makes TfR an attractive target in cancer therapy. AREAS COVERED In this review, the primary focus is on the role of TfR as a valuable tool for cancer-targeted drug delivery, followed by the full coverage of available TfR ligands and their conjugation chemistry to the surface of liposomes. Finally, the most recent studies investigating the potential of TfR-targeted liposomes as promising drug delivery vehicles to different cancer cells are highlighted with emphasis on their improvement possibilities to become a part of future cancer medicines. EXPERT OPINION Liposomes as a valuable class of nanocarriers have gained much attention toward cancer therapy. From all the studies that have exploited the therapeutic and diagnostic potential of TfR on cancer cells, it can be realized that the systematic assessment of TfR ligands applied for liposomal targeted delivery has yet to be entirely accomplished.
Collapse
Affiliation(s)
- Solmaz Mojarad-Jabali
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Student research committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Mahdinloo
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Student research committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Farshbaf
- Student research committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | - Yousef Fatahi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Valizadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Zamani R, Bizari D, Heiat M. Synthesis and characterization of phase shift dextran stabilized nanodroplets for ultrasound-induced cancer therapy: A novel nanobiotechnology approach. J Biotechnol 2022; 350:17-23. [DOI: 10.1016/j.jbiotec.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/26/2022] [Accepted: 04/08/2022] [Indexed: 11/25/2022]
|
5
|
Sakhi M, Khan A, Iqbal Z, Khan I, Raza A, Ullah A, Nasir F, Khan SA. Design and Characterization of Paclitaxel-Loaded Polymeric Nanoparticles Decorated With Trastuzumab for the Effective Treatment of Breast Cancer. Front Pharmacol 2022; 13:855294. [PMID: 35359855 PMCID: PMC8964068 DOI: 10.3389/fphar.2022.855294] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
The aim of the study was to design and formulate an antibody-mediated targeted, biodegradable polymeric drug delivery system releasing drug in a controlled manner to achieve a therapeutic goal for the effective treatment of breast cancer. Antibody-mediated paclitaxel-loaded PLGA polymeric nanoformulations were prepared by the solvent evaporation method using different experimental parameters and compatibility studies. The optimized formulations were selected for in vitro and in vivo evaluation and cytotoxicity studies. The in vitro drug release studies show a biphasic release pattern for the paclitaxel-loaded PLGA nanoparticles showing a burst release for 24 h followed by an extended release for 14 days; however, a more controlled and sustained release was observed for antibody-conjugated polymeric nanoparticles. The cytotoxicity of reference drug and paclitaxel-loaded PLGA nanoparticles with and without antibody was determined by performing MTT assay against MCF-7 cells. Rabbits were used as experimental animals for the assessment of various in vivo pharmacokinetic parameters of selected formulations. The pharmacokinetic parameters such as Cmax (1.18–1.33 folds), AUC0-t (39.38–46.55 folds), MRT (10.04–12.79 folds), t1/2 (3.06–4.6 folds), and Vd (6.96–8.38 folds) have been increased significantly while clearance (4.34–4.61 folds) has been decreased significantly for the selected nanoformulations as compared to commercially available paclitaxel formulation (Paclixil®). The surface conjugation of nanoparticles with trastuzumab resulted in an increase in in vitro cytotoxicity as compared to plain nanoformulations and commercially available conventional brand (Paclixil®). The developed PLGA-paclitaxel nanoformulations conjugated with trastuzumab have the desired physiochemical characteristics, surface morphology, sustained release kinetics, and enhanced targeting.
Collapse
Affiliation(s)
- Mirina Sakhi
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Abad Khan
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
- *Correspondence: Abad Khan, ; Saeed Ahmad Khan,
| | - Zafar Iqbal
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Ismail Khan
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Abida Raza
- National Institute of LASER and Optronics, Nilore, Pakistan
| | - Asmat Ullah
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Fazli Nasir
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Saeed Ahmad Khan
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
- *Correspondence: Abad Khan, ; Saeed Ahmad Khan,
| |
Collapse
|
6
|
Mei S, Perumal M, Battino M, Kitts DD, Xiao J, Ma H, Chen X. Mangiferin: a review of dietary sources, absorption, metabolism, bioavailability, and safety. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34606395 DOI: 10.1080/10408398.2021.1983767] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mangiferin is a potential candidate for use in nutraceutical and functional food applications due to its numerous bioactivities. However, the low bioavailability of mangiferin is a major limitation for establishing efficacy for use. This review describes current information on known food sources and factors that influence mangiferin contents, absorption, and metabolism features, and recent progress that has come from research efforts to increase the bioavailability of mangiferin. We also list patents that targeted to enhance mangiferin bioavailability. Mangifera indica L. is the major dietary source for mangiferin, a xanthone that varies widely in different parts of the plant and is influenced by many factors that involve plant propagation and post-harvest processing. Mangiferin absorption occurs mostly in the small intestine by passive diffusion with varying absorption capacities in different segments of the gastrointestinal tract. Recent research has led to the development of novel technologies to encapsulate mangiferin in nano/microparticle carrier systems as well as generate mangiferin derivatives to improve solubility and bioavailability. Preclinical studies reported that mangiferin < 2000 mg/kg is generally nontoxic. The safety and the increase in bioavailability are key limiting factors for developing successful applications for mangiferin as a nutritional dietary supplement or nutraceutical.
Collapse
Affiliation(s)
- Suhuan Mei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Manivel Perumal
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Maurizio Battino
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China.,Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - David D Kitts
- Food, Nutrition, and Health, University of British Columbia, Vancouver, BC, Canada
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China.,Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Lu X, Wang C, Zhao M, Wu J, Niu Z, Zhang X, Simal-Gandara J, Süntar I, Jafari SM, Qiao X, Tang X, Han Z, Xiao J, Ningyang L. Improving the bioavailability and bioactivity of garlic bioactive compounds via nanotechnology. Crit Rev Food Sci Nutr 2021; 62:8467-8496. [PMID: 34058922 DOI: 10.1080/10408398.2021.1929058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This review highlights main bioactive compounds and important biological functions especially anticancer effects of the garlic. In addition, we review current literature on the stability and bioavailability of garlic components. Finally, this review aims to provide a potential strategy for using nanotechnology to increase the stability and solubility of garlic components, providing guidelines for the qualities of garlic products to improve their absorption and prevent their early degradation, and extend their circulation time in the body. The application of nanotechnology to improve the bioavailability and targeting of garlic compounds are expected to provide a theoretical basis for the functional components of garlic to treat human health. We review the improvement of bioavailability and bioactivity of garlic bioactive compounds via nanotechnology, which could promisingly overcome the limitations of conventional garlic products, and would be used to prevent and treat cancer and other diseases in the near future.
Collapse
Affiliation(s)
- Xiaoming Lu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Chaofan Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Meng Zhao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jinxiang Wu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zhonglu Niu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xueli Zhang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense, Ourense, Spain
| | - Ipek Süntar
- Deparment of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara, Turkey
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Xuguang Qiao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiaozhen Tang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zhenlin Han
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense, Ourense, Spain.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Li Ningyang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
8
|
Izci M, Maksoudian C, Manshian BB, Soenen SJ. The Use of Alternative Strategies for Enhanced Nanoparticle Delivery to Solid Tumors. Chem Rev 2021; 121:1746-1803. [PMID: 33445874 PMCID: PMC7883342 DOI: 10.1021/acs.chemrev.0c00779] [Citation(s) in RCA: 216] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 02/08/2023]
Abstract
Nanomaterial (NM) delivery to solid tumors has been the focus of intense research for over a decade. Classically, scientists have tried to improve NM delivery by employing passive or active targeting strategies, making use of the so-called enhanced permeability and retention (EPR) effect. This phenomenon is made possible due to the leaky tumor vasculature through which NMs can leave the bloodstream, traverse through the gaps in the endothelial lining of the vessels, and enter the tumor. Recent studies have shown that despite many efforts to employ the EPR effect, this process remains very poor. Furthermore, the role of the EPR effect has been called into question, where it has been suggested that NMs enter the tumor via active mechanisms and not through the endothelial gaps. In this review, we provide a short overview of the EPR and mechanisms to enhance it, after which we focus on alternative delivery strategies that do not solely rely on EPR in itself but can offer interesting pharmacological, physical, and biological solutions for enhanced delivery. We discuss the strengths and shortcomings of these different strategies and suggest combinatorial approaches as the ideal path forward.
