1
|
Kim J, Jeong J, Jo JK, So H. Hollow microneedles as a flexible dosing control solution for transdermal drug delivery. Mater Today Bio 2025; 32:101754. [PMID: 40290896 PMCID: PMC12033995 DOI: 10.1016/j.mtbio.2025.101754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/16/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
Microneedles, small needle-like structures typically less than 1000 μm in length, are effective tools for transporting substances across biological barriers via minimally invasive pathways. Various microelectromechanical system (MEMS) processes enable the production of different types of microneedles, including solid, coated, dissolving, hydrogel, and hollow microneedles, each tailored to specific drug and fluid delivery mechanisms. Among these, hollow microneedles stand out for their ability to offer flexible dosage control adaptable to varying drug formulations, making them particularly promising for transdermal drug delivery systems. This review examines the fabrication processes of hollow microneedles, highlights the advantages of their hollow structure for medical applications, and discusses the key factors influencing their performance. Finally, it proposes directions for advancing these technologies in both industrial and research settings.
Collapse
Affiliation(s)
- Jongwon Kim
- Department of Medical and Digital Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Jaeheon Jeong
- Department of Medical and Digital Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Jung Ki Jo
- Department of Medical and Digital Engineering, Hanyang University, Seoul, 04763, South Korea
- Department of Urology, College of Medicine, Hanyang University, Seoul, 04763, South Korea
| | - Hongyun So
- Department of Medical and Digital Engineering, Hanyang University, Seoul, 04763, South Korea
- Department of Mechanical Engineering, Hanyang University, Seoul, 04763, South Korea
| |
Collapse
|
2
|
Feng L, Li M, Dai Z, Xu Y, Zhang Z, Zhang M, Yu D, Li D. 3D printed emulsion gels stabilized by whey protein isolate/polysaccharide as sustained-release delivery systems of β-carotene. Carbohydr Polym 2025; 355:123429. [PMID: 40037721 DOI: 10.1016/j.carbpol.2025.123429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/06/2025]
Abstract
The low bioaccessibility of β-carotene limits its application in the food field. 3D printed emulsion gels stabilized by whey protein/polysaccharide were constructed in our previous study, and the stability of β-carotene was improved. However, the release behaviour and bioaccessibility of β-carotene have not been thoroughly explored. This study aimed to explore the effects of different charged polysaccharides on the release and bioaccessibility of β-carotene from 3D printed delivery systems and to analyze their relationship with protein secondary structure. The results showed that the printed systems induced by adding xanthan gum (anionic) had lower degree of hydrolysis (DH) of protein and release of free fatty acids (FFAs), and lower β-carotene release and bioaccessibility. The printed systems induced by adding guar gum (neutral), locust bean gum (neutral) and gum arabic (anionic) exhibited higher DH of protein and release of FFAs (>91 %), higher β-carotene release (>93 %) and bioaccessibility (>30 %). The release of β-carotene from the printed systems during digestion conformed to the logistic model, with frame erosion and Fickian diffusion being main mechanisms. The digestibility, β-carotene release and bioaccessibility of the printed systems were positively correlated with β-turn content. The printed system with guar gum had the highest β-carotene bioaccessibility (33.95 %).
Collapse
Affiliation(s)
- Lei Feng
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, China; School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China.
| | - Ming Li
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, China
| | - Zhuqing Dai
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, China
| | - Yayuan Xu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, China
| | - Zhongyuan Zhang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Dongxing Yu
- Shanghao Biotech Co., Ltd., 266700 Qingdao, Shandong, China
| | - Dajing Li
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Gerg A, Dobrovolny HM. Quantifying Impact of HIV Receptor Surface Density Reveals Differences in Fusion Dynamics of HIV Strains. Viruses 2025; 17:583. [PMID: 40285025 PMCID: PMC12031222 DOI: 10.3390/v17040583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/04/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Human Immunodeficiency Virus (HIV) Type-1 has been studied heavily for decades, yet one area that is still poorly understood is the virus' ability to cause cell-cell fusion. In HIV, the fusion process is mediated by viral surface glycoproteins that bind to CD4 cell receptors. This virus-mediated cell fusion creates multi-nucleated cells called syncytia that can affect infection dynamics. Syncytia formation is often studied using a cell-cell fusion assay, in which donor cells expressing the viral surface protein fuse with acceptor cells expressing the cell receptor. A mathematical model capable of reproducing the dynamics of the cell-cell fusion assay was recently developed and can be used to quantify changes in syncytia formation. In this study, we use this mathematical model to quantify the changes in syncytia formation in HIV as the surface density of the glycoproteins is varied. We find that we need to modify the model to explicitly include a density-dependent syncytia formation rate that allows us to capture the dynamics of the cell-cell fusion assay as the density of the glycoproteins changes. With this modification, we find that cell-cell fusion of the HXB2 strain, which uses the CXCR4 coreceptor, shows a threshold-like behavior, while cell-cell fusion of the Sf162 strain, which uses the CCR5 co-receptor, shows a more gradual change as surface density decreases.
Collapse
Affiliation(s)
| | - Hana M. Dobrovolny
- Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX 76129, USA;
| |
Collapse
|
4
|
Wlodarczyk J, Musial-Kulik M, Jelonek K, Pastusiak M, Stojko M, Hercog A, Janeczek H, Chaber P, Sobota M, Kasperczyk J. Electrospun poly(ester-carbonate)/poly(carbonate-urethane) membranes with controlled drug release for potential use in abdominal surgery. Eur J Pharm Sci 2025:107105. [PMID: 40254102 DOI: 10.1016/j.ejps.2025.107105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/24/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Surgical meshes and patches used in abdominal surgery, despite their effectiveness, have a number of disadvantages that may lead to complications. This is due to the properties of the materials used for their construction and the structure of the implant itself. This paper presents an attempt to obtain an implant material, that could be used in surgery, combining the advantages of biodegradable and non-degradable polymers, while eliminating their weaknesses, additionally providing the possibility of using local pharmacotherapy. For this purpose a poly(caprolactone-co-trimethylene carbonate) blend with a 10% addition of poly(ε-caprolactone) (PCLTMC:PCL) was utilized as a biodegradable drug carrier. Using a dual-jet electrospinning method, the blend was interlaced with non-degradable poly(carbonate-urethane) (PCU) nanofibers of varying hydrophilicity, forming semi-fibrous membranes. The primary aim of the research was to obtain control over drugs release kinetics simultaneously maintaining stable mechanical properties of membranes during incubation in vitro. These objectives were achieved through the use of a specific gradient structure design, enriched with a drug-releasing fraction at the surface and PCU in the core. It was observed that the hydrophilicity of membranes influenced the mechanisms and rate of the diffusion of water to the bulk and the drugs along with degradation by-products to the incubation medium. Additionally, the gradient structure enabled control over the permeation of low-molecular-weight model compound from one side of the membrane to the other. The results also demonstrated that the number of fibroblasts adsorbed on the membrane surface depended primarily on its morphology and hydrophilicity, suggesting the potential to achieve favourable integration with tissues. The developed material exhibits significant potential for applications in abdominal surgery.
Collapse
Affiliation(s)
- J Wlodarczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819 Zabrze, Poland.
| | - M Musial-Kulik
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819 Zabrze, Poland.
| | - K Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819 Zabrze, Poland
| | - M Pastusiak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819 Zabrze, Poland
| | - M Stojko
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819 Zabrze, Poland
| | - A Hercog
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819 Zabrze, Poland
| | - H Janeczek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819 Zabrze, Poland
| | - P Chaber
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819 Zabrze, Poland
| | - M Sobota
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819 Zabrze, Poland
| | - J Kasperczyk
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 8 Jednosci St., 41-200 Sosnowiec, Poland
| |
Collapse
|
5
|
Obeidat WM, Lahlouh IK. Chitosan Nanoparticles: Approaches to Preparation, Key Properties, Drug Delivery Systems, and Developments in Therapeutic Efficacy. AAPS PharmSciTech 2025; 26:108. [PMID: 40244367 DOI: 10.1208/s12249-025-03100-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
The integration of nanotechnology into drug delivery systems holds great promise for enhancing pharmaceutical effectiveness. This approach enables precise targeting, controlled release, improved patient compliance, reduced side effects, and increased bioavailability. Nanoparticles are vital for transporting biomolecules-such as proteins, enzymes, genes, and vaccines-through various administration routes, including oral, intranasal, vaginal, buccal, and pulmonary. Among biodegradable polymers, chitosan, a linear polysaccharide derived from chitin, stands out due to its biocompatibility, safety, biodegradability, mucoadhesive properties, and ability to enhance permeation. Its cationic nature supports strong molecular interactions and provides antimicrobial, anti-inflammatory, and hemostatic benefits. However, its solubility, influenced by pH and ionic sensitivity, poses challenges requiring effective solutions. This review explores chitosan, its modified derivatives and chitosan nanoparticles mainly, focusing on nanoparticles physicochemical properties, drug release mechanisms, preparation methods, and factors affecting their mean hydrodynamic diameter (particle size). It highlights their application in drug delivery systems and disease treatments across various routes. Key considerations include drug loading capacity, zeta potential, and stability, alongside the impact of molecular weight, degree of deacetylation, and drug solubility on nanoparticle properties. Recent advancements and studies underscore chitosan's potential, emphasizing its modified derivatives'versatility in improving therapeutic outcomes.
Collapse
Affiliation(s)
- Wasfy M Obeidat
- Jordan University of Science and Technology, 3030, Irbid, 22110, Jordan.
| | - Ishraq K Lahlouh
- Jordan University of Science and Technology, 3030, Irbid, 22110, Jordan
| |
Collapse
|
6
|
Liu B, Huang Y, Liu X, Yang H, Li S, Li Y. A comparative study of the controllable release and insecticidal efficacy for two typical carrier methods on diamide insecticide delivery system. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106313. [PMID: 40015905 DOI: 10.1016/j.pestbp.2025.106313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/19/2025] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
Using nano/microcarriers of pesticides in sustainable pest management represents a promising strategy for enhancing pesticide efficiency while mitigating environmental harm. The reported pesticide loading methods include one-step self-assembly encapsulation and two-step absorption loading, but the controllable release and insecticidal efficacy of these two methods have been infrequently evaluated. Herein, the typical diamide insecticide cyantraniliprole (CTP) was employed as the model pesticide. A hydrogen bond-driven one-step self-assembly method and a chemical deposition method were utilized to fabricate highly dispersed polylactic acid (PLA) microspheres and calcium carbonate (CaCO3) microspheres. The resulting CTP-loaded PLA microspheres (CTP-PLA MS) and CaCO3 microspheres (CTP-CaCO3 MS) both exhibited high adhesion, resistance to rain erosion, and insecticidal activity under laboratory conditions. However, the functional CTP-PLA MS demonstrated superior sustained pesticide release performance, higher pesticide loading capacity, and less application amount than that of CTP-CaCO3 MS. At the same time, the acute toxicity of CTP-PLA MS exhibited slightly reduced acute toxicity to honeybees (Apis mellifera), signifying enhanced biocompatibility. Finally, the CTP-PLA MS maintained superior insecticidal efficacy than the normal CTP in controlling O. nubilalis at a low concentration. The present study represents a promising pesticide carrier as a highly efficient, eco-friendly agent for sustained management of O. nubilalis.
Collapse
Affiliation(s)
- Bingrui Liu
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Yucong Huang
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xingyu Liu
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Huiying Yang
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Shaochen Li
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Yahui Li
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
7
|
Tasevska T, Adamov I, Geskovski N, Ibrić S, Goracinova K, Crcarevska MS. 3D printed extended-release hydrochlorothiazide tablets. Eur J Pharm Sci 2025; 206:106998. [PMID: 39725334 DOI: 10.1016/j.ejps.2024.106998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/29/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
In this study 3D printed tablets (printlets) with extended release of hydrochlorothiazide (HHT) as model active ingredient were designed and developed. Four formulations, F0.1SSE, F1SSE, F0.1DLP and F1DLP, have been manufactured and characterized, using non-typical semi-solid extrusion (SSE) with UV light solidification and digital light processing (DLP) techniques. Obtained rheological studies pointed out to F1SSE and F1DLP as more suitable for SSE and DLP printing, respectively. Photopolymerization process between photopolymer (PEGDA) and photoinitiator (DPPO; 0.1% and 1%) was investigated using FTIR, with PCA modeling utilized to analyze spectral variations over time and estimate crosslinking kinetics. SSE printlets averaged ∼6.5 mm in diameter, ∼3 mm in height and ∼110 mg in mass, while DLP printlets averaged ∼8.5 mm in diameter, ∼2.5 mm in height, with masses of ∼170 mg (F0.1DLP) and ∼220 mg (F1DLP). All four formulations complied to the requirements of European pharmacopeia for uniformity of dosage units of single dose preparations. In vitro release studies indicated extended-release profiles in both 0.1M Hydrochloric acid (HCl) and phosphate buffer pH 6.8 for SSE and DLP printlets. The release kinetics of HHT from the printlets were modeled to fit First order, Higuchi, Korsmeyer-Peppas and Hixson-Crowell equations and the most probable ones were determined based on the R2 values and Akaike information criterion. FTIR and Raman spectroscopic analyses of printlets confirmed the presence of characteristic peaks from both, HHT and excipients, as well as modifications in bonds due to the photopolymeric reaction.
