1
|
Chaudhary K, Rajora A. Elevating Therapeutic Penetration: Innovations in Drug Delivery for Enhanced Permeation and Skin Cancer Management. Crit Rev Ther Drug Carrier Syst 2025; 42:1-34. [PMID: 39819462 DOI: 10.1615/critrevtherdrugcarriersyst.2024047670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Skin cancer stands as a challenging global health concern, necessitating innovative approaches to cure deficiencies within traditional therapeutic modalities. While conventional drug delivery methods through injection or oral administration have long prevailed, the emergence of topical drug administration presents a compelling alternative. The skin, aside from offering a swift and painless procedure, serves as a reservoir, maintaining drug efficacy over extended durations. This comprehensive review seeks to shed light on the potential of nanotechnology as a promising avenue for efficacious cancer treatment, with a particular emphasis on skin cancer. Additionally, it underscores the transdermal approach as a viable strategy for addressing various types of cancer. This work also explores into the delivery of peptides and proteins along with in-depth explanations of different delivery systems currently under investigation for localized skin cancer treatment. Furthermore, the review discusses the formidable challenges that must be surmounted before these innovations can find their way into clinical practice, offering a roadmap for future research and therapeutic development.
Collapse
Affiliation(s)
- Kajal Chaudhary
- Ram-Eesh Institute of Pharmacy, Knowledge Park I, Greater Noida, Uttar Pradesh 201306, India
| | | |
Collapse
|
2
|
Kadry MO. Resveratrol-based nano-formulations as an emerging therapeutic strategy for ovarian carcinoma: autophagy stimulation and SIRT-1/Beclin/MMP-9/P53/AKT signaling. Cancer Nanotechnol 2024; 15:36. [DOI: 10.1186/s12645-024-00274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/25/2024] [Indexed: 01/05/2025] Open
Abstract
Abstract
Background
Resveratrol (RVS) is a stilbene derivative polyphenolic compound extensively recognized for its anti-inflammatory, antioxidant and anti-aging properties, along with its enormous promise in carcinoma treatment. Unfortunately, the oral supplementation of RVS possesses physicochemical and pharmacokinetic constraints that hinder its effects, necessitating the development of suitable administration strategies to improve its effectiveness. As a result, the current study evaluates the use of resveratrol nano-formulations in ovarian cancer therapy. Ovarian cancer was induced in rats using (35 mg/kg BW) 20-Methyl cholanthrene (20-MC) followed by resveratrol and resveratrol nano-formulations therapy for one month.
Results
20-MC highlighted a noticeable alleviation in autophagy (ATF) biomarkers SIRT-1 and Beclin, inflammatory and apoptotic biomarkers MMP-9, P53 and AKT in addition to oxidative and nitrosative stress biomarkers TAC and NOX and ovarian cancer tumor biomarker CA-125.
Conclusions
Resveratrol and resveratrol nano-formulations modulated autophagy, inflammatory and oxidative stress biomarkers with the upper effect for resveratrol nano-formulations in competing 20-MC-induced ovarian cancer.
Collapse
|
3
|
Yeo S, Jung S, Kim H, Ahn JH, Hwang SJ. 4-Hexylresorcinol Loaded Solid Lipid Nanoparticles for Enhancing Anticancer Activity. Pharmaceuticals (Basel) 2024; 17:1296. [PMID: 39458937 PMCID: PMC11514591 DOI: 10.3390/ph17101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Cancer is one of the most significant threats to human health. Following surgical excision, chemotherapy is an effective strategy against remaining cancer cells. 4-hexylresorcinol (4-HR) has anti-cancer properties and exhibits hydrophobicity-induced aggregation in the blood that has trouble with targeted tumor delivery and cellular uptake of the drug. The purpose of this study is to encapsulate 4-HR into solid lipid nanoparticles (SLNs) to enhance its anti-cancer effect by avoiding aggregation and facilitating cellular uptake. METHODS 4-HR SLNs were prepared via hot melt homogenization with sonication. SLN characteristics were assessed by analyzing particle size, zeta potential, and drug release. Cytotoxicity, as an indicator of the anti-cancer effect, was evaluated against HeLa (cervical cancer in humans), A549 (lung cancer in humans), and CT-26 (colon carcinoma in mice) cell lines. RESULTS Particle size ranged from 169.4 to 644.8 nm, and zeta potential ranged from -19.8 to -40.3 mV, which are conducive to cellular uptake. Entrapment efficiency (EE) of 4-HR was found to be 75.0-96.5%. The cytotoxicity of 4-HR-loaded SLNs demonstrated enhanced anti-cancer effects compared to pure 4-HR. The enhancement of anti-cancer effects depended on reduced particle size based on cellular uptake, the EE, and the cell type. CONCLUSIONS These findings imply that 4-HR-loaded SLN is a promising strategy for chemotherapy in cancer treatment.