Collapse
Affiliation(s)
- Mukaddes Izci
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Christy Maksoudian
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Bella B. Manshian
- Translational
Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Stefaan J. Soenen
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| |
Collapse
|
9
|
Abasian P, Shakibi S, Maniati MS, Nouri Khorasani S, Khalili S. Targeted delivery, drug release strategies, and toxicity study of polymeric drug nanocarriers. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Payam Abasian
- Department of Chemical Engineering Isfahan University of Technology Isfahan Iran
| | - Sepideh Shakibi
- Department of Textile Engineering Amirkabir University of Technology (Tehran Polytechnique) Tehran Iran
| | - Mohammad Saeed Maniati
- Cellular and Molecular Biology Research Center, Health Research Institute Babol University of Medical Sciences Babol Iran
| | | | - Shahla Khalili
- Department of Chemical Engineering Isfahan University of Technology Isfahan Iran
| |
Collapse
|
10
|
Ji W, Li L, Zhou S, Qiu L, Qian Z, Zhang H, Zhao P. Combination immunotherapy of oncolytic virus nanovesicles and PD-1 blockade effectively enhances therapeutic effects and boosts antitumour immune response. J Drug Target 2020; 28:982-990. [PMID: 32379004 DOI: 10.1080/1061186x.2020.1766473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Immunotherapies are changing the landscape of melanoma treatment, but 70% of the melanoma patients have no response to immune checkpoint inhibitors or oncolytic virus therapy. Thus, novel formulations are needed to improve the population benefiting from immunotherapy. Here, we report a combined therapeutic modality based on oncolytic virus nanovesicles composed of CaCl2, oncolytic virus Ad5, lecithin and cholesterol (Lipo-Cap-Ad5) with immune checkpoint blockade (anti-PD-1 antibody). We investigated in vivo antitumour activity, systemic toxicity and mechanism of antitumour immune responses of Lipo-Cap-Ad5 + anti-PD-1 blockade, in a murine B16F10 tumour xenograft model. Through a series of in vivo studies, we found that Lipo-Cap-Ad5 in combination with anti-PD-1 blockade drastically reduced the tumour growth by 76.6%, and prolonged animals' survival with no obvious toxicity observed in heart, liver and kidney. The combination therapy facilitates tumour infiltration of effector CD4+, CD8+ T cells and increases secretion of TNF-α and IFN-γ. Therefore, Lipo-Cap-Ad5 in combination with anti-PD-1 blockade can potentiate and activate the immune system synergistically, ultimately creating a pro-inflammatory environment. These results suggest that combination immunotherapy of Lipo-Cap-Ad5 and anti-PD-1 blockade developed in this study has promising applications to enhance therapeutic efficacy with the potential of being translated into clinical practice.
Collapse
Affiliation(s)
- Wei Ji
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lanfang Li
- Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Sino-US Center for Lymphoma and Leukemia, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Shiyong Zhou
- Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Sino-US Center for Lymphoma and Leukemia, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lihua Qiu
- Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Sino-US Center for Lymphoma and Leukemia, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhengzi Qian
- Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Sino-US Center for Lymphoma and Leukemia, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Huilai Zhang
- Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Sino-US Center for Lymphoma and Leukemia, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Peiqi Zhao
- Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Sino-US Center for Lymphoma and Leukemia, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
11
|
Song M, Liang Y, Li K, Zhang J, Zhang N, Tian B, Han J. Hyaluronic acid modified liposomes for targeted delivery of doxorubicin and paclitaxel to CD44 overexpressing tumor cells with improved dual-drugs synergistic effect. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101179] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Venkatachalam G, Venkatesan N, Suresh G, Doble M. Cyclic β-(1, 2)-glucan blended poly DL lactic co glycolic acid (PLGA 10:90) nanoparticles for drug delivery. Heliyon 2019; 5:e02289. [PMID: 31517109 PMCID: PMC6732734 DOI: 10.1016/j.heliyon.2019.e02289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/12/2019] [Accepted: 08/08/2019] [Indexed: 11/16/2022] Open
Abstract
Our group had previously reported the encapsulation efficiency of cyclic β-(1, 2)-glucan for various drugs. The current study is aimed at evaluating the use of glucan as a drug carrier system by blending with poly lactic-co- glycolic acid (L:G = 10:90). Nanoparticles of glucan (0.5, 5, 10 and 20 wt %) blended with PLGA and gentamicin were synthesized. Encapsulation efficiency was higher for the blends (93% with 20 wt % of glucan) than the PLGA alone (79.8%). The presence of glucan enhanced both the biodegradability, and biocompatibility of PLGA. Degradation of the nanoparticles in vitro, was autocatalytic with an initial burst release of active drug and the release profile was modeled using the Korsmeyer-Peppas scheme. In vivo studies indicated that the drug released from the blends had high volume of distribution, and greater clearance from the system. Pharmacokinetics of the drug was predicted using a double exponential decay model. Blending with PLGA improved the drug release characteristics of the cyclic β-(1, 2)-glucan.
Collapse
Affiliation(s)
| | | | | | - Mukesh Doble
- Bioengineering and Drug Design Lab, Department of Biotechnology, IIT-Madras, Chennai, 600036, India
| |
Collapse
|
13
|
Jain A, Jain R, Jain S, Khatik R, Veer Kohli D. Minicapsules encapsulating nanoparticles for targeting, apoptosis induction and treatment of colon cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1085-1093. [DOI: 10.1080/21691401.2019.1593848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Aakanchha Jain
- Department of Pharmaceutical Sciences, Dr. H. S. Gour Central University, Sagar, India
- Bhagyoday Tirth Pharmacy College, Sagar, India
| | - Richa Jain
- CSRD, People’s University, Bhopal, India
| | | | - Renuka Khatik
- Hefei National Laboratory of Physical Sciences at the Microscale (HFNL), University of Science and Technology of China, Hefei, P. R. China
| | - Dharam Veer Kohli
- Department of Pharmaceutical Sciences, Dr. H. S. Gour Central University, Sagar, India
| |
Collapse
|
14
|
Abstract
The present review focuses on the description of the design, synthesis and physico-chemical and biological evaluation of polymer nanogels. Nanogels are robust swollen cross-linked polymer nanoparticles that can be used as highly efficient and biodegradable carriers for the transport of drugs in controlled drug delivery. In this article, various types of nanogels are described and methods for their preparation discussed. The possibility of using synthesized nanosystems for targeting are reviewed to show the potential of tailored structures to reach either solid tumor tissue or direct tumor cells. Finally, the methods for encapsulation or attachment of biologically active molecules, e.g. drugs, proteins, are described and compared.