Collapse
Affiliation(s)
- Teodora Tasevska
- Institute of Pharmaceutical Technology, Center of pharmaceutical nanotechnology, Faculty of Pharmacy, Ss. Cyril & Methodius University in Skopje, Majka Tereza 47, 1000 Skopje, R North Macedonia.
| | - Ivana Adamov
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Nikola Geskovski
- Institute of Pharmaceutical Technology, Center of pharmaceutical nanotechnology, Faculty of Pharmacy, Ss. Cyril & Methodius University in Skopje, Majka Tereza 47, 1000 Skopje, R North Macedonia
| | - Svetlana Ibrić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Katerina Goracinova
- Institute of Pharmaceutical Technology, Center of pharmaceutical nanotechnology, Faculty of Pharmacy, Ss. Cyril & Methodius University in Skopje, Majka Tereza 47, 1000 Skopje, R North Macedonia
| | - Maja Simonoska Crcarevska
- Institute of Pharmaceutical Technology, Center of pharmaceutical nanotechnology, Faculty of Pharmacy, Ss. Cyril & Methodius University in Skopje, Majka Tereza 47, 1000 Skopje, R North Macedonia
| |
Collapse
|
8
|
Wang Y, Zhang Y, Zhong H, Guo M, Chen X, Lu Y. Construction of a non-toxic interpenetrating network hydrogel drug carrier supported by carbon microspheres and nanocellulose. Carbohydr Polym 2025; 350:123035. [PMID: 39647942 DOI: 10.1016/j.carbpol.2024.123035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 12/10/2024]
Abstract
To develop a stable hydrogel drug carrier with excellent biocompatibility, biodegradability and low toxicity, a green biomass-based hydrogel was prepared as a methylene blue (MB) drug carrier model using cellulose and sodium alginate (SA) polysaccharide. The addition of nanocellulose (CNF) and hydrothermally prepared carbon microspheres to the hydrogel network formed by SA undergoing chelation with Ca2+ enhanced the multifaceted properties of the drug carrier. Additionally, the prepared SA-CNFgelCS0.1 could withstand a pressure of 8.64 N and showed good compressive and elastic properties. Meanwhile, its encapsulation rate and drug loading capacity could reach 95.5 % and 19.36 mg/g, respectively. The drug release rate reached 43.4 % at 100 h in PBS solution simulating the pH value of the gastric environment, indicating good pH-responsiveness and long-lasting release ability during the drug-carrying release process. The release mechanism of the drug carrier to MB was investigated by different release kinetic models, which was in accordance with the first-order kinetic model. SA-CNFgelCS0.1 at high concentration also did not affect the number of pancreatic cell survival and showed a high degree of biocompatibility. In addition to that, SA-CNFgelCS0.1 can reach 100 % degradation rate in 18 days, which has no burden on the environment during use. The present study offers a novel approach to the synthesis of a biomass drug-carrying model with enhanced performance. Furthermore, this drug carrier provides a promising foundation for the development of oral MB as a potential treatment for gastrointestinal diseases and other chronic condition.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Ying Zhang
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Hao Zhong
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Minghui Guo
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China.
| | - Xueqi Chen
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Yanan Lu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010000, China.
| |
Collapse
|
9
|
Martinović J, Ambrus R, Planinić M, Perković G, Šelo G, Klarić AM, Bucić-Kojić A. Spray-Drying Microencapsulation of Grape Pomace Extracts with Alginate-Based Coatings and Bioaccessibility of Phenolic Compounds. Gels 2025; 11:130. [PMID: 39996673 PMCID: PMC11854297 DOI: 10.3390/gels11020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Spray-drying is a common technique for the microencapsulation of bioactive compounds, which is crucial for improving their stability and bioavailability. In this study, the encapsulation efficiency (EE), physicochemical properties and in vitro bioaccessibility of phenolic compounds from spray-dried encapsulated phenol-rich extracts of grape pomace, a winery waste, were evaluated. Sodium alginate alone (SA) or in a mixture with gum Arabic (SA-GA) or gelatin (SA-GEL) was used as a coating. SA-GEL achieved the highest EE (95.90-98.01%) and outperformed the intestinal release of phenolics by achieving a bioaccessibility index (BI) for total phenolic compounds of 37.8-96.2%. The release mechanism of phenolics from the microcapsules adhered to Fickian diffusion. Encapsulation significantly improved the BI of individual phenolics, with the highest BI values for gallocatechin gallate (2028.7%), epicatechin gallate (476.4%) and o-coumaric acid (464.2%) obtained from the SA-GEL microcapsules. Structural analysis confirmed amorphous matrices in all systems, which improved solubility and stability. These results suggest that encapsulation by spray-drying effectively protects phenolics during digestion and ensures efficient release in the intestine, which improves bioaccessibility. This study contributes to the understanding of biopolymer-based encapsulation systems, but also to the valorisation of grape pomace as a high-value functional ingredient in sustainable food processing.
Collapse
Affiliation(s)
- Josipa Martinović
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31000 Osijek, Croatia (M.P.); (G.P.); (G.Š.); (A.-M.K.)
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary;
| | - Mirela Planinić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31000 Osijek, Croatia (M.P.); (G.P.); (G.Š.); (A.-M.K.)
| | - Gabriela Perković
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31000 Osijek, Croatia (M.P.); (G.P.); (G.Š.); (A.-M.K.)
| | - Gordana Šelo
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31000 Osijek, Croatia (M.P.); (G.P.); (G.Š.); (A.-M.K.)
| | - Ana-Marija Klarić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31000 Osijek, Croatia (M.P.); (G.P.); (G.Š.); (A.-M.K.)
| | - Ana Bucić-Kojić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31000 Osijek, Croatia (M.P.); (G.P.); (G.Š.); (A.-M.K.)
| |
Collapse
|
10
|
Sun Y, Qin S, Li Y, Hasan N, Li YV, Liu J. Machine learning integrated with in vitro experiments for study of drug release from PLGA nanoparticles. Sci Rep 2025; 15:4218. [PMID: 39905099 PMCID: PMC11794646 DOI: 10.1038/s41598-024-82728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 12/09/2024] [Indexed: 02/06/2025] Open
Abstract
This paper investigates delivery of encapsulated drug from poly lactic-co-glycolic micro-/nano-particles. Experimental data collected from about 50 papers are analyzed by machine learning algorithms including linear regression, principal component analysis, Gaussian process regression, and artificial neural networks. The focus is to understand the effect of drug solubility, drug molecular weight, particle size, and pH-value of the release matrix/environment on drug release profiles. The results obtained from machine learning is then used as guidelines for designing new in vitro experiments to examine dependence of drug release profiles on those four factors. It is interesting to see that indeed the results of the new in vitro experiments are in basic agreement with the results obtained from machine learning.
Collapse
Affiliation(s)
- Yu Sun
- School of Materials Science and Engineering, Colorado State University, Fort Collins, CO, 80523-1617, USA
| | - Shuhuai Qin
- Department of Mathematics, Colorado State University, Fort Collins, CO, 80523-1874, USA
| | - Yingli Li
- Department of Mathematics, Colorado State University, Fort Collins, CO, 80523-1874, USA
| | - Naimul Hasan
- Department of Design and Merchandising, Colorado State University, Fort Collins, CO, 80523-1574, USA
| | - Yan Vivian Li
- School of Materials Science and Engineering, Colorado State University, Fort Collins, CO, 80523-1617, USA
- Department of Design and Merchandising, Colorado State University, Fort Collins, CO, 80523-1574, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jiangguo Liu
- School of Materials Science and Engineering, Colorado State University, Fort Collins, CO, 80523-1617, USA.
- Department of Mathematics, Colorado State University, Fort Collins, CO, 80523-1874, USA.
| |
Collapse
|
11
|
Crispino R, Lagreca E, Procopio A, D'Auria R, Corrado B, La Manna S, Onesto V, Di Natale C. Advanced polymeric systems for colon drug delivery: from experimental models to market applications. SOFT MATTER 2025; 21:792-818. [PMID: 39801430 DOI: 10.1039/d4sm01222d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
In recent years, nano and micro drug delivery systems targeting the colon have gained more attention due to increasing interest in treating colon diseases such as colorectal cancer and inflammatory bowel disease, i.e., Crohn's disease and ulcerative colitis. Usually, nanocarriers are exploited for their enhanced permeability properties, allowing higher penetration effects and bioavailability, while microcarriers are primarily used for localized and sustained release. In bowel diseases, carriers must go into a delicate environment with a strict balance of gut bacteria (e.g., colon), and natural or biodegradable polymers capable of ensuring lower toxicity are preferred. However, these systems are primarily delivered orally, so the carrier must go through the whole gastrointestinal tract, where it encounters significant pH fluctuations, different mucus layers, several enzymes, and a long transit time. For this reason, various approaches have been explored and evaluated, especially using pH-responsive and time-dependent systems. This review provides an overview of the contemporary methodologies employed in orally administered nano- and microparticles for colon delivery, encompassing both in vivo and in vitro investigations. It evaluates their strengths, weaknesses, constraints, and potential enhancements, leveraging mathematical and microfluidic models. Furthermore, it focuses explicitly on systems that have already reached the market and are presently employed in treating severe colon diseases.
Collapse
Affiliation(s)
- R Crispino
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, Napoli, Italy
- Department of Chemical Materials and Industrial Production (DICMaPI), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy.
| | - E Lagreca
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, Napoli, Italy
| | - A Procopio
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - R D'Auria
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, Napoli, Italy
| | - B Corrado
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
| | - S La Manna
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy.
| | - V Onesto
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, Napoli, Italy
| | - C Di Natale
- Department of Chemical Materials and Industrial Production (DICMaPI), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy.
| |
Collapse
|
12
|
Jeong HM, Kim H, Jang T, Choi A, Park JB, Park C, Lee BJ. Release-modulating mechanism and comparative pharmacokinetics in beagle dogs of bethanechol-loaded oral dosage forms. Int J Pharm 2025; 669:125091. [PMID: 39701474 DOI: 10.1016/j.ijpharm.2024.125091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/26/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Bethanechol chloride (BTC), a quaternary ammonium compound used in bladder dysfunction treatment, requires challenges in developing optimal oral dosage forms due to its high water-solubility, short half-life, rapid elimination and four times a day administration. The aim of this study was to develop optimal BTC-loaded oral dosage forms that could provide both rapid onset and sustained therapeutic effects while reducing the frequency of conventional four-times-daily dosing (Mytonin® tablets). Four different BTC-loaded oral dosage forms were designed including gastro-retentive tablet (GRT), controlled-release tablet (CRT), bilayer tablet (BLT), and tablet-in-tablet (TIT). Then, release-modulating mechanism and in vivo pharmacokinetics in beagle dogs were compared. The release profiles of the four BTC-loaded dosage forms varied according to system design and formulation composition. The optimized GRT F-5 showed rapid buoyancy within 15 s and floated for 12 h, while continuously releasing the drug. CRT showed Fickian diffusion release, whereas BLT and TIT exhibited biphasic immediate and sustained release profiles. Polymer swelling behavior was analyzed using the Vergnaud model, where GRT F-5 and CRT showed n values < 0.5, confirming diffusion-controlled polymer hydration mechanism. In the instrumental analysis, the hydrogen bonding formation of BTC with release-modulating polymers, such as hydroxypropyl methylcellulose and polyethylene oxide and loosening of the polymer structure was crucial as the water influx increased. In pharmacokinetic studies in beagle dogs, the area under the plasma concentration-time curve (AUC) by normalizing dose for 48 h for GRT, CRT, BLT, and TIT were 90.2 %, 108.6 %, 83.8 %, and 76.4 %, respectively, compared with that of the reference drug (Mytonin® tablets, immediate release, four times a day). Interestingly, the plasma maximum concentration (Cmax) and AUC)0-12h of GRT F-5 and and Mytonin® tablets for the first 12-h period were much higher compared with that of other BTC-loaded CRT, BLT, and TIT. BTC was absorbed throughout the gastrointestinal tract, but is preferably absorbed in the stomach and upper intestinal sites. However, the GRT F-5 could provide more therapeutic potential for improving patient compliance in bladder dysfunction treatment by achieving both rapid onset and sustained drug release with reduced dosing frequency.
Collapse
Affiliation(s)
- Hyeong-Mo Jeong
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; Central Research Institute, IL-YANG Pharmaceutical Co., Ltd., Yongin 17096, Republic of Korea
| | - Hansol Kim
- Central Research Institute, IL-YANG Pharmaceutical Co., Ltd., Yongin 17096, Republic of Korea
| | - Taeyeon Jang
- Central Research Institute, IL-YANG Pharmaceutical Co., Ltd., Yongin 17096, Republic of Korea
| | - Ayoung Choi
- Central Research Institute, IL-YANG Pharmaceutical Co., Ltd., Yongin 17096, Republic of Korea
| | - Jun-Bom Park
- College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Chulhun Park
- College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea.
| | - Beom-Jin Lee
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
13
|
Onyenso G, Vakamulla Raghu SN, Hartwich P, Killian MS. Modulated-Diameter Zirconia Nanotubes for Controlled Drug Release-Bye to the Burst. J Funct Biomater 2025; 16:37. [PMID: 39997571 PMCID: PMC11856647 DOI: 10.3390/jfb16020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 02/26/2025] Open
Abstract
The performance of an orthopedic procedure depends on several tandem functionalities. Such characteristics include materials' surface properties and subsequent responses. Implant surfaces are typically roughened; this roughness can further be optimized to a specific morphology such as nanotubular roughness (ZrNTs) and the surfaces can further be used as static drug reservoirs. ZrNTs coatings are attracting interest due to their potential to improve the success rate of implant systems, by means of better physical affixation and also micro/nano physio-chemical interaction with the extracellular matrix (ECM). Effective control over the drug release properties from such coatings has been the subject of several published reports. In this study, a novel and simple approach to extending drug release time and limiting the undesirable burst release from zirconia nanotubes (ZrNTs) via structural modification was demonstrated. The latter involved fabricating a double-layered structure with a modulated diameter and was achieved by varying the voltage and time during electrochemical anodization. The structurally modified ZrNTs and their homogenous equivalents were characterized via SEM and ToF-SIMS, and their drug release properties were monitored and compared using UV-Vis spectroscopy. We report a significant reduction in the initial burst release phenomenon and enhanced overall release time. The simple structural modification of ZrNTs can successfully enhance drug release performance, allowing for flexibility in designing drug delivery coatings for specific implant challenges, and offering a new horizon for smart biomaterials based on metal oxide nanostructures.