Collapse
Affiliation(s)
- Sooho Yeo
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea;
| | - Sukkyun Jung
- Research Center of Barunbarum Co., Seoul 06776, Republic of Korea;
| | - Haneul Kim
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea;
| | - Jun-Hyun Ahn
- Department of Biopharmaceutical Engineering, Hannam University, 1646 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Republic of Korea;
| | - Sung-Joo Hwang
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea;
| |
Collapse
|
4
|
Chu LW, Chen JY, Chen YW, Hsieh S, Kung ML. Phytoconstituent-derived zingerone nanoparticles disrupt the cell adhesion mechanism and suppress cell motility in melanoma B16F10 cells. J Biotechnol 2024; 392:48-58. [PMID: 38906221 DOI: 10.1016/j.jbiotec.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/18/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Combining phytochemicals and nanotechnology to improve the unfavorable innate properties of phytochemicals and develop them into potent nanomedicines to enhance antitumor efficacy has become a novel strategy for cancer chemoprevention. Melanoma is the most aggressive, metastatic, and deadly disease of the primary cutaneous neoplasms. In this study, we fabricated phytoconstituent-derived zingerone nanoparticles (NPs) and validated their effects on cell adhesion and motility in melanoma B16F10 cells. Our data indicated that zingerone NPs significantly induced cytotoxicity and anti-colony formation and inhibited cell migration and invasion. Moreover, zingerone NPs dramatically interfered with the cytoskeletal reorganization and markedly delayed the period of cell adhesion. Our results also revealed that zingerone NPs-mediated downregulation of MMPs (matrix metalloproteinases) activity is associated with inhibiting cell adhesion and motility. We further evaluated the effects of zingerone NPs on Src/FAK /Paxillin signaling, our data showed that zingerone NPs significantly inhibited the protein activities of Src, FAK, and Paxillin, indicating that they play important roles in zingerone NP-mediated anti-motility and anti-invasion in melanoma cells. Accordingly, the phytoconstituent-zingerone NPs can strengthen the inhibition of tumor growth, invasion, and metastasis in malignant melanoma. Altogether, these multi-pharmacological benefits of zingerone NPs will effectively achieve the purpose of melanoma prevention and invasion inhibition.
Collapse
Affiliation(s)
- Li-Wen Chu
- Department of Nursing, and Department of Cosmetic Application and Management, Yuh-Ing Junior College of Health Care and Management, Kaohsiung, Taiwan
| | - Jun-Yih Chen
- Division of Neurosurgery, Fooyin University Hospital, Pingtung, Taiwan; Department of Nursing, Fooyin University, Kaohsiung, Taiwan
| | - Yun-Wen Chen
- Departments of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shuchen Hsieh
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Mei-Lang Kung
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
5
|
Bao Z, Yung F, Hickman RJ, Aspuru-Guzik A, Bannigan P, Allen C. Data-driven development of an oral lipid-based nanoparticle formulation of a hydrophobic drug. Drug Deliv Transl Res 2024; 14:1872-1887. [PMID: 38158474 DOI: 10.1007/s13346-023-01491-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Due to its cost-effectiveness, convenience, and high patient adherence, oral drug administration normally remains the preferred approach. Yet, the effective delivery of hydrophobic drugs via the oral route is often hindered by their limited water solubility and first-pass metabolism. To mitigate these challenges, advanced delivery systems such as solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have been developed to encapsulate hydrophobic drugs and enhance their bioavailability. However, traditional design methodologies for these complex formulations often present intricate challenges because they are restricted to a relatively narrow design space. Here, we present a data-driven approach for the accelerated design of SLNs/NLCs encapsulating a model hydrophobic drug, cannabidiol, that combines experimental automation and machine learning. A small subset of formulations, comprising 10% of all formulations in the design space, was prepared in-house, leveraging miniaturized experimental automation to improve throughput and decrease the quantity of drug and materials required. Machine learning models were then trained on the data generated from these formulations and used to predict properties of all SLNs/NLCs within this design space (i.e., 1215 formulations). Notably, formulations predicted to be high-performers via this approach were confirmed to significantly enhance the solubility of the drug by up to 3000-fold and prevented degradation of drug. Moreover, the high-performance formulations significantly enhanced the oral bioavailability of the drug compared to both its free form and an over-the-counter version. Furthermore, this bioavailability matched that of a formulation equivalent in composition to the FDA-approved product, Epidiolex®.