Collapse
Affiliation(s)
- J Kousalová
- Department of Biomedicinal Polymers, Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague 6, Czech Republic.
| | | |
Collapse
|
15
|
Wang Y, Wang Y, Sun R, Wu X, Chu X, Zhou S, Hu X, Gao L, Kong Q. The treatment value of IL-1β monoclonal antibody under the targeting location of alpha-methyl-L-tryptophan and superparamagnetic iron oxide nanoparticles in an acute temporal lobe epilepsy model. J Transl Med 2018; 16:337. [PMID: 30514296 PMCID: PMC6280459 DOI: 10.1186/s12967-018-1712-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/30/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Temporal lobe epilepsy (TLE) is a common and often refractory brain disease that is closely correlated with inflammation. Alpha-methyl-L-tryptophan (AMT) is recognized as a surrogate marker for epilepsy, characterized by high uptake in the epileptic focus. There are many advantages of using the magnetic targeting drug delivery system of superparamagnetic iron oxide nanoparticles (SPIONs) to treat many diseases, including epilepsy. We hypothesized that AMT and an IL-1β monoclonal antibody (anti-IL-1β mAb) chelated to SPIONs would utilize the unique advantages of SPIONs and AMT to deliver the anti-IL-1β mAb across the blood-brain barrier (BBB) as a targeted therapy. METHODS Acute TLE was induced in 30 rats via treatment with lithium-chloride pilocarpine. The effects of plain-SPIONs, anti-IL-1β-mAb-SPIONs, or AMT-anti-IL-1β-mAb-SPIONs on seizure onset were assessed 48 h later. Perl's iron staining, Nissl staining, immunofluorescence staining and western blotting were performed after magnetic resonance imaging examination. RESULTS The imaging and histopathology in combination with the molecular biology findings showed that AMT-anti-IL-1β-mAb-SPIONs were more likely to penetrate the BBB in the acute TLE model to reach the targeting location and deliver a therapeutic effect than plain-SPIONs and anti-IL-1β-mAb-SPIONs. CONCLUSIONS This study demonstrated the significance of anti-IL-1β-mAb treatment in acute TLE with respect to the unique advantages of SPIONs and the active location-targeting characteristic of AMT.
Collapse
Affiliation(s)
- Yanli Wang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yanling Wang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Ran Sun
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Xingrao Wu
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Xu Chu
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Shuhu Zhou
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Xibin Hu
- Department of Magnetic Resonance Imaging, Affiliated Hospital of Jining Medical University, Jining, China
| | - Lingyun Gao
- Department of Magnetic Resonance Imaging, Affiliated Hospital of Jining Medical University, Jining, China
| | - Qingxia Kong
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China.
| |
Collapse
|
16
|
Amin M, Pourshohod A, Kheirollah A, Afrakhteh M, Gholami-Borujeni F, Zeinali M, Jamalan M. Specific delivery of idarubicin to HER2-positive breast cancerous cell line by trastuzumab-conjugated liposomes. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Poshteh Shirani M, Rezaei B, Khayamian T, Dinari M, Karami K, Mehri-Lighvan Z, Hosseini Shamili F, Ramazani M, Alibolandi M. Folate receptor-targeted multimodal fluorescence mesosilica nanoparticles for imaging, delivery palladium complex and in vitro G-quadruplex DNA interaction. J Biomol Struct Dyn 2017; 36:4156-4169. [DOI: 10.1080/07391102.2017.1411294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Behzad Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Taghi Khayamian
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Kazem Karami
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Zohreh Mehri-Lighvan
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Fazileh Hosseini Shamili
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammd Ramazani
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Influence of surface charge on the in vitro protein adsorption and cell cytotoxicity of paclitaxel loaded poly(ε-caprolactone) nanoparticles. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.bfopcu.2017.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Tran TTD, Tran PHL, Amin HH, Lee BJ. Biodistribution and in vivo performance of fattigation-platform theranostic nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Lin Y, Gao M, Wu Y, Fang Y. Lipid‐enveloped PLGA as a hybrid carrier for sustained delivering camptothecin in ovarian cancer. IET Nanobiotechnol 2017; 11:797-802. [PMCID: PMC8676603 DOI: 10.1049/iet-nbt.2016.0141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 04/14/2017] [Accepted: 05/15/2017] [Indexed: 10/04/2023] Open
Abstract
Camptothecin (CPT) is plant alkaloid exhibiting in a wide range of solid tumours. However, CPT was instability at physiological pH conditions, the lactone moieties easily hydrolysed makes systemic toxicity risky. Moreover, the water insolubility of CPT was obstructed in clinical development. The aim of the study was to utilise nontoxic and biodegradable poly(D,L‐lactic‐co‐glycolic acid) (PLGA) incorporated lipid as a hybrid nanoparticle (lipid‐PLGA NPs) for delivery of CPT. Lipid‐PLGA NPs were produced by a nano‐precipitation technique. The optimal formulation was presented that particles of which were 43 nm in diameter, with a polydispersity index of 0.3 which indicated a smaller and well‐distributed pattern. Moreover, a high capacity of ∼95% entrapment efficiency was achieved. An in vitro release study showed that non‐formulated CPT with a lag time of ∼0 h, demonstrated an obvious burst effect; in contrast, sustained released and a lag time delay were clearly observed in lipid‐PLGA NPs. The cytotoxicity study confirmed that human ovarian cancer cells (ES‐2) were inhibited by lipid‐PLGA NPs. CPT was successful entrapped in lipid‐PLGA NPs which achieved smaller size and well distribution. Lipid‐PLGA NPs resolve the water insolubility and produced a sustained, slow‐release pattern of CPT and controlled the cytotoxicity toward ES‐2.
Collapse
Affiliation(s)
- Yu‐Chih Lin
- Department of Environmental Engineering and HealthYuanpei University of Medical TechnologyHsinchu CityTaiwan
| | - Ming‐Yi Gao
- Department of BiotechnologyYuanpei University of Medical TechnologyHsinchu CityTaiwan
| | - Yi‐Jhun Wu
- School of PharmacyCollege of PharmacyKaohsiung Medical UniversityKaohsiungTaiwan
| | - Yi‐Ping Fang
- School of PharmacyCollege of PharmacyKaohsiung Medical UniversityKaohsiungTaiwan
- Taiwan Department of Medical ResearchKaohsiung Medical University HospitalKaohsiungTaiwan
| |
Collapse
|
21
|
Abriata JP, Eloy JO, Riul TB, Campos PM, Baruffi MD, Marchetti JM. Poly-epsilon-caprolactone nanoparticles enhance ursolic acid in vivo efficacy against Trypanosoma cruzi infection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1196-1203. [PMID: 28531996 DOI: 10.1016/j.msec.2017.03.266] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/31/2016] [Accepted: 03/28/2017] [Indexed: 01/18/2023]
Abstract
Despite affecting millions of people worldwide, Chagas disease is still neglected by the academia and industry and the therapeutic option available, benznidazole, presents limited efficacy and side effects. Within this context, ursolic acid may serve as an option for treatment, however has low bioavailability, which can be enhanced through the encapsulation in polymeric nanoparticles. Therefore, herein we developed ursolic acid-loaded nanoparticles with poly-ε-caprolactone by the nanoprecipitation method and characterized them for particle size, zeta potential, polydispersity, encapsulation efficiency, morphology by scanning electron microscopy and thermal behavior by differential scanning calorimetry. Results indicated that an appropriate ratio of organic phase/aqueous phase and polymer/drug is necessary to produce smaller particles, with low polydispersity, negative zeta potential and high drug encapsulation efficiency. In vitro studies indicated the safety of the formulation against fibroblast culture and its efficacy in killing T. cruzi. Very importantly, the in vivo study revealed that the ursolic acid-loaded nanoparticle is as potent as the benznidazole group to control parasitemia, which could be attributed to improved bioavailability of the encapsulated drug. Finally, the toxicity evaluation showed that while benznidazole group caused liver toxicity, the nanoparticles were safe, indicating that this formulation is promising for future evaluation.