Collapse
Affiliation(s)
| | - Swathi Naidu Vakamulla Raghu
- Chemistry and Structure of Novel Materials, University of Siegen, Paul-Bonatz-Str. 9-11, 57076 Siegen, Germany; (G.O.); (P.H.)
| | | | - Manuela Sonja Killian
- Chemistry and Structure of Novel Materials, University of Siegen, Paul-Bonatz-Str. 9-11, 57076 Siegen, Germany; (G.O.); (P.H.)
| |
Collapse
|
14
|
Nicosia C, Licciardello F. Study of the release kinetics of Ethyl Lauroyl Arginate from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) active films. Food Res Int 2025; 200:115345. [PMID: 39779157 DOI: 10.1016/j.foodres.2024.115345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 01/30/2025]
Abstract
This study investigates the underexplored area of the release mechanism and kinetics of the antimicrobial Ethyl Lauroyl Arginate (LAE®) from an innovative active packaging system based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). We evaluated the impact of food simulants and temperatures on LAE® release, diffusion, and partition coefficients. Mathematical modeling was used to elucidate LAE® release kinetics, offering understanding of the release behaviour in food matrices. Results highlighted that temperature notably affected LAE® release into simulant A (10% EtOH) unlike the release into simulant D1 (50% EtOH). Although the release was faster in the less polar simulant, a greater partition coefficient demonstrated greater LAE® retention within the polymer matrix at equilibrium. Weibull models ensured robust fits, suggesting their usefulness for future studies on LAE® release kinetic. Finally, the active films were validated in food, showing significant reduction in microbial counts. These findings contribute to the design of effective antimicrobial food packaging and the selection of suitable food applications.
Collapse
Affiliation(s)
- Carola Nicosia
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy.
| | - Fabio Licciardello
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy; Interdepartmental Research Centre for the Improvement of Agro-Food Biological Resources (BIOGEST-SITEIA), University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| |
Collapse
|
15
|
Kupnik K, Primožič M, Kokol V, Knez Ž, Leitgeb M. Native and cationic cellulose nanofibril films enriched with avocado seed compounds as a green alternative for potential wound care applications. Int J Biol Macromol 2025; 286:138420. [PMID: 39645119 DOI: 10.1016/j.ijbiomac.2024.138420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/14/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Cellulose nanofibrils (CNF) show great potential for skin wound care and healing due to their biocompatibility, non-cytotoxicity, and high swelling with good mechanical stability. In the presented study, for the first time native and cationized cellulose nanofibrils were used in combination with avocado seeds extracts obtained with different extraction methods (ASE), as an alternative to a well-known antibiotic, Clindamycin, to produce films with high and long-lasting antimicrobial efficacy. The swelling capacity of prepared films and extracts/antibiotic release kinetics were studied at different pH values to evaluate pH response behavior. All developed films exhibited high bacteriostatic and bactericidal activity against Gram-negative Escherichia coli and G-positive Staphylococcus aureus, resulting in up to 100 % bacterial reduction with the log reduction factor up to 5.64 or 6.50, at 14.2 mg of avocado seed extract or clindamycin integrated in the 1 cm2 of CNF film. The high swelling capacity (up to 65.67 %) and stability of avocado seed extracts-enriched CNF films provide a suitable moisture environment and a sustainable release (up to 40.98 % in 48 h) of bioactive compounds. The prepared antibacterial films' chemical and morphological characteristics and pH-responsive behavior proved the potential applications in the cosmetics, biomedicine, and pharmaceutical industry.
Collapse
Affiliation(s)
- Kaja Kupnik
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia; University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Mateja Primožič
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Vanja Kokol
- University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Željko Knez
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia; University of Maribor, Faculty of Medicine, Taborska ulica 8, 2000 Maribor, Slovenia.
| | - Maja Leitgeb
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia; University of Maribor, Faculty of Medicine, Taborska ulica 8, 2000 Maribor, Slovenia.
| |
Collapse
|
16
|
Rodrigues C, Tomoda BT, Viganó J, Braga ARC, de Moraes MA, Veggi PC. Production and Characterization of Silk Fibroin- Aloe vera Hydrogel: A Study on Extraction, Hydrogel Properties, and Release Mechanism. ACS OMEGA 2024; 9:50515-50525. [PMID: 39741835 PMCID: PMC11683634 DOI: 10.1021/acsomega.4c08193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/03/2025]
Abstract
This work investigated the production and characterization of a silk fibroin (SF) hydrogel incorporated with an Aloe vera (AV) extract. Four extraction methods, ultrasound-assisted extraction with bath and probe, stirring, and Soxhlet, were tested, while the hydrogel was produced by a one-step freeze-thaw method. Besides the extraction yield, the antioxidant capacity of the extracts was accessed, which allowed to select the extract obtained by ultrasound-assisted extraction to be incorporated into the hydrogels. Hydrogels were characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. Rheological assay, swelling behavior, and water uptake capacity were measured. The SF-AV hydrogel was submitted to release test, and the data were mathematically modeled. The hydrogels exhibited malleability, insolubility in water, interconnected pores, and thermal and physical stability. The SF-AV hydrogel released 37% extract over 330 min, with diffusion controlled by the Fickian mechanism. These promising results make the SF-AV hydrogel an attractive choice for wound dressing and other biomaterial-related applications.
Collapse
Affiliation(s)
- Camila
Lopes Rodrigues
- Department
of Chemical Engineering, Institute of Environmental, Chemical and
Pharmaceutical Sciences, Universidade Federal
de São Paulo, Diadema,SP 09913-030,Brazil
| | - Bruno Thorihara Tomoda
- Department
of Chemical Engineering, Institute of Environmental, Chemical and
Pharmaceutical Sciences, Universidade Federal
de São Paulo, Diadema,SP 09913-030,Brazil
| | - Juliane Viganó
- Faculdade
de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo, Av. Duque de Caxias Norte 225, Pirassununga, SP 13635-900, Brasil
| | - Anna Rafaela Cavalcante Braga
- Department
of Chemical Engineering, Institute of Environmental, Chemical and
Pharmaceutical Sciences, Universidade Federal
de São Paulo, Diadema,SP 09913-030,Brazil
| | - Mariana Agostini de Moraes
- Department
of Chemical Engineering, Institute of Environmental, Chemical and
Pharmaceutical Sciences, Universidade Federal
de São Paulo, Diadema,SP 09913-030,Brazil
- School of
Chemical Engineering, Universidade Estadual
de Campinas, UNICAMP, Campinas, SP 13083-872, Brazil
| | - Priscilla Carvalho Veggi
- Department
of Chemical Engineering, Institute of Environmental, Chemical and
Pharmaceutical Sciences, Universidade Federal
de São Paulo, Diadema,SP 09913-030,Brazil
| |
Collapse
|
17
|
Dan A, Ramachandran R. Autoencoder-based inverse design and surrogate-based optimization of an integrated wet granulation manufacturing process. Int J Pharm X 2024; 8:100287. [PMID: 39678264 PMCID: PMC11639451 DOI: 10.1016/j.ijpx.2024.100287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 12/17/2024] Open
Abstract
In pharmaceutical manufacturing, integrating model-based design and optimization can be beneficial for accelerating process development. This study explores the utilization of Machine Learning (ML) techniques as a surrogate model for the optimization of a three-unit wet-granulation based flowsheet model for solid dosage form manufacturing. First, a reduced representation of a wet granulation flowsheet model is developed, incorporating a granulation and milling process, along with a novel dissolution model that accounts for the effect of particle size, porosity, and microstructure on dissolution rate. Two optimization approaches are compared, including an autoencoder-based inverse design and a surrogate-based forward optimization. Both methods address the bi-objective problem of maximizing dissolution time and product yield by identifying the optimal granulation and mill process parameters. For this case study, both approaches were effective and incurred a similar computational cost, averaging under 4 s. However, the autoencoder approach offers an advantage through dimensionality reduction, a feature not available in surrogate-based optimization. Dimensional reduction is particularly beneficial for complex process designs with numerous inputs and outputs. The lower dimensional representation helps improve process understanding through enhanced visualization of the process design space and facilitates feasibility studies involving multiple constraints. The autoencoder-based inverse design introduced in this work showcases an implementation of AI and ML in pharmaceutical process development, demonstrating the potential to enhance process efficiency and product quality in complex manufacturing scenarios.
Collapse
Affiliation(s)
- Ashley Dan
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Rohit Ramachandran
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
18
|
Hanna PA, Al-Abbadi HA, Hashem MA, Mostafa AE, Mahmoud YK, Ahmed EA, Hegab IM, Helal IE, Ahmed MF. Development of a novel intramuscular liposomal injection for advanced meloxicam delivery: Preparation, characterization, in vivo pharmacokinetics, pharmacodynamics, and pain assessment in an orthopedic pain model. Int J Pharm X 2024; 8:100284. [PMID: 39323733 PMCID: PMC11422154 DOI: 10.1016/j.ijpx.2024.100284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
Pain produces several physiological, and degenerative complications. This study aimed to formulate meloxicam (MLX) in liposomes to increase solubility and deliver MLX in a controlled manner to overcome its poor aqueous solubility and relatively short t1/2 problems. Liposomes were prepared by thin film hydration followed by ultrasonication. Tests for characterizing formulations included particle size, span, entrapment efficiency, drug loading, stability, differential scanning calorimetry (DSC), Fourier transformation infrared (FT-IR) spectroscopy, morphology, in vitro release, release kinetics mathematical modeling, and an in vivo pain model in dogs undergoing orthopedic surgeries, followed by in vivo pharmacokinetics, pharmacodynamics, and pain assessment studies in comparison to the reference standard, Mobitil®. Liposomal MLX had a particle size of around 100 nm, 82 % entrapment efficiency, and 4.62 % drug loading. Stability studies, DSC, and FT-IR spectroscopy indicated that liposomes were highly stable. The formulation showed an improved in vitro controlled release pattern and an enhanced in vivo pharmacokinetic behavior as manifested by higher t1/2 and AUC0 - 24 and lower Cl/F in comparison to Mobitil®. The pharmacodynamics study and pain scales demonstrated liposomal MLX managed postoperative pain better than Mobitil®. In conclusion, the incorporation of MLX in liposomes increased its solubility and stability, as well as its pain management properties.
Collapse
Affiliation(s)
- Pierre A. Hanna
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Hatim A. Al-Abbadi
- Faculty of Medicine, University Hospital, King Abdulaziz University, Jeddah 80212, Saudi Arabia
| | - Mohamed A. Hashem
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Suez Canal University, 4.5 Ring Road, Ismailia 41522, Egypt
| | - Aziza E. Mostafa
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Yasmina K. Mahmoud
- Department of Biochemistry, Faculty of Veterinary Medicine, Suez Canal University, 4.5 Ring Road, Ismailia 41522, Egypt
| | - Eman A. Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, 4.5 Ring Road, Ismailia 41522, Egypt
| | - Ibrahim M. Hegab
- Department of Animal, Poultry and Fish Behavior and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ibrahim E. Helal
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Suez Canal University, 4.5 Ring Road, Ismailia 41522, Egypt
- Department of Agriculture, Faculty of Environmental Science, King Abdulaziz University, Jeddah 80208, Saudi Arabia
| | - Mahmoud F. Ahmed
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Suez Canal University, 4.5 Ring Road, Ismailia 41522, Egypt
| |
Collapse
|
19
|
Almohamady HI, Mortagi Y, Gad S, Zaitone S, Alshaman R, Alattar A, Alanazi FE, Hanna PA. Spanlastic Nano-Vesicles: A Novel Approach to Improve the Dissolution, Bioavailability, and Pharmacokinetic Behavior of Famotidine. Pharmaceuticals (Basel) 2024; 17:1614. [PMID: 39770456 PMCID: PMC11678360 DOI: 10.3390/ph17121614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Drugs exhibiting poor aqueous solubility present a challenge to efficient delivery to the site of action. Spanlastics (a nano, surfactant-based drug delivery system) have emerged as a powerful tool to improve solubility, bioavailability, and delivery to the site of action. This study aimed to better understand factors affecting the physicochemical properties of spanlastics, quantify their effects, and use them to enhance the bioavailability of famotidine (FMT), a model histamine H2 receptor antagonist (BCS class IV). Methods: FMT was incorporated into nano-spanlastics drug delivery system. The ethanol injection method, Box-Behnken design, and mathematical modeling were utilized to fabricate famotidine-loaded nano-spanlastics and optimize the formula. Spanlastics were characterized for their particle size, polydispersity index, zeta potential, entrapment efficiency, drug loading, compatibility of the excipients (using DSC), in vitro drug release, and in vivo pharmacokinetics. Results: Span 60 (the non-ionic surfactant) and tween 60 (the edge activator) gave rise to spanlastics with the best characteristics. The optimal spanlastic formulation exhibited small particle size (<200 nm), appropriate polydispersity index (<0.4), and zeta potential (>-30 mV). The entrapment efficiency and drug loading of the optimum formula assured its suitability for hydrophobic drug entrapment as well as practicability for use. DSC assured the compatibility of all formulation components. The drug release manifested a biphasic release pattern, resulting in a fast onset and sustained effect. Spanlastics also showed enhanced Cmax, AUC0-24, and bioavailability. Conclusions: Spanlastics manifested improved FMT dissolution, drug release characteristics, membrane permeation, and pharmacokinetic behavior.
