1
|
Gray M, de Janon A, Seeler M, Heller WT, Panoskaltsis N, Mantalaris A, Champion JA. Intracellular Biomacromolecule Delivery by Stimuli-Responsive Protein Vesicles Loaded by Hydrophobic Ion Pairing. ACS OMEGA 2025; 10:2628-2639. [PMID: 39895718 PMCID: PMC11780410 DOI: 10.1021/acsomega.4c07666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/05/2024] [Accepted: 12/20/2024] [Indexed: 02/04/2025]
Abstract
Proteins can perform ideal therapeutic functions. However, their large size and significant surface hydrophilicity and charge prohibit them from reaching intracellular targets. These chemical features also render them poorly encapsulated by nanoparticles used for intracellular delivery. In this work, a novel combination of protein vesicles and hydrophobic ion pairing (HIP) was used to load protein cargo and achieve cytosolic delivery to overcome the limitations of previous protein vesicle properties. Protein vesicles are thermally self-assembling nanoparticles made from elastin-like polypeptide (ELP) fused to an arginine-rich leucine zipper and a globular protein fused to a glutamate-rich leucine zipper. To impart stimuli-responsive disassembly, physiological stability, and small size, the ELP sequence was modified to include histidine and tyrosine residues. HIP was used to load and release protein cargo requiring endosomal escape for cytosolic function. HIP vesicles enabled delivery of cytochrome c, a cytosolically active protein, and a significant reduction in viability in both a traditional two-dimensional (2D) human cancer cell line culture and a biomimetic three-dimensional (3D) organoid model of acute myeloid leukemia. By examining the uptake of positively and negatively charged fluorescent protein cargos loaded by HIP, this work revealed the necessity of HIP for cytosolic cargo delivery and how HIP loading influences protein vesicle self-assembly and disassembly using microscopy, small-angle X-ray scattering, and nanoparticle tracking analysis. HIP protein vesicles have the potential to broaden the use of intracellular proteins as therapeutics for various diseases and extend protein vesicles to deliver other biomacromolecules, as the strategy developed here resulted in the first cytosolic protein cargo delivery using protein vesicles.
Collapse
Affiliation(s)
- Mikaela
A. Gray
- Chemical
and Biomolecular Engineering, Georgia Institute
of Technology Atlanta, Georgia 30332-0002, United States
| | - Alejandro de Janon
- Biomedical
Systems Engineering Laboratory, Georgia
Institute of Technology, Atlanta, Georgia 30332-0002, United States
| | - Michelle Seeler
- School
of Biological Sciences, Georgia Institute
of Technology, Atlanta, Georgia 30332-0002, United States
| | - William T. Heller
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831-6473, United States
| | - Nicki Panoskaltsis
- Biomedical
Systems Engineering Laboratory, Georgia
Institute of Technology, Atlanta, Georgia 30332-0002, United States
- School
of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
- Department
of Haematology, St. James’s Hospital, Dublin 8, Ireland
| | - Athanasios Mantalaris
- Biomedical
Systems Engineering Laboratory, Georgia
Institute of Technology, Atlanta, Georgia 30332-0002, United States
- School
of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
- National
Institute for Bioprocessing Research and Training, Dublin A94 X099, Ireland
| | - Julie A. Champion
- Chemical
and Biomolecular Engineering, Georgia Institute
of Technology Atlanta, Georgia 30332-0002, United States
| |
Collapse
|
2
|
Tan X, Ke P, Chen Z, Zhou Y, Wu L, Bao X, Qin Y, Jiang R, Han M. Construction of injectable micron-sized polymorphic vesicles for prolonged local anesthesia with weekly sustained release of ropivacaine. Int J Pharm 2024; 661:124378. [PMID: 38925241 DOI: 10.1016/j.ijpharm.2024.124378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/22/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Currently, to overcome the short half-life of the local anesthetic ropivacaine, drug delivery systems such as nanoparticles and liposomes have been used to prolong the analgesic effect, but they are prone to abrupt release from the site of administration or have poor slow-release effects, which increases the risk of cardiotoxicity. In this study, injectable lipid suspensions based on ropivacaine-docusate sodium hydrophobic ion pairing (HIP) were designed to significantly prolong the duration of analgesia. The resulting ion-paired lipid suspension (HIP/LIPO) had a micrometer scale and a high zeta potential, which facilitates stable in situ retention. The strong interaction between docusate sodium and ropivacaine was verified using thermal and spectroscopic analyses, and the formation of micron-sized polymorphic vesicles was attributed to the mutual stabilizing interactions between ropivacaine-docusate sodium HIP, docusate sodium and lecithin. The HIP/LIPO delivery system could maintain drug release for more than 5 days in vitro and achieve high analgesic efficacy for more than 10 days in vivo, reducing the side effects associated with high drug doses. The stable HIP/LIPO delivery system is a promising strategy that offers a clinically beneficial alternative for postoperative pain management and other diseases.
Collapse
Affiliation(s)
- Xin Tan
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peng Ke
- Department of Anesthesiology, Fujian Provincial Hospital, Fujian Shengli Clinical Medical College, Fujian Medical University, Fuzhou 350108, China
| | - Ziying Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Zhou
- National Narcotic Laboratory Zhejiang Regional Center, Hangzhou 310000, China
| | - Linjie Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyan Bao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yaxin Qin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ruolin Jiang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Afliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321299, Zhejiang, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Mudassir J, Raza A, Khan MA, Hameed H, Shazly GA, Irfan A, Rana SJ, Abbas K, Arshad MS, Muhammad S, Bin Jardan YA. Design and Evaluation of Hydrophobic Ion Paired Insulin Loaded Self Micro-Emulsifying Drug Delivery System for Oral Delivery. Pharmaceutics 2023; 15:1973. [PMID: 37514159 PMCID: PMC10383801 DOI: 10.3390/pharmaceutics15071973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Despite several novel and innovative approaches, clinical translation of oral insulin delivery into commercially viable treatment is still challenging due to its poor absorption and rapid degradation in GIT. Thus, an insulin-SDS hydrophobic ion pair loaded self-microemulsifying drug delivery system (SMEDDS) was formulated to exploit the hypoglycemic effects of orally delivered insulin. Insulin was initially hydrophobically ion paired with sodium dodecyl sulphate (SDS) to enhance its lipophilicity. The successful complexation of Insulin-SDS was confirmed by FTIR and surface morphology was evaluated using SEM. Stability of insulin after its release from HIP complex was evaluated using SDS PAGE. Subsequently, Ins-SDS loaded SMEDDS was optimized using two factorial designs. In vitro stability of insulin entrapped in optimized SMEDDS against proteolytic degradation was also assessed. Further, antidiabetic activity of optimized Ins-SDS loaded SMEDDS was evaluated in diabetic rats. Insulin complexed with SDS at 6:1 (SDS/insulin) molar ratio with almost five-fold increased lipophilicity. The SMEDDS was optimized at 10% Labraphil M2125 CS, 70% Cremophore EL, and 20% Transcutol HP with better proteolytic stability and oral antidiabetic activity. An Ins-SDS loaded SMEDDS was successfully optimized. Compared with insulin and Ins-SDS complex, the optimized SMEDDS displayed considerable resistance to GI enzymes. Thus, the SMEDDS showed potential for effective delivery of macromolecular drugs with improved oral bioavailability.
Collapse
Affiliation(s)
- Jahanzeb Mudassir
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Afsheen Raza
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore 54000, Pakistan
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore 54000, Pakistan
| | - Gamal A Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sadia Jafar Rana
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Khizar Abbas
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | | | - Sajjad Muhammad
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstrasse-5, 40225 Düsseldorf, Germany
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Asad M, Rasul A, Abbas G, Shah MA, Nazir I. Self-emulsifying drug delivery systems: A versatile approach to enhance the oral delivery of BCS class III drug via hydrophobic ion pairing. PLoS One 2023; 18:e0286668. [PMID: 37294790 PMCID: PMC10256195 DOI: 10.1371/journal.pone.0286668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/20/2023] [Indexed: 06/11/2023] Open
Abstract
Biopharmaceutical classification systems (BCS) class III drugs belongs to a group of drugs with high solubility in gastrointestinal (GI) fluids and low membrane permeability result in significantly low bioavailability. Self-emulsifying drug delivery systems (SEDDS) considered a suitable candidate to enhance the bioavailability of poorly soluble drugs by improving their membrane permeability, however, incorporating hydrophilic drugs in to these carriers remained a great challenge. The aim of this study was to develop hydrophobic ion pairs (HIPs) of a model BCS class-III drug tobramycin (TOB) in order to incorporate into SEDDS and improve its bioavailability. HIPs of TOB were formulated using anionic surfactants sodium docusate (DOC) and sodium dodecanoate (DOD). The efficiency of HIPs was estimated by measuring the concentration of formed complexes in water, zeta potential determination and log P value evaluation. Solubility studies of HIPs of TOB with DOC were accomplished to screen the suitable excipients for SEDDS development. Consequently, HIPs of TOB with DOC were loaded into SEDDS and assessed the log DSEDDS/release medium and dissociation of these complexes at different intestinal pH over time. Moreover, cytotoxic potential of HIPs of TOB and HIPs loaded SEDDS formulations was evaluated. HIPs of TOB with DOC exhibited the maximum precipitation efficiency at a stoichiometric ratio of 1:5. Log P of HIPs of TOB improved up to 1500-fold compared to free TOB. Zeta potential of TOB was shifted from positive to negative during hydrophobic ion pairing (HIP). HIPs of TOB with DOC was loaded at a concentration of 1% (w/v) into SEDDS formulations. Log DSEDDS/release medium of loaded complexes in to oily droplets was above 2 and dissociated up to 20% at various pH within 4 h. Finding of this study suggested that improvement of the lipophilic character of BCS class-III drugs followed by incorporation into oily droplets can be deliberated as a promising tool to enhance the permeation across biological membranes.