Collapse
Affiliation(s)
- Juliana Palma Abriata
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Josimar O Eloy
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Thalita Bachelli Riul
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| | | | - Marcelo Dias Baruffi
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| | | |
Collapse
|
22
|
Baghbani F, Chegeni M, Moztarzadeh F, Mohandesi JA, Mokhtari-Dizaji M. Ultrasonic nanotherapy of breast cancer using novel ultrasound-responsive alginate-shelled perfluorohexane nanodroplets: In vitro and in vivo evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:698-707. [DOI: 10.1016/j.msec.2017.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 10/04/2016] [Accepted: 02/06/2017] [Indexed: 01/02/2023]
|
23
|
Sepantafar M, Maheronnaghsh R, Mohammadi H, Radmanesh F, Hasani-Sadrabadi MM, Ebrahimi M, Baharvand H. Engineered Hydrogels in Cancer Therapy and Diagnosis. Trends Biotechnol 2017; 35:1074-1087. [PMID: 28734545 DOI: 10.1016/j.tibtech.2017.06.015] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 02/06/2023]
Abstract
Over the last decade, numerous investigations have attempted to clarify the intricacies of tumor development to propose effective approaches for cancer treatment. Thanks to the unique properties of hydrogels, researchers have made significant progress in tumor model reconstruction, tumor diagnosis, and associated therapies. Notably, hydrogel-based systems can be adjusted to respond to cancer-specific hallmarks and/or external stimuli. These well-known drug reservoirs can be used as smart carriers for multiple cargos, including both naked and nanoparticle-encapsulated chemotherapeutics, genes, and radioisotopes. Recent works have attempted to specialize hydrogels for cancer research; we comprehensively review this topic for the first time, synthesizing past results and defining paths for future work.
Collapse
Affiliation(s)
- Mohammadmajid Sepantafar
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Reihan Maheronnaghsh
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Mohammadi
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| | - Fatemeh Radmanesh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Mahdi Hasani-Sadrabadi
- Parker H. Petit Institute for Bioengineering and Bioscience, G.W. Woodruff School of Mechanical Engineering and School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
24
|
Fattigation-platform theranostic nanoparticles for cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:1161-1167. [DOI: 10.1016/j.msec.2017.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 11/20/2022]
|
25
|
Baghbani F, Moztarzadeh F. Bypassing multidrug resistant ovarian cancer using ultrasound responsive doxorubicin/curcumin co-deliver alginate nanodroplets. Colloids Surf B Biointerfaces 2017; 153:132-140. [DOI: 10.1016/j.colsurfb.2017.01.051] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 10/20/2022]
|
26
|
Zhan H, Jagtiani T, Liang JF. A new targeted delivery approach by functionalizing drug nanocrystals through polydopamine coating. Eur J Pharm Biopharm 2017; 114:221-229. [PMID: 28161549 DOI: 10.1016/j.ejpb.2017.01.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/08/2017] [Accepted: 01/09/2017] [Indexed: 12/25/2022]
Abstract
Tumor target specificity via chemotherapy is widely considered to be very effective on tumor treatment. For an ideal chemotherapeutic agent like Camptothecin (CPT) (CPT is the abbreviation for Camptothecin), improved therapeutic efficacy and high selectivity are equally important. Inspired by adhesive proteins in mussels, here we developed a novel tumor targeting peptide XQ1 grafted CPT nanocrystals with polydopamine coating as a spacer. In this study, CPT nanocrystals were coated by polymerization of dopamine that was induced by plasma-activated water under an acidic environment, and then the tumor targeting peptide was grafted onto polydopamine (PDA) (PDA is the abbreviation for polydopamine) coated CPT nanocrystals through catechol chemistry. The PDA layer had negligible effects on drug crystallinity and structure but resulted in drug nanocrystals with excellent dispersion properties, improved dissolution rate and drug stability by preventing water hydrolysis. More importantly, tumor targeting peptide XQ1 facilitated a rapid cross-membrane translocation of drug nanocrystals via receptor-mediated endocytosis, leading to efficient intracellular drug delivery. Moreover, this novel drug formulation demonstrated more potent anti-cancer activity against tumor cells in comparison with free CPT and naked CPT nanocrystals and exhibited high selectivity, all of which are attributed to the tumor target specificity property and inherent pH-dependent drug release behavior.
Collapse
Affiliation(s)
- Honglei Zhan
- Department of Biomedical Engineering, Chemistry, and Biological Sciences, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Tina Jagtiani
- Department of Biomedical Engineering, Chemistry, and Biological Sciences, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Jun F Liang
- Department of Biomedical Engineering, Chemistry, and Biological Sciences, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| |
Collapse
|
27
|
Near-infrared mediated quantum dots and paclitaxel co-loaded nanostructured lipid carriers for cancer theragnostic. Colloids Surf B Biointerfaces 2017; 150:121-130. [DOI: 10.1016/j.colsurfb.2016.11.032] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/16/2016] [Accepted: 11/23/2016] [Indexed: 11/19/2022]
|
28
|
Chen W, Ji S, Qian X, Zhang Y, Li C, Wu W, Wang F, Jiang X. Phenylboronic acid-incorporated elastin-like polypeptide nanoparticle drug delivery systems. Polym Chem 2017. [DOI: 10.1039/c7py00330g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Packaging hydrophobic drugs into nanoparticles can improve their aqueous solubility, tumor-specific accumulation and therapeutic effect.
Collapse
Affiliation(s)
- Weizhi Chen
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- and Jiangsu Key Laboratory for Nanotechnology
- Nanjing University
- Nanjing
| | - Shilu Ji
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- and Jiangsu Key Laboratory for Nanotechnology
- Nanjing University
- Nanjing
| | - Xiaoping Qian
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- and Jiangsu Key Laboratory for Nanotechnology
- Nanjing University
- Nanjing
| | - Yajun Zhang
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- and Jiangsu Key Laboratory for Nanotechnology
- Nanjing University
- Nanjing
| | - Cheng Li
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- and Jiangsu Key Laboratory for Nanotechnology
- Nanjing University
- Nanjing
| | - Wei Wu
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- and Jiangsu Key Laboratory for Nanotechnology
- Nanjing University
- Nanjing
| | - Fei Wang
- College of Chemical Engineering
- Nanjing Forestry University
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals
- Nanjing
- P.R. China
| | - Xiqun Jiang
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- and Jiangsu Key Laboratory for Nanotechnology
- Nanjing University
- Nanjing
| |
Collapse
|
29
|
Ma L, Bygd HC, Bratlie KM. Improving selective targeting to macrophage subpopulations through modifying liposomes with arginine based materials. Integr Biol (Camb) 2016; 9:58-67. [DOI: 10.1039/c6ib00133e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lilusi Ma
- Department of Materials Science & Engineering Iowa State University Ames Iowa 50011 USA Fax: +515-294-5444 Tel: +515-294-7304
| | - Hannah C. Bygd
- Department of Materials Science & Engineering Iowa State University Ames Iowa 50011 USA Fax: +515-294-5444 Tel: +515-294-7304
| | - Kaitlin M. Bratlie
- Department of Materials Science & Engineering Iowa State University Ames Iowa 50011 USA Fax: +515-294-5444 Tel: +515-294-7304
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, USA
- Division of Materials Science & Engineering, Ames National Laboratory, Ames, Iowa 50011, USA
| |
Collapse
|
30
|
Abstract
Nanobiotechnologies have been applied to improve drug delivery and to overcome some of the problems of drug delivery in cancer. These can be classified into many categories that include use of various nanoparticles, nanoencapsulation, targeted delivery to tumors of various organs, and combination with other methods of treatment of cancer such as radiotherapy. Nanoparticles are also used for gene therapy for cancer. Some of the technologies enable combination of diagnostics with therapeutics which will be important for the personalized management of cancer. Some of the limitations of these technologies and prospects for future development are discussed.