Collapse
Affiliation(s)
- Hend I. Almohamady
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Arish 45511, Egypt; (H.I.A.); (Y.M.)
| | - Yasmin Mortagi
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Arish 45511, Egypt; (H.I.A.); (Y.M.)
| | - Shadeed Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Sawsan Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (A.A.); (F.E.A.)
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (A.A.); (F.E.A.)
| | - Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (A.A.); (F.E.A.)
| | - Fawaz E. Alanazi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (A.A.); (F.E.A.)
| | - Pierre A. Hanna
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Misr International University, Cairo 12585, Egypt
| |
Collapse
|
20
|
Kazsoki A, Németh K, Visnovitz T, Lenzinger D, Buzás EI, Zelkó R. Formulation and characterization of nanofibrous scaffolds incorporating extracellular vesicles loaded with curcumin. Sci Rep 2024; 14:27574. [PMID: 39528605 PMCID: PMC11555084 DOI: 10.1038/s41598-024-79277-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Due to their small size, flexibility, and adhesive properties, extracellular vesicles (EVs) hold promises as effective drug delivery systems. However, challenges such as the variability in vesicle types and the need to maintain their integrity for medical applications exist. Curcumin, a compound found in turmeric and known for its diverse health benefits, including anti-cancer and anti-inflammatory properties, faces obstacles in clinical use due to issues like low solubility, limited absorption, and rapid breakdown in the body. This study aimed to incorporate large-sized curcumin-loaded extracellular vesicles (lEVs) into fast-dissolving nanofibers made of poly(vinyl alcohol) (PVA) by electrospinning. By using aqueous PVA-based solutions for electrospinning, the presence of curcumin-loaded lEVs in the nanofibers was confirmed by confocal laser scanning microscopy. Furthermore, the release study demonstrated high concentrations of the drug in nanofibers containing lEVs. These findings are significant for advancing the development and utilization of active ingredient-loaded EV systems within nanofibrous formulations, potentially leading to improved patient outcomes.
Collapse
Affiliation(s)
- Adrienn Kazsoki
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Street 7-9, Budapest, 1092, Hungary
| | - Krisztina Németh
- Department of Genetics Cell and Immunobiology, Semmelweis University, Budapest, Hungary Nagyvárad Square 4, 1089, Budapest, Hungary
- HUN-REN Translational Extracellular Vesicle Research Group, Budapest, Hungary
| | - Tamás Visnovitz
- Department of Genetics Cell and Immunobiology, Semmelweis University, Budapest, Hungary Nagyvárad Square 4, 1089, Budapest, Hungary
- Department of Plant Physiology and Molecular Plant Biology, Faculty of Science, ELTE Eötvös Loránd University, 1117, Budapest, Hungary
| | - Dorina Lenzinger
- Department of Genetics Cell and Immunobiology, Semmelweis University, Budapest, Hungary Nagyvárad Square 4, 1089, Budapest, Hungary
| | - Edit I Buzás
- Department of Genetics Cell and Immunobiology, Semmelweis University, Budapest, Hungary Nagyvárad Square 4, 1089, Budapest, Hungary
- HUN-REN Translational Extracellular Vesicle Research Group, Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Street 7-9, Budapest, 1092, Hungary.
| |
Collapse
|
21
|
Sepúlveda-Córdova A, Fernández-Martínez T, Campos-Requena VH. Synthesis of thiomer/nanoclay nanocomposites as a potential drug carrier: Evaluation of mucoadhesive and controlled release properties. J Pharm Sci 2024; 113:3323-3331. [PMID: 39216537 DOI: 10.1016/j.xphs.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Novel thiomer/nanoclay nanocomposites based on a thiomer and montmorillonite (MMT) were prepared in order to obtain a mucoadhesive material with controlled release properties for its potential use as drug carrier. The thiomer was synthesized by immobilization of L-cysteine in alginate mediated by carbodiimide reaction and further characterized by FT-IR and Ellman's reaction. Nanocomposites with growing concentrations of thiomer and MMT were prepared and analyzed by XRD, TGA and TEM. Rheological behavior of nanocomposite in contact with mucin and intestinal mucus were studied as in vitro and in situ mucoadhesion approach, showing until ∼10-fold increasing in the complex viscosity and ∼27-fold in elastic modulus when the amount of thiomer is increased. Higuchi and Korsmeyer-Peppas kinetic models were evaluated in order to study the release of deltamethrin from nanocomposite films. Release profiles showed a retard in the migration of the drug influenced by the amount of MMT (P < 0.05). Diffusion coefficient (D) showed a significant decrease (P < 0.0001) when concentration of MMT is increased reaching D = 4.18 × 10-7 m2 h-1, which resulted ∼7-fold lower in comparison with formulation without MMT. This hybrid nanocomposite can be projected as a potential mucoadhesive drug carrier with controlled release properties.
Collapse
Affiliation(s)
| | - Tomás Fernández-Martínez
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Víctor H Campos-Requena
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
22
|
Gülçelik N, Çifci KN, Alemdar N. The effect of sulfonated reduced graphene oxide on the properties of ionic strength sensitive PEC film comprising protein/polysaccharides combined system. Int J Biol Macromol 2024; 281:136490. [PMID: 39393734 DOI: 10.1016/j.ijbiomac.2024.136490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
In the current study, sulfonated reduced graphene oxide (SRGO) at different amounts (0.0 %, 0.015 %, 0.030 %, 0.050 % w/v) was incorporated into the polyelectrolyte complex (PEC) which was produced by using protein/polysaccharides combined system composed of gelatin (Gel)/carboxymethyl cellulose (CMC) and hyaluronic acid (HA) not only to enhance mechanical and conductive properties but also to investigate the effect of sulfonyl groups on the ionic strength response of the produced PEC films. While FT-IR, SEM and zeta potential analyses were confirmed the character of produced samples, their mechanical and conductivity tests showed that the introduction of SRGO enhanced both mechanical performance and conductive feature of PEC films. Swelling and 5- fluorouracil (5-FU), a chemotherapeutic agent, release tests carried out in the solution with a varying ionic strength at a pH: 1.2 to simulate acidic stomach environment demonstrated that while pure PEC film has anti-polyelectrolyte behavior, SRGO based PEC films exhibited polyelectrolyte character due to sulfonyl groups with an increasing ionic strength of medium. It could be emphasized from all these results that the produced SRGO based PEC films with enhanced mechanical and conductive properties could be utilized as an ionic strength sensitive drug carrier which ensures controlled and targeted release for cancer treatments.
Collapse
Affiliation(s)
- Nihat Gülçelik
- Marmara University, Department of Chemical Engineering, Maltepe, 34854 Istanbul, Turkey
| | - Kadriye Nur Çifci
- Marmara University, Department of Chemical Engineering, Maltepe, 34854 Istanbul, Turkey
| | - Neslihan Alemdar
- Marmara University, Department of Chemical Engineering, Maltepe, 34854 Istanbul, Turkey.
| |
Collapse
|
23
|
Zhang J, Zhao J, Wu M, Liu J, Qian C, Liu G, Wen C, Liang L, Liu X, Li Y, Xu X. Release kinetics and protective effect of novel curcumin-based nanoliposome modified with pectin, whey protein isolates and hyaluronic acid against oxidative stress. Int J Biol Macromol 2024; 282:136890. [PMID: 39490488 DOI: 10.1016/j.ijbiomac.2024.136890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
In the present study, a novel nanoliposome loaded with curcumin (Cur) (NNLs-Cur) was established to overcome the gastrointestinal digestive barrier and enhance mitochondrial targeting capacity, exerting the antioxidant capacity of Cur. Noteworthy, NNLs-Cur was modified by pectin, whey protein isolates and hyaluronic acid. The results showed that the structure of traditional nanoliposomes loaded with Cur (NLs-Cur) was destroyed during digestion. However, NNLs-Cur maintained intact structural morphology, and the release of Cur in the stomach and intestines was consistent with zero-order and first-order kinetic models, respectively. Interestingly, the survival rate of HL-7702 cells after being damaged by H2O2 was 40.53 %, while the survival rate after treated with NNLs-Cur reached 99.87 %. Besides, the fluorescence localization indicated Cur in NNLs-Cur could escape lysosomal and achieve mitochondria targeting. Compared with NLs-Cur, the damaged cells treated with NNLs-Cur increased activities of catalase (CAT), glutathione peroxide (GSH-Px) and superoxide dismutase (SOD) from 16.16 ± 0.52, 16.92 ± 2.28 and 30.10 ± 0.93 U/mgprot to 19.09 ± 0.52, 20.41 ± 1.79 and 33.81 ± 0.29 U/mgprot, respectively. Malondialdehyde (MDA) content and reactive oxygen species (ROS) level of the oxidative damaged cells were reduced, mitochondrial membrane potential was restored, and cell apoptosis was reduced. This study provides theoretical guidance for realizing the industrial application of efficient targeted delivery Cur.
Collapse
Affiliation(s)
- Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Jiayin Zhao
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Maowei Wu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Chunlu Qian
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China.
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Xiaofang Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Youdong Li
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China.
| |
Collapse
|
24
|
Grebenkov DS. Adsorption and Permeation Events in Molecular Diffusion. Molecules 2024; 29:5012. [PMID: 39519653 PMCID: PMC11547776 DOI: 10.3390/molecules29215012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
How many times can a diffusing molecule permeate across a membrane or be adsorbed on a substrate? We employ an encounter-based approach to find the statistics of adsorption or permeation events for molecular diffusion in a general confining medium. Various features of these statistics are illustrated for two practically relevant cases: a flat boundary and a spherical confinement. Some applications of these fundamental results are discussed.
Collapse
Affiliation(s)
- Denis S. Grebenkov
- CNRS – Université de Montréal CRM—CNRS, 6128 Succ Centre-Ville, Montréal, QC H3C 3J7, Canada;
- Laboratoire de Physique de la Matière Condensée, CNRS—Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
25
|
Thammasut W, Rojviriya C, Chaiya P, Phaechamud T, Limsitthichaikoon S. Moxifloxacin HCl -loaded Cellulose Acetate Butylate In Situ Forming Gel for Periodontitis Treatment. AAPS PharmSciTech 2024; 25:242. [PMID: 39402367 DOI: 10.1208/s12249-024-02960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Periodontitis presents significant treatment challenges due to its complexity and potential complications. In response, an in situ forming gel (ISG) loaded with moxifloxacin HCl (Mx) and cellulose acetate butyrate (CAB) was developed for targeted periodontitis therapy. Mx-loaded 10-45% CAB-based ISGs were developed, and their physicochemical properties such as rheology, viscosity, contact angle, gel morphology and gel formation, interface interaction were investigated. Moreover, the formulation performance studies including drug release and kinetics, in vitro degradation, and antimicrobial activities were also evaluated. The Mx-loaded ISGs containing 25-45% CAB demonstrated rapid matrix formation in both macroscopic and microscopic examinations and presented plastic deformation matrix. Tracking with sodium fluorescein and Nile red fluorescence probes indicated delayed solvent movement owing to CAB matrix formation. Adequate CAB content sustained Mx release for one week, following Peppas-Sahlin model and indicating a predominantly Fickian diffusion mechanism. Higher CAB content likely contributed to a denser matrix structure, leading to a slower in vitro degradation rate. Synchrotron radiation X-ray tomographic and SEM imaging provided insights into the CAB matrix structure and porous network formation. These ISG formulations effectively inhibited Staphylococcus aureus, Escherichia coli, Candida albicans, and Porphyromonas gingivalis. The Mx-loaded 40% CAB-based ISG shows promise as a dosage form for treating periodontitis. Further clinical trials are necessary to ensure the safety of this new ISG formulation, despite existing safety data for other medicinal uses of CAB. HIGHLIGHTS: Moxifloxacin HCl-loaded 10-45% cellulose acetate butyrate (CAB)-based in situ forming gels (ISG) were developed. They were evaluated for physicochemical properties, drug release, in vitro degradation, and antimicrobial activities. ISGs with 25-45% CAB showed swift matrix formation and plastic deformation Adequate CAB content sustained Mx release with Fickian diffusion mechanism They promise for periodontitis treatment because of effective inhibition of related pathogens.