Collapse
Affiliation(s)
- Muhammad Asad
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Akhtar Rasul
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ghulam Abbas
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Imran Nazir
- Department of Pharmacy, COMSATS University Islamabad, Lahore campus, Lahore, Pakistan
| |
Collapse
|
5
|
Liu K, Chen Y, Yang Z, Jin J. zwitterionic Pluronic analog-coated PLGA nanoparticles for oral insulin delivery. Int J Biol Macromol 2023; 236:123870. [PMID: 36870645 DOI: 10.1016/j.ijbiomac.2023.123870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
In recent years, zwitterionic materials have drawn great attention in oral drug delivery system due to their capacity for rapid mucus diffusion and enhanced cellular internalization. However, zwitterionic materials tend to show strong polarity that was hard to directly coat hydrophobic nanoparticles (NPs). Inspired by Pluronic coating, a simple and convenient strategy to coat NPs with zwitterionic materials using zwitterionic Pluronic analogs was developed in this investigation. Poly(carboxybetaine)-poly(propylene oxide)-Poly(carboxybetaine) (PCB-PPO-PCB, PPP), containing PPO segments with MW > 2.0 kDa, can effectively adsorb on the surface of PLGA NPs with typical core-shell spherical in shape. The PLGA@PPP4K NPs were stable in gastrointestinal physiological environment and sequentially conquered mucus and epithelium barriers. Proton-assisted amine acid transporter 1 (PAT1) was verified to contribute to the enhanced internalization of PLGA@PPP4K NPs, and the NPs could partially evade lysosomal degradation pathway and utilize retrograde pathway for intracellular transport. In addition, the enhanced villi absorption in situ and oral liver distribution in vivo were also observed compared to PLGA@F127 NPs. Moreover, insulin-loaded PLGA@PPP4K NPs as an oral delivery application for diabetes induce a fine hypoglycemic response in diabetic rats after oral administration. The results of this study demonstrated that zwitterionic Pluronic analogs-coated NPs might provide a new perspective for zwitterionic materials application as well as oral delivery of biotherapeutics.
Collapse
Affiliation(s)
- Kedong Liu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhaoqi Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Jian Jin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Wibel R, Jörgensen AM, Laffleur F, Spleis H, Claus V, Bernkop-Schnürch A. Oral delivery of calcitonin-ion pairs: In vivo proof of concept for a highly lipophilic counterion. Int J Pharm 2023; 631:122476. [PMID: 36528188 DOI: 10.1016/j.ijpharm.2022.122476] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Hydrophobic ion pairing and subsequent incorporation into self-emulsifying drug delivery systems (SEDDS) is a promising strategy to orally deliver hydrophilic macromolecular drugs. Within this study, hydrophobic ion pairs (HIP) between salmon calcitonin (sCT) and highly lipophilic sulfosuccinate counterions were formed and compared to frequently applied commercially available counterions. Bis(isotridecyl) sulfosuccinate resulted in HIPs of the highest lipophilicity and in significantly higher solubility in lipophilic co-solvents. Thus, bis(isotridecyl) sulfosuccinate allowed efficient solubilization of sCT in a SEDDS preconcentrate based on a lipophilic co-solvent and an indigestible lipid, but omitting hydrophilic co-solvents. In addition to the increased solubility in the lipidic matrix, markedly reduced dissociation in biorelevant media resulted in high distribution coefficients between oil droplet and FaSSGF or FaSSIF (logD) of 2.98 ± 0.12 or 2.77 ± 0.14, respectively. The composition of the lipidic matrix preserved integrity of the oil droplets after emulsification and subsequent lipolysis, allowing to fully exploit the potential of the HIP attributed to the high logD. Oral administration of the HIP-loaded SEDDS resulted in an excellent relative pharmacological activity of 13.8 ± 5.6 % measured as hypocalcaemic effect in rats.
Collapse
Affiliation(s)
- Richard Wibel
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Arne Matteo Jörgensen
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Helen Spleis
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse, 65, 6020 Innsbruck, Austria
| | - Victor Claus
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse, 65, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria.
| |
Collapse
|
7
|
Noh G, Keum T, Raj V, Kim J, Thapa C, Shakhakarmi K, Kang MJ, Goo YT, Choi YW, Lee S. Assessment of hydrophobic-ion paired insulin incorporated SMEDDS for the treatment of diabetes mellitus. Int J Biol Macromol 2023; 225:911-922. [PMID: 36403777 DOI: 10.1016/j.ijbiomac.2022.11.155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
To overcome the low oral bioavailability of insulin, we hypothesized that the insulin-hydrophobic ion pairing (HIP) complex incorporated self-microemulsifying drug delivery system (SMEDDS) would be beneficial. In the present study, an oral insulin delivery system was developed and estimated using the HIP technique and SMEDDS. Further insulin-HIP complexes were characterized using various spectroscopical techniques. Additionally, insulin-HIP complexes were subjected to analysis of complexes' conformational stability in the real physiological solution using computational approaches. On the other hand, in vitro, and in vivo studies were carried out to investigate the permeability and hypoglycemic effect. Subsequently, in an in vitro non-everted gut sac study, the apparent permeability coefficient (Papp) was approximately 8-fold higher in the colon than in the jejunum, and the HIP-incorporated SMEDDS showed an approximately 3-fold higher Papp value than the insulin solution. The hypoglycemic effect after in situ colon instillation, the HIP complex between insulin and sodium docusate-incorporated SMEDDS showed a pharmacological availability of 2.52 ± 0.33 % compared to the subcutaneously administered insulin solution. Thus, based on these outcomes, it can be concluded that the selection of appropriate counterions is important in developing HIP-incorporated SMEDDS, wherein this system shows promise as a tool for oral peptide delivery systems.
Collapse
Affiliation(s)
- Gyubin Noh
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Taekwang Keum
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Vinit Raj
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Jeonghwan Kim
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Chhitij Thapa
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Kanchan Shakhakarmi
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Myung Joo Kang
- College of Pharmacy, Dankook University, Chungnam 330-714, Republic of Korea
| | - Yoon Tae Goo
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea
| | - Young Wook Choi
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea.
| |
Collapse
|
8
|
Rezvanjou SN, Niavand MR, Heydari Shayesteh O, Yeganeh EM, Ahmadi Moghadam D, Derakhshandeh K, Mahjub R. Preparation and characterisation of self-emulsifying drug delivery system (SEDDS) for enhancing oral bioavailability of metformin hydrochloride using hydrophobic ion pairing complexation. J Microencapsul 2023; 40:53-66. [PMID: 36649282 DOI: 10.1080/02652048.2023.2170488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AIM The aim of this study was preparation of a self-emulsifying drug delivery system (SEEDS) containing metformin hydrochloride. METHODS Hydrophobic ion paired complexes were prepared by electrostatic interaction between metformin and sodium lauryl sulphate (SLS). The nanodroplets were optimised using two-level full factorial methodology and their morphology were examined. In vitro release of metformin from SEDDS was evaluated in simulated gastric and intestinal fluids. Finally, the ex-vivo efficacy of the optimised formulation in enhancing the intestinal permeability of metformin was evaluated using non-everted intestinal sac. RESULTS The data revealed that in weight ratio 1:4(metformin: SLS), the highest recovery was achieved. The physico-chemical properties of the optimised nano-droplets including size, polydispersity index (PdI), zeta potential, and loading efficiency (%) were 192.33 ± 9.9 nm, 0.275 ± 0.051; -1.52 mV, and 93.75 ± 0.77% (w/w), respectively. CONCLUSIONS The data obtained from the intestinal transport study demonstrated that SEDDS can significantly enhance the oral permeability of the compound.
Collapse
Affiliation(s)
- Seyedeh Nika Rezvanjou
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Niavand
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Omid Heydari Shayesteh
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ehsan Mehrani Yeganeh
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Davood Ahmadi Moghadam
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Katayoun Derakhshandeh
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Mahjub
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
9
|
Matteo Jörgensen A, Knoll P, Haddadzadegan S, Fabian H, Hupfauf A, Gust R, Georg Jörgensen R, Bernkop-Schnürch A. Biodegradable arginine based steroid-surfactants: Cationic green agents for hydrophobic ion-pairing. Int J Pharm 2022; 630:122438. [PMID: 36464112 DOI: 10.1016/j.ijpharm.2022.122438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 12/03/2022]
Abstract
The aim of this study was to evaluate the safety and efficacy for hydrophobic ion-pairing of surfactants based on arginine (Arg). The prepared Arg-cholesteryl ester (ACE) and Arg-diosgenyl ester (ADE) were characterized regarding solubility, pKa, critical micellar concentration (CMC), biodegradability as well as membrane- and aquatic toxicity using DOTAP as reference. The ability for hydrophobic ion-pairing was evaluated and the lipophilicity of formed complexes was determined. NMR, FT-IR and MS confirmed successful synthesis of Arg-surfactants. The slightly soluble single-charged Arg-surfactants (pH < pKa3 (ACE = 10.42 ± 0.52; ADE = 10.38 ± 0.27)) showed CMCs of 27.17 µM for ACE and 35.67 µM for ADE. CMCs of the sparingly soluble double-charged species (pH < pKa2 (ACE = 5.30 ± 0.20; ADE = 5.55 ± 0.06)) were determined at concentrations of ≥ 250 µM for ACE and ≥ 850 µM for ADE. The enzymatic- and environmental biodegradability was proven by an entire cleavage of Arg-surfactants within 24 h, whereas DOTAP remained stable. Arg-surfactants exhibited lower membrane- (> 2-fold) and aquatic toxicity (> 15-fold) than DOTAP. The complexes formed with Arg-surfactants and insulin showed higher lipophilicity than the DOTAP-complex. According to these results, Arg-surfactants might be a promising safe tool for the delivery of peptide drugs.