Collapse
Affiliation(s)
- K K Jain
- Jain PharmaBiotech, Blaesiring 7, CH-4057 Basel, Switzerland.
| |
Collapse
|
31
|
Multiscale benchmarking of drug delivery vectors. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1843-1851. [PMID: 27068156 DOI: 10.1016/j.nano.2016.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 01/08/2016] [Accepted: 03/28/2016] [Indexed: 11/23/2022]
Abstract
Cross-system comparisons of drug delivery vectors are essential to ensure optimal design. An in-vitro experimental protocol is presented that separates the role of the delivery vector from that of its cargo in determining the cell response, thus allowing quantitative comparison of different systems. The technique is validated through benchmarking of the dose-response of human fibroblast cells exposed to the cationic molecule, polyethylene imine (PEI); delivered as a free molecule and as a cargo on the surface of CdSe nanoparticles and Silica microparticles. The exposure metrics are converted to a delivered dose with the transport properties of the different scale systems characterized by a delivery time, τ. The benchmarking highlights an agglomeration of the free PEI molecules into micron sized clusters and identifies the metric determining cell death as the total number of PEI molecules presented to cells, determined by the delivery vector dose and the surface density of the cargo.
Collapse
|
32
|
Muntimadugu E, Kumar R, Saladi S, Rafeeqi TA, Khan W. CD44 targeted chemotherapy for co-eradication of breast cancer stem cells and cancer cells using polymeric nanoparticles of salinomycin and paclitaxel. Colloids Surf B Biointerfaces 2016; 143:532-546. [PMID: 27045981 DOI: 10.1016/j.colsurfb.2016.03.075] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/08/2016] [Accepted: 03/25/2016] [Indexed: 12/11/2022]
Abstract
This combinational therapy is mainly aimed for complete eradication of tumor by killing both cancer cells and cancer stem cells. Salinomycin (SLM) was targeted towards cancer stem cells whereas paclitaxel (PTX) was used to kill cancer cells. Drug loaded poly (lactic-co-glycolic acid) nanoparticles were prepared by emulsion solvent diffusion method using cationic stabilizer. Size of the nanoparticles (below 150nm) was determined by dynamic light scattering technique and transmission electron microscopy. In vitro release study confirmed the sustained release pattern of SLM and PTX from nanoparticles more than a month. Cytotoxicity studies on MCF-7 cells revealed the toxicity potential of nanoparticles over drug solutions. Hyaluronic acid (HA) was coated onto the surface of SLM nanoparticles for targeting CD44 receptors over expressed on cancer stem cells and they showed the highest cytotoxicity with minimum IC50 on breast cancer cells. Synergistic cytotoxic effect was also observed with combination of nanoparticles. Cell uptake studies were carried out using FITC loaded nanoparticles. These particles showed improved cellular uptake over FITC solution and HA coating further enhanced the effect by 1.5 folds. CD44 binding efficiency of nanoparticles was studied by staining MDA-MB-231 cells with anti CD44 human antibody and CD44(+) cells were enumerated using flow cytometry. CD44(+) cell count was drastically decreased when treated with HA coated SLM nanoparticles indicating their efficiency towards cancer stem cells. Combination of HA coated SLM nanoparticles and PTX nanoparticles showed the highest cytotoxicity against CD44(+) cells. Hence combinational therapy using conventional chemotherapeutic drug and cancer stem cell inhibitor could be a promising approach in overcoming cancer recurrence due to resistant cell population.
Collapse
Affiliation(s)
- Eameema Muntimadugu
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Rajendra Kumar
- UGC Centre of Excellence in Applications of Nanomaterials, Nanoparticles, and Nanocomposites, Panjab University, Chandigarh 160014, India
| | - Shantikumar Saladi
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Towseef Amin Rafeeqi
- Biochemistry, Cellular and Molecular Biology Laboratories, Central Research Institute of Unani Medicine (CRIUM), Hyderabad 500038, India
| | - Wahid Khan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India.
| |
Collapse
|
33
|
Gupta P, Jani KA, Yang DH, Sadoqi M, Squillante E, Chen ZS. Revisiting the role of nanoparticles as modulators of drug resistance and metabolism in cancer. Expert Opin Drug Metab Toxicol 2016; 12:281-9. [DOI: 10.1517/17425255.2016.1145655] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, USA
| | - Khushboo A. Jani
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, USA
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, USA
| | - Mostafa Sadoqi
- Department of Physics, St. John’s College of Liberal Arts and Sciences, St. John’s University, Queens, New York, USA
| | - Emilio Squillante
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, USA
| |
Collapse
|
34
|
Uthaman S, Zheng S, Han J, Choi YJ, Cho S, Nguyen VD, Park JO, Park SH, Min JJ, Park S, Park IK. Preparation of Engineered Salmonella Typhimurium-Driven Hyaluronic-Acid-Based Microbeads with Both Chemotactic and Biological Targeting Towards Breast Cancer Cells for Enhanced Anticancer Therapy. Adv Healthc Mater 2016; 5:288-95. [PMID: 26584018 DOI: 10.1002/adhm.201500556] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/10/2015] [Indexed: 11/06/2022]
Abstract
In this study, a new type of targeted bacteriobots is prepared and investigated as a therapeutic strategy against solid tumors. Maleimide-functionalized hyaluronic acid (HA) polymer is synthesized and cross-linked with four-arm-thiolated polyethylene glycol (PEG-SH) to form HA microbeads with diameter of 8 μm through the Michael-type addition. Docetaxel (DTX)-loaded nanoparticles are encapsulated in HA-PEG microbeads and sustained in vitro drug-release pattern of the DTX from the HA-PEG microbeads is observed for up to 96 h. Dual-targeted bacteriobots are prepared using CD 44 receptor-targeted HA microbeads synthesized via microfluidics, followed by the attachment of the flagellar bacterium Salmonella typhimurium, which have been genetically engineered for tumor targeting, onto the surface of the HA microbeads by the specific interaction between streptavidin on the HA beads and biotin on the bacteria. After the attachment of bacteria, the bacteriobots show an average velocity of 0.72 μm s(-1) and high chemotactic migration velocity of 0.43 μm s(-1) towards 4T1 cells lysates. CD 44 receptor-specific cellular uptake is verified through flow cytometry analysis and confocal imaging, demonstrating enhanced intracellular uptake in CD 44 receptor positive tumor cells compared to normal cells. Therefore, the present study suggests that these bacteriobots have dual-tumor-targeting abilities displaying their potential for targeted anticancer therapy.
Collapse
Affiliation(s)
- Saji Uthaman
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists; Chonnam National University Medical School; 160 Baekseo-ro Gwangju 501-746 Republic of Korea
| | - Shaohui Zheng
- School of Mechanical Engineering Chonnam National University; 77 Yongbong-ro Gwangju 500-757 Republic of Korea
| | - Jiwon Han
- School of Mechanical Engineering Chonnam National University; 77 Yongbong-ro Gwangju 500-757 Republic of Korea
| | - Young Jin Choi
- School of Mechanical Engineering Chonnam National University; 77 Yongbong-ro Gwangju 500-757 Republic of Korea
| | - Sunghoon Cho
- School of Mechanical Engineering Chonnam National University; 77 Yongbong-ro Gwangju 500-757 Republic of Korea
| | - Van Du Nguyen
- School of Mechanical Engineering Chonnam National University; 77 Yongbong-ro Gwangju 500-757 Republic of Korea
| | - Jong-Oh Park
- School of Mechanical Engineering Chonnam National University; 77 Yongbong-ro Gwangju 500-757 Republic of Korea
| | - Seung-Hwan Park
- Department of Nuclear Medicine; Chonnam National University Medical School; Gwangju 501-746 Republic of Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine; Chonnam National University Medical School; Gwangju 501-746 Republic of Korea
| | - Sukho Park
- School of Mechanical Engineering Chonnam National University; 77 Yongbong-ro Gwangju 500-757 Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists; Chonnam National University Medical School; 160 Baekseo-ro Gwangju 501-746 Republic of Korea
| |
Collapse
|
35
|
Xia X, Song X, Xu J, He J, Peng J, Zhang X, Jin D, Abliz Z, Liu Y. Development of a validated LC–APCI-MS/MS method to study the plasma and tumor distribution of CHO-PTX intravenous lipid emulsion. J Pharm Biomed Anal 2016; 117:532-43. [DOI: 10.1016/j.jpba.2015.05.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 01/23/2023]
|
36
|
Yu K, Zhou Y, Li Y, Sun X, Sun F, Wang X, Mu H, Li J, Liu X, Teng L, Li Y. Comparison of three different conjugation strategies in the construction of herceptin-bearing paclitaxel-loaded nanoparticles. Biomater Sci 2016; 4:1219-32. [DOI: 10.1039/c6bm00308g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We developed an improved pre-conjugation strategy, in which herceptin as a ligand was pre-conjugated with DSPE-PEG2000-Mal via chemical cross-linking, followed by conjugation onto the surface of pre-prepared paclitaxel-loaded PLGA/DODMA nanoparticles through hydrophobic interaction and electrostatic attraction for paclitaxel delivery.
