1
|
Daher CC, Barreto SMAG, de Brito Damasceno GA, de Santana Oliveira A, Leite PIP, Reginaldo FPS, Escudeiro CC, Ostrosky EA, Giordani RB, Ferrari M. Use of sisal industrial waste (Agave sisalana Perrine) in sustainable and multifunctional cosmetic products. Int J Cosmet Sci 2023; 45:815-833. [PMID: 37565318 DOI: 10.1111/ics.12890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
OBJECTIVE Sisal is a common stiff fibre produced around the world, corresponding to approximately 70% of the commercial production of all fibres of this type. The fibres are extracted from the leaves of Agave sisalana, from which approximately 4% of their weight is obtained, with the remaining 96% considered to be residues from the process of the sisal industry. The objective of this work was to obtain a polyphenol-enriched extract from the A. sisalana residue by ultrasonically assisted extraction, characterize it chemically, evaluate in vitro antioxidant activity, and develop safe and stable photoprotective formulations for future application in cosmetic preparations. METHODS Ultrasonic extraction of solid plant material was performed using 50% ethanol/water (v/v). The extract was chemically characterized by high-performance liquid chromatography equipment associated with classical molecular networking and evaluated for in vitro antioxidant activity by different methodologies. Ten formulations were prepared, varying the component concentrations and the shear time. The 1.0% sisal extract was incorporated into the most stable formulations, and preliminary and accelerated stability were evaluated. The emulsions were investigated for safety by assessment of primary accumulated dermal irritability and sensitization and a dermatological clinical study of phototoxicity and photosensitization. The photoprotective formulations containing or not containing the extract that were stable after 90 days had their in vivo sun protection factor (SPF), UVA protection factor, critical wavelength, and protection against visible and blue light determined. RESULTS Ultrasound extraction using 50% ethanol/water (EH 50) as an extractor vehicle showed the best yield. The extract exhibited a concentration of phenolic compounds (77.93 mg of equivalent to the standard gallic acid/g) and showed in vitro antioxidant activity. Emulsions without and with 1.0% sisal extract remained stable and safe. The addition of the extract to the photoprotective formulation statistically increased the SPF when compared to the formulation without the extract and offered protection against UVA radiation, critical wavelengths, and absorption of visible and blue light. CONCLUSION Based on the findings, the solid residue of A. sisalana may be indicated as a component of photoprotective and antioxidant cosmetic formulations.
Collapse
Affiliation(s)
- Cláudia Cecílio Daher
- Department of Pharmacy, Federal University of Rio Grande do Norte - UFRN, Rio Grande do Norte, Natal, Brazil
| | | | - Gabriel Azevedo de Brito Damasceno
- Department of Pharmacy, Federal University of Rio Grande do Norte - UFRN, Rio Grande do Norte, Natal, Brazil
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia - UFBA, Bahia, Vitória da Conquista, Brazil
| | - Artur de Santana Oliveira
- Department of Pharmacy, Federal University of Rio Grande do Norte - UFRN, Rio Grande do Norte, Natal, Brazil
| | - Pedro Ivo Palacio Leite
- Department of Pharmacy, Federal University of Rio Grande do Norte - UFRN, Rio Grande do Norte, Natal, Brazil
| | | | | | - Elissa Arantes Ostrosky
- Department of Pharmacy, Federal University of Rio Grande do Norte - UFRN, Rio Grande do Norte, Natal, Brazil
| | - Raquel Brandt Giordani
- Department of Pharmacy, Federal University of Rio Grande do Norte - UFRN, Rio Grande do Norte, Natal, Brazil
| | - Márcio Ferrari
- Department of Pharmacy, Federal University of Rio Grande do Norte - UFRN, Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
2
|
Stolić Jovanović A, Martinović M, Žugić A, Nešić I, Tosti T, Blagojević S, Tadić VM. Derivatives of L-Ascorbic Acid in Emulgel: Development and Comprehensive Evaluation of the Topical Delivery System. Pharmaceutics 2023; 15:pharmaceutics15030813. [PMID: 36986679 PMCID: PMC10056080 DOI: 10.3390/pharmaceutics15030813] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
The dual controlled release of emulgels makes them efficient drug delivery systems of increasing interest. The framework of this study was to incorporate selected L-ascorbic acid derivatives into emulgels. From the formulated emulgels, the release profiles of actives were evaluated considering their different polarities and concentrations, and consequently their effectiveness on the skin via a long-term in vivo study that lasted for 30 days was determined. Skin effects were assessed by measuring the electrical capacitance of the stratum corneum (EC), trans-epidermal water loss (TEWL), melanin index (MI) and skin pH. In addition, the sensory and textural properties of emulgel formulations were compared with each other. The changes in the rate of the release of the L-ascorbic acid derivatives were monitored using the Franz diffusion cells. The obtained data were statistically significant, and indicated an increase in the degree of hydration of the skin and skin whitening potential, while no significant changes in TEWL and pH values were detected. The consistency, firmness and stickiness of the emulgels were estimated by volunteers applying the established sensory evaluation protocol. In addition, it was revealed that the difference in hydrophilic/lipophilic properties of L-ascorbic acid derivatives influenced their release profiles without changing their textural characteristics. Therefore, this study highlighted emulgels as L-ascorbic acid suitable carrier systems and one of the promising candidates as novel drug delivery systems.