Collapse
Affiliation(s)
- Zeqing Bao
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Fion Yung
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Riley J Hickman
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 2E4, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, M5S 1M1, Canada
| | - Alán Aspuru-Guzik
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 2E4, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, M5S 1M1, Canada
- Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR), Toronto, ON, M5S 1M1, Canada
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
- Department of Materials Science & Engineering, University of Toronto, Toronto, ON, M5S 3E4, Canada
- CIFAR Artificial Intelligence Research Chair, Vector Institute, Toronto, ON, M5S 1M1, Canada
- Acceleration Consortium, Toronto, ON, M5S 3H6, Canada
| | - Pauric Bannigan
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada.
- Acceleration Consortium, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
6
|
Vo GV, Rao KM, Chung I, Ha CS, An SSA, Yun YH. Derivatization of Hyaluronan to Target Neuroblastoma and Neuroglioma Expressing CD44. Pharmaceutics 2024; 16:836. [PMID: 38931956 PMCID: PMC11207210 DOI: 10.3390/pharmaceutics16060836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/18/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Therapeutics for actively targeting over-expressed receptors are of great interest because the majority of diseased tissues originate from normal cells and do not possess a unique receptor from which they can be differentiated. One such receptor is CD44, which has been shown to be highly overexpressed in many breast cancers and other types of cancer cells. While CD44 has been documented to express low levels in normal adult neurons, astrocytes, and microglia, this receptor may be overexpressed by neuroblastoma and neuroglioma. If differential expression exists between normal and cancerous cells, hyaluronan (HA) could be a useful carrier that targets carcinomas. Thus, HA was conjugated with resveratrol (HA-R), and its efficacy was tested on cortical-neuroblastoma hybrid, neuroblastoma, and neuroglioma cells. Confocal and flow cytometry showed these cells express CD44 and are able to bind and uptake HA-R. The toxicity of HA-R correlated well with CD44 expression in this study. Therefore, conjugating resveratrol and other chemotherapeutics to HA could minimize the side effects for normal cells within the brain and nervous system and could be a viable strategy for developing targeted therapies.
Collapse
Affiliation(s)
- Giau Van Vo
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA
| | - Kummara Madhusudana Rao
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si 38541, Gyeongbuk-do, Republic of Korea;
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Gyeongsangnam-do, Republic of Korea; (I.C.); (C.-S.H.)
| | - Ildoo Chung
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Gyeongsangnam-do, Republic of Korea; (I.C.); (C.-S.H.)
| | - Chang-Sik Ha
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Gyeongsangnam-do, Republic of Korea; (I.C.); (C.-S.H.)
| | - Seong Soo A. An
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA
| | - Yang H. Yun
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325-0302, USA
| |
Collapse
|
7
|
Yeo S, Wu H, Yoon I, Lee WK, Hwang SJ. Design of smart chemotherapy of doxorubicin hydrochloride using nanostructured lipid carriers and solid lipid nanoparticles for improved anticancer efficacy. Int J Pharm 2024; 657:124048. [PMID: 38537925 DOI: 10.1016/j.ijpharm.2024.124048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/20/2024]
Abstract
Doxorubicin hydrochloride (DOX) is an anticancer agent used in cancer chemotherapy. The purpose of this study was to design nanostructured lipid carriers (NLCs) of DOX as smart chemotherapy to improve its photostability and anticancer efficacy. The characteristics of DOX and DOX-loaded NLCs were investigated using UV-Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, particle size, and zeta potential study. The cytotoxicity of DOX was evaluated against three cancer cell lines (HeLa, A549, and CT-26). The particle size and zeta potential were in the range 58.45-94.08 nm and -5.80 mV - -18.27 mV, respectively. The chemical interactions, particularly hydrogen bonding and van der Waals forces, between DOX and the main components of NLCs was confirmed by FTIR. NLCs showed the sustained release profile of DOX. The photostability results revealed that the NLC system improved the photostability of DOX. Cytotoxicity results using the three cell lines showed that all formulations improved the anticancer efficacy of free DOX, and the efficacy was dependent on cell type and particle size. These results suggest that DOX-loaded NLCs are promising chemotherapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Sooho Yeo
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea; Center for Nano Manufacturing and Department of Nanoscience and Engineering, Inje University, 197 Injero, Gimhae 50834, Gyeongnam, Republic of Korea
| | - Huiqiang Wu
- Center for Nano Manufacturing and Department of Nanoscience and Engineering, Inje University, 197 Injero, Gimhae 50834, Gyeongnam, Republic of Korea
| | - Il Yoon
- Center for Nano Manufacturing and Department of Nanoscience and Engineering, Inje University, 197 Injero, Gimhae 50834, Gyeongnam, Republic of Korea.