Collapse
Affiliation(s)
- Kongtong Yu
- School of life sciences
- Jilin University
- Changchun
- People's Republic of China
| | - Yulin Zhou
- School of life sciences
- Jilin University
- Changchun
- People's Republic of China
| | - Yuhuan Li
- School of life sciences
- Jilin University
- Changchun
- People's Republic of China
| | - Xiangshi Sun
- School of life sciences
- Jilin University
- Changchun
- People's Republic of China
| | - Fengying Sun
- School of life sciences
- Jilin University
- Changchun
- People's Republic of China
| | - Xinmei Wang
- School of life sciences
- Jilin University
- Changchun
- People's Republic of China
| | - Hongyan Mu
- School of life sciences
- Jilin University
- Changchun
- People's Republic of China
| | - Jie Li
- School of life sciences
- Jilin University
- Changchun
- People's Republic of China
| | - Xiaoyue Liu
- School of life sciences
- Jilin University
- Changchun
- People's Republic of China
| | - Lesheng Teng
- School of life sciences
- Jilin University
- Changchun
- People's Republic of China
| | - Youxin Li
- School of life sciences
- Jilin University
- Changchun
- People's Republic of China
| |
Collapse
|
37
|
Nanomedicine of anastrozole for breast cancer: Physicochemical evaluation, in vitro cytotoxicity on BT-549 and MCF-7 cell lines and preclinical study on rat model. Life Sci 2015; 141:143-55. [DOI: 10.1016/j.lfs.2015.09.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/14/2015] [Accepted: 09/25/2015] [Indexed: 11/20/2022]
|
38
|
Preparation and characterization of paclitaxel nanosuspension using novel emulsification method by combining high speed homogenizer and high pressure homogenization. Int J Pharm 2015; 490:324-33. [PMID: 26027492 DOI: 10.1016/j.ijpharm.2015.05.070] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/09/2015] [Accepted: 05/26/2015] [Indexed: 11/22/2022]
Abstract
The aim of this study was to develop an alternative, more bio-available, better tolerated paclitaxel nanosuspension (PTXNS) for intravenous injection in comparison with commercially available Taxol(®) formulation. In this study, PTXNS was prepared by emulsification method through combination of high speed homogenizer and high pressure homogenization, followed by lyophilization process for intravenous administration. The main production parameters including volume ratio of organic phase in water and organic phase (Vo:Vw+o), concentration of PTX, content of PTX and emulsification time (Et), homogenization pressure (HP) and passes (Ps) for high pressure homogenization were optimized and their effects on mean particle size (MPS) and particle size distribution (PSD) of PTXNS were investigated. The characteristics of PTXNS, such as, surface morphology, physical status of paclitaxel (PTX) in PTXNS, redispersibility of PTXNS in purified water, in vitro dissolution study and bioavailability in vivo were all investigated. The PTXNS obtained under optimum conditions had an MPS of 186.8 nm and a zeta potential (ZP) of -6.87 mV. The PTX content in PTXNS was approximately 3.42%. Moreover, the residual amount of chloroform was lower than the International Conference on Harmonization limit (60 ppm) for solvents. The dissolution study indicated PTXNS had merits including effect to fast at the side of raw PTX and sustained-dissolution character compared with Taxol(®) formulation. Moreover, the bioavailability of PTXNS increased 14.38 and 3.51 times respectively compared with raw PTX and Taxol(®) formulation.
Collapse
|
39
|
Jaganathan S. Bioresorbable polyelectrolytes for smuggling drugs into cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1080-97. [PMID: 25961363 DOI: 10.3109/21691401.2015.1011801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
There is ample evidence that biodegradable polyelectrolyte nanocapsules are multifunctional vehicles which can smuggle drugs into cells, and release them upon endogenous activation. A large number of endogenous stimuli have already been tested in vitro, and in vivo research is escalating. Thus, the interest in the design of intelligent polyelectrolyte multilayer (PEM) drug delivery systems is clear. The need of the hour is a systematic translation of PEM-based drug delivery systems from the lab to clinical studies. Reviews on multifarious stimuli that can trigger the release of drugs from such systems already exist. This review summarizes the available literature, with emphasis on the recent progress in PEM-based drug delivery systems that are receptive in the presence of endogenous stimuli, including enzymes, glucose, glutathione, pH, and temperature, and addresses different active and passive drug targeting strategies. Insights into the current knowledge on the diversified endogenous approaches and methodological challenges may bring inspiration to resolve issues that currently bottleneck the successful implementation of polyelectrolytes into the catalog of third-generation drug delivery systems.
Collapse
Affiliation(s)
- Sripriya Jaganathan
- a SRM Research Institute, SRM University , Kattankulathur, 603203 , Chennai , Tamil Nadu , India
| |
Collapse
|
40
|
Bazak R, Houri M, Achy SE, Kamel S, Refaat T. Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol 2015; 141:769-84. [PMID: 25005786 PMCID: PMC4710367 DOI: 10.1007/s00432-014-1767-3] [Citation(s) in RCA: 430] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/28/2014] [Indexed: 12/12/2022]
Abstract
PURPOSE Cancer is one of the leading causes of death, and thus, the scientific community has but great efforts to improve cancer management. Among the major challenges in cancer management is development of agents that can be used for early diagnosis and effective therapy. Conventional cancer management frequently lacks accurate tools for detection of early tumors and has an associated risk of serious side effects of chemotherapeutics. The need to optimize therapeutic ratio as the difference with which a treatment affects cancer cells versus healthy tissues lead to idea that it is needful to have a treatment that could act a the "magic bullet"-recognize cancer cells only. Nanoparticle platforms offer a variety of potentially efficient solutions for development of targeted agents that can be exploited for cancer diagnosis and treatment. There are two ways by which targeting of nanoparticles can be achieved, namely passive and active targeting. Passive targeting allows for the efficient localization of nanoparticles within the tumor microenvironment. Active targeting facilitates the active uptake of nanoparticles by the tumor cells themselves. METHODS Relevant English electronic databases and scientifically published original articles and reviews were systematically searched for the purpose of this review. RESULTS In this report, we present a comprehensive review of literatures focusing on the active targeting of nanoparticles to cancer cells, including antibody and antibody fragment-based targeting, antigen-based targeting, aptamer-based targeting, as well as ligand-based targeting. CONCLUSION To date, the optimum targeting strategy has not yet been announced, each has its own advantages and disadvantages even though a number of them have found their way for clinical application. Perhaps, a combination of strategies can be employed to improve the precision of drug delivery, paving the way for a more effective personalized therapy.