Collapse
Affiliation(s)
| | - Milica Martinović
- Department of Pharmacy, Faculty of Medicine, University of Nis, Boulevard Dr. Zorana Djindjića 81, 18000 Nis, Serbia
| | - Ana Žugić
- Department for Pharmaceutical Research and Development, Institute for Medicinal Plant Research “Dr. Josif Pančić”, Tadeuša Koscuška 1, 11000 Belgrade, Serbia
| | - Ivana Nešić
- Department of Pharmacy, Faculty of Medicine, University of Nis, Boulevard Dr. Zorana Djindjića 81, 18000 Nis, Serbia
| | - Tomislav Tosti
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Stevan Blagojević
- The Institute of General and Physical Chemistry, Studentski trg 12/V, 11158 Beograd, Serbia
| | - Vanja M. Tadić
- Department for Pharmaceutical Research and Development, Institute for Medicinal Plant Research “Dr. Josif Pančić”, Tadeuša Koscuška 1, 11000 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
3
|
Pagano C, Ceccarini MR, Faieta M, di Michele A, Blasi F, Cossignani L, Beccari T, Oliva E, Pittia P, Sergi M, Primavilla S, Serafini D, Benedetti L, Ricci M, Perioli L. Starch-based sustainable hydrogel loaded with Crocus sativus petals extract: A new product for wound care. Int J Pharm 2022; 625:122067. [PMID: 35931396 DOI: 10.1016/j.ijpharm.2022.122067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/05/2022] [Accepted: 07/28/2022] [Indexed: 10/16/2022]
Abstract
The aim of the present study was to valorize Crocus sativus petals, the main waste deriving from saffron stigma harvesting, as source of bioactive molecules to be used in health field. Three different dry extracts were prepared by eco-friendly methods (maceration and ultrasound bath assisted maceration) using saffron petals as raw material and ethanol 70 % either ethanol 96 % as extraction solvents. A preliminary evaluation of the antioxidant activity (measured by ABTS*+, DPPH* and FRAP) highlighted that the most suitable extraction solvent is represented by ethanol 70 %. By in vitro studies on keratinocytes emerged that the extract obtained by maceration (rich in gallic and chlorogenic acids) stimulates their growth in a safe concentration range (0.02-0.4 mg/mL) suggesting a potential application in skin diseases such as superficial wounds. Due to the low manageability, the extract was firstly supported on corn starch powder particles and then formulated as starch gel. The obtained formulation showed both suitable rheological properties and spreadability necessary for an easy and pain free application on damaged skin. Moreover, in vitro microbiological studies of starch gel demonstrated antimicrobial activity toward S. epidermidis and self-preserving capacity.
Collapse
Affiliation(s)
- Cinzia Pagano
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy.
| | - Maria Rachele Ceccarini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Marco Faieta
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | | | - Francesca Blasi
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Lina Cossignani
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Eleonora Oliva
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Paola Pittia
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Manuel Sergi
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Sara Primavilla
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via G. Salvemini, 1, 06126 Perugia, Italy
| | - Domiziana Serafini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Lucia Benedetti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Luana Perioli
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| |
Collapse
|
4
|
Characterization of Polysaccharidic Associations for Cosmetic Use: Rheology and Texture Analysis. COSMETICS 2021. [DOI: 10.3390/cosmetics8030062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
As public attention on sustainability is increasing, the use of polysaccharides as rheological modifiers in skin-care products is becoming the first choice. Polysaccharide associations can be used to increase the spreading properties of products and to optimize their sensorial profile. Since the choice of natural raw materials for cosmetics is wide, instrumental methodologies are useful for formulators to easily characterize the materials and to create mixtures with specific applicative properties. In this work, we performed rheological and texture analyses on samples formulated with binary and ternary associations of polysaccharides to investigate their structural and mechanical features as a function of the concentration ratios. The rheological measurements were conducted under continuous and oscillatory flow conditions using a rotational rheometer. An immersion/de-immersion test conducted with a texture analyzer allowed us to measure some textural parameters. Sclerotium gum and iota-carrageenan imparted high viscosity, elasticity, and firmness in the system; carob gum and pectin influenced the viscoelastic properties and determined high adhesiveness and cohesiveness. The results indicated that these natural polymers combined in appropriate ratios can provide a wide range of different textures and that the use of these two complementary techniques represents a valid pre-screening tool for the formulation of green products.