Collapse
Affiliation(s)
- Arne Matteo Jörgensen
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria
| | - Patrick Knoll
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria
| | - Soheil Haddadzadegan
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria
| | - Hannah Fabian
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria
| | - Andrea Hupfauf
- Department of Pharmaceutical Chemistry, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria
| | - Ronald Gust
- Department of Pharmaceutical Chemistry, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria
| | - Rainer Georg Jörgensen
- Soil Biology and Plant Nutrition, University of Kassel, Nordbahnhofstr. 1a, 37023 Witzenhausen, Germany
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria.
| |
Collapse
|
10
|
Goo YT, Lee S, Choi JY, Kim MS, Sin GH, Hong SH, Kim CH, Song SH, Choi YW. Enhanced oral absorption of insulin: hydrophobic ion pairing and a self-microemulsifying drug delivery system using a D-optimal mixture design. Drug Deliv 2022; 29:2831-2845. [PMID: 36050870 PMCID: PMC9448375 DOI: 10.1080/10717544.2022.2118399] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The lipophilicity of a peptide drug can be considerably increased by hydrophobic ion pairing with amphiphilic counterions for successful incorporation into lipid-based formulations. Herein, to enhance the oral absorption of insulin (INS), a self-microemulsifying drug delivery system (SMEDDS) formulation was developed. Prior to optimization, INS was complexed with sodium n-octadecyl sulfate (SOS) to increase the loading into the SMEDDS. The INS–SOS complex was characterized via scanning electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and its dissociation behavior. The SMEDDS was optimized using a D-optimal mixture design with three independent variables including Capmul MCM (X1, 9.31%), Labrasol (X2, 49.77%), and Tetraglycol (X3, 40.92%) and three response variables including droplet size (Y1, 115.2 nm), INS stability (Y2, 46.75%), and INS leakage (Y3, 17.67%). The desirability function was 0.766, indicating excellent agreement between the predicted and experimental values. The stability of INS-SOS against gastrointestinal enzymes was noticeably improved in the SMEDDS, and the majority of INS remained in oil droplets during release. Following oral administration in diabetic rats, the optimized SMEDDS resulted in pharmacological availabilities of 3.23% (50 IU/kg) and 2.13% (100 IU/kg). Thus, the optimized SMEDDS is a good candidate for the practical development of oral delivery of peptide drugs such as INS.
Collapse
Affiliation(s)
- Yoon Tae Goo
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Ji Yeh Choi
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - Min Song Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Gi Hyeong Sin
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Sun Ho Hong
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Chang Hyun Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Seh Hyon Song
- College of Pharmacy, Kyungsung University, Busan, Republic of Korea
| | - Young Wook Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
11
|
pH-sensitive particles of polymer-surfactant complexes based on a copolymer of N,N′-diallyl-N,N′-dimethylammonium chloride with maleic acid and sodium dodecyl sulfate. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Ke P, Qin Y, Shao Y, Han M, Jin Z, Zhou Y, Zhong H, Lu Y, Wu X, Zeng K. Preparation and evaluation of liposome with ropivacaine ion-pairing in local pain management. Drug Dev Ind Pharm 2022; 48:255-264. [PMID: 36026436 DOI: 10.1080/03639045.2022.2106995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Local analgesia is one of the most desirable methods for postoperative pain control, while the existing local anesthetics have a short duration of analgesic effect. Nano-drug carriers have been widely used in various fields and provide an excellent strategy for traditional drugs. Although the existing liposomes for local anesthetics have certain advantages, their instability and complexity of the preparation process still cannot be ignored. Here, we developed novel ropivacaine hydrochloride liposomes with improved stability and sustained release performance by combining ropivacaine hydrochloride with sodium oleate in liposomes via hydrophobic ion-pairing (HIP). The liposomes are easy to prepare, inexpensive, and suitable for mass production. The infrared (IR), particle size, and Zeta potential measurements adequately characterized the complex, which showed a diameter of 81.09 nm and a zeta potential of -83.3 mV. Animal behavioral experiments, including the hot plate test and von Frey fiber test, demonstrated that the liposome system had a prolonged analgesic effect of 2 h versus conventional liposome preparations, consistent with the results of in vitro release experiments. In addition, in vitro cytotoxicity evaluations in RAW264.7 cells and in vivo evaluations revealed the biocompatibility and safety of the ropivacaine-sodium oleate ion-paired liposome (Rop-Ole-Lipo) system as a suitable local anesthetic for local pain management. Our findings provide a new idea for the preparation of local anesthetics.
Collapse
Affiliation(s)
- Peng Ke
- Department of Anesthesiology, Fujian Provincial Hospital, Fujian Shengli Clinical Medical College, Fujian Medical University, Fuzhou, PR China
| | - Yaxin Qin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Yeting Shao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Zihao Jin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Yi Zhou
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Haiqing Zhong
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Yiying Lu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Xiaodan Wu
- Department of Anesthesiology, Fujian Provincial Hospital, Fujian Shengli Clinical Medical College, Fujian Medical University, Fuzhou, PR China
| | - Kai Zeng
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
| |
Collapse
|
13
|
Wibel R, Knoll P, Le-Vinh B, Kali G, Bernkop-Schnürch A. Synthesis and evaluation of sulfosuccinate-based surfactants as counterions for hydrophobic ion pairing. Acta Biomater 2022; 144:54-66. [PMID: 35292415 DOI: 10.1016/j.actbio.2022.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 11/26/2022]
Abstract
Hydrophobic ion pairing is a promising strategy to raise the lipophilic character of therapeutic peptides and proteins. In past studies, docusate, an all-purpose surfactant with a dialkyl sulfosuccinate structure, showed highest potential as hydrophobic counterion. Being originally not purposed for hydrophobic ion pairing, it is likely still far away from the perfect counterion. Thus, within this study, docusate analogues with various linear and branched alkyl residues were synthesized to derive systematic insights into which hydrophobic tail is most advantageous for hydrophobic ion pairing, as well as to identify lead counterions that form complexes with superior hydrophobicity. The successful synthesis of the target compounds was confirmed by FT-IR, 1H-NMR, and 13C-NMR. In a screening with the model protein hemoglobin, monostearyl sulfosuccinate, dioleyl sulfosuccinate, and bis(isotridecyl) sulfosuccinate were identified as lead counterions. Their potential was further evaluated with the peptides and proteins vancomycin, insulin, and horseradish peroxidase. Dioleyl sulfosuccinate and bis(isotridecyl) sulfosuccinate significantly increased the hydrophobicity of the tested peptides and proteins determined as logP or lipophilicity determined as solubility in 1-octanol, respectively, in comparison to the gold standard docusate. Dioleyl sulfosuccinate provided an up to 8.3-fold higher partition coefficient and up to 26.5-fold higher solubility in 1-octanol than docusate, whereas bis(isotridecyl) sulfosuccinate resulted in an up to 6.7-fold improvement in the partition coefficient and up to 44.0-fold higher solubility in 1-octanol. The conjugation of highly lipophilic alkyl tails to the polar sulfosuccinate head group allows the design of promising counterions for hydrophobic ion pairing. STATEMENT OF SIGNIFICANCE: Hydrophobic ion pairing enables efficient incorporation of hydrophilic molecules into lipid-based formulations by forming complexes with hydrophobic counterions. Docusate, a sulfosuccinate with two branched alkyl tails, has shown highest potential as anionic hydrophobic counterion. As it was originally not purposed for hydrophobic ion pairing, its structure is likely still far away from the perfect counterion. To improve its properties, analogues of docusate with various alkyl tails were synthesized in the present study. The investigation of different alkyl residues allowed to derive systematic insights into which tail structures are most favorable for hydrophobic ion pairing. Moreover, the lead counterions dioleyl sulfosuccinate and bis(isotridecyl) sulfosuccinate bearing highly lipophilic alkyl tails provided a significant improvement in the hydrophobicity of the resulting complexes.
Collapse
|
14
|
Noh G, Keum T, Bashyal S, Seo JE, Shrawani L, Kim JH, Lee S. Recent progress in hydrophobic ion-pairing and lipid-based drug delivery systems for enhanced oral delivery of biopharmaceuticals. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00549-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Bashyal S, Seo JE, Choi YW, Lee S. Bile acid transporter-mediated oral absorption of insulin via hydrophobic ion-pairing approach. J Control Release 2021; 338:644-661. [PMID: 34481926 DOI: 10.1016/j.jconrel.2021.08.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022]
Abstract
Despite many ongoing and innovative approaches, there are still formidable challenges in the clinical translation of oral peptide drugs into marketable products due to their low absorption and poor bioavailability. Herein, a novel nanocarrier platform was developed that employs a hydrophobic ion-pairing (HIP) of model peptide (insulin) and the anionic bile salt (sodium glycodeoxycholate, SGDC), and markedly improves intestinal absorption via the bile acid pathway. The developed HIP-nanocomplexes (C1 and C2) were optimized, characterized, and in vitro and in vivo evaluation were performed to assess oral efficacy of these system. The optimal molar ratios of C1 and C2-nanocomplexes were 30:1 and 6:1 (SGDC:insulin), respectively. Compared to the insulin solution, the C1 and C2 nanocomplexes significantly enhanced the permeation of insulin across the Caco-2 cell monolayers, with 6.36- and 4.05-fold increases in apparent permeability, respectively. Uptake mechanism studies were conducted using different endocytosis inhibitors and apical sodium-dependent bile acid transporter (ASBT)-transfected MDCK cells, which demonstrated the involvement of the energy-dependent ASBT-mediated active transport. Furthermore, the intrajejunal administration of C1 and C2 resulted in their pharmacological availabilities (PA) being 6.44% and 0.10%, respectively, indicating increased potential for C1, when compared to C2. Similarly, the PA and the relative bioavailability with intrajejunal administration of the C1 were 17.89-fold and 16.82-fold greater than those with intracolonic administration, respectively, confirming better jejunal absorption of C1. Overall, these findings indicate that the HIP-nanocomplexes could be a prominent platform for the effective delivery of peptides with improved intestinal absorption.
Collapse
Affiliation(s)
- Santosh Bashyal
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea; Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, Republic of Korea
| | - Jo-Eun Seo
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Young Wook Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea; Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, Republic of Korea.
| |
Collapse
|
16
|
Molinier C, Picot-Groz M, Malval O, Le Lamer-Déchamps S, Richard J, Lopez-Noriega A, Grizot S. Impact of octreotide counterion nature on the long-term stability and release kinetics from an in situ forming depot technology. J Control Release 2021; 336:457-468. [PMID: 34214596 DOI: 10.1016/j.jconrel.2021.06.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/17/2021] [Accepted: 06/27/2021] [Indexed: 01/03/2023]
Abstract
The generation of acylated impurities has represented an important hurdle in the development of long acting injectables for therapeutic peptides using biocompatible polymers with a polyester moiety. We investigated here an in situ forming depot (ISFD) technology that uses polyethylene glycol - polyester copolymers and a solvent exchange mechanism to promote depot formation. This technology has shown promise in formulating small molecules as well as therapeutic proteins. In the present work, using the well-known somatostatin analog octreotide acetate (OctAc) as a model molecule, we evaluated this delivery platform to release therapeutic peptides. Peptide acylation was found to be pronounced in the formulation, while it was very limited once the depot was formed and during the release process. The octreotide acylation pattern was fully characterized by LC-MS/MS. Moreover, it was demonstrated that exchanging the acetate anion with more hydrophobic counterions like pamoate or lauryl sulfate allowed to greatly improve the peptide stability profile, as well as the formulation release performance. Finally, the in vivo evaluation through pharmacokinetics studies in rat of these new octreotide salts in ISFD formulations showed that octreotide was quantifiable up to four weeks post-administration with a high bioavailability and an acceptable initial burst.