Collapse
Affiliation(s)
- Remon Bazak
- Department of Otorhinolaryngology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamad Houri
- Department of Ophthalmology, Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
| | - Samar El Achy
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Serag Kamel
- House Officer, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Tamer Refaat
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt; Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| |
Collapse
|
41
|
Xiong W, Peng L, Chen H, Li Q. Surface modification of MPEG-b-PCL-based nanoparticles via oxidative self-polymerization of dopamine for malignant melanoma therapy. Int J Nanomedicine 2015; 10:2985-96. [PMID: 25945046 PMCID: PMC4406261 DOI: 10.2147/ijn.s79605] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To enhance the therapeutic effects of chemotherapy on malignant melanoma, paclitaxel (PTX)-loaded methoxy poly(ethylene glycol)-b-poly(ε-caprolactone) nanoparticles (MPEG-b-PCL NPs) that had their surfaces modified with polydopamine (PTX-loaded MPEG-b-PCL NPs@PDA) were prepared as drug vehicles. The block copolymer MPEG-b-PCL was synthesized by ring-opening polymerization and characterized by proton nuclear magnetic resonance spectroscopy and gel permeation chromatography. The PTX-loaded NPs were prepared by a modified nanoprecipitation technique. The PTX-loaded NPs and PTX-loaded NPs@PDA were characterized in terms of size and size distribution, zeta potential, surface morphology, drug encapsulation efficiency, and drug release. Confocal laser scanning microscopy showed that coumarin-6-loaded NPs@PDA could be internalized by human melanoma cell line A875 cells. The cellular uptake efficiency of NPs was greatly enhanced after PDA modification. The antitumor efficacy of the PTX-loaded NPs@PDA was investigated in vitro by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and in vivo by a xenograft tumor model. The PTX-loaded NPs@PDA could significantly inhibit tumor growth compared to Taxol(®) and precursor PTX-loaded NPs. All the results suggested that the PTX-loaded MPEG-b-PCL NPs that had their surfaces modified with PDA are promising nanocarriers for malignant melanoma therapy.
Collapse
Affiliation(s)
- Wei Xiong
- Southern Medical University, Guangzhou, People’s Republic of China
- Department of Plastic Surgery, General Hospital of Guangzhou Military Command of PLA, Guangzhou, People’s Republic of China
| | - Lixia Peng
- Southern Medical University, Guangzhou, People’s Republic of China
- Department of Plastic Surgery, General Hospital of Guangzhou Military Command of PLA, Guangzhou, People’s Republic of China
| | - Hongbo Chen
- Division of Life Sciences and Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen, People’s Republic of China
| | - Qin Li
- Southern Medical University, Guangzhou, People’s Republic of China
- Department of Plastic Surgery, General Hospital of Guangzhou Military Command of PLA, Guangzhou, People’s Republic of China
| |
Collapse
|
42
|
Koseva NS, Rydz J, Stoyanova EV, Mitova VA. Hybrid protein-synthetic polymer nanoparticles for drug delivery. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 98:93-119. [PMID: 25819277 DOI: 10.1016/bs.apcsb.2014.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Among the most common nanoparticulate systems, the polymeric nanocarriers have a number of key benefits, which give a great choice of delivery platforms. Nevertheless, polymeric nanoparticles possess some limitations that include use of toxic solvents in the production process, polymer degradation, drug leakage outside the diseased tissue, and polymer cytotoxicity. The combination of polymers of biological and synthetic origin is an appealing modern strategy for the production of novel nanocarriers with unprecedented properties. Proteins' interface can play an important role in determining bioactivity and toxicity and gives perspective for future development of the polymer-based nanoparticles. The design of hybrid constructs composed of synthetic polymer and biological molecules such as proteins can be considered as a straightforward tool to integrate a broad spectrum of properties and biofunctions into a single device. This review discusses hybrid protein-synthetic polymer nanoparticles with different structures and levels in complexity and functionality, in view of their applications as drug delivery systems.
Collapse
Affiliation(s)
- Neli S Koseva
- Institute of Polymers, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Joanna Rydz
- Institute of Polymers, Bulgarian Academy of Sciences, Sofia, Bulgaria; Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | | | - Violeta A Mitova
- Institute of Polymers, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
43
|
Agrawal U, Chashoo G, Sharma PR, Kumar A, Saxena AK, Vyas S. Tailored polymer–lipid hybrid nanoparticles for the delivery of drug conjugate: Dual strategy for brain targeting. Colloids Surf B Biointerfaces 2015; 126:414-25. [DOI: 10.1016/j.colsurfb.2014.12.045] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 12/17/2014] [Accepted: 12/26/2014] [Indexed: 11/29/2022]
|
44
|
Su C, Li H, Shi Y, Wang G, Liu L, Zhao L, Su R. Carboxymethyl-β-cyclodextrin conjugated nanoparticles facilitate therapy for folate receptor-positive tumor with the mediation of folic acid. Int J Pharm 2014; 474:202-11. [DOI: 10.1016/j.ijpharm.2014.08.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/07/2014] [Accepted: 08/15/2014] [Indexed: 10/24/2022]
|
45
|
Tang B, Fang G, Gao Y, Liu Y, Liu J, Zou M, Cheng G. Liprosomes loading paclitaxel for brain-targeting delivery by intravenous administration: in vitro characterization and in vivo evaluation. Int J Pharm 2014; 475:416-27. [PMID: 25218393 DOI: 10.1016/j.ijpharm.2014.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/03/2014] [Accepted: 09/07/2014] [Indexed: 12/23/2022]
Abstract
In this study, a lipid-protein nanocomplex (liprosome) was evaluated for its potential use for brain-targeting drug delivery. Liprosome was fabricated with the desolvation-ultrasonication method and characterized in terms of particle size, size distribution, zeta potential, morphology, crystal state of the drug, and in vitro release. The in vivo distribution of paclitaxel loading lipid-protein nanocomplex (PTX-liprosome) and Taxol were compared after i.v. administration in mice. The prepared PTX-liprosome has a high entrapment efficiency (>90%), small particle size (approximately 110 nm), and narrow distribution (P.I.<0.2). Transmission electron microscopy (TEM) indicated that liprosome had a spherical multilayer structure. X-ray photoelectron spectroscopy (XPS) showed that the conjugate of PTX and BSA was in the interior of the PTX-liprosome. Differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD) demonstrated that the drug existed in a molecular or amorphous state. Fourier transform infrared spectroscopy (FTIR) suggested that the hydrophobic interactions, electrostatic interactions and hydrogen bonds among of the PTX, lipid and protein play an important role during the formation of the PTX-liprosome. The hemolysis test showed a good safety profile for the intravenous administration of liprosome. The result of the in vivo distribution suggested that liprosome increased the drug uptake by the brain tissue and decreased drug accumulation in non-target organs. Therefore, liprosome is a potential drug delivery system for transporting PTX to the brain.
Collapse
Affiliation(s)
- Bo Tang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning Province 110016, PR China
| | - Guihua Fang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning Province 110016, PR China
| | - Ying Gao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning Province 110016, PR China
| | - Yi Liu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning Province 110016, PR China
| | - Jinwen Liu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning Province 110016, PR China
| | - Meijuan Zou
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning Province 110016, PR China
| | - Gang Cheng
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
46
|
Jain D, Bajaj A, Athawale R, Shrikhande S, Goel PN, Nikam Y, Gude R, Patil S, Prashant Raut P. Surface-coated PLA nanoparticles loaded with temozolomide for improved brain deposition and potential treatment of gliomas: development, characterization and in vivo studies. Drug Deliv 2014; 23:999-1016. [PMID: 25026415 DOI: 10.3109/10717544.2014.926574] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Hydrophobicity of PLA nanoparticles makes them a good substrate for macrophageal and reticulo-endothelial system uptake. Long-circulating properties can be imparted to these particles by coating them with hydrophilic stabilizers. Surface-modified PLA nanoparticles loaded with anti-cancer agent temozolomide were fabricated by solvent evaporation method and coated with surface modifiers. Selection of the surface modifier was based upon uptake of nanoparticles by K9 cells (liver cells). The particles were prepared and characterized for various physicochemical properties using transmission electron microscopy, differential scanning calorimetry, powder X-ray diffraction and in vitro dissolution studies. In vitro BBB permeation studies were performed using the co-culture model developed by using Madin-Darby canine kidney and C6 glioma cells as endothelial and glial cells, respectively. In vitro C6 glioma cell cytotoxicity, cellular proliferation, cellular migration and cellular uptake studies due to developed nanoparticles was assessed. In vivo studies such as pharmacokinetics, qualitative and quantitative biodistribution studies were performed for the developed nanoparticles. Drug-loaded nanoparticles with entrapment efficiency of 50% were developed. PEG-1000 and polysorbate-80 coated nanoparticles were least taken up by the liver cells. Characterization of the nanoparticles revealed formation of spherical shape nanoparticles, with no drug and excipient interaction. In vivo pharmacokinetics of developed nanoparticles depicted enhancement of half-life, area under the curve and mean residence time of the drug. Qualitative and quantitative biodistribution studies confirmed enhanced permeation of the drug into the brain upon loading into nanoparticles with less deposition in the highly perfused organs like lung, liver, spleen, heart and kidney.