Collapse
|
5
|
|
6
|
Curcumin-loaded Polyethyleneimine and chitosan polymer-based Mucoadhesive liquid crystalline systems as a potential platform in the treatment of cervical Cancer. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Alves MCC, Chaves DSA, Benevenuto BR, Farias BODE, Coelho SMO, Ferreira TP, Pereira GA, Santos GCMD, Moreira LO, Freitas JPDE, Cid YP. Chitosan gels for buccal delivery of Schinus molle L. essential oil in dogs: characterization and antimicrobial activity in vitro. AN ACAD BRAS CIENC 2020; 92:e20200562. [PMID: 33237148 DOI: 10.1590/0001-3765202020200562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
Periodontal disease is considered the main oral cavity disorder in dogs. Essential oils have the potential for use in the prevention and treatment of oral diseases. The antimicrobial activity of Schinus molle L. essential oil (SMEO) has already been reported. Chitosan, a natural product with antimicrobial activity and good biocompatibility has potential in biodental applications. In this study, we evaluated the in vitro antimicrobial activity of SMEO against bacteria associated with periodontal disease in dogs, developed and evaluated the physicochemical properties of a novel chitosan-based buccal delivery system containing SMEO. SMEO showed antimicrobial activity against Gram positive and Gram negative bacteria associated with canine periodontitis, with MIC values of 750 µg.mL-1 for Staphylococcus spp. and Streptococcus spp, 1000 µg.mL-1 for Corynebacterium spp. and 1250 µg.mL-1 for Pseudomonas spp. All formulations evaluated presented adequate physicochemical properties, good stability, and pH values close to buccal pH (5.0-7.0). Chitosan gel loaded with SMEO showed potential as a SMEO delivery system, having the ideal physicochemical and rheological properties (pseudoplastic and apparent viscosities) required for application on buccal tissue. Thus, we can conclude that formulation has the potential to be used for buccal mucosa delivery in the prevention and treatment of periodontal disease in dogs.
Collapse
Affiliation(s)
- Melina C C Alves
- Programa de Pós-Graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, BR-465, Km 7, 23897-000 Seropédica, RJ, Brazil
| | - Douglas S A Chaves
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, BR-465, Km 7, 23897-000 Seropédica, RJ, Brazil
| | - Byanca R Benevenuto
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, BR-465, Km 7, 23897-000 Seropédica, RJ, Brazil
| | - Beatriz O DE Farias
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, BR-465, Km 7, 23897-000 Seropédica, RJ, Brazil
| | - Shana M O Coelho
- Departamento de Microbiologia e Imunologia Veterinária, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, BR-465, Km 7, 23897-000 Seropédica, RJ, Brazil
| | - Thais P Ferreira
- Programa de Pós-graduação em Química, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR-465, Km 7, 23897-000 Seropédica, RJ, Brazil
| | - Geraldo A Pereira
- Programa de Pós-Graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, BR-465, Km 7, 23897-000 Seropédica, RJ, Brazil
| | - Gabriela C M Dos Santos
- Programa de Pós-Graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, BR-465, Km 7, 23897-000 Seropédica, RJ, Brazil
| | - Leandra O Moreira
- Programa de Pós-Graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, BR-465, Km 7, 23897-000 Seropédica, RJ, Brazil
| | - Juliana P DE Freitas
- Programa de Pós-Graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, BR-465, Km 7, 23897-000 Seropédica, RJ, Brazil
| | - Yara P Cid
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, BR-465, Km 7, 23897-000 Seropédica, RJ, Brazil
| |
Collapse
|
8
|
El-Enin ASMA, Elbakry AM, Hosary RE, Lotfy MAF. Formulation, development, and in-vitro/ ex-vivo evaluation of vaginal bioadhesive salbutamol sulfate tablets for preterm labor. Pharm Dev Technol 2020; 25:989-998. [PMID: 32397780 DOI: 10.1080/10837450.2020.1767129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Preterm labor is the main cause of death and serious illness of both infants and pregnant women in Africa and worldwide. Parenteral and oral salbutamol sulfate as a B2 antagonist has been used for the treatment of preterm labor. The study aims are to formulate salbutamol sulfate non-invasive vaginal bioadhesive tablets to avoid the side effects of conventional formulations. Full factorial design 41 ×31 ×21 was used for the preparation of 24 vaginal bioadhesive tablet formulations. The independent factors were polymer type (Carbopol 934, HPMC 4000, HEC, and PEG 6000), polymer to drug ratio (1:1, 2:1, and 3:1), and diluent (lactose and mannitol). Vaginal bioadhesive tablets were evaluated for residence time and time required for release 50% of salbutamol sulfate T50% as dependent variables. The formulations were evaluated in terms of drug content, mass variation, hardness, friability, swelling index, residence time, and in-vitro drug release. Results revealed that polymer and diluent types are the most significant factors in both residence time and T50%. A strong positive correlation (0.91) between in-vitro and ex-vivo permeation was observed, which predict the best in-vivo performance of salbutamol vaginal bioadhesive tablet. Thus, salbutamol sulfate vaginal bioadhesive tablets could be a successful remedy for preterm labor.