| | - Woo Kyoung Lee
- Center for Nano Manufacturing and Department of Nanoscience and Engineering, Inje University, 197 Injero, Gimhae 50834, Gyeongnam, Republic of Korea.
| | - Sung-Joo Hwang
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea.
| |
Collapse
|
8
|
Salla M, Karaki N, El Kaderi B, Ayoub AJ, Younes S, Abou Chahla MN, Baksh S, El Khatib S. Enhancing the Bioavailability of Resveratrol: Combine It, Derivatize It, or Encapsulate It? Pharmaceutics 2024; 16:569. [PMID: 38675230 PMCID: PMC11053528 DOI: 10.3390/pharmaceutics16040569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Overcoming the limited bioavailability and extensive metabolism of effective in vitro drugs remains a challenge that limits the translation of promising drugs into clinical trials. Resveratrol, despite its well-reported therapeutic benefits, is not metabolically stable and thus has not been utilized as an effective clinical drug. This is because it needs to be consumed in large amounts to overcome the burdens of bioavailability and conversion into less effective metabolites. Herein, we summarize the more relevant approaches to modify resveratrol, aiming to increase its biological and therapeutic efficacy. We discuss combination therapies, derivatization, and the use of resveratrol nanoparticles. Interestingly, the combination of resveratrol with established chemotherapeutic drugs has shown promising therapeutic effects on colon cancer (with oxaliplatin), liver cancer (with cisplatin, 5-FU), and gastric cancer (with doxorubicin). On the other hand, derivatizing resveratrol, including hydroxylation, amination, amidation, imidation, methoxylation, prenylation, halogenation, glycosylation, and oligomerization, differentially modifies its bioavailability and could be used for preferential therapeutic outcomes. Moreover, the encapsulation of resveratrol allows its trapping within different forms of shells for targeted therapy. Depending on the nanoparticle used, it can enhance its solubility and absorption, increasing its bioavailability and efficacy. These include polymers, metals, solid lipids, and other nanoparticles that have shown promising preclinical results, adding more "hype" to the research on resveratrol. This review provides a platform to compare the different approaches to allow directed research into better treatment options with resveratrol.
Collapse
Affiliation(s)
- Mohamed Salla
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon; (N.K.); (B.E.K.); (A.J.A.); (M.N.A.C.); (S.E.K.)
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada
| | - Nadine Karaki
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon; (N.K.); (B.E.K.); (A.J.A.); (M.N.A.C.); (S.E.K.)
- Department of Chemistry and Biochemistry, Faculty of Arts and Sciences, Lebanese University, Zahlé 1801, Lebanon
| | - Belal El Kaderi
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon; (N.K.); (B.E.K.); (A.J.A.); (M.N.A.C.); (S.E.K.)
| | - Abeer J. Ayoub
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon; (N.K.); (B.E.K.); (A.J.A.); (M.N.A.C.); (S.E.K.)
| | - Samar Younes
- Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon;
- INSPECT-LB (National Institute of Public Health, Clinical Epidemiology and Toxicology-Lebanon (INSPECT-LB)), Beirut 1103, Lebanon
| | - Maya N. Abou Chahla
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon; (N.K.); (B.E.K.); (A.J.A.); (M.N.A.C.); (S.E.K.)
| | - Shairaz Baksh
- BioImmuno Designs, 4747 154 Avenue, Edmonton, AB T5Y 0C2, Canada;
- Bio-Stream Diagnostics, 2011 94 Street, Edmonton, AB T6H 1N1, Canada
| | - Sami El Khatib
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon; (N.K.); (B.E.K.); (A.J.A.); (M.N.A.C.); (S.E.K.)