Collapse
Affiliation(s)
- Warakon Thammasut
- Program of Pharmaceutical Engineering, Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Catleya Rojviriya
- Synchrotron Light Research Institute, Nakhon Ratchasima, 30000, Thailand
| | - Pornsit Chaiya
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Thawatchai Phaechamud
- Program of Pharmaceutical Engineering, Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
- Natural Products Center (NPRC), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | - Sucharat Limsitthichaikoon
- Department of Pharmaceutical Technology, College of Pharmacy, Rangsit University, Pathum Thani, 12000, Thailand.
| |
Collapse
|
26
|
Iftime MM, Ailiesei GL, Ailincai D. Tuning Antioxidant Function through Dynamic Design of Chitosan-Based Hydrogels. Gels 2024; 10:655. [PMID: 39451308 PMCID: PMC11507920 DOI: 10.3390/gels10100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Dynamic chitosan-based hydrogels with enhanced antioxidant activity were synthesized through the formation of reversible imine linkages with 5-methoxy-salicylaldehyde. These hydrogels exhibited a porous structure and swelling capacity, influenced by the crosslinking degree, as confirmed by SEM and POM analysis. The dynamic nature of the imine bonds was characterized through NMR, swelling studies in various media, and aldehyde release measurements. The hydrogels demonstrated significantly improved antioxidant activity compared to unmodified chitosan, as evaluated by the DPPH method. This research highlights the potential of developing pH-responsive chitosan-based hydrogels for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Manuela Maria Iftime
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 700487 Iasi, Romania; (G.L.A.); (D.A.)
| | - Gabriela Liliana Ailiesei
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 700487 Iasi, Romania; (G.L.A.); (D.A.)
| | - Daniela Ailincai
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 700487 Iasi, Romania; (G.L.A.); (D.A.)
- The Research Institute of the University of Bucharest (ICUB), 90 Sos. Panduri, 050663 Bucharest, Romania
| |
Collapse
|
27
|
Railic M, Crean AM, Vucen S. Unravelling Microarray Patch Performance: The Role of In Vitro Release Medium and Biorelevant Testing. Mol Pharm 2024; 21:5028-5040. [PMID: 39195905 PMCID: PMC11462508 DOI: 10.1021/acs.molpharmaceut.4c00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
The absence of established protocols for studying the in vitro performance of dissolvable microarray patches (MAPs) poses a significant challenge within the field. To overcome this challenge, it is essential to optimize testing methods in a way that closely mimics the skin's environment, ensuring biorelevance and enhancing the precision of assessing MAP performance. This study focuses on optimizing in vitro release testing (IVRT) and in vitro permeation testing (IVPT) methods for MAPs containing the antihistamine drugs loratadine (LOR) and chlorpheniramine maleate (CPM). Our primary objective is to investigate the impact of the composition of in vitro release media on the drug release rate, penetration through the skin, and permeation into the release medium. Artificial interstitial fluid is introduced as a biorelevant release medium and compared with commonly used media in IVRT and IVPT studies. Prior to these studies, we evaluated drug solubility in different release media and developed a method for LOR and CPM extraction from the skin using a design of experiment approach. Our findings highlight the effect of the in vitro release medium composition on both LOR and CPM release rate and their penetration through the skin. Furthermore, we identified the importance of considering the interplay between the physicochemical attributes of the drug molecules, the design of the MAP formulation, and the structural properties of the skin when designing IVRT and IVPT protocols.
Collapse
Affiliation(s)
- Maja Railic
- SSPC, the SFI Research Centre
for Pharmaceuticals, School of Pharmacy, University College Cork, College
Road, Cork T12 K8AF, Ireland
| | - Abina M. Crean
- SSPC, the SFI Research Centre
for Pharmaceuticals, School of Pharmacy, University College Cork, College
Road, Cork T12 K8AF, Ireland
| | - Sonja Vucen
- SSPC, the SFI Research Centre
for Pharmaceuticals, School of Pharmacy, University College Cork, College
Road, Cork T12 K8AF, Ireland
| |
Collapse
|
28
|
Abbasian M, Khayyatalimohammadi M. In-situ forming Cu-based metal-organic framework in the presence of chitosan-Fe 3O 4 nanohybrids: A pH-sensitive carrier for controlled release of doxorubicin. Int J Biol Macromol 2024; 278:134224. [PMID: 39074707 DOI: 10.1016/j.ijbiomac.2024.134224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
In recent years, stimuli-responsive drug delivery systems based on pH, particularly those developed using bio-derived nanocomposite systems, have gained significant attention. In this work, a novel magnetic carrier was designed based on biopolymeric chitosan and metal-organic framework (MOF) for pH-controlling the release of anticancer drugs. To end this, an in-situ green method was performed to form Cu-based MOF in the presence of a magnetic polysaccharide synthesized by precipitation method toward the construction of CS/Fe3O4/Cu-MOF nanocomposite. The nanocomposite was immersed in an aqueous solution of a model anticancer drug, doxorubicin (DOX), and a higher loading capacity (90.1 ± 0.5 %) was achieved. The in-vitro drug release study showed low release rates in simulated physiological environments (pH 7.4, 37 °C, lower than about 20 %), but higher release rates in tumor tissue conditions (pH 4.5, 41 °C, higher than about 60 %) over 96 h, allowing for sustained and extended delivery of DOX. Additionally, the MTT assay demonstrated that the blank and DOX-loaded CS/Fe3O4/Cu-MOF had good cytocompatibility (over 80 % cell viability) and considerable cytotoxicity (lower than 40 % at 16 μg/mL) toward breast cancer (MCF-7) cell line, respectively. These results indicated that the synthesized nanocomposite with suitable pH-sensitivity has potential as a targeted anticancer agent.
Collapse
Affiliation(s)
- Mojtaba Abbasian
- Department of Chemistry, Payame Noor University, P. O. Box: 19395-3697, Tehran, Iran.
| | | |
Collapse
|
29
|
Umar QUA, Khan MI, Ahmad Z, Akhtar MF, Sohail MF, Madni A, Erum A, Ayesha B, Ain QU, Mushtaq A. Dissolving Microneedles Patch: A Promising Approach for Advancing Transdermal Delivery of Antischizophrenic Drug. J Pharm Sci 2024; 113:3078-3087. [PMID: 39154735 DOI: 10.1016/j.xphs.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
OBJECTIVE Microneedles (MNs) are minimally invasive transdermal drug delivery systems capable of penetrating the stratum corneum to overcome the barrier properties. The primary objective of this research was to prepare dissolving microneedle patches (DMNP) loaded with quetiapine (QTP). METHODS DMNP were fabricated employing the solvent casting technique, utilizing various polymer feed ratios including polyvinyl alcohol (PVA), polyvinylpyrrolidone K30 (PVP-K30), and polylactide-co-glycolide (PLGA) polymers. The loaded DMNP with QTP underwent a comprehensive characterization process encompassing assessments for compatibility, thickness, insertion potential, morphology, thermal behavior, X-ray diffraction, ex-vivo permeation, skin irritation, and histopathological changes. RESULTS FTIR studies confirmed the compatibility of QTP with the microneedle patch composites. The thickness of the drug-loaded DMNP ranged from 0.67 mm to 0.97 mm. These microneedles exhibited an impressive penetration depth of 480 μm, with over 80% of the needles maintaining their original shape after piercing Parafilm-M. SEM analysis of the optimized DMNP-2 revealed the formation of sharp-tipped and uniformly surfaced needles, measuring 570 μm in length. Remarkably, the microneedles did not elicit any signs of irritation upon application of the prepared DMNP. The DMNP-2 showcased an impressive cumulative ex-vivo permeation of QTP, reaching 17.82 µg/cm2/hr. Additionally, histopathological assessment of vital organs in rabbits attested to the safety profile of the formulated microneedle patches. CONCLUSIONS In conclusion, the developed microneedle patch represents a promising strategy for enhancing the transdermal delivery of QTP. This innovative approach has the potential to increase patient compliance, offering a more efficient and patient-friendly method of administering QTP.
Collapse
Affiliation(s)
- Qurat-Ul-Ain Umar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, 54000, Lahore, Pakistan
| | - Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, 54000, Lahore, Pakistan.
| | - Zulcaif Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, 54000, Lahore, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, 54000, Lahore, Pakistan
| | | | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Alia Erum
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Badarqatul Ayesha
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, 54000, Lahore, Pakistan
| | - Qurat Ul Ain
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, 54000, Lahore, Pakistan
| | - Aamir Mushtaq
- Department of Pharmaceutical Sciences, Government College University Lahore, Pakistan
| |
Collapse
|
30
|
Aycan D. Alginate/hyaluronic acid/gelatin ternary blended films as pH-sensitive drug carriers: In vitro ampicillin release and kinetic studies. Int J Biol Macromol 2024; 277:134111. [PMID: 39048006 DOI: 10.1016/j.ijbiomac.2024.134111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Researchers continuously focused on the fabrication of innovative drug delivery systems to prevent microbial infections while minimizing systemic side effects. Among these, pH-sensitive antibiotic release systems based on bio-based materials have gained great attention due to their ability to precisely modulate drug kinetics and enhance therapeutic efficacy. Herein, pH-sensitive alginate/hyaluronic acid/gelatin ternary blended films were fabricated for the controlled release of ampicillin. Swelling capacity, hydrolytic degradation profile, pH reversibility and in vitro ampicillin release behavior of produced films were investigated in both simulated gastric (pH 1.2) and intestinal (pH 7.4) environments. The cumulative release amount of ampicillin at pH 1.2 (61.0 ± 1.07 mg drug/g polymer) was greater than that of at pH 7.4 (43.0 ± 1.05 mg drug/g polymer) proved that release behavior of ampicillin for produced films is pH-dependent. Based on the fitted release data, best fit was found as the first-order kinetic model with the highest R2 values of 0.966 and 0.962 for both pH conditions. According to Korsmeyer-Peppas model, drug release mechanism is also controlled by case II-transport. Furthermore, produced films demonstrated excellent cytocompatibility. All results revealed that obtained films could be a promising drug carrier to traditional targeting systems for site-specific, pH-sensitive ampicillin delivery in both gastric and intestine.
Collapse
Affiliation(s)
- Didem Aycan
- Marmara University, Department of Chemical Engineering, 34854 Istanbul, Turkey.
| |
Collapse
|
31
|
Costa L, Carvalho AF, Fernandes AJS, Campos T, Dourado N, Costa FM, Gama M. Bacterial nanocellulose as a simple and tailorable platform for controlled drug release. Int J Pharm 2024; 663:124560. [PMID: 39127171 DOI: 10.1016/j.ijpharm.2024.124560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
In this study we present a proof of concept of a simple and straightforward approach for the development of a Bacterial Nanocellulose drug delivery system (BNC-DDS), envisioning the local delivery of immunomodulatory drugs to prevent foreign body reaction (FBR). Inspired by the self-adhesion behavior of BNC upon drying, we proposed a BNC laminate entrapping commercial crystalline drugs (dexamethasone-DEX and GW2580) in a sandwich system. The stability of the bilayer BNC-DDS was evidenced by the high interfacial energy of the bilayer films, 150 ± 11 and 88 ± 7 J/m2 respectively for 2 mm- and 10-mm thick films, corresponding to an increase of 7.5 and 4.4-fold comparatively to commercial tissue adhesives. In vitro release experiments unveiled the tunability of the bilayer BNC-DDS by showing extended drug release when thicker BNC membranes were used (from 16 to 47 days and from 35 to 132 days, for the bilayer-BNC entrapping DEX and GW2580, respectively). Mathematical modeling of the release data pointed to a diffusion-driven mechanism with non-fickian behavior. Overall, the results have demonstrated the potential of this simple approach for developing BNC-drug depots for localized and sustained release of therapeutic agents over adjustable timeframes.
Collapse
Affiliation(s)
- Lígia Costa
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga, Guimarães, Portugal
| | - Alexandre F Carvalho
- i3N and Physics Department, University of Aveiro Campus of Santiago, 3810-193 Aveiro, Portugal
| | - António J S Fernandes
- i3N and Physics Department, University of Aveiro Campus of Santiago, 3810-193 Aveiro, Portugal
| | - Teresa Campos
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal; CMEMS-UMINHO, Universidade do Minho, 4800-058 Guimarães, Portugal
| | - Nuno Dourado
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal; CMEMS-UMINHO, Universidade do Minho, 4800-058 Guimarães, Portugal
| | - Florinda M Costa
- i3N and Physics Department, University of Aveiro Campus of Santiago, 3810-193 Aveiro, Portugal
| | - Miguel Gama
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
32
|
Lauriola C, Di Muzio L, Paolicelli P, Casadei MA, Sergi C, Tirillò J, Carriero VC, Adrover A. Experimental and Modelling Study of Controlled Release from Dextran-Based Cryogels. Pharmaceutics 2024; 16:1256. [PMID: 39458587 PMCID: PMC11510673 DOI: 10.3390/pharmaceutics16101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
In this work, five different dextran-based cryogels for controlled drug release are investigated. Vitamin B12 was used as a model drug for in vitro release tests. Two different drug-loading procedures were adopted, leading to very different drug release curves. Indeed, a fast Fickian release was observed when freeze-dried samples of DEX40PEG360MA and DEX40PEG500MA were infused with the drug after cryogel formation. On the contrary, a slowed highly non-Fickian behavior arises when the drug is loaded before the low-temperature crosslinking step, leading to the cryogel formation. The non-Fickian drug release, observed for all the five different dextran-based cryogels investigated, is actually due to the cryoconcentration phenomenon, modeled with a two-step release process. The proposed transport model accurately predicts experimental release curves characterized by a long lag time, confirming that dextran-based cryogels are suitable for controlled release.