Collapse
Affiliation(s)
- Amal S M Abu El-Enin
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Department of Pharmaceutics, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Asmaa M Elbakry
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Rania El Hosary
- Department of Pharmaceutics, National Organization of Drug Control and Research (NODCAR), Cairo, Egypt
| | - Marwa Ahmed Fouad Lotfy
- Department of Pharmaceutics, National Organization of Drug Control and Research (NODCAR), Cairo, Egypt
| |
Collapse
|
9
|
Pinheiro IM, Carvalho IPS, Neto JAT, Lopes GLN, de Sousa Coêlho E, Sobrinho-Júnior EPC, de Moraes Alves MM, de Amorim Carvalho FA, Carvalho ALM. Amphotericin B-Loaded Emulgel: Effect of Chemical Enhancers on the Release Profile and Antileishmanial Activity In Vitro. AAPS PharmSciTech 2019; 20:122. [PMID: 30805739 DOI: 10.1208/s12249-019-1323-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/30/2019] [Indexed: 11/30/2022] Open
Abstract
Cutaneous leishmaniasis is a neglected parasitic disease. Treatment is preferably performed with pentavalent antimony associated or not with amphotericin B (AmB). This study aimed to develop an emulgel with different chemical enhancers of cutaneous release. Initially, AmB emulsions were obtained with the chemical promoters, oleic acid and geraniol and without promoter, then for the evaluation of the formulations, a preliminary stability study was carried out where the formulations were submitted to centrifugation, before and after the freeze-thaw cycle and analyzed appearance, color, pH, spreadability, viscosity, conductivity, droplet size, assay, in vitro release study, in vitro antileishmania activity in Leishmania major promastigotes, and macrophage toxicity in the MTT test. The emulsions were yellowish, with no signs of instability after the centrifugation test. The pH range corresponded to that of the skin, which is 4.6 to 5.8, before and after the freeze-thaw cycle, the formulations had good spreadability and did not present significant viscosity differences before and after the freeze-thaw cycle, presenting a non-Newtonian characteristic. AmB content was within the kinetic model of zero order release, the formulation of 3% AmB and 5% oleic acid (formulation 1) was chosen to proceed with the antileishmania activity test and showed potential activity against the in vitro parasite with significant reduction of cytotoxicity on murine macrophages, indicating that the formulation is promising for the treatment of cutaneous leishmaniasis.