- Department of Biomedical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon
- Center for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| |
Collapse
|
9
|
Pant T, Uche N, Juric M, Zielonka J, Bai X. Regulation of immunomodulatory networks by Nrf2-activation in immune cells: Redox control and therapeutic potential in inflammatory diseases. Redox Biol 2024; 70:103077. [PMID: 38359749 PMCID: PMC10877431 DOI: 10.1016/j.redox.2024.103077] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
Inflammatory diseases present a serious health challenge due to their widespread prevalence and the severe impact on patients' lives. In the quest to alleviate the burden of these diseases, nuclear factor erythroid 2-related factor 2 (Nrf2) has emerged as a pivotal player. As a transcription factor intimately involved in cellular defense against metabolic and oxidative stress, Nrf2's role in modulating the inflammatory responses of immune cells has garnered significant attention. Recent findings suggest that Nrf2's ability to alter the redox status of cells underlies its regulatory effects on immune responses. Our review delves into preclinical and clinical evidence that underscores the complex influence of Nrf2 activators on immune cell phenotypes, particularly in the inflammatory milieu. By offering a detailed analysis of Nrf2's role in different immune cell populations, we cast light on the potential of Nrf2 activators in shaping the immune response towards a more regulated state, mitigating the adverse effects of inflammation through modeling redox status of immune cells. Furthermore, we explore the innovative use of nanoencapsulation techniques that enhance the delivery and efficacy of Nrf2 activators, potentially advancing the treatment strategies for inflammatory ailments. We hope this review will stimulate the development and expansion of Nrf2-targeted treatments that could substantially improve outcomes for patients suffering from a broad range of inflammatory diseases.
Collapse
Affiliation(s)
- Tarun Pant
- Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Nnamdi Uche
- Department of Pharmacology and Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Matea Juric
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
10
|
Prakash V, Bose C, Sunilkumar D, Cherian RM, Thomas SS, Nair BG. Resveratrol as a Promising Nutraceutical: Implications in Gut Microbiota Modulation, Inflammatory Disorders, and Colorectal Cancer. Int J Mol Sci 2024; 25:3370. [PMID: 38542344 PMCID: PMC10970219 DOI: 10.3390/ijms25063370] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 12/20/2024] Open
Abstract
Natural products have been a long-standing source for exploring health-beneficial components from time immemorial. Modern science has had a renewed interest in natural-products-based drug discovery. The quest for new potential secondary metabolites or exploring enhanced activities for existing molecules remains a pertinent topic for research. Resveratrol belongs to the stilbenoid polyphenols group that encompasses two phenol rings linked by ethylene bonds. Several plant species and foods, including grape skin and seeds, are the primary source of this compound. Resveratrol is known to possess potent anti-inflammatory, antiproliferative, and immunoregulatory properties. Among the notable bioactivities associated with resveratrol, its pivotal role in safeguarding the intestinal barrier is highlighted for its capacity to prevent intestinal inflammation and regulate the gut microbiome. A better understanding of how oxidative stress can be controlled using resveratrol and its capability to protect the intestinal barrier from a gut microbiome perspective can shed more light on associated physiological conditions. Additionally, resveratrol exhibits antitumor activity, proving its potential for cancer treatment and prevention. Moreover, cardioprotective, vasorelaxant, phytoestrogenic, and neuroprotective benefits have also been reported. The pharmaceutical industry continues to encounter difficulties administering resveratrol owing to its inadequate bioavailability and poor solubility, which must be addressed simultaneously. This report summarizes the currently available literature unveiling the pharmacological effects of resveratrol.
Collapse
Affiliation(s)
- Vidhya Prakash
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| | - Chinchu Bose
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| | - Damu Sunilkumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Robin Mathew Cherian
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| | - Shwetha Susan Thomas
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| | - Bipin G. Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| |
Collapse
|
11
|
Najafiyan B, Bokaii Hosseini Z, Esmaelian S, Firuzpour F, Rahimipour Anaraki S, Kalantari L, Hheidari A, Mesgari H, Nabi-Afjadi M. Unveiling the potential effects of resveratrol in lung cancer treatment: Mechanisms and nanoparticle-based drug delivery strategies. Biomed Pharmacother 2024; 172:116207. [PMID: 38295754 DOI: 10.1016/j.biopha.2024.116207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 03/03/2024] Open
Abstract
Lung cancer ranks among the most prevalent forms of cancer and remains a significant factor in cancer-related mortality across the world. It poses significant challenges to healthcare systems and society as a whole due to its high incidence, mortality rates, and late-stage diagnosis. Resveratrol (RV), a natural compound found in various plants, has shown potential as a nanomedicine for lung cancer treatment. RV has varied effects on cancer cells, including promoting apoptosis by increasing pro-apoptotic proteins (Bax and Bak) and decreasing anti-apoptotic proteins (Bcl-2). It also hinders cell proliferation by influencing important signaling pathways (MAPK, mTOR, PI3K/Akt, and Wnt/β-catenin) that govern cancer progression. In addition, RV acts as a potent antioxidant, diminishing oxidative stress and safeguarding cells against DNA damage. However, using RV alone in cancer treatment has drawbacks, such as low bioavailability, lack of targeting ability, and susceptibility to degradation. In contrast, nanoparticle-based delivery systems address these limitations and hold promise for improving treatment outcomes in lung cancer; nanoparticle formulations of RV offer advantages such as improved drug delivery, increased stability, controlled release, and targeted delivery to lung cancer cells. This article will provide an overview of lung cancer, explore the potential of RV as a therapeutic agent, discuss the benefits and challenges of nanoparticle-based drug delivery, and highlight the promise of RV nanoparticles for cancer treatment, including lung cancer. By optimizing these systems for clinical application, future studies aim to enhance overall treatment outcomes and improve the prognosis for lung cancer patients.