Collapse
Affiliation(s)
| | | | - Océane Malval
- MedinCell, 3 Rue des Frères Lumière, 34830 Jacou, France
| | | | - Joël Richard
- MedinCell, 3 Rue des Frères Lumière, 34830 Jacou, France
| | | | | |
Collapse
|
17
|
Joseph A, Nyambura CW, Bondurant D, Corry K, Beebout D, Wood TR, Pfaendtner J, Nance E. Formulation and Efficacy of Catalase-Loaded Nanoparticles for the Treatment of Neonatal Hypoxic-Ischemic Encephalopathy. Pharmaceutics 2021; 13:1131. [PMID: 34452092 PMCID: PMC8400001 DOI: 10.3390/pharmaceutics13081131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 01/23/2023] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy is the leading cause of permanent brain injury in term newborns and currently has no cure. Catalase, an antioxidant enzyme, is a promising therapeutic due to its ability to scavenge toxic reactive oxygen species and improve tissue oxygen status. However, upon in vivo administration, catalase is subject to a short half-life, rapid proteolytic degradation, immunogenicity, and an inability to penetrate the brain. Polymeric nanoparticles can improve pharmacokinetic properties of therapeutic cargo, although encapsulation of large proteins has been challenging. In this paper, we investigated hydrophobic ion pairing as a technique for increasing the hydrophobicity of catalase and driving its subsequent loading into a poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG) nanoparticle. We found improved formation of catalase-hydrophobic ion complexes with dextran sulfate (DS) compared to sodium dodecyl sulfate (SDS) or taurocholic acid (TA). Molecular dynamics simulations in a model system demonstrated retention of native protein structure after complexation with DS, but not SDS or TA. Using DS-catalase complexes, we developed catalase-loaded PLGA-PEG nanoparticles and evaluated their efficacy in the Vannucci model of unilateral hypoxic-ischemic brain injury in postnatal day 10 rats. Catalase-loaded nanoparticles retained enzymatic activity for at least 24 h in serum-like conditions, distributed through injured brain tissue, and delivered a significant neuroprotective effect compared to saline and blank nanoparticle controls. These results encourage further investigation of catalase and PLGA-PEG nanoparticle-mediated drug delivery for the treatment of neonatal brain injury.
Collapse
Affiliation(s)
- Andrea Joseph
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA; (A.J.); (C.W.N.); (D.B.); (D.B.); (J.P.)
| | - Chris W. Nyambura
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA; (A.J.); (C.W.N.); (D.B.); (D.B.); (J.P.)
| | - Danielle Bondurant
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA; (A.J.); (C.W.N.); (D.B.); (D.B.); (J.P.)
| | - Kylie Corry
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; (K.C.); (T.R.W.)
| | - Denise Beebout
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA; (A.J.); (C.W.N.); (D.B.); (D.B.); (J.P.)
| | - Thomas R. Wood
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; (K.C.); (T.R.W.)
| | - Jim Pfaendtner
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA; (A.J.); (C.W.N.); (D.B.); (D.B.); (J.P.)
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA; (A.J.); (C.W.N.); (D.B.); (D.B.); (J.P.)
| |
Collapse
|
18
|
Sane M, Dighe V, Patil R, Hassan PA, Gawali S, Patravale V. Bivalirudin and sirolimus co-eluting coronary stent: Potential strategy for the prevention of stent thrombosis and restenosis. Int J Pharm 2021; 600:120403. [PMID: 33711467 DOI: 10.1016/j.ijpharm.2021.120403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 11/19/2022]
Abstract
Localized drug delivery with sustained elution characteristics from nanocarrier coated stents represents a viable therapeutic approach to circumvent concerns related to coronary stent therapy. We fabricated a Sirolimus (SRL) and Bivalirudin (BIV) releasing nanoparticles (NPs) coated stent for concurrent mitigation of vascular restenosis and acute stent thrombosis. SRL NPs were prepared by nanoprecipitation method whereas the BIV vesicles were generated using hydrophobic ion pair approach followed by micellization phenomenon. MTT assay and confocal microscopic analysis indicated superior anti-proliferative activity and higher cellular uptake of SRL NPs into human coronary artery smooth muscle cells, respectively. DSC and ATR-FTIR techniques confirmed the formation of complex between BIV and phosphatidylglycerol via some weak physical interactions. More than 2 fold rise in log P value was obtained for DSPG-BIV at 3:1 M ratio compared with native BIV solution. The SAXS analysis indicated formation of oligolamellar vesicles of DSPG-BIV complex which was preferentially entrapped into lipophilic lamellae of vesicles. APTT, PT, and TT tests revealed that the BIV vesicles caused significant prolongation of clotting time compared to native BIV solution. The SEM analysis showed uniform and defect free stent coating. In vitro release study demonstrated that SRL and BIV were eluted in a sustained manner from coated stents.
Collapse
Affiliation(s)
- Mangesh Sane
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai 400 019, Maharashtra, India
| | - Vikas Dighe
- National Centre for Preclinical Reproductive and Genetic Toxicology, National Institute for Research in Reproductive Health, J. M. Street, Parel, Mumbai 400 012, Maharashtra, India
| | - Rucha Patil
- Department of Haemostasis & Thrombosis, National Institute of Immunohaematology, Indian Council of Medical Research, 13th Floor, New Multi-storeyed Building, KEM Hospital Campus, Parel, Mumbai 400 012, India
| | | | - Santosh Gawali
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai 400 019, Maharashtra, India.
| |
Collapse
|
19
|
Ristroph KD, Rummaneethorn P, Johnson-Weaver B, Staats H, Prud'homme RK. Highly-loaded protein nanocarriers prepared by Flash NanoPrecipitation with hydrophobic ion pairing. Int J Pharm 2021; 601:120397. [PMID: 33647410 DOI: 10.1016/j.ijpharm.2021.120397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 01/24/2023]
Abstract
The efficient encapsulation of therapeutic proteins into delivery vehicles, particularly without loss of function, remains a significant research hurdle. Typical liposomal formulations achieve drug loadings on the order of 3-5% and encapsulation efficiencies around 50%. We demonstrate the encapsulation of model proteins with isoelectric points above and below pH 7 into nanocarriers (NCs) with protein loadings as high as 46% and encapsulation efficiencies above 95%. This is done by combining the continuous nanofabrication process Flash NanoPrecipitation (FNP) with the technique of hydrophobic ion pairing by forming and encapsulating an ionic complex within a nanocarrier stabilized by a block copolymer surface layer. We complex and encapsulate lysozyme with two anionic hydrophobic counterions, sodium oleate and sodium dodecyl sulfate, using either a pre-formed complex or in situ pairing. The strategy successfully forms NCs ~150 nm in diameter and achieves encapsulation efficiencies over 95%. Protein release rate from the NCs in physiological conditions and the bioactivity of released lysozyme are measured, and both are found to vary with the complexing counterion and the protein/counterion ratio used during formulation. Protein release on the time scale of weeks is observed, and up to 100% bioactivity is measured from released lysozyme. 16 quaternary ammonium cationic counterions are tested to encapsulate ovalbumin in 32 formulations. Of these, 19 successfully form ~150 nm NCs with loadings up to 29% and encapsulation efficiencies up to 88%. We divide the formulations into four regimes and identify chemical factors responsible for the success or failure of a given counterion to formulate NCs with the desirable size, loading, and encapsulation efficiency. A successful ovalbumin NC formulation was then tested in vivo in a mouse nasal vaccine model and found to induce a higher titer of OVA-specific IgG than unencapsulated ovalbumin. Taken together, these findings suggest that Flash NanoPrecipitation with hydrophobic ion pairing is an attractive platform for encapsulating high molecular weight proteins into NCs. In particular, the ability to tune protein release rate by varying the counterion or protein/counterion ratio used during formulation is a useful feature.
Collapse
Affiliation(s)
- Kurt D Ristroph
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Paradorn Rummaneethorn
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Brandi Johnson-Weaver
- Department of Immunology, Duke University School of Medicine, Durham, NC 27708, United States
| | - Herman Staats
- Department of Immunology, Duke University School of Medicine, Durham, NC 27708, United States
| | - Robert K Prud'homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
20
|
Friedl JD, Jörgensen AM, Le‐Vinh B, Braun DE, Tribus M, Bernkop-Schnürch A. Solidification of self-emulsifying drug delivery systems (SEDDS): Impact on storage stability of a therapeutic protein. J Colloid Interface Sci 2021; 584:684-697. [DOI: 10.1016/j.jcis.2020.11.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022]
|
21
|
Kurpiers M, Wolf JD, Spleis H, Steinbring C, Jörgensen AM, Matuszczak B, Bernkop-Schnürch A. Lysine-Based Biodegradable Surfactants: Increasing the Lipophilicity of Insulin by Hydrophobic Ion Paring. J Pharm Sci 2020; 110:124-134. [PMID: 32758547 DOI: 10.1016/j.xphs.2020.07.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/08/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022]
Abstract
AIM The aim of this study was to evaluate biodegradable cationic surfactants based on lysine. METHODS Lysine was esterified with cholesterol, oleyl alcohol and 1-decanol resulting in cholesteryl lysinate (CL), oleyl lysinate (OL) and decyl lysinate (DL). Esters were investigated regarding their log Dn-octanol/water, critical micelle concentration (CMC) and biodegradability. Hemolytic potential of CL, OL, DL and the already established hexadecyl lysinate (HL) was determined and complexes with insulin (INS) were formed by hydrophobic ion pairing (HIP). Lipophilic characteristics of ion-pairs were examined by analyzing their log Pn-butanol/water. RESULTS Successful synthesis of CL, OL and DL was confirmed by IR, NMR and MS. Log D analysis revealed amphiphilic properties for the esters and a CMC of 0.01 mM, 2.0 mM and 6.0 mM was found for CL, OL and DL, respectively. Biodegradability was proven, as over 99% of OL and DL were degraded by isolated enzymes within 30 min and after 3 h 97% of CL was cleaved by membrane bound enzymes. OL as well as DL displayed no hemolytic effect and for CL cytotoxicity was significantly reduced in comparison to HL. INS/CL complex exhibited highest lipophilicity. CONCLUSION Cholesterol-amino acid based surfactants seem to be promising agents for HIP.