Collapse
|
10
|
Santos J, Alfaro MC, Trujillo-Cayado LA, Calero N, Muñoz J. Encapsulation of β-carotene in emulgels-based delivery systems formulated with sweet fennel oil. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.10.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Singh M, Kanoujia J, Parashar P, Arya M, Tripathi CB, Sinha VR, Saraf SK, Saraf SA. Assessment of improved buccal permeation and bioavailability of felodipine microemulsion-based cross-linked polycarbophil gel. Drug Deliv Transl Res 2018; 8:591-601. [DOI: 10.1007/s13346-018-0489-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Calixto GMF, Victorelli FD, Dovigo LN, Chorilli M. Polyethyleneimine and Chitosan Polymer-Based Mucoadhesive Liquid Crystalline Systems Intended for Buccal Drug Delivery. AAPS PharmSciTech 2018; 19:820-836. [PMID: 29019033 DOI: 10.1208/s12249-017-0890-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/21/2017] [Indexed: 12/21/2022] Open
Abstract
The buccal mucosa is accessible, shows rapid repair, has an excellent blood supply, and shows the absence of the first-pass effect, which makes it a very attractive drug delivery route. However, this route has limitations, mainly due to the continuous secretion of saliva (0.5 to 2 L/day), which may lead to dilution, possible ingestion, and unintentional removal of the active drug. Nanotechnology-based drug delivery systems, such as liquid crystalline systems (LCSs), can increase drug permeation through the mucosa and thereby improve drug delivery. This study aimed at developing and characterizing the mechanical, rheological, and mucoadhesive properties of four liquid crystalline precursor systems (LCPSs) composed of four different aqueous phases (i) water (FW), (ii) chitosan (FC), (iii) polyethyleneimine (FP), or (iv) both polymers (FPC); oleic acid was used as the oil phase, and ethoxylated and propoxylated cetyl alcohol was used as the surfactant. Polarized light microscopy and small-angle X-ray scattering indicated that all LCPSs formed liquid crystalline states after incorporation of saliva. Rheological, texture, and mucoadhesive assays showed that FPC had the most suitable characteristics for buccal application. In vitro release study showed that FPC could act as a controlled drug delivery system. Finally, based on in vitro cytotoxicity data, FPC is a safe buccal drug delivery system for the treatment of several buccal diseases.
Collapse
|
13
|
|
14
|
The Monoglyceride Content Affects the Self-Assembly Behavior, Rheological Properties, Syringeability, and Mucoadhesion of In Situ–Gelling Liquid Crystalline Phase. J Pharm Sci 2016; 105:2355-64. [DOI: 10.1016/j.xphs.2016.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/24/2016] [Accepted: 05/03/2016] [Indexed: 10/21/2022]
|
15
|
Singh M, Kanoujia J, Singh P, Parashar P, Arya M, Tripathi CB, Sinha VR, Saraf SA. Development of an α-linolenic acid containing a soft nanocarrier for oral delivery-part II: buccoadhesive gel. RSC Adv 2016. [DOI: 10.1039/c6ra20896g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Development and evaluation of a novel buccoadhesive gel containing microemulsion to enhance the permeation and bioavailability of simvastatin.
Collapse
Affiliation(s)
- Mahendra Singh
- Department of Pharmaceutical Sciences
- Babasaheb Bhimrao Ambedkar University (A Central University) Vidya Vihar
- Lucknow-226025
- India
| | - Jovita Kanoujia
- Department of Pharmaceutical Sciences
- Babasaheb Bhimrao Ambedkar University (A Central University) Vidya Vihar
- Lucknow-226025
- India
| | - Pooja Singh
- Department of Pharmaceutical Sciences
- Babasaheb Bhimrao Ambedkar University (A Central University) Vidya Vihar
- Lucknow-226025
- India
| | - Poonam Parashar
- Department of Pharmaceutical Sciences
- Babasaheb Bhimrao Ambedkar University (A Central University) Vidya Vihar
- Lucknow-226025
- India
| | - Malti Arya
- Department of Pharmaceutical Sciences
- Babasaheb Bhimrao Ambedkar University (A Central University) Vidya Vihar
- Lucknow-226025
- India
| | - Chandra Bhushan Tripathi
- Department of Pharmaceutical Sciences
- Babasaheb Bhimrao Ambedkar University (A Central University) Vidya Vihar
- Lucknow-226025
- India
| | - Vivek R. Sinha
- University Institute of Pharmaceutical Sciences
- Panjab University
- Chandigarh-160014 (UT)
- India
| | - Shubhini A. Saraf
- Department of Pharmaceutical Sciences
- Babasaheb Bhimrao Ambedkar University (A Central University) Vidya Vihar
- Lucknow-226025
- India
| |
Collapse
|
16
|
Using chitosan gels as a toluidine blue O delivery system for photodynamic therapy of buccal cancer: In vitro and in vivo studies. Photodiagnosis Photodyn Ther 2015; 12:98-107. [DOI: 10.1016/j.pdpdt.2014.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 11/23/2022]
|
17
|
Kassem MA, ElMeshad AN, Fares AR. Enhanced bioavailability of buspirone hydrochloride via cup and core buccal tablets: Formulation and in vitro/in vivo evaluation. Int J Pharm 2014; 463:68-80. [DOI: 10.1016/j.ijpharm.2014.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/30/2013] [Accepted: 01/02/2014] [Indexed: 11/16/2022]
|
18
|
Shen Y, Ling X, Jiang W, Du S, Lu Y, Tu J. Formulation and evaluation of Cyclosporin A emulgel for ocular delivery. Drug Deliv 2014; 22:911-7. [PMID: 24401095 PMCID: PMC11132679 DOI: 10.3109/10717544.2013.861883] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/30/2013] [Accepted: 10/30/2013] [Indexed: 12/23/2022] Open
Abstract
Emulgels have been extensively covered as a promising drug delivery system for the administration of lipophilic drugs. This work was conducted to develop an emulgel formulation for Cyclosporin A (CsA) employing polycarbophil as the gelling agent for ocular delivery. The prepared emulgels were evaluated for their physical appearance, rheological behavior, drug release, stability, precorneal clearance and irritation. Results showed that CsA emulgel formulations prepared with polycarbophil exhibited acceptable physical properties and drug release, which remained consistent after storage for 3 months. A prolonged retention time was also observed on the ocular surface with improved ocular bioavailability and no irritation. Therefore, the polycarbophil-based emulgel could be exploited as a potential hydrophobic drug carrier for topical ocular drug delivery.