Collapse
Affiliation(s)
- Behnam Najafiyan
- Faculty of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| | | | - Samar Esmaelian
- Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran
| | - Faezeh Firuzpour
- Student of Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | - Leila Kalantari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Hheidari
- Department of Mechanical Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Hassan Mesgari
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
12
|
Ali M, Benfante V, Di Raimondo D, Salvaggio G, Tuttolomondo A, Comelli A. Recent Developments in Nanoparticle Formulations for Resveratrol Encapsulation as an Anticancer Agent. Pharmaceuticals (Basel) 2024; 17:126. [PMID: 38256959 PMCID: PMC10818631 DOI: 10.3390/ph17010126] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Resveratrol is a polyphenolic compound that has gained considerable attention in the past decade due to its multifaceted therapeutic potential, including anti-inflammatory and anticancer properties. However, its anticancer efficacy is impeded by low water solubility, dose-limiting toxicity, low bioavailability, and rapid hepatic metabolism. To overcome these hurdles, various nanoparticles such as organic and inorganic nanoparticles, liposomes, polymeric nanoparticles, dendrimers, solid lipid nanoparticles, gold nanoparticles, zinc oxide nanoparticles, zeolitic imidazolate frameworks, carbon nanotubes, bioactive glass nanoparticles, and mesoporous nanoparticles were employed to deliver resveratrol, enhancing its water solubility, bioavailability, and efficacy against various types of cancer. Resveratrol-loaded nanoparticle or resveratrol-conjugated nanoparticle administration exhibits excellent anticancer potency compared to free resveratrol. This review highlights the latest developments in nanoparticle-based delivery systems for resveratrol, focusing on the potential to overcome limitations associated with the compound's bioavailability and therapeutic effectiveness.
Collapse
Affiliation(s)
- Muhammad Ali
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy;
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Viviana Benfante
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy;
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Domenico Di Raimondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Giuseppe Salvaggio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Albert Comelli
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy;
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
13
|
Uner B, Dwivedi P, Ergin AD. Effects of arginine on coenzyme-Q10 micelle uptake for mitochondria-targeted nanotherapy in phenylketonuria. Drug Deliv Transl Res 2024; 14:191-207. [DOI: 10.https:/doi.org/10.1007/s13346-023-01392-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 03/30/2025]
|
14
|
Uner B, Dwivedi P, Ergin AD. Effects of arginine on coenzyme-Q10 micelle uptake for mitochondria-targeted nanotherapy in phenylketonuria. Drug Deliv Transl Res 2024; 14:191-207. [PMID: 37555905 DOI: 10.1007/s13346-023-01392-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 08/10/2023]
Abstract
Phenylketonuria (PKU) is a rare inherited metabolic disease characterized by phenylalanine hydroxylase enzyme deficiency. In PKU patients, coenzyme Q10 (CoQ10) levels were found low. Therefore, we focused on the modification of CoQ10 to load the micelles and increase entry of micelles into the cell and mitochondria, and it is taking a part in ATP turnover. Micelles had produced by comparing two different production methods (thin-film layer and direct-dissolution), and characterization studies were performed (zeta potential, size, and encapsulation efficiency). Then, L-arginine (LARG) and poly-arginine (PARG) were incorporated with the micelles for subsequential release and PKU cell studies. The effects of these components on intracellular uptake and their use in the cellular cycle were analyzed by ELISA, Western blot, membrane potential measurement, and flow cytometry methods. In addition, both effects of LARG and PARG micelles on pharmacokinetics at the cellular level and their cell binding rate were determined. The thin-film method was found superior in micelle preparation. PARG/LARG-modified micelles showed sustained release. In the cellular and mitochondrial uptake of CoQ10, CoQ10-micelle + PARG > CoQ10-micelle + LARG > CoQ10-micelle > CoQ10 was found. This increased localization caused lowering of oxygen consumption rates, but maintaining mitochondrial membrane potential. The study results had showed that besides micelle formulation, PARG and LARG are effective in cellular and mitochondrial targeting.