Collapse
Affiliation(s)
- Markus Kurpiers
- Thiomatrix Forschungs- und Beratungs GmbH, Research Center Innsbruck, Trientlgasse 65, A-6020 Innsbruck, Austria; Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Julian Dominik Wolf
- Thiomatrix Forschungs- und Beratungs GmbH, Research Center Innsbruck, Trientlgasse 65, A-6020 Innsbruck, Austria; Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Helen Spleis
- Thiomatrix Forschungs- und Beratungs GmbH, Research Center Innsbruck, Trientlgasse 65, A-6020 Innsbruck, Austria; Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Christian Steinbring
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Arne Matteo Jörgensen
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Barbara Matuszczak
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Thiomatrix Forschungs- und Beratungs GmbH, Research Center Innsbruck, Trientlgasse 65, A-6020 Innsbruck, Austria; Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| |
Collapse
|
22
|
Nazir I, Ghezzi M, Asim MH, Phan TNQ, Bernkop-Schnürch A. Self-emulsifying drug delivery systems: About the fate of hydrophobic ion pairs on a phospholipid bilayer. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Ismail R, Phan TNQ, Laffleur F, Csóka I, Bernkop-Schnürch A. Hydrophobic ion pairing of a GLP-1 analogue for incorporating into lipid nanocarriers designed for oral delivery. Eur J Pharm Biopharm 2020; 152:10-17. [PMID: 32371152 DOI: 10.1016/j.ejpb.2020.04.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023]
Abstract
The lipophilic character of peptides can be tremendously improved by hydrophobic ion pairing (HIP) with counterions to be efficiently incorporated into lipid-based nanocarriers (NCs). Herein, HIPs of exenatide with the cationic surfactant tetraheptylammonium bromide (THA) and the anionic surfactant sodium docusate (DOC) were formed to increase its lipophilicity. These HIPs were incorporated into lipid based NCs comprising 41% Capmul MCM, 15% Captex 355, 40% Cremophor RH and 4% propylene glycol. Exenatide-THA NCs showed a log Dlipophilic phase (LPh)/release medium (RM) of 2.29 and 1.92, whereas the log DLPh/RM of exenatide-DOC was 1.2 and -0.9 in simulated intestinal fluid and Hanks' balanced salts buffer (HBSS), respectively. No significant hemolytic activity was induced at a concentration of 0.25% (m/v) of both blank and loaded NCs. Exenatide-THA NCs and exenatide-DOC NCs showed a 10-fold and 3-fold enhancement in intestinal apparent membrane permeability compared to free exenatide, respectively. Furthermore, orally administered exenatide-THA and exenatide-DOC NCs in healthy rats resulted in a relative bioavailability of 27.96 ± 5.24% and 16.29 ± 6.63%, respectively, confirming the comparatively higher potential of the cationic surfactant over the anionic surfactant. Findings of this work highlight the potential of the type of counterion used for HIP as key to successful design of lipid-based NCs for oral exenatide delivery.
Collapse
Affiliation(s)
- Ruba Ismail
- Institute of Pharmaceutical Technology and Regulatory Affairs, Institute of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; Institute of Pharmaceutical Technology and Regulatory Affairs, Interdisciplinary Centre of Excellence, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Thi Nhu Quynh Phan
- Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Faculty of Pharmacy, University of Medicine and Pharmacy, Hue University, Thua Thien Hue, Viet Nam
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Institute of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; Institute of Pharmaceutical Technology and Regulatory Affairs, Interdisciplinary Centre of Excellence, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
24
|
Asfour MH, Kassem AA, Salama A, Abd El-Alim SH. Hydrophobic ion pair loaded self-emulsifying drug delivery system (SEDDS): A novel oral drug delivery approach of cromolyn sodium for management of bronchial asthma. Int J Pharm 2020; 585:119494. [PMID: 32505578 DOI: 10.1016/j.ijpharm.2020.119494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 01/01/2023]
Abstract
The aim of the present study is to develop a self-emulsifying drug delivery system (SEDDS) for the hydrophobic ion pair (HIP) complex of cromolyn sodium (CS), in order to enhance its intestinal absorption and biological activity. Two ion pairing agents (IPAs) were investigated: hexadecyl pyridininum chloride (HPC) and myristyl trimethyl ammonium bromide (MTAB). The optimum binding efficiency for complexation between investigated IPAs and CS was observed at a molar ratio of 1.5:1, where CS binding efficiency was found to be 76.10 ± 2.12 and 91.37 ± 1.73% for MTAB and HPC, respectively. The two prepared complexes exhibited a significant increase in partition coefficient indicating increased lipophilicity. The optimized CS-HIP complex was incorporated into SEDDS formulations. SEDDS formulations F2 (40% oleic acid, 40% BrijTM98, 20% propylene glycol) and F3 (25% oleic acid, 50% BrijTM98, 25% propylene glycol) exhibited nanometric droplet diameters with monodisperse distribution and nearly neutral zeta potential values. Ex vivo intestinal permeation study, using the non-everted gut sac technique, revealed a significantly higher cumulative amount of permeated drug, after 2 h, for F2 and F3 (53.836 and 77.617 µg/cm2, respectively) compared to 8.649 µg/cm2 for plain CS solution. The in vivo evaluation of plain CS solution compared to F2 and F3 was conducted in an ovalbumin sensitization-induced bronchial asthma rat model. Lung function parameters (tidal volume and peak expiratory flow), biochemical parameters (interleukin-5, immunoglobulin-E, myeloperoxidase and airway remodelling parameters) were assessed in addition to histopathological examination. The results indicated the superiority of F3 followed by F2 compared to plain CS solution for prophylaxis of bronchial asthma in rats.
Collapse
Affiliation(s)
- Marwa Hasanein Asfour
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St, Dokki, Cairo 12622, Egypt.
| | - Ahmed Alaa Kassem
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St, Dokki, Cairo 12622, Egypt
| | - Abeer Salama
- Pharmacology Department, National Research Centre, El-Buhouth St, Dokki, Cairo 12622, Egypt
| | - Sameh Hosam Abd El-Alim
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St, Dokki, Cairo 12622, Egypt
| |
Collapse
|
25
|
Shahzadi I, Nazir I, Nhu Quynh Phan T, Bernkop-Schnürch A. About the impact of superassociation of hydrophobic ion pairs on membrane permeability. Eur J Pharm Biopharm 2020; 151:1-8. [DOI: 10.1016/j.ejpb.2020.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 12/15/2022]
|
26
|
Wibel R, Friedl JD, Zaichik S, Bernkop-Schnürch A. Hydrophobic ion pairing (HIP) of (poly)peptide drugs: Benefits and drawbacks of different preparation methods. Eur J Pharm Biopharm 2020; 151:73-80. [PMID: 32289492 DOI: 10.1016/j.ejpb.2020.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/18/2020] [Accepted: 04/01/2020] [Indexed: 12/26/2022]
Abstract
In order to incorporate hydrophilic macromolecular drugs into lipid-based formulations (LBF), HIP has shown great potential. In this study, different HIP methods were compared with each other. Hydrophobic complexes were formed between bovine serum albumin (BSA) and either dodecyl sulfate, cetyl trimethylammonium or 1,2-dipalmitoyl-sn-glycero-3-phosphate applying the organic solvent-free method, Bligh-Dyer method and biphasic metathesis reaction either with ethyl acetate or chloroform as organic phase. Complex formation efficiency was determined. Hydrophobicity of the obtained complexes was characterized by their apparent partition coefficient between 1-butanol and water. The highest complex formation efficiency was achieved with the Bligh-Dyer method, followed by the organic solvent-free method and the biphasic metathesis reaction. When applying the organic solvent-free method, complex formation efficiency was hampered at higher surfactant concentrations due to the formation of micelles. Furthermore, this method could only be applied for water-soluble compounds. On the contrary, the Bligh-Dyer method was robust towards high surfactant concentrations. Moreover, it enables the use of water-insoluble compounds. The rank order Bligh-Dyer method > organic solvent-free method > biphasic metathesis reaction was confirmed by the log D. According to these results, the Bligh-Dyer method appears advantageous for HIP. However, the organic-solvent free method is an adequate alternative for water-soluble compounds.
Collapse
Affiliation(s)
- Richard Wibel
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Julian David Friedl
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Sergey Zaichik
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria.
| |
Collapse
|
27
|
Wolf JD, Kurpiers M, Baus RA, Götz RX, Griesser J, Matuszczak B, Bernkop-Schnürch A. Characterization of an amino acid based biodegradable surfactant facilitating the incorporation of DNA into lipophilic delivery systems. J Colloid Interface Sci 2020; 566:234-241. [DOI: 10.1016/j.jcis.2020.01.088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 12/01/2022]
|
28
|
Ristroph KD, Prud'homme RK. Hydrophobic ion pairing: encapsulating small molecules, peptides, and proteins into nanocarriers. NANOSCALE ADVANCES 2019; 1:4207-4237. [PMID: 33442667 PMCID: PMC7771517 DOI: 10.1039/c9na00308h] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/18/2019] [Indexed: 05/26/2023]
Abstract
Hydrophobic ion pairing has emerged as a method to modulate the solubility of charged hydrophilic molecules ranging in class from small molecules to large enzymes. Charged hydrophilic molecules are ionically paired with oppositely-charged molecules that include hydrophobic moieties; the resulting uncharged complex is water-insoluble and will precipitate in aqueous media. Here we review one of the most prominent applications of hydrophobic ion pairing: efficient encapsulation of charged hydrophilic molecules into nano-scale delivery vehicles - nanoparticles or nanocarriers. Hydrophobic complexes are formed and then encapsulated using techniques developed for poorly-water-soluble therapeutics. With this approach, researchers have reported encapsulation efficiencies up to 100% and drug loadings up to 30%. This review covers the fundamentals of hydrophobic ion pairing, including nomenclature, drug eligibility for the technique, commonly-used counterions, and drug release of encapsulated ion paired complexes. We then focus on nanoformulation techniques used in concert with hydrophobic ion pairing and note strengths and weaknesses specific to each. The penultimate section bridges hydrophobic ion pairing with the related fields of polyelectrolyte coacervation and polyelectrolyte-surfactant complexation. We then discuss the state of the art and anticipated future challenges. The review ends with comprehensive tables of reported hydrophobic ion pairing and encapsulation from the literature.