Collapse
Affiliation(s)
- Yan Shen
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Xiang Ling
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Weiwei Jiang
- Patent Examination Cooperation Center of SIPO, Jiangsu, Suzhou, China, and
| | - Shuang Du
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Yang Lu
- Department of Industrial Pharmacy, School of Chinese Pharmacy, Beijing University of TCM, Beijing, China
| | - Jiasheng Tu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
19
|
Hydrotalcite composites for an effective fluoride buccal administration: A new technological approach. Int J Pharm 2013; 454:259-68. [DOI: 10.1016/j.ijpharm.2013.06.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/20/2013] [Accepted: 06/27/2013] [Indexed: 11/20/2022]
|
20
|
Rehman K, Zulfakar MH. Recent advances in gel technologies for topical and transdermal drug delivery. Drug Dev Ind Pharm 2013; 40:433-40. [PMID: 23937582 DOI: 10.3109/03639045.2013.828219] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transdermal drug delivery systems are a constant source of interest because of the benefits that they afford in overcoming many drawbacks associated with other modes of drug delivery (i.e. oral, intravenous). Because of the impermeable nature of the skin, designing a suitable drug delivery vehicle that penetrates the skin barrier is challenging. Gels are semisolid formulations, which have an external solvent phase, may be hydrophobic or hydrophilic in nature, and are immobilized within the spaces of a three-dimensional network structure. Gels have a broad range of applications in food, cosmetics, biotechnology, pharmatechnology, etc. Typically, gels can be distinguished according to the nature of the liquid phase, for example, organogels (oleogels) contain an organic solvent, and hydrogels contain water. Recent studies have reported other types of gels for dermal drug application, such as proniosomal gels, emulgels, bigels and aerogels. This review aims to introduce the latest trends in transdermal drug delivery via traditional hydrogels and organogels and to provide insight into the latest gel types (proniosomal gels, emulgels, bigels and aerogels) as well as recent technologies for topical and transdermal drug delivery.
Collapse
Affiliation(s)
- Khurram Rehman
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| | | |
Collapse
|
21
|
Ajazuddin, Alexander A, Khichariya A, Gupta S, Patel RJ, Giri TK, Tripathi DK. Recent expansions in an emergent novel drug delivery technology: Emulgel. J Control Release 2013; 171:122-32. [PMID: 23831051 DOI: 10.1016/j.jconrel.2013.06.030] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/20/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
Abstract
Emulgel is an emerging topical drug delivery system to which if more effort is paid towards its formulation & development with more number of topically effective drugs it will prove a boon for derma care & cosmetology. Emulgels are either emulsion of oil in water or water in oil type, which is gelled by mixing it with gelling agent. Incorporation of emulsion into gel increases its stability & makes it a dual control release system. Due to lack of excess oily bases & insoluble excipients, it shows better drug release as compared to other topical drug delivery system. Presence of gel phase makes it a non greasy & favors good patient compliance. These reviews give knowledge about Emulgel including its properties, advantages, formulation considerations, and its recent advances in research field. All factors such as selection of gelling agent, oil agent, emulsifiers influencing the stability and efficacy of Emulgel are discussed. All justifications are described in accordance with the research work carried out by various scientists. These brief reviews on formulation method have been included. Current research works that carried out on Emulgel are also discussed and highlighted the wide utility of Emulgel in topical drug delivery system. After the vast study, it can be concluded that the Emulgels appear better & effective drug delivery system as compared to other topical drug delivery system. The comprehensive analysis of rheological and release properties will provide an insight into the potential usage of Emulgel formulation as drug delivery system.