Collapse
Affiliation(s)
- Burcu Uner
- Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy in St. Louis, St. Louis, USA.
| | - Pankaj Dwivedi
- Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy in St. Louis, St. Louis, USA
| | - Ahmet Doğan Ergin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Trakya University, Edirne, Turkey
- Department of Neuroscience, University of Turin, Turin, Italy
| |
Collapse
|
15
|
Viglianisi G, Santonocito S, Lupi SM, Amato M, Spagnuolo G, Pesce P, Isola G. Impact of local drug delivery and natural agents as new target strategies against periodontitis: new challenges for personalized therapeutic approach. Ther Adv Chronic Dis 2023; 14:20406223231191043. [PMID: 37720593 PMCID: PMC10501082 DOI: 10.1177/20406223231191043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/07/2023] [Indexed: 09/19/2023] Open
Abstract
Periodontitis is a persistent inflammation of the soft tissue around the teeth that affects 60% of the population in the globe. The self-maintenance of the inflammatory process can cause periodontal damage from the alveolar bone resorption to tooth loss in order to contrast the effects of periodontitis, the main therapy used is scaling and root planing (SRP). At the same time, studying the physiopathology of periodontitis has shown the possibility of using a local drug delivery system as an adjunctive therapy. Using local drug delivery devices in conjunction with SRP therapy for periodontitis is a potential tool since it increases drug efficacy and minimizes negative effects by managing drug release. This review emphasized how the use of local drug delivery agents and natural agents could be promising adjuvants for the treatment of periodontitis patients affected or not by cardiovascular disease, diabetes, and other system problems. Moreover, the review evidences the current issues and new ideas that can inspire potential later study for both basic research and clinical practice for a tailored approach.
Collapse
Affiliation(s)
- Gaia Viglianisi
- Department of General Surgery and Surgical-Medical Specialities, School of Dentistry, University of Catania, Catania, Italy
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialities, School of Dentistry, University of Catania, Catania, Italy
| | - Saturnino Marco Lupi
- Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Mariacristina Amato
- Department of General Surgery and Surgical-Medical Specialities, School of Dentistry, University of Catania, Catania, Italy
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, Naples, Italy
| | - Paolo Pesce
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialities, School of Dentistry, University of Catania, Via Santa Sofia 78, Catania 95123, Italy
| |
Collapse
|
16
|
Design of Quercetin-Loaded Natural Oil-Based Nanostructured Lipid Carriers for the Treatment of Bacterial Skin Infections. Molecules 2022; 27:molecules27248818. [PMID: 36557947 PMCID: PMC9785768 DOI: 10.3390/molecules27248818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
The biological activity of natural plant-oil-based nanostructured lipid carriers (NPO-NLCs) can be enhanced by the encapsulation of bioactive compounds, and they in turn can improve topical delivery of the drugs. Quercetin (QR), a vital plant flavonoid, expresses antibacterial properties, and we recently showed that empty NPO-NLCs also have antimicrobial activity. The main objective of this study was to evaluate the synergetic effect of loading natural plant-oil-based nanostructured lipid carriers with quercetin (QR-NPO-NLCs) as a topical delivery system for the treatment of bacterial skin infections. Five nanostructured lipid carrier systems containing different oils (sunflower, olive, corn, coconut, and castor) were engineered. The particles’ stability, structural properties, bioavailability, and antimicrobial activity were studied. NLCs with an average size of <200 nm and Z-potential of −40 mV were developed. Stable QR-NPO-NLCs were obtained with high encapsulation efficiency (>99%). The encapsulation of QR decreased cytotoxicity and increased the antioxidant effect of nanocarriers. An increase in antibacterial activity of the systems containing QR was demonstrated against Staphylococcus aureus. QR-NPO-NLCs could transport QR to an intranuclear location within HaCaT cells, indicating that QR-NPO-NLCs are promising candidates for controlled topical drug delivery.