Collapse
Affiliation(s)
- Carolina Lauriola
- Dipartimento di Ingegneria Chimica, Materiali e Ambiente, Sapienza Univerisità di Roma, 00184 Rome, Italy; (C.L.); (C.S.); (J.T.)
| | - Laura Di Muzio
- Dipartimento di Chimica e Tecnologia del Farmaco, Sapienza Università di Roma, 00185 Rome, Italy; (L.D.M.); (P.P.); (M.A.C.); (V.C.C.)
| | - Patrizia Paolicelli
- Dipartimento di Chimica e Tecnologia del Farmaco, Sapienza Università di Roma, 00185 Rome, Italy; (L.D.M.); (P.P.); (M.A.C.); (V.C.C.)
| | - Maria Antonietta Casadei
- Dipartimento di Chimica e Tecnologia del Farmaco, Sapienza Università di Roma, 00185 Rome, Italy; (L.D.M.); (P.P.); (M.A.C.); (V.C.C.)
| | - Claudia Sergi
- Dipartimento di Ingegneria Chimica, Materiali e Ambiente, Sapienza Univerisità di Roma, 00184 Rome, Italy; (C.L.); (C.S.); (J.T.)
| | - Jacopo Tirillò
- Dipartimento di Ingegneria Chimica, Materiali e Ambiente, Sapienza Univerisità di Roma, 00184 Rome, Italy; (C.L.); (C.S.); (J.T.)
| | - Vito Cosimo Carriero
- Dipartimento di Chimica e Tecnologia del Farmaco, Sapienza Università di Roma, 00185 Rome, Italy; (L.D.M.); (P.P.); (M.A.C.); (V.C.C.)
| | - Alessandra Adrover
- Dipartimento di Ingegneria Chimica, Materiali e Ambiente, Sapienza Univerisità di Roma, 00184 Rome, Italy; (C.L.); (C.S.); (J.T.)
| |
Collapse
|
33
|
Porbaha P, Ansari R, Kiafar MR, Bashiry R, Khazaei MM, Dadbakhsh A, Azadi A. A Comparative Mathematical Analysis of Drug Release from Lipid-Based Nanoparticles. AAPS PharmSciTech 2024; 25:208. [PMID: 39237678 DOI: 10.1208/s12249-024-02922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024] Open
Abstract
Mathematical modeling of drug release from drug delivery systems is crucial for understanding and optimizing formulations. This research provides a comparative mathematical analysis of drug release from lipid-based nanoparticles. Drug release profiles from various types of lipid nanoparticles, including liposomes, nanostructured lipid carriers (NLCs), solid lipid nanoparticles (SLNs), and nano/micro-emulsions (NEMs/MEMs), were extracted from the literature and used to assess the suitability of eight conventional mathematical release models. For each dataset, several metrics were calculated, including the coefficient of determination (R2), adjusted R2, the number of errors below certain thresholds (5%, 10%, 12%, and 20%), Akaike information criterion (AIC), regression sum square (RSS), regression mean square (RMS), residual sum of square (rSS), and residual mean square (rMS). The Korsmeyer-Peppas model ranked highest among the evaluated models, with the highest adjusted R2 values of 0.95 for NLCs and 0.93 for other liposomal drug delivery systems. The Weibull model ranked second, with adjusted R2 values of 0.92 for liposomal systems, 0.94 for SLNs, and 0.82 for NEMs/MEMs. Thus, these two models appear to be more effective in forecasting and characterizing the release of lipid nanoparticle drugs, potentially making them more suitable for upcoming research endeavors.
Collapse
Affiliation(s)
- Pedram Porbaha
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Ansari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| | | | - Rahman Bashiry
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran.
| |
Collapse
|
34
|
Kalosakas G. Drug polymer conjugates: Average release time from thin films. Int J Pharm 2024; 662:124506. [PMID: 39053679 DOI: 10.1016/j.ijpharm.2024.124506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
The reaction-diffusion problem describing the release of drugs conjugated through labile bonds to polymeric thin films has a known analytical solution, when the reaction kinetics is of first order. Using this solution, an exact formula is derived for the average release time of the system. This simple expression provides the characteristic time of release tav as the sum of the corresponding average diffusion time plus the inverse reaction rate constant: tav=(1/12)⋅(L2/D)+(1/k), where L is the slab thickness, D the diffusion coefficient, and k the reaction rate constant. The former term dominates in a diffusion-controlled release, while the latter one in a reaction-controlled delivery. The crossover regime is exactly described by their sum. The obtained result for the average release time is verified by direct numerical integration through the drug release profiles of the analytical solution. The value of fractional drug release at the characteristic average time is between 60-64%. These results can be used for the design of polymer-drug conjugates with a desired delivery time scale, as well as for the experimental determination of the values of microscopic parameters D and k in a conjugated system of interest.
Collapse
Affiliation(s)
- George Kalosakas
- Department of Materials Science, University of Patras, GR-26504 Rio, Greece.
| |
Collapse
|
35
|
Ouedraogo S, Grosjean M, Brigaud I, Carneiro K, Luchnikov V, Mathieu N, Garric X, Nottelet B, Anselme K, Pieuchot L, Ponche A. Fabrication and characterization of thin self-rolling film for anti-inflammatory drug delivery. Colloids Surf B Biointerfaces 2024; 241:114039. [PMID: 38879896 DOI: 10.1016/j.colsurfb.2024.114039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Thin films have been identified as an alternative approach for targeting sensitive site as drug delivery tool. In this work, the preparation of self-rolling thin films to form tubes for wound healing and easy placement (e.g. in the colon via colonoscopy) have been studied. We explored the use of thin films as a protective dressing combined to local release of an anti-inflammatory in order to improve drug efficacy and limit the side effects of the oral route. Non-cytotoxic poly(ethylene) glycol and poly(lactic acid) photo-crosslinkable star copolymers were used for rapid UV crosslinking of bilayered films loaded with prednisolone. The films, crosslinked under UV lamp without the need of photoinitiator, are optimized and compared in terms of water uptake, swelling ratio, final tube diameter and morphology, anti-inflammatory drug loading and release. Our studies showed the spontaneous rolling of bilayer constructs directly after immersion in water. Tubular geometry allows application of the patch through minimally invasive procedures such as colonoscopy. Moreover, the rolled-up bilayers highlighted efficient release of encapsulated drug following Fickian diffusion mechanism. We also confirmed the anti-inflammatory activity of the released anti-inflammatory drug that inhibits the pro-inflammatory cytokine IL-1β in RAW 264.7 macrophages stimulated by Escherichia coli (E. coli).
Collapse
Affiliation(s)
- Sidzigui Ouedraogo
- Institut de Science des Matériaux de Mulhouse, Université de Haute-Alsace, CNRS/UHA UMR 7361, Mulhouse, France
| | - Mathilde Grosjean
- Polymer for Health and Biomaterials, IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Isabelle Brigaud
- Institut de Science des Matériaux de Mulhouse, Université de Haute-Alsace, CNRS/UHA UMR 7361, Mulhouse, France
| | - Katia Carneiro
- Graduate School in Pathological Anatomy and Morphological Sciences, Federal University of Rio de Janeiro, Brazil
| | - Valeriy Luchnikov
- Institut de Science des Matériaux de Mulhouse, Université de Haute-Alsace, CNRS/UHA UMR 7361, Mulhouse, France
| | - Noëlle Mathieu
- Institute for Radioprotection and Nuclear Safety, (IRSN), PSE-SANTE/SERAMED/LRMed, Fontenay-aux-Roses F-92262, France
| | - Xavier Garric
- Polymer for Health and Biomaterials, IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nimes, France
| | - Benjamin Nottelet
- Polymer for Health and Biomaterials, IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nimes, France
| | - Karine Anselme
- Institut de Science des Matériaux de Mulhouse, Université de Haute-Alsace, CNRS/UHA UMR 7361, Mulhouse, France
| | - Laurent Pieuchot
- Institut de Science des Matériaux de Mulhouse, Université de Haute-Alsace, CNRS/UHA UMR 7361, Mulhouse, France
| | - Arnaud Ponche
- Institut de Science des Matériaux de Mulhouse, Université de Haute-Alsace, CNRS/UHA UMR 7361, Mulhouse, France.
| |
Collapse
|
36
|
Sengupta P, Das A, Khanam J, Biswas A, Mathew J, Mondal PK, Romero EL, Thomas S, Trotta F, Ghosal K. Evaluating the potential of ethyl cellulose/eudragit-based griseofulvin loaded nanosponge matrix for topical antifungal drug delivery in a sustained release pattern. Int J Biol Macromol 2024; 276:133953. [PMID: 39029839 DOI: 10.1016/j.ijbiomac.2024.133953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Fungal infections are very alarming nowadays and are common throughout the world. Severe fungal infections may lead to a significant risk of mortality and morbidity worldwide. Sustained delivery of antifungal agents is needed to mitigate this problem. In the current study, an attempt has been made to formulate griseofulvin-loaded nanosponges using the quasi-emulsion solvent diffusion technique. For characterization, griseofulvin loaded nanosponges were tested by different instrumental techniques such as optical microscopy, scanning electron microscopy (SEM), powder X-ray diffractometer (PXRD), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). The antifungal activity of the nanosponges was assessed against Candida albican strain using the agar well-diffusion method. Finally, the drug-loaded nanosponges' in vitro sustained release activity was evaluated. FTIR spectra showed no chemical interference between the drug and polymers. Some of the peaks of the drug are not visible in the FTIR spectrum, which suggests drug entrapment. PXRD data showed that the drug lost its high crystallinity when entrapped in the nanosponge matrix. From the morphological studies via SEM and TEM, a brief idea of the surface morphology of the nanosponges was obtained. The small pores throughout the structure proved its high porosity. The antifungal sensitivity assay was successful, and a zone of inhibition was observed in all the formulations. The in-vitro drug release study showed sustained behaviour. The sustaining effect was due to the polymer and cross-linker used, which gave rise to a porous scaffold matrix. From the results, it can be concluded that griseofulvin-loaded nanosponges can be used for antifungal drug delivery against various topical skin infections.
Collapse
Affiliation(s)
- Prateep Sengupta
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Amrita Das
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Jasmina Khanam
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Avirup Biswas
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Jesil Mathew
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India; Manipal Center for Infectious Diseases (MAC ID), Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pranab Kumar Mondal
- Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology, Guwahati, India
| | - Eder Lilia Romero
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal 1876, Argentina
| | - Sabu Thomas
- IIUCNN, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Francesco Trotta
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Kajal Ghosal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
37
|
Tamarit-Martínez C, Bernat-Just L, Bueno-López C, Alambiaga-Caravaca AM, Merino V, López-Castellano A, Rodilla V. An Antibacterial-Loaded PLA 3D-Printed Model for Temporary Prosthesis in Arthroplasty Infections: Evaluation of the Impact of Layer Thickness on the Mechanical Strength of a Construct and Drug Release. Pharmaceutics 2024; 16:1151. [PMID: 39339188 PMCID: PMC11434902 DOI: 10.3390/pharmaceutics16091151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Infections are one of the main complications in arthroplasties. These infections are difficult to treat because the bacteria responsible for them settle in the prosthesis and form a biofilm that does not allow antimicrobials to reach the infected area. This study is part of a research project aimed at developing 3D-printed spacers (temporary prostheses) capable of incorporating antibacterials for the personalized treatment of arthroplasty infections. The main objective of this research was to analyze the impact of the layer thickness of 3D-printed constructs based on polylactic acid (PLA) for improved treatment of infections in arthroplasty. The focus is on the following parameters: resistance, morphology, drug release, and the effect of antibacterials incorporated in the printed temporary prostheses. The resistance studies revealed that the design and layer thickness of a printed spacer have an influence on its resistance properties. The thickness of the layer used in printing affects the amount of methylene blue (used as a model drug) that is released. Increasing layer thickness leads to a greater release of the drug from the spacer, probably as a result of higher porosity. To evaluate antibacterial release, cloxacillin and vancomycin were incorporated into the constructs. When incorporated into the 3D construct, both antibacterials were released, as evidenced by the growth inhibition of Staphylococcus aureus. In conclusion, preliminary results indicate that the layer thickness during the three-dimensional (3D) printing process of the spacer plays a significant role in drug release.
Collapse
Affiliation(s)
- Carlos Tamarit-Martínez
- Instituto de Ciencias Biomédicas, Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, C/Santiago Ramón y Cajal s/n, 46115 Alfara del Patriarca, Valencia, Spain
| | - Lucía Bernat-Just
- Instituto de Ciencias Biomédicas, Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, C/Santiago Ramón y Cajal s/n, 46115 Alfara del Patriarca, Valencia, Spain
| | - Carlos Bueno-López
- Instituto de Ciencias Biomédicas, Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, C/Santiago Ramón y Cajal s/n, 46115 Alfara del Patriarca, Valencia, Spain
| | - Adrián M Alambiaga-Caravaca
- Instituto de Ciencias Biomédicas, Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, C/Santiago Ramón y Cajal s/n, 46115 Alfara del Patriarca, Valencia, Spain
| | - Virginia Merino
- Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 València, Valencia, Spain
| | - Alicia López-Castellano
- Instituto de Ciencias Biomédicas, Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, C/Santiago Ramón y Cajal s/n, 46115 Alfara del Patriarca, Valencia, Spain
| | - Vicent Rodilla
- Instituto de Ciencias Biomédicas, Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, C/Santiago Ramón y Cajal s/n, 46115 Alfara del Patriarca, Valencia, Spain
| |
Collapse
|
38
|
Peña JF, Cotabarren I, Gallo L. Three-Dimensional Printing of PVA Capsular Devices for Applications in Compounding Pharmacy: Effect of Design Parameters on Pharmaceutical Performance. Pharmaceutics 2024; 16:1069. [PMID: 39204414 PMCID: PMC11359400 DOI: 10.3390/pharmaceutics16081069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
The creation of products with personalized or innovative features in the pharmaceutical sector by using innovative technologies such as three-dimensional (3D) printing is particularly noteworthy, especially in the realm of compounding pharmacies. In this work, 3D printed capsule devices (CDs) with different wall thicknesses (0.2, 0.3, 0.4, 0.6, and 0.9 mm) and sizes were designed and successfully fabricated varying printing parameters such as extrusion temperature, printing speed, material flow percent, and nozzle diameter. The physicochemical, pharmaceutical, and biopharmaceutical performance of these CDs was evaluated with the aim of achieving an immediate drug release profile comparable to hard gelatin capsules (HGC) for use in magistral compounding. It was observed that the disintegration time of the CDs increased with wall thickness, which correlated with a slower drug release rate. CDs with configurations presenting 0.4 mm wall thickness and sizes comparable to HGC n° 0, 1, and 2 demonstrated satisfactory weight uniformity, short disintegration times, and immediate drug release, indicating their potential as effective devices in future compounding pharmacy applications. In addition, a modified Weibull-type model was proposed that incorporates wall thickness as a new variable in predicting dissolution profiles. This model improves the process of selecting a specific wall thickness to achieve the desired dissolution rate within a specified time frame.