Collapse
Affiliation(s)
- Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh, India.
| | | | | | | | | | | | | |
Collapse
|
22
|
Thakur NK, Bharti P, Mahant S, Rao R. Formulation and characterization of benzoyl peroxide gellified emulsions. Sci Pharm 2012; 80:1045-60. [PMID: 23264949 PMCID: PMC3528045 DOI: 10.3797/scipharm.1206-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/31/2012] [Indexed: 11/23/2022] Open
Abstract
The present investigation was carried out with the objective of formulating a gellified emulsion of benzoyl peroxide, an anti-acne agent. The formulations were prepared using four different vegetable oils, viz. almond oil, jojoba oil, sesame oil, and wheat germ oil, owing to their emollient properties. The idea was to overcome the skin irritation and dryness caused by benzoyl peroxide, making the formulation more tolerable. The gellified emulsions were characterized for their homogeneity, rheology, spreadability, drug content, and stability. In vitro permeation studies were performed to check the drug permeation through rat skin. The formulations were evaluated for their antimicrobial activity, as well as their acute skin irritation potential. The results were compared with those obtained for the marketed formulation. Later, the histopathological examination of the skin treated with various formulations was carried out. Formulation F3 was found to have caused a very mild dysplastic change to the epidermis. On the other hand, the marketed formulation led to the greatest dysplastic change. Hence, it was concluded that formulation F3, containing sesame oil (6%w/w), was the optimized formulation. It exhibited the maximum drug release and anti-microbial activity, in addition to the least skin irritation potential.
Collapse
|
23
|
Perioli L, Mutascio P, Pagano C. Influence of the Nanocomposite MgAl-HTlc on Gastric Absorption of Drugs: In Vitro and Ex Vivo Studies. Pharm Res 2012; 30:156-66. [DOI: 10.1007/s11095-012-0857-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 08/06/2012] [Indexed: 01/27/2023]
|
24
|
Cid YP, Pedrazzi V, de Sousa VP, Pierre MBR. In vitro characterization of chitosan gels for buccal delivery of celecoxib: influence of a penetration enhancer. AAPS PharmSciTech 2012; 13:101-11. [PMID: 22160883 DOI: 10.1208/s12249-011-9725-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 11/04/2011] [Indexed: 02/06/2023] Open
Abstract
Celecoxib (Cx) shows high efficacy in the treatment of osteoarthritis and rheumatoid arthritis as a result of its high specificity for COX-2, without gastrolesivity or interference with platelet function at therapeutic concentrations. Besides of anti-inflammatory effects, Cx also has a potential role for oral cancer chemoprevention. For these conditions, oral administration in long-term treatment is a concern due to its systemic side effects. However, local application at the site of injury (e.g., buccal inflammation conditions or chemoprevention of oral cancer) is a promising way to reduce its toxicity. In this study, the in vitro characterization of mucoadhesive chitosan (CHT) gels associated to Azone® was assessed to explore the potential buccal mucosal administration of Cx in this tissue. Rheological properties of gels were analyzed by a rheometer with cone-plate geometry. In vitro Cx release and permeability studies used artificial membranes and pig cheek mucosa, respectively. Mucoadhesion were measured with a universal test machine. CHT gels (3.0%) containing 2.0% or 3.0% Az showed more appropriate characteristics compared to the others: pH values, rheology, higher amount of Cx retained in the mucosa, and minimal permeation through mucosa, besides the highest mucoadhesion values, ideal for buccal application. Moreover, the flux (J) and amounts of drug released decreased with increased CHT and Az concentrations. CHT gels (3.0%) associated with 2.0% or 3.0% Az may be considered potential delivery systems for buccal administration of Cx.