Collapse
Affiliation(s)
- Kurt D. Ristroph
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonNew Jersey 08544USA
| | - Robert K. Prud'homme
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonNew Jersey 08544USA
| |
Collapse
|
29
|
Liu C, Xu H, Sun Y, Zhang X, Cheng H, Mao S. Design of Virus-Mimicking Polyelectrolyte Complexes for Enhanced Oral Insulin Delivery. J Pharm Sci 2019; 108:3408-3415. [DOI: 10.1016/j.xphs.2019.05.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/26/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022]
|
30
|
Han S, Dwivedi P, Mangrio FA, Dwivedi M, Khatik R, Cohn DE, Si T, Xu RX. Sustained release paclitaxel-loaded core-shell-structured solid lipid microparticles for intraperitoneal chemotherapy of ovarian cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:957-967. [DOI: 10.1080/21691401.2019.1576705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Shuya Han
- Department of Precision Machinery and Precision Instrumentation, School of Engineering Science, University of Science and Technology of China, Hefei, P.R.China
| | - Pankaj Dwivedi
- Department of Precision Machinery and Precision Instrumentation, School of Engineering Science, University of Science and Technology of China, Hefei, P.R.China
| | - Farhana Akbar Mangrio
- Department of Precision Machinery and Precision Instrumentation, School of Engineering Science, University of Science and Technology of China, Hefei, P.R.China
| | - Monika Dwivedi
- Department of Precision Machinery and Precision Instrumentation, School of Engineering Science, University of Science and Technology of China, Hefei, P.R.China
| | - Renuka Khatik
- Department of Chemistry, Laboratory of Nanomaterials for Energy Conversion (LNEC), University of Science and Technology of China, Hefei, Anhui, PR China
| | - David E. Cohn
- Division of Gynecologic Oncology, Ohio State University College of Medicine, Columbus, OH, USA
| | - Ting Si
- Department of Precision Machinery and Precision Instrumentation, School of Engineering Science, University of Science and Technology of China, Hefei, P.R.China
| | - Ronald X. Xu
- Department of Precision Machinery and Precision Instrumentation, School of Engineering Science, University of Science and Technology of China, Hefei, P.R.China
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
31
|
Mahmood A, Bernkop-Schnürch A. SEDDS: A game changing approach for the oral administration of hydrophilic macromolecular drugs. Adv Drug Deliv Rev 2019; 142:91-101. [PMID: 29981355 DOI: 10.1016/j.addr.2018.07.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/22/2018] [Accepted: 07/02/2018] [Indexed: 12/11/2022]
Abstract
Since the development of self-emulsifying drug delivery systems (SEDDS) in 1980's, they attract the attention of researchers in order to confront the challenge of poor water-solubility of orally given drugs. Within recent years, SEDDS were also discovered for oral administration of hydrophilic macromolecular drugs such as peptides, proteins, polysaccharides and pDNA. Due to hydrophobic ion pairing (HIP) with oppositely charged lipophilic auxiliary agents the resulting complexes can be incorporated in the lipophilic phase of SEDDS. Depending on the solubility of the complex in the SEDDS pre-concentrate and in the release medium drug release can be adjusted on purpose by choosing more or less lipophilic auxiliary agents in appropriate quantities for HIP. Within the oily droplets formed in the GI-tract drugs are protected towards degradation by proteases and nucleases and thiol-disulfide exchange reactions with dietary proteins. The oily droplets can be made mucoadhesive or highly mucus permeating depending on their target site. Furthermore, even their cellular uptake properties can be tuned by adjusting their zeta potential or decorating them with cell penetrating peptides. The potential of SEDDS for oral administration of hydrophilic macromolecular drugs could meanwhile be demonstrated via various in vivo studies showing a bioavailability at least in the single digit percentage range. Owing to these properties advanced SEDDS turned out to be a game changing approach for the oral administration of hydrophilic macromolecular drugs.
Collapse
Affiliation(s)
- Arshad Mahmood
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Department of Pharmacy, COMSATS Institute of Information Technology Abbottabad, Abbottabad 22060, Pakistan
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
32
|
Novel skin penetrating berberine oleate complex capitalizing on hydrophobic ion pairing approach. Int J Pharm 2018; 549:76-86. [PMID: 30053489 DOI: 10.1016/j.ijpharm.2018.07.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/18/2018] [Accepted: 07/22/2018] [Indexed: 11/21/2022]
Abstract
Berberine hydrochloride (Brb) is a well-known herbal drug that holds a great promise in the recent years thanks to its various pharmacological actions. Currently, Brb is extensively researched as a natural surrogate with evidenced potentiality against numerous types of skin diseases including skin cancer. However, Brb's high aqueous solubility and limited permeability hinder its clinical topical application. In the current work, to enhance Brb's dermal availability, hydrophobic ion pairing approach was implemented combining the privileges of altering the solubility characteristics of Brb and the nanometric size that is usually gained during the ion pairing precipitation process. Sodium oleate (SO) was selected as the complexing agent due to its low toxicity and skin penetrating characteristics. Ion paired berberine oleate complex (Brb-OL) was prepared by simple precipitation technique. Brb-OL complex formation was confirmed by differential scanning calorimetry (DSC), infrared spectroscopy (IR), X-ray powder diffraction (XRD) and saturation solubility studies. It was found that Brb-OL complex formed at stoichiometric binding between oleate and Brb had an average particle size of 195.9 nm and zeta potential of -53.6 mV. The proposed Brb-OL showed 251-fold increase in saturation solubility in n-octanol which confirmed the augmented lipid solubility of the complex compared with free drug. Comparative in-vitro release study showed that Brb-OL complex had much slow and sustained release profile compared to that of free Brb. Furthermore, ex-vivo permeation study using rat skin revealed the enhanced skin permeation of ion-paired Brb-OL complex compared with free Brb. In-vivo study on healthy rats confirmed that topical application of hydrogels enriched with Brb-OL had superior skin penetration and deposition than free Brb as revealed by confocal microscope. Conclusively, ion pair formation between Brb and oleate lead to the formation of more lipophilic Brb-OL complex with nanometric particle size which is expected to be a major progressive step towards the development of a topical berberine formulation.
Collapse
|
33
|
Hetényi G, Griesser J, Fontana S, Gutierrez AM, Ellemunter H, Niedermayr K, Szabó P, Bernkop-Schnürch A. Amikacin-containing self-emulsifying delivery systems via pulmonary administration for treatment of bacterial infections of cystic fibrosis patients. Nanomedicine (Lond) 2018; 13:717-732. [DOI: 10.2217/nnm-2017-0307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: The aim of the study was to develop self-emulsifying delivery systems (SEDDS) exhibiting improved permeation rate for pulmonary delivery of amikacin for treatment of cystic fibrosis (CF) patients. Materials & methods: Solubility of amikacin in lipids was improved by hydrophobic ion pairing with sodium myristyl sulfate. The complex was loaded into SEDDS. Drug-release studies were performed and the permeation properties of SEDDS through human CF mucus were examined. Results: A total of 10% complex could be loaded into SEDDS. SEDDS exhibited sustained release. Up to twofold more amounts of amikacin permeated through the CF mucus compared with reference. Conclusion: The developed SEDDS with amikacin may be a promising tool for the treatment of certain bacterial infections of CF patients.
Collapse
Affiliation(s)
- Gergely Hetényi
- Thiomatrix Forschungs – und Beratungs GmbH, Innsbruck, Austria
| | - Janine Griesser
- Thiomatrix Forschungs – und Beratungs GmbH, Innsbruck, Austria
| | - Simon Fontana
- Thiomatrix Forschungs – und Beratungs GmbH, Innsbruck, Austria
| | | | - Helmut Ellemunter
- Cystic Fibrosis Centre, Department of Child & Adolescent Health, Pediatrics III, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Niedermayr
- Cystic Fibrosis Centre, Department of Child & Adolescent Health, Pediatrics III, Medical University of Innsbruck, Innsbruck, Austria
| | - Péter Szabó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Budapest, Hungary
| | - Andreas Bernkop-Schnürch
- Thiomatrix Forschungs – und Beratungs GmbH, Innsbruck, Austria
- Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University, Innsbruck, Austria
| |
Collapse
|
34
|
Folchman-Wagner Z, Zaro J, Shen WC. Characterization of Polyelectrolyte Complex Formation Between Anionic and Cationic Poly(amino acids) and Their Potential Applications in pH-Dependent Drug Delivery. Molecules 2017; 22:molecules22071089. [PMID: 28665323 PMCID: PMC6152117 DOI: 10.3390/molecules22071089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/15/2017] [Accepted: 06/27/2017] [Indexed: 12/05/2022] Open
Abstract
Polyelectrolyte complexes (PECs) are self-assembling nano-sized constructs that offer several advantages over traditional nanoparticle carriers including controllable size, biodegradability, biocompatibility, and lack of toxicity, making them particularly appealing as tools for drug delivery. Here, we discuss potential application of PECs for drug delivery to the slightly acidic tumor microenvironment, a pH in the range of 6.5–7.0. Poly(l-glutamic acid) (En), poly(l-lysine) (Kn), and a copolymer composed of histidine-glutamic acid repeats ((HE)n) were studied for their ability to form PECs, which were analyzed for size, polydispersity, and pH sensitivity. PECs showed concentration dependent size variation at residue lengths of E51/K55 and E135/K127, however, no complexes were observed when E22 or K21 were used, even in combination with the longer chains. (HE)20/K55 PECs could encapsulate daunomycin, were stable from pH 7.4–6.5, and dissociated completely between pH 6.5–6.0. Conversely, the E51-dauno/K55 PEC dissociated between pH 4.0 and 3.0. These values for pH-dependent particle dissociation are consistent with the pKa’s of the ionizable groups in each formulation and indicate that the specific pH-sensitivity of (HE)20-dauno/K55 PECs is mediated by incorporation of histidine. This response within a pH range that is physiologically relevant to the acidic tumors suggests a potential application of these PECs in pH-dependent drug delivery.