Collapse
Affiliation(s)
- Juan Francisco Peña
- Planta Piloto de Ingeniería Química, PLAPIQUI (UNS-CONICET), Camino La Carrindanga Km 7, Bahía Blanca 8000, Argentina; (J.F.P.); (L.G.)
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, Bahía Blanca 8000, Argentina
| | - Ivana Cotabarren
- Planta Piloto de Ingeniería Química, PLAPIQUI (UNS-CONICET), Camino La Carrindanga Km 7, Bahía Blanca 8000, Argentina; (J.F.P.); (L.G.)
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, Bahía Blanca 8000, Argentina
| | - Loreana Gallo
- Planta Piloto de Ingeniería Química, PLAPIQUI (UNS-CONICET), Camino La Carrindanga Km 7, Bahía Blanca 8000, Argentina; (J.F.P.); (L.G.)
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, Bahía Blanca 8000, Argentina
| |
Collapse
|
39
|
Strzempek W, Menaszek E, Papież M, Gil B. Slowing Down the "Magic Bullet": Encapsulation of Imatinib in Fe-MOF for Cardiotoxicity Reduction and Improvement in Anticancer Activity. Molecules 2024; 29:3818. [PMID: 39202897 PMCID: PMC11357391 DOI: 10.3390/molecules29163818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
Imatinib, a small molecule kinase inhibitor, is used as a cancer growth blocker. However, one of its most serious side effects is congestive cardiac failure. Reducing drug toxicity may be achieved through the use of drug delivery systems. Biocompatible metal-organic framework (MOF) materials, namely FeMIL-100 and FeMIL-101-NH2, were employed as potential imatinib carriers. They efficiently delivered the drug as an anticancer agent while minimizing cardiotoxicity. Notably, the release of imatinib from FeMIL-100 was rapid in acidic conditions and slower in pH-neutral environments, allowing targeted delivery to cancer cells. The carrier's pH-dependent stability governed the drug release mechanism. Two release models-Korsmeyer-Peppas and Weibull-were fitted to the experimental data and discussed in terms of drug release from a rigid microporous matrix. Cytotoxicity tests were conducted on two cell lines: HL60 (a model cell line for acute myeloid leukemia) and H9c2 (a cell line for cardiomyocytes). Overall, the metal-organic framework (MOF) carriers mitigated imatinib's adverse effects without compromising its effectiveness.
Collapse
Affiliation(s)
- Weronika Strzempek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Elżbieta Menaszek
- Faculty of Pharmacy, Jagiellonian University Collegium Medicum, Medyczna 9, 30-688 Kraków, Poland; (E.M.); (M.P.)
| | - Monika Papież
- Faculty of Pharmacy, Jagiellonian University Collegium Medicum, Medyczna 9, 30-688 Kraków, Poland; (E.M.); (M.P.)
| | - Barbara Gil
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
40
|
Pantović Pavlović MR, Ignjatović NL, Gudić S, Vrsalović L, Božić KĐ, Popović ME, Pavlović MM. Modified Titanium Surface with Nano Amorphous Calcium Phosphate@Chitosan Oligolactate as Ion Loading Platform with Multifunctional Properties for Potential Biomedical Application. Ann Biomed Eng 2024; 52:2221-2233. [PMID: 38662122 DOI: 10.1007/s10439-024-03521-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Titanium (Ti) is widely used in medical and dental implants. Calcium phosphate (CPs) coatings enhance Ti implants' osteoinductive properties, and additives further improve these coatings. Recently, a nano amorphous calcium phosphate (nACP) coating decorated with chitosan oligolactate (ChOL) and selenium (Se) showed immunomodulatory effects. This study investigates the surface morphology, composition, bioactivity, mechanical properties, and Se-release mechanism of the nACP@ChOL-Se hybrid coating on Ti substrates. Amorphous calcium phosphate (ACP) was synthesized, and the nACP@ChOL-Se hybrid coating was deposited on Ti substrates using in situ anaphoretic deposition. Physico-chemical characterization was used to analyze the surface of the coating (scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier Transform Infrared Spectroscopy). The distribution of Se within the coating was examined with energy-dispersive X-ray spectroscopy (EDS). Bioactivity was evaluated in simulated body fluid (SBF), and adhesion was tested using a scratch test method. In vitro testing determined the release mechanism of Se. SEM images illustrated the surface morphology, while AFM provided a detailed analysis of surface roughness. XRD analysis revealed structural and phase composition, and EDS confirmed Se distribution within the coating. The coating exhibited bioactivity in SBF and showed good adhesion according to the scratch test. In vitro testing uncovered the release mechanism of Se from the coating. This study successfully characterized the surface morphology, composition, bioactivity, and Se-release mechanism of the nACP@ChOL-Se hybrid coating on Ti substrates, offering insights for developing immunomodulatory coatings for medical and dental applications.
Collapse
Affiliation(s)
- Marijana R Pantović Pavlović
- Department of Electrochemistry, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, 11000, Serbia
- Center of Excellence in Chemistry and Environmental Engineering-ICTM, University of Belgrade, Belgrade, 11000, Serbia
| | - Nenad L Ignjatović
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Belgrade, 11000, Serbia
| | - Senka Gudić
- Faculty of Chemistry and Technology, University of Split, 21000, Split, Croatia
| | - Ladislav Vrsalović
- Faculty of Chemistry and Technology, University of Split, 21000, Split, Croatia
| | - Katarina Đ Božić
- Department of Electrochemistry, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, 11000, Serbia
- Center of Excellence in Chemistry and Environmental Engineering-ICTM, University of Belgrade, Belgrade, 11000, Serbia
| | - Marko E Popović
- Department of Electrochemistry, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, 11000, Serbia
| | - Miroslav M Pavlović
- Department of Electrochemistry, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, 11000, Serbia.
- Center of Excellence in Chemistry and Environmental Engineering-ICTM, University of Belgrade, Belgrade, 11000, Serbia.
| |
Collapse
|
41
|
Gholap AD, Uddin MJ, Faiyazuddin M, Omri A, Gowri S, Khalid M. Advances in artificial intelligence for drug delivery and development: A comprehensive review. Comput Biol Med 2024; 178:108702. [PMID: 38878397 DOI: 10.1016/j.compbiomed.2024.108702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/12/2024] [Accepted: 06/01/2024] [Indexed: 07/24/2024]
Abstract
Artificial intelligence (AI) has emerged as a powerful tool to revolutionize the healthcare sector, including drug delivery and development. This review explores the current and future applications of AI in the pharmaceutical industry, focusing on drug delivery and development. It covers various aspects such as smart drug delivery networks, sensors, drug repurposing, statistical modeling, and simulation of biotechnological and biological systems. The integration of AI with nanotechnologies and nanomedicines is also examined. AI offers significant advancements in drug discovery by efficiently identifying compounds, validating drug targets, streamlining drug structures, and prioritizing response templates. Techniques like data mining, multitask learning, and high-throughput screening contribute to better drug discovery and development innovations. The review discusses AI applications in drug formulation and delivery, clinical trials, drug safety, and pharmacovigilance. It addresses regulatory considerations and challenges associated with AI in pharmaceuticals, including privacy, data security, and interpretability of AI models. The review concludes with future perspectives, highlighting emerging trends, addressing limitations and biases in AI models, and emphasizing the importance of collaboration and knowledge sharing. It provides a comprehensive overview of AI's potential to transform the pharmaceutical industry and improve patient care while identifying further research and development areas.
Collapse
Affiliation(s)
- Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, Maharashtra, 401404, India.
| | - Md Jasim Uddin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Md Faiyazuddin
- School of Pharmacy, Al-Karim University, Katihar, Bihar, 854106, India; Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Tamil Nadu, India.
| | - Abdelwahab Omri
- Department of Chemistry and Biochemistry, The Novel Drug and Vaccine Delivery Systems Facility, Laurentian University, Sudbury, ON, P3E 2C6, Canada.
| | - S Gowri
- PG & Research, Department of Physics, Cauvery College for Women, Tiruchirapalli, Tamil Nadu, 620018, India
| | - Mohammad Khalid
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK; Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia; University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India.
| |
Collapse
|
42
|
Visan AI, Negut I. Development and Applications of PLGA Hydrogels for Sustained Delivery of Therapeutic Agents. Gels 2024; 10:497. [PMID: 39195026 DOI: 10.3390/gels10080497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) hydrogels are highly utilized in biomedical research due to their biocompatibility, biodegradability, and other versatile properties. This review comprehensively explores their synthesis, properties, sustained release mechanisms, and applications in drug delivery. The introduction underscores the significance of PLGA hydrogels in addressing challenges like short half-lives and systemic toxicity in conventional drug formulations. Synthesis methods, including emulsion solvent evaporation, solvent casting, electrospinning, thermal gelation, and photopolymerization, are described in detail and their role in tailoring hydrogel properties for specific applications is highlighted. Sustained release mechanisms-such as diffusion-controlled, degradation-controlled, swelling-controlled, and combined systems-are analyzed alongside key kinetic models (zero-order, first-order, Higuchi, and Peppas models) for designing controlled drug delivery systems. Applications of PLGA hydrogels in drug delivery are discussed, highlighting their effectiveness in localized and sustained chemotherapy for cancer, as well as in the delivery of antibiotics and antimicrobials to combat infections. Challenges and future prospects in PLGA hydrogel research are discussed, with a focus on improving drug loading efficiency, improving release control mechanisms, and promoting clinical translation. In summary, PLGA hydrogels provide a promising platform for the sustained delivery of therapeutic agents and meet diverse biomedical requirements. Future advancements in materials science and biomedical engineering are anticipated to further optimize their efficacy and applicability in clinical settings. This review consolidates the current understanding and outlines future research directions for PLGA hydrogels, emphasizing their potential to revolutionize therapeutic delivery and improve patient outcomes.
Collapse
Affiliation(s)
- Anita Ioana Visan
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| |
Collapse
|
43
|
Erensoy G, Råberg L, von Mentzer U, Menges LD, Bardhi E, Hultgård Ekwall AK, Stubelius A. Dynamic Release from Acetalated Dextran Nanoparticles for Precision Therapy of Inflammation. ACS APPLIED BIO MATERIALS 2024; 7:3810-3820. [PMID: 38795048 PMCID: PMC11191005 DOI: 10.1021/acsabm.4c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/27/2024]
Abstract
Polymer-based nanoparticles (NPs) that react to altered physiological characteristics have the potential to enhance the delivery of therapeutics to a specific area. These materials can utilize biochemical triggers, such as low pH, which is prone to happen locally in an inflammatory microenvironment due to increased cellular activity. This reduced pH is neutralized when inflammation subsides. For precise delivery of therapeutics to match this dynamic reaction, drug delivery systems (DDS) need to not only release the drug (ON) but also stop the release (OFF) autonomously. In this study, we use a systematic approach to optimize the composition of acetalated dextran (AcDex) NPs to start (ON) and stop (OFF) releasing model cargo, depending on local pH changes. By mixing ratios of AcDex polymers (mixed NPs), we achieved a highly sensitive material that was able to rapidly release cargo when going from pH 7.4 to pH 6.0. At the same time, the mix also offered a stable composition that enabled a rapid ON/OFF/ON/OFF switching within this narrow pH range in only 90 min. These mixed NPs were also sensitive to biological pH changes, with increased release in the presence of inflammatory cells compared to healthy cells. Such precise and controllable characteristics of a DDS position mixed NPs as a potential treatment platform to inhibit disease flare-ups, reducing both systemic and local side effects to offer a superior treatment option for inflammation compared to conventional systems.
Collapse
Affiliation(s)
- Gizem Erensoy
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Loise Råberg
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Ula von Mentzer
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Luca Dirk Menges
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Endri Bardhi
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Anna-Karin Hultgård Ekwall
- The
Rheumatology Clinic, Sahlgrenska University
Hospital, Gothenburg 413 45, Sweden
- Department
of Rheumatology and Inflammation Research, Institute of Medicine,
Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 46, Sweden
| | - Alexandra Stubelius
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| |
Collapse
|
44
|
Kashkooli FM, Jakhmola A, A Ferrier G, Sathiyamoorthy K, Tavakkoli J(J, C Kolios M. Development of an ultrasound-mediated nano-sized drug-delivery system for cancer treatment: from theory to experiment. Nanomedicine (Lond) 2024; 19:1167-1189. [PMID: 38722104 PMCID: PMC11418290 DOI: 10.2217/nnm-2023-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/06/2024] [Indexed: 09/21/2024] Open
Abstract
Aim: To establish a methodology for understanding how ultrasound (US) induces drug release from nano-sized drug-delivery systems (NSDDSs) and enhances drug penetration and uptake in tumors. This aims to advance cancer treatment strategies.Materials & methods: We developed a multi-physics mathematical model to elucidate and understand the intricate mechanisms governing drug release, transport and delivery. Unique in vitro models (monolayer, multilayer, spheroid) and a tailored US exposure setup were introduced to evaluate drug penetration and uptake.Results: The results highlight the potential advantages of US-mediated NSDDSs over conventional NSDDSs and chemotherapy, notably in enhancing drug release and inducing cell death.Conclusion: Our sophisticated numerical and experimental methods aid in determining and quantifying drug penetration and uptake into solid tumors.