Collapse
|
25
|
Patel VF, Liu F, Brown MB. Advances in oral transmucosal drug delivery. J Control Release 2011; 153:106-16. [DOI: 10.1016/j.jconrel.2011.01.027] [Citation(s) in RCA: 270] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 01/24/2011] [Indexed: 01/24/2023]
|
26
|
Karavana SY, Güneri P, Ertan G. Benzydamine hydrochloride buccal bioadhesive gels designed for oral ulcers: preparation, rheological, textural, mucoadhesive and release properties. Pharm Dev Technol 2010; 14:623-31. [PMID: 19883251 DOI: 10.3109/10837450902882351] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study developed and examined the characterization of Benzidamine hydrochloride (BNZ) bioadhesive gels as platforms for oral ulcer treatments. Bioadhesive gels were prepared with four different hydroxypropylmethylcellulose (HPMC) types (E5, E15, E50 and K100M) with different ratios. Each formulation was characterized in terms of drug release, rheological, mechanical properties and adhesion to a buccal bovine mucosa. Drug release was significantly decreased as the concentration and individual viscosity of each polymeric component increased due to improved viscosity of the gel formulations. The amount of drug released for the formulations ranged from 0.76 +/- 0.07 and 1.14 +/- 0.01 (mg/cm2 +/- SD). Formulations exhibited pseudoplastic flow and all formulations, increasing the concentration of HPMC content significantly raised storage modulus (G'), loss modulus (G''), dynamic viscosity (eta') at 37 degrees C. Increasing concentration of each polymeric component also significantly improved the hardness, compressibility, adhesiveness, cohesiveness and mucoadhesion but decreased the elasticity of the gel formulations. All formulations showed non-Fickian diffusion due to the relaxation and swelling of the polymers with water. In conclusion, the formulations studied showed a wide range of mechanical and drug diffusion characteristics. On the basis of the obtained data, the bioadhesive gel formulation which was prepared with 2.5% HPMC K 100M was determined as the most appropriate formulation for buccal application in means of possessing suitable mechanical properties, exhibiting high cohesion and bioadhesion.
Collapse
Affiliation(s)
- Sinem Yaprak Karavana
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ege University, 35100 Bornova, Izmir, Turkey.
| | | | | |
Collapse
|
27
|
El-Setouhy DA, Ahmed El-Ashmony SM. Ketorolac trometamol topical formulations: release behaviour, physical characterization, skin permeation, efficacy and gastric safety. J Pharm Pharmacol 2010; 62:25-34. [DOI: 10.1211/jpp.62.01.0002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Objectives
The objective of this study was to improve systemic delivery of the highly analgesic ketorolac trometamol (ketorolac tromethamine) via the transdermal route, through cost-effective topical formulations, to avoid most of the problems associated with ketorolac trometamol therapy.
Methods
In-vitro release behaviour of the drug from different microemulsion and emulgel formulations was evaluated. E2 emulgel (based on isopropyl myristate as penetration enhancer) and E7 emulgel (based on Brij 92 as penetration enhancer) were evaluated for their physical properties, rat skin permeation, in-vivo analgesic effect (hot-plate test and the paw pressure test), acute and chronic anti-inflammatory activity and gastric safety.
Key findings
Isopropyl myristate and the synergistic effect of the two known penetration enhancers (propylene glycol and Brij 92) significantly modulated drug permeation and may be a promising approach for the transdermal delivery of ketorolac trometamol and other drugs. Selected in-vivo tested formulae (E2 and E7) caused significantly less ulcer score and less gastric erosion compared with oral ketorolac trometamol. E7 showed significantly higher analgesic and anti-inflammatory activity compared with E2 with no significant difference compared with oral ketorolac trometamol.
Conclusions
The developed ketorolac trometamol E7 emulgel appeared promising for dermal and transdermal delivery of ketorolac trometamol, which would circumvent most of the problems associated with drug therapy.
Collapse
|
28
|
Garsuch V, Breitkreutz J. Novel analytical methods for the characterization of oral wafers. Eur J Pharm Biopharm 2009; 73:195-201. [PMID: 19482082 DOI: 10.1016/j.ejpb.2009.05.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 05/22/2009] [Indexed: 11/20/2022]
Abstract
This study aims at compensating the lack of adequate methods for the characterization of the novel dosage forms buccal wafers by applying recent advanced analytical techniques. Fast-dissolving oral wafers need special methods for assessing their properties in drug development and quality control. For morphologic investigations, scanning electron microscopy (SEM) and near-infrared chemical imaging (NIR-CI) were used. Differences in the distribution of the active pharmaceutical ingredient within wafers can be depicted by NIR-CI. Film thickness was determined by micrometer screw and coating thickness gauge revealing no significant differences between the obtained values. To distinguish between the mechanical properties of different polymers, tensile test was performed. Suitable methods to predict disintegration behaviour are thermomechanical analysis and contact angle measurement. The determination of drug release was carried out by three different methods. Fibre-optic sensor systems allow an online measurement of the drug release profiles and the thorough analysis even within the first seconds of disintegration and drug dissolution.
Collapse
Affiliation(s)
- Verena Garsuch
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University, Düsseldorf, Germany
| | | |
Collapse
|