Collapse
Affiliation(s)
- Zoë Folchman-Wagner
- Department of Pharmaceutical Sciences, University of Southern California School of Pharmacy, 1985 Zonal Avenue, Los Angeles, CA 90089, USA.
| | - Jennica Zaro
- Department of Pharmaceutical Sciences, West Coast University School of Pharmacy, 590 Vermont Ave, Los Angeles, CA 90004, USA.
| | - Wei-Chiang Shen
- Department of Pharmaceutical Sciences, University of Southern California School of Pharmacy, 1985 Zonal Avenue, Los Angeles, CA 90089, USA.
| |
Collapse
|
35
|
Zupančič O, Bernkop-Schnürch A. Lipophilic peptide character – What oral barriers fear the most. J Control Release 2017; 255:242-257. [DOI: 10.1016/j.jconrel.2017.04.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
|
36
|
Griesser J, Hetényi G, Moser M, Demarne F, Jannin V, Bernkop-Schnürch A. Hydrophobic ion pairing: Key to highly payloaded self-emulsifying peptide drug delivery systems. Int J Pharm 2017; 520:267-274. [DOI: 10.1016/j.ijpharm.2017.02.019] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 11/28/2022]
|
37
|
Oliveira MS, Goulart GCA, Ferreira LAM, Carneiro G. Hydrophobic ion pairing as a strategy to improve drug encapsulation into lipid nanocarriers for the cancer treatment. Expert Opin Drug Deliv 2016; 14:983-995. [DOI: 10.1080/17425247.2017.1266329] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Mariana Silva Oliveira
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gisele Castro Assis Goulart
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lucas Antônio Miranda Ferreira
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Guilherme Carneiro
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, MG, Brazil
| |
Collapse
|
38
|
Kasashima Y, Uchida S, Yoshihara K, Yasuji T, Sako K, Namiki N. Oral sustained-release suspension based on a lauryl sulfate salt/complex. Int J Pharm 2016; 515:677-683. [PMID: 27765725 DOI: 10.1016/j.ijpharm.2016.10.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/25/2016] [Accepted: 10/16/2016] [Indexed: 11/24/2022]
Abstract
The objective of this study was to evaluate the feasibility of lauryl sulfate (LS) salt/complex as a novel carrier in oral sustained-release suspensions. Mirabegron, which has a pH-dependent solubility, was selected as the model drug. Sodium lauryl sulfate (SLS) was bound to mirabegron in a stoichiometric manner to form an LS salt/complex. LS salt/complex formulation significantly reduced the solubility of mirabegron and helped mirabegron achieve sustained-release over a wide range of pH conditions. Microparticles containing the LS salt/complex were prepared by spray drying with the aqueous dispersion of ethylcellulose (Aquacoat® ECD). The diameter of the microparticles was less than 200μm, which will help avoid a gritty taste. In vitro results indicated the microparticles had slower dissolution profiles than the LS salt/complex. The dissolution rate could be controlled flexibly by changing the amount of Aquacoat® ECD. The microparticle suspension retained the desired sustained-release property and dissolution profile after being stored for 30days at 40°C. In addition, the suspension displayed sustained-release behavior in dogs without a pronounced Cmax peak, which will help prevent side effects. These results suggest that microparticles containing LS salt/complex may be useful as a novel sustained-release suspension for oral delivery.
Collapse
Affiliation(s)
- Yuuki Kasashima
- Pharmaceutical and Technology Labs, Astellas Pharma Inc., 180 Ozumi, Yaizu, Shizuoka 425-0072, Japan; Department of Pharmacy Practice and Science, School of Pharmaceutical Sciences University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Shinya Uchida
- Department of Pharmacy Practice and Science, School of Pharmaceutical Sciences University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Keiichi Yoshihara
- Pharmaceutical and Technology Labs, Astellas Pharma Inc., 180 Ozumi, Yaizu, Shizuoka 425-0072, Japan
| | - Takehiko Yasuji
- Pharmaceutical and Technology Labs, Astellas Pharma Inc., 180 Ozumi, Yaizu, Shizuoka 425-0072, Japan
| | - Kazuhiro Sako
- Pharmaceutical and Technology Labs, Astellas Pharma Inc., 180 Ozumi, Yaizu, Shizuoka 425-0072, Japan
| | - Noriyuki Namiki
- Department of Pharmacy Practice and Science, School of Pharmaceutical Sciences University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
39
|
Prathipati P, Zhu J, Dong X. Development of novel HDL-mimicking α-tocopherol-coated nanoparticles to encapsulate nerve growth factor and evaluation of biodistribution. Eur J Pharm Biopharm 2016; 108:126-135. [PMID: 27531623 DOI: 10.1016/j.ejpb.2016.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022]
Abstract
Nerve Growth Factor (NGF) is one of the members of the neurotrophin family with multifaceted functions. However, clinical application of NGF is hurdled by the challenge on formulation development. The objective of this study was to develop novel high-density lipoproteins (HDL)-mimicking nanoparticles (NPs) coated with α-tocopherol to incorporate NGF by a self-assembly approach. The NPs were prepared by an optimized self-assembly method that is simple and scalable. The composition of HDL-mimicking NPs was optimized. The prototype of the HDL-mimicking α-tocopherol-coated NPs contained phosphatidylserine (a negative charged phospholipid) and d-α-Tocopheryl polyethylene glycol succinate (a source of vitamin E) to enhance the entrapment efficiency of apolipoprotein A-I in the NPs. The entrapment efficiency of apolipoprotein A-I was about 30%. The NPs had particle size about 200nm with a relatively narrow size distribution. Finally, cationic ion-pair agents were optimized to form ion-pairs with NGF to facilitate the incorporation of NGF into the NPs. Protamine sodium salt USP formed an optimal ion-pair complex with NGF. The results showed that the novel HDL-mimicking α-tocopherol-coated NPs successfully encapsulated NGF with over 65% entrapment efficiency by using this ion-pair strategy. In vitro release studies demonstrated a slow release of NGF from NGF NPs in PBS containing 5% BSA at 37°C for 72 h. Further biodistribution studies showed that intravenously injected NGF NPs significantly increased NGF concentration in plasma and decreased the uptake in liver, spleen and kidney, compared to free NGF in mice.
Collapse
Affiliation(s)
- Priyanka Prathipati
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA; Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA(1)
| | - Jing Zhu
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Xiaowei Dong
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
40
|
A novel in situ hydrophobic ion pairing (HIP) formulation strategy for clinical product selection of a nanoparticle drug delivery system. J Control Release 2016; 229:106-119. [DOI: 10.1016/j.jconrel.2016.03.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/23/2016] [Accepted: 03/16/2016] [Indexed: 11/18/2022]
|
41
|
Kasashima Y, Yoshihara K, Yasuji T, Sako K, Uchida S, Namiki N. Oral Sustained Release of a Hydrophilic Drug Using the Lauryl Sulfate Salt/Complex. Chem Pharm Bull (Tokyo) 2016; 64:1304-9. [DOI: 10.1248/cpb.c16-00271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuuki Kasashima
- Pharmaceutical and Technology Labs, Astellas Pharma Inc
- Department of Pharmacy Practice and Science, School of Pharmaceutical Sciences University of Shizuoka
| | | | | | - Kazuhiro Sako
- Pharmaceutical and Technology Labs, Astellas Pharma Inc
| | - Shinya Uchida
- Department of Pharmacy Practice and Science, School of Pharmaceutical Sciences University of Shizuoka
| | - Noriyuki Namiki
- Department of Pharmacy Practice and Science, School of Pharmaceutical Sciences University of Shizuoka
| |
Collapse
|
42
|
Effective incorporation of insulin in mucus permeating self-nanoemulsifying drug delivery systems. Eur J Pharm Biopharm 2015; 97:223-9. [DOI: 10.1016/j.ejpb.2015.04.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 04/15/2015] [Accepted: 04/21/2015] [Indexed: 01/09/2023]
|
43
|
Leonaviciute G, Bernkop-Schnürch A. Self-emulsifying drug delivery systems in oral (poly)peptide drug delivery. Expert Opin Drug Deliv 2015; 12:1703-16. [PMID: 26477549 DOI: 10.1517/17425247.2015.1068287] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Oral administration of most therapeutic peptides and proteins is mainly restricted due to the enzymatic and absorption membrane barrier of the GI tract. In order to overcome these barriers, various technologies have been explored. Among them, self-emulsifying drug delivery systems (SEDDS) received considerable attention as potential carriers to facilitate oral peptide and protein delivery in recent years. AREAS COVERED This review article intends to summarize physiological barriers which limit the bioavailability of orally administrated peptide and protein drugs. Furthermore, the potential of SEDDS to protect incorporated peptides and proteins towards peptidases and proteases and to penetrate the mucus layer is reviewed. Their permeation-enhancing properties and their ability to release the drug in a controlled way are described. Moreover, this review covers the results of in vivo studies providing evidence for this promising approach. EXPERT OPINION As SEDDS can: i) provide a protective effect towards a presystemic metabolism; ii) efficiently permeate the intestinal mucus gel layer in order to reach the absorption membrane; and iii) be produced in a very simple and cost-effective manner, they are a promising tool for oral peptide and protein drug delivery.