Collapse
Affiliation(s)
| | - Anshuman Jakhmola
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | - Graham A Ferrier
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | | | - Jahangir (Jahan) Tavakkoli
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science & Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science & Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|
45
|
Hosseini Hooshiar M, Badkoobeh A, Kolahdouz S, Tadayonfard A, Mozaffari A, Nasiri K, Salari S, Safaralizadeh R, Yasamineh S. The potential use of nanozymes as an antibacterial agents in oral infection, periodontitis, and peri-implantitis. J Nanobiotechnology 2024; 22:207. [PMID: 38664778 PMCID: PMC11044492 DOI: 10.1186/s12951-024-02472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/07/2024] [Indexed: 04/29/2024] Open
Abstract
Several studies suggest that oral pathogenic biofilms cause persistent oral infections. Among these is periodontitis, a prevalent condition brought on by plaque biofilm. It can even result in tooth loss. Furthermore, the accumulation of germs around a dental implant may lead to peri-implantitis, which damages the surrounding bone and gum tissue. Furthermore, bacterial biofilm contamination on the implant causes soft tissue irritation and adjacent bone resorption, severely compromising dental health. On decontaminated implant surfaces, however, re-osseointegration cannot be induced by standard biofilm removal techniques such as mechanical cleaning and antiseptic treatment. A family of nanoparticles known as nanozymes (NZs) comprise highly catalytically active multivalent metal components. The most often employed NZs with antibacterial activity are those that have peroxidase (POD) activity, among other types of NZs. Since NZs are less expensive, more easily produced, and more stable than natural enzymes, they hold great promise for use in various applications, including treating microbial infections. NZs have significantly contributed to studying implant success rates and periodontal health maintenance in periodontics and implantology. An extensive analysis of the research on various NZs and their applications in managing oral health conditions, including dental caries, dental pulp disorders, oral ulcers, peri-implantitis, and bacterial infections of the mouth. To combat bacteria, this review concentrates on NZs that imitate the activity of enzymes in implantology and periodontology. With a view to the future, there are several ways that NZs might be used to treat dental disorders antibacterially.
Collapse
Affiliation(s)
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Shirin Kolahdouz
- School of Dentistry, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Azadeh Tadayonfard
- Postgraduate Department of Prosthodontics, Dental Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | - Asieh Mozaffari
- Department of Periodontics, Faculty of Dentistry, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Kamyar Nasiri
- Department of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Sara Salari
- Islamic Azad University of Medical Sciences, Esfahan, Iran
| | - Reza Safaralizadeh
- Restarative Dentistry, Department of Dental, Faculty Tabriz Medical University, Tabriz, Iran.
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
46
|
Maringolo Ribeiro C, Augusto Roque-Borda C, Carolina Franzini M, Fernanda Manieri K, Manaia Demarqui F, Leite Campos D, Temperani Amaral Machado R, Cristiane da Silva I, Tavares Luiz M, Delello Di Filippo L, Bento da Silva P, Cristina Oliveira da Rocha M, Nair Báo S, Masci D, Fernandes GFS, Castagnolo D, Chorilli M, Rogério Pavan F. Liposome-siderophore conjugates loaded with moxifloxacin serve as a model for drug delivery against Mycobacterium tuberculosis. Int J Pharm 2024; 655:124050. [PMID: 38537924 DOI: 10.1016/j.ijpharm.2024.124050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024]
Abstract
Tuberculosis (TB) is an infectious disease that annually affects millions of people, and resistance to available antibiotics has exacerbated this situation. Another notable characteristic of Mycobacterium tuberculosis, the primary causative agent of TB, is its ability to survive inside macrophages, a key component of the immune system. In our quest for an effective and safe treatment that facilitates the targeted delivery of antibiotics to the site of infection, we have proposed a nanotechnology approach based on an iron chelator. Iron chelators are the primary mechanism by which bacteria acquire iron, a metal essential for their metabolism. Four liposomes were synthesized and characterized using the dynamic light scattering technique (DLS), nanoparticle tracking analysis (NTA), and transmission electron microscopy (TEM). All of these methods revealed the presence of spherical particles, approximately 200 nm in size. NTA indicated a concentration of around 1011 particles/mL. We also developed and validated a high-performance liquid chromatography method for quantifying Moxifloxacin to determine encapsulation efficiency (EE) and release profiles (RF). The EE was 51.31 % for LipMox and 45.76 % for LipIchMox. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed the phagocytosis of liposomal vesicles by macrophages. Functionalizing liposomes with iron chelators can offer significant benefits for TB treatment, such as targeted drug delivery to intracellular bacilli through the phagocytosis of liposomal particles by cells like macrophages.
Collapse
Affiliation(s)
- Camila Maringolo Ribeiro
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, Brazil
| | | | - Maria Carolina Franzini
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, Brazil
| | - Karyn Fernanda Manieri
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, Brazil
| | - Fernanda Manaia Demarqui
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, Brazil
| | - Débora Leite Campos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, Brazil
| | - Rachel Temperani Amaral Machado
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, Brazil
| | - Isabel Cristiane da Silva
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, Brazil
| | - Marcela Tavares Luiz
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, Brazil
| | - Leonardo Delello Di Filippo
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, Brazil
| | - Patrícia Bento da Silva
- Cell Biology Department, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | | | - Sônia Nair Báo
- Cell Biology Department, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | - Domiziana Masci
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH London, United Kingdom
| | - Guilherme F S Fernandes
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH London, United Kingdom; Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Daniele Castagnolo
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH London, United Kingdom; Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, Brazil
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, Brazil.
| |
Collapse
|
47
|
Sarafska T, Ivanova S, Dudev T, Tzachev C, Petrov V, Spassov T. Enhanced Solubility of Ibuprofen by Complexation with β-Cyclodextrin and Citric Acid. Molecules 2024; 29:1650. [PMID: 38611930 PMCID: PMC11013186 DOI: 10.3390/molecules29071650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The ability of β-CD to form inclusion complexes with ibuprofen (IBU) and at the same time to make a two-phase system with citric acid was explored in the present study for achieving improved solubility and dissolution rate of IBU. Mechanical milling as well as mechanical milling combined with thermal annealing of the powder mixtures were applied as synthetic methods. Solubility and dissolution kinetics of the complexes were studied in compliance with European Pharmacopoeia (ICH Q4B). β-CD and citric acid (CA) molecules were shown to interact by both ball milling (BM), thermal annealing, as well as BM with subsequent annealing. Complexes were also formed by milling the three compounds (β-CD, CA and IBU) simultaneously, as well as by a consecutive first including IBU into β-CD and then binding the formed β-CD/IBU inclusion complex with CA. As a result, ternary β-CD/IBU/CA complex formed by initial incorporation of ibuprofen into β-CD, followed by successive formation of a two-phase mixture with CA, exhibited notably improved dissolution kinetics compared to the pure ibuprofen and slightly better compared to the binary β-CD/IBU system. Although the addition of CA to β-CD/IBU does not significantly increase the solubility rate of IBU, it must be considered that the amount of β-CD is significantly less in the ternary complex compared to the binary β-CD/IBU.
Collapse
Affiliation(s)
| | | | | | | | | | - Tony Spassov
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, 1164 Sofia, Bulgaria; (T.S.); (S.I.); (T.D.); (C.T.); (V.P.)
| |
Collapse
|
48
|
Ojsteršek T, Vrečer F, Hudovornik G. Comparative Fitting of Mathematical Models to Carvedilol Release Profiles Obtained from Hypromellose Matrix Tablets. Pharmaceutics 2024; 16:498. [PMID: 38675159 PMCID: PMC11053526 DOI: 10.3390/pharmaceutics16040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The mathematical models available in DDSolver were applied to experimental dissolution data obtained by analysing carvedilol release from hypromellose (HPMC)-based matrix tablets. Different carvedilol release profiles were generated by varying a comprehensive selection of fillers and carvedilol release modifiers in the formulation. Model fitting was conducted for the entire relevant dissolution data, as determined by using a paired t-test, and independently for dissolution data up to approximately 60% of carvedilol released. The best models were selected based on the residual sum of squares (RSS) results used as a general measure of goodness of fit, along with the utilization of various criteria for visual assessment of model fit and determination of the acceptability of estimated model parameters indicating burst release or lag time concerning experimental dissolution results and previous research. In addition, a model-dependent analysis of carvedilol release mechanisms was carried out.
Collapse
Affiliation(s)
- Tadej Ojsteršek
- KRKA, d. d., 8501 Novo Mesto, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Franc Vrečer
- KRKA, d. d., 8501 Novo Mesto, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | | |
Collapse
|
49
|
Pizzetti F, Perale G, Masi M, Rossi F. Are mathematical equations important for improving drug-delivery devices performances? Ther Deliv 2024; 15:233-236. [PMID: 38356370 DOI: 10.4155/tde-2023-0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Affiliation(s)
- Fabio Pizzetti
- Department of Chemistry, Materials & Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131, Milan, Italy
| | - Giuseppe Perale
- Biomaterials Laboratory, Institute for Mechanical Engineering & Materials Technology, University of Applied Sciences & Arts of Southern Switzerland, via Cantonale 2C, Galleria 2, 6928, Manno, Switzerland
- Ludwig Boltzmann Institute for Experimental & Clinical Traumatology, Donaueschingenstrasse 13, 1200, Vienna, Austria
| | - Maurizio Masi
- Department of Chemistry, Materials & Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131, Milan, Italy
| | - Filippo Rossi
- Department of Chemistry, Materials & Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131, Milan, Italy
- Biomaterials Laboratory, Institute for Mechanical Engineering & Materials Technology, University of Applied Sciences & Arts of Southern Switzerland, via Cantonale 2C, Galleria 2, 6928, Manno, Switzerland
| |
Collapse
|
50
|
Singh J, Sharma M, Singh H, Arora P, Utreja P, Kumar S. Formulation, Characterization and In Vitro Evaluation of Mesalamine and Bifidobacterium bifidum Loaded Hydrogel Beads in Capsule System for Colon Targeted Delivery. AAPS PharmSciTech 2024; 25:61. [PMID: 38485901 DOI: 10.1208/s12249-024-02764-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/10/2024] [Indexed: 03/19/2024] Open
Abstract
Mesalamine is a first-line drug for the treatment of inflammatory bowel diseases. However, its premature release associated with marketed formulations leads to adverse effects like gastric trouble, vomiting, and diarrhoea. To minimize these side effects, colon-targeted drug delivery is essential. Besides conventional pharmacotherapy, bifidogenic probiotics with anti-inflammatory activity has been reported to elicit a significant impact on the remission of ulcerative colitis. Bifidogenic probiotics being acid-labile necessitate developing a gastro-resistant formulation for enhancing the delivery of viable cells to the colon. The present study was aimed at developing a fixed-dose unit dosage form of mucoadhesive hydrogel beads loaded with mesalamine and Bifidobacterium bifidum further encapsulated in Eudragit® capsules for the targeted drug delivery at colonic pH. The hydrogel beads were prepared by ionotropic gelation, with the effect of single and dual-crosslinking approaches on various formulation characteristics studied. Standard size 00 Eudragit® gastro-resistant capsules were prepared and the dried beads were filled inside the capsule shells. The formulation was then evaluated for various parameters, including physicochemical characterization, in vitro biocompatibility and anti-inflammatory activity. No interaction was observed between the drug and the polymers, as confirmed through FTIR, XRD, and DSC analysis. The mean particle size of the beads was ~ 457-485 µm. The optimized formulation showed a drug entrapment efficiency of 95.4 ± 2.58%. The Eudragit® capsule shells disintegrated in approximately 13 min at pH 7.4. The mucoadhesive hydrogel beads sustained the drug release above 18 h, with 50% of the drug released by the end of 12 h. The optimized formulation demonstrated significant (p < 0.05) gastro-resistance, biocompatibility, sustained drug release, cell viability, and anti-inflammatory activity.
Collapse
Affiliation(s)
- Jagtar Singh
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Near Baddowal Cantt, Ferozepur Rd, Ludhiana, Punjab, 142021, India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab, 160062, India
| | - Mohit Sharma
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Near Baddowal Cantt, Ferozepur Rd, Ludhiana, Punjab, 142021, India
| | - Harmeet Singh
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Near Baddowal Cantt, Ferozepur Rd, Ludhiana, Punjab, 142021, India
| | - Pinky Arora
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar - Delhi, Grand Trunk Rd, Phagwara, Punjab, 144411, India
- Faculty of Medical Lab Sciences, PCTE Group of Institutes, Near Baddowal Cantt, Ferozepur Rd, Ludhiana, Punjab, 142021, India
| | - Puneet Utreja
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Near Baddowal Cantt, Ferozepur Rd, Ludhiana, Punjab, 142021, India
| | - Shubham Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar - Delhi, Grand Trunk Rd, Phagwara, Punjab, 144411, India.
| |
Collapse
|