Collapse
Affiliation(s)
- Darshana Jain
- a Department of Pharmaceutics , CU Shah College of Pharmacy , Mumbai , Maharashtra , India
| | - Amrita Bajaj
- b SVKM's Dr. Bhanuben Nanavati College of Pharmacy , Mumbai , Maharashtra , India
| | - Rajani Athawale
- a Department of Pharmaceutics , CU Shah College of Pharmacy , Mumbai , Maharashtra , India
| | - Shruti Shrikhande
- a Department of Pharmaceutics , CU Shah College of Pharmacy , Mumbai , Maharashtra , India
| | - Peeyush N Goel
- c ACTREC, Tata Memorial Cancer Centre , Mumbai , Maharashtra , India , and
| | - Yuvraj Nikam
- c ACTREC, Tata Memorial Cancer Centre , Mumbai , Maharashtra , India , and
| | - Rajiv Gude
- c ACTREC, Tata Memorial Cancer Centre , Mumbai , Maharashtra , India , and
| | | | | |
Collapse
|
47
|
Venkatasubbu GD, Ramasamy S, Reddy GP, Kumar J. In vitro and in vivo anticancer activity of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles. Biomed Microdevices 2014; 15:711-726. [PMID: 23615724 DOI: 10.1007/s10544-013-9767-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Targeted drug delivery using nanocrystalline materials delivers the drug at the diseased site. This increases the efficacy of the drug in killing the cancer cells. Surface modifications were done to target the drug to a particular receptor on the cell surface. This paper reports synthesis of hydroxyapatite and titanium dioxide nanoparticles and modification of their surface with polyethylene glycol (PEG) followed by folic acid (FA). Paclitaxel, an anticancer drug, is attached to functionalized hydroxyapatite and titanium dioxide nanoparticles. The pure and functionalised nanoparticles are characterised with XRD, TEM and UV spectroscopy. Anticancer analysis was carried out in DEN induced hepatocarcinoma animals. Biochemical, hematological and histopathological analysis show that the surface modified paclitaxel attached nanoparticles have an higher anticancer activity than the pure paclitaxel and surface modified nanoparticles without paclitaxel. This is due to the targeting of the drug to the folate receptor in the cancer cells.
Collapse
Affiliation(s)
| | - S Ramasamy
- Crystal Growth Centre, Anna University, Chennai, 600025, Tamil Nadu, India.
| | - G Pramod Reddy
- Department of Pharmacology, Siddha Central Research Institute, Chennai, Tamil Nadu, India
| | - J Kumar
- Crystal Growth Centre, Anna University, Chennai, 600025, Tamil Nadu, India
| |
Collapse
|
48
|
Targeted Paclitaxel Delivery to Tumors Using Cleavable PEG-Conjugated Solid Lipid Nanoparticles. Pharm Res 2014; 31:2220-33. [DOI: 10.1007/s11095-014-1320-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
|
49
|
Han L, Liu M, Ye D, Zhang N, Lim E, Lu J, Jiang C. Tumor cell membrane-targeting pH-dependent electron donor-acceptor fluorescence systems with low background signals. Biomaterials 2014; 35:2952-60. [PMID: 24388814 DOI: 10.1016/j.biomaterials.2013.12.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/11/2013] [Indexed: 11/25/2022]
Abstract
Minimizing the background signal is crucial for developing tumor-imaging techniques with sufficient specificity and sensitivity. Here we use pH difference between healthy tissues and tumor and tumor targeting delivery to achieve this goal. We synthesize fluorophore-dopamine conjugate as pH-dependent electron donor-acceptor fluorescence system. Fluorophores are highly sensitive to electron-transfer processes, which can alter their optical properties. The intrinsic redox properties of dopamine are oxidation of hydroquinone to quinone at basic pH and reduction of quinone to hydroquinone at acidic pH. Quinone can accept electron then quench fluorescence. We design tumor cell membrane-targeting carrier for delivery. We demonstrate quenched fluorophore-quinone can be specially transferred to tumor extracellular environment and tumor-accumulated fluorophore can be activated by acidic pH. These tumor-targeting pH-dependent electron donor-acceptor fluorescence systems may offer new opportunity for developing tumor-imaging techniques.
Collapse
Affiliation(s)
- Liang Han
- Key Laboratory of Molecular Engineering of Polymers of Ministry of Education, Fudan University, Shanghai 201203, China; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mingming Liu
- Department of Medical Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Deyong Ye
- Department of Medical Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ning Zhang
- In Vivo Imaging R&D, Caliper Life Sciences, A Perkin Elmer Company, Alameda, CA 94501, USA
| | - Ed Lim
- In Vivo Imaging R&D, Caliper Life Sciences, A Perkin Elmer Company, Alameda, CA 94501, USA
| | - Jing Lu
- In Vivo Imaging R&D, Caliper Life Sciences, A Perkin Elmer Company, Alameda, CA 94501, USA
| | - Chen Jiang
- Key Laboratory of Molecular Engineering of Polymers of Ministry of Education, Fudan University, Shanghai 201203, China; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
50
|
Stirland DL, Nichols JW, Miura S, Bae YH. Mind the gap: a survey of how cancer drug carriers are susceptible to the gap between research and practice. J Control Release 2013; 172:1045-64. [PMID: 24096014 PMCID: PMC3889175 DOI: 10.1016/j.jconrel.2013.09.026] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/07/2013] [Accepted: 09/25/2013] [Indexed: 11/23/2022]
Abstract
With countless research papers using preclinical models and showing the superiority of nanoparticle design over current drug therapies used to treat cancers, it is surprising how deficient the translation of these nano-sized drug carriers into the clinical setting is. This review article seeks to compare the preclinical and clinical results for Doxil®, PK1, Abraxane®, Genexol-PM®, Xyotax™, NC-6004, Mylotarg®, PK2, and CALAA-01. While not comprehensive, it covers nano-sized drug carriers designed to improve the efficacy of common drugs used in chemotherapy. While not always available or comparable, effort was made to compare the pharmacokinetics, toxicity, and efficacy between the animal and human studies. Discussion is provided to suggest what might be causing the gap. Finally, suggestions and encouragement are dispensed for the potential that nano-sized drug carriers hold.
Collapse
Affiliation(s)
- Darren Lars Stirland
- University of Utah; Department of Bioengineering; College of Engineering; Salt Lake City; UT 84112; United States
| | - Joseph W. Nichols
- University of Utah; Department of Bioengineering; College of Engineering; Salt Lake City; UT 84112; United States
| | - Seiji Miura
- Fuji Research Laboratories, Pharmaceutical Division, Kowa Co. Ltd., 332–1 Ohnoshinden, Fuji, Shizuoka, Japan
- University of Utah, Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Salt Lake City, UT 84112, United States
| | - You Han Bae
- University of Utah, Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Salt Lake City, UT 84112, United States
| |
Collapse
|