Collapse
Affiliation(s)
- Gintare Leonaviciute
- a Leopold - Franzens University Innsbruck, Institut of Pharmacy, Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology , Innrain 80/82, Innsbruck, Austria +43 512 507 58601 ; +43 512 507 58699 ;
| | - Andreas Bernkop-Schnürch
- a Leopold - Franzens University Innsbruck, Institut of Pharmacy, Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology , Innrain 80/82, Innsbruck, Austria +43 512 507 58601 ; +43 512 507 58699 ;
| |
Collapse
|
44
|
Lasgorceix M, Costa AM, Mavropoulos E, Sader M, Calasans M, Tanaka MN, Rossi A, Damia C, Chotard-Ghodsnia R, Champion E. In vitro and in vivo evaluation of silicated hydroxyapatite and impact of insulin adsorption. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:2383-2393. [PMID: 24859368 DOI: 10.1007/s10856-014-5237-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/08/2014] [Indexed: 06/03/2023]
Abstract
This study evaluates the biological behaviour, in vitro and in vivo, of silicated hydroxyapatite with and without insulin adsorbed on the material surface. Insulin was successfully adsorbed on hydroxyapatite and silicated hydroxyapatite bioceramics. The modification of the protein secondary structure after the adsorption was investigated by means of infrared and circular dichroism spectroscopic methods. Both results were in agreement and indicated that the adsorption process was likely to change the secondary structure of the insulin from a majority of α-helix to a β-sheet form. The biocompatibility of both materials, with and without adsorbed insulin on their surface, was demonstrated in vitro by indirect and direct assays. A good viability of the cells was found and no proliferation effect was observed regardless of the material composition and of the presence or absence of insulin. Dense granules of each material were implanted subcutaneously in mice for 1, 3 and 9 weeks. At 9 weeks of implantation, a higher inflammatory response was observed for silicated hydroxyapatite than for pure hydroxyapatite but no significant effect of adsorbed insulin was detected. Though the presence of silicon in hydroxyapatite did not improve the biological behaviour, the silicon substituted hydroxyapatite remained highly viable.
Collapse
Affiliation(s)
- M Lasgorceix
- Université de Limoges, CNRS, SPCTS UMR 7315 Centre Européen de la Céramique, 12 rue Atlantis, 87068, Limoges, France,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Pignatello R, Leonardi A, Petronio GP, Ruozi B, Puglisi G, Furneri PM. Preparation and Microbiological Evaluation of Amphiphilic Kanamycin-Lipoamino Acid Ion-Pairs. Antibiotics (Basel) 2014; 3:216-32. [PMID: 27025745 PMCID: PMC4790386 DOI: 10.3390/antibiotics3020216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/29/2014] [Accepted: 05/14/2014] [Indexed: 11/19/2022] Open
Abstract
Amphiphilic ion-pairs of kanamycin (KAN) were prepared by evaporation of a water-ethanol co-solution of KAN base and a lipoamino acid bearing a 12-carbon atoms alkyl side chain (LAA12), at different molar ratios. Infrared spectroscopy confirmed the structure of ion-pairs, while differential scanning calorimetry (DSC) and powder X-ray diffractometry (PXRD) studies supported the formation of new saline species with a different crystalline structure than the starting components. The solubility pattern shown in a range of both aqueous and organic solvents confirmed that the ion-pairs possess an amphiphilic character. The LAA12 counter-ion showed not to improve the antibacterial activity of KAN, suggesting that such chemical strategy is not able to favor the penetration of this drug inside the bacteria cells. Nevertheless, a slight improving, i.e., a one-fold dilution, was observed in E. coli. The present study can also serve as the basis for a further evaluation of LAA ion-pairing of antibiotics, as a means to improve the loading of hydrophilic drugs into lipid-based nanocarriers.
Collapse
Affiliation(s)
- Rosario Pignatello
- Department of Drug Sciences, University of Catania, Città Universitaria, viale A. Doria 6, I-95125 Catania, Italy.
- NANO-i, Research Centre for Ocular Nanotechnology, Department of Drug Sciences, University of Catania, viale A. Doria 6, I-95125 Catania, Italy.
| | - Antonio Leonardi
- Department of Drug Sciences, University of Catania, Città Universitaria, viale A. Doria 6, I-95125 Catania, Italy.
| | - Giulio Petronio Petronio
- Department of Biomedical Sciences, University of Catania, via Androne 83, I-95124 Catania, Italy.
- IRCCS San Raffaele Pisana, Via della Pisana 235, I-00163 Roma, Italy.
| | - Barbara Ruozi
- Pharmaceutical Technology, Te.Far.T.I. group, Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 183, I-41100 Modena, Italy.
| | - Giovanni Puglisi
- Department of Drug Sciences, University of Catania, Città Universitaria, viale A. Doria 6, I-95125 Catania, Italy.
- NANO-i, Research Centre for Ocular Nanotechnology, Department of Drug Sciences, University of Catania, viale A. Doria 6, I-95125 Catania, Italy.
| | - Pio Maria Furneri
- Department of Biomedical Sciences, University of Catania, via Androne 83, I-95124 Catania, Italy.
| |
Collapse
|
46
|
Patel A, Gaudana R, Mitra AK. A novel approach for antibody nanocarriers development through hydrophobic ion-pairing complexation. J Microencapsul 2014; 31:542-50. [PMID: 24697179 DOI: 10.3109/02652048.2014.885606] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
IgG-Fab fragment, a model antibody protein was hydrophobically modified by a novel approach of ion-pairing complexation. Three different sulphated ion-pairing agents were utilised including sodium dodecyl sulphate, taurocholic acid and dextran sulphate (DS). The formations of hydrophobic ion-pairing (HIP) complexes were dependant on pH and molar ratio of ion-pairing agent to Fab. Aqueous solubilities of HIP complexes were very low compared to Fab alone. In particular, when dextran sulphate was added as ion-pairing agent, formed Fab:DS HIP complexes were least soluble in water. Further, nanoparticles (NPs) loaded with drug and Fab:DS HIP complex were prepared and characterised with respect to encapsulation efficiency and size. We observed significant improvement in encapsulation efficiency for Fab:DS HIP complex-loaded nanoparticles. This study demonstrates a novel approach of formulating antibody-loaded nanoparticles which can also be employed for delivery of large antibodies.
Collapse
Affiliation(s)
- Ashaben Patel
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, MO , USA
| | | | | |
Collapse
|
47
|
Jin Y, Pan H, Li Y, Dai Z. Chitosan modified cerasomes incorporating poly (vinyl pyrrolidone) for oral insulin delivery. RSC Adv 2014. [DOI: 10.1039/c4ra09771h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The most significant finding of this study is that a hybrid liposomal cerasome with high stability and good biocompatibility was successfully developed for oral insulin delivery by incorporating poly (vinyl pyrrolidone) (PVP) into the cerasome followed by coating with chitosan (CS).
Collapse
Affiliation(s)
- Yushen Jin
- Department of Biomedical Engineering
- College of Engineering
- Peking University
- Beijing, China
- Nanomedicine and Biosensor Laboratory
| | - Hongjie Pan
- Nanomedicine and Biosensor Laboratory
- School of Life Science and Technology
- Harbin Institute of Technology
- Harbin 150080, China
| | - Yanyan Li
- Department of Biomedical Engineering
- College of Engineering
- Peking University
- Beijing, China
- Nanomedicine and Biosensor Laboratory
| | - Zhifei Dai
- Department of Biomedical Engineering
- College of Engineering
- Peking University
- Beijing, China
| |
Collapse
|
48
|
Abstract
This study reported a facile fabrication of a reproducible and injectable cerasomal insulin formulation by encapsulating insulin into cerasomes via one-step construction.
Collapse
Affiliation(s)
- Yushen Jin
- Department of Biomedical Engineering
- College of Engineering
- Peking University
- Beijing, China
- Nanomedicine and Biosensor Laboratory
| | - Yanyan Li
- Nanomedicine and Biosensor Laboratory
- School of Life Science and Technology
- Harbin Institute of Technology
- Harbin 150080, China
| | - Hongjie Pan
- Nanomedicine and Biosensor Laboratory
- School of Life Science and Technology
- Harbin Institute of Technology
- Harbin 150080, China
| | - Zhifei Dai
- Department of Biomedical Engineering
- College of Engineering
- Peking University
- Beijing, China
| |
Collapse
|
49
|
Denadai ÂM, Da Silva JG, Guimarães PP, Gomes LBS, Mangrich AS, de Rezende EI, Daniel IM, Beraldo H, Sinisterra RD. Control of size in losartan/copper(II) coordination complex hydrophobic precipitate. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:3916-22. [DOI: 10.1016/j.msec.2013.05.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 02/11/2013] [Accepted: 05/13/2013] [Indexed: 11/16/2022]
|
50
|
Enhanced bioavailability of poorly absorbed hydrophilic compounds through drug complex/in situ gelling formulation. Int J Pharm 2013; 457:63-70. [PMID: 24004566 DOI: 10.1016/j.ijpharm.2013.07.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 07/09/2013] [Accepted: 07/19/2013] [Indexed: 11/21/2022]
Abstract
BCS class III hydrophilic compounds are often associated with low oral bioavailability due to their poor epithelial permeability in the gastrointestinal tract. In this study, we reported an approach of incorporating a drug complex into an in situ gelling muco-adhesive carrier to achieve an improved bioavailability of a poorly absorbed hydrophilic compound. A new molecular entity (RWJ-445167) from Johnson and Johnson was used as a model compound. The compound was first complexed with sodium lauryl sulfate (SLS). The complex was then incorporated into an in situ gelling muco-adhesive carrier Cremophor for formulation characterization and rat pharmacokinetic (PK) studies. The study results showed that RWJ-445167 bound to SLS at a stoichiometric ratio. By complexing with SLS, the compound became lipophilic. The aqueous solubility of RWJ-445167 dropped to 0.58 mg/mL for the complex from 61 mg/mL for the free compound, while the partitioning coefficient of the complex increased to 7.59, compared with 0.05 of the free compound. In the rat PK study, with duodenal administration, the complex in the in situ-gelling formulation achieved 28.24% of bioavailability, compared to 4.26% of the free compound solution. The enhanced bioavailability was also significantly higher than those in the RWJ-445167/SLS physical mixture in Cremophor (14.91%), the complex in non-gelling carrier PEG 400 (9.95%) and the RWJ-445167/SLS physical mixture in PEG 400 carrier (8.60%). The study demonstrates that incorporation of a drug complex into an in situ gelling formulation provides a new approach to improving bioavailability of BCS class III drugs.
Collapse
|