Collapse
|
17
|
Nanodelivery of Dietary Polyphenols for Therapeutic Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248706. [PMID: 36557841 PMCID: PMC9784807 DOI: 10.3390/molecules27248706] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Advancement in nanotechnology has unleashed the therapeutic potentials of dietary polyphenols by enhancing bioavailability, improving biological half-life, and allowing site-specific drug delivery. In this review, through citation of relevant literature reports, we discuss the application of nano-pharmaceutical formulations, such as solid lipid nanoparticles, nano-emulsions, nano-crystals, nano-polymersomes, liposomes, ethosomes, phytosomes, and invasomes for dietary polyphenols. Following this, we highlight important studies concerning different combinations of nano formulations with dietary polyphenols (also known as nanophytopolyphenols). We also provide nano-formulation paradigms for enhancing the physicochemical properties of dietary polyphenols. Finally, we highlight the latest patents that were granted on nano-formulations of dietary polyphenols. Based on our review, we observe that nanosized delivery of herbal constituents, spices, and dietary supplements have the ability to improve biological processes and address issues connected with herbal treatments.
Collapse
|
18
|
Gupta N, Gupta GD, Singh D. Localized topical drug delivery systems for skin cancer: Current approaches and future prospects. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1006628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Topical drug delivery presents a novel substitute to the conventional drug-distribution routes of oral delivery and injection. Apart from the simplicity and non-invasiveness, the skin also serves as a “reservoir” that sustains administration over a period of days. Nanocarriers provide new potential for the treatment of skin disease. The skin’s barrier function offers a considerable obstacle for the potential nanocarriers to infiltrate into the tissue. However, the barrier is partially weakened in case of damage or inflammation, as in the case of skin cancer. Nanoparticles may promote the penetration of the skin. Extensive research has been done into producing nanoparticles for topical distribution; nevertheless, relatively little progress has been achieved in transferring them to the clinic for treating skin malignancies. The prior art features the critical concepts of skin malignancies and techniques in current clinical care. The present review gives a complete viewpoint of the numerous nanoparticle technologies studied for the topical treatment of skin malignancies and outlines the hurdles that hamper its advancement from the bench to the bedside. The review also intends to give knowledge of the routes that control nanoparticle penetration into the skin and their interactions inside the tissue.
Collapse
|
19
|
Saleem Z, Rehman K, Hamid Akash MS. Role of Drug Delivery System in Improving the Bioavailability of Resveratrol. Curr Pharm Des 2022; 28:1632-1642. [DOI: 10.2174/1381612828666220705113514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Resveratrol (RSV) is known as a natural polyphenolic compound that is known for its therapeutic activities but has limited bioavailability. The aim of our study was to explore various drug-delivering methods that are being employed to achieve target-oriented delivery and therapeutic performance of RSV. To improve the bioavailability and pharmacokinetic properties of RSV, efforts are being made by producing efficient formulations accompanying efficient drug delivery strategies. Several clinical trial studies have been conducted on RSV isomers, and the majority of studies indicated that trans-RSV had better clinical potential and therapeutic effectiveness in various types of complications such as colorectal cancer, metabolic syndrome, hypertension, obesity, neurodegenerative diseases, diabetes, hepatic disease, cardiac disorders, and breast cancer. However, multiple research studies enable us to understand various strategies that can enhance the systemic availability and efficacy of topical RSV formulations. In this article, we emphasize the hurdles of RSV delivery processes. We summarized that for delivering liquid and solid microparticles of RSV, the micro-particulate system works efficiently. Another technique in which particles are enclosed by a coating is called microencapsulation. This technique reduces the degradation of pharmaceutical compounds. Similarly, the cyclodextrin system is mainly used for poorly soluble drugs. On the other hand, the vesicular system is another micro-particulate system that can encapsulate hydrophilic and hydrophobic drugs. However, the RSV nanosponge formulations have advanced nanodrug delivery systems also make it possible to use RSV for its antioxidant potential.
Collapse
Affiliation(s)
- Zonish Saleem
- Department of Pharmaceutical Chemistry, Government College University Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan, Pakistan
| | | |
Collapse
|
20
|
Chopra H, Bibi S, Islam F, Ahmad SU, Olawale OA, Alhumaydhi FA, Marzouki R, Baig AA, Emran TB. Emerging Trends in the Delivery of Resveratrol by Nanostructures: Applications of Nanotechnology in Life Sciences. JOURNAL OF NANOMATERIALS 2022; 2022:1-17. [DOI: 10.1155/2022/3083728] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Resveratrol (RES) is a stilbene group of natural polyphenolic compounds in trees, peanuts, and grapes. RES is revealed with anticancer, antioxidant, anti-inflammatory, and cardioprotective effects. Though it is proven with prominent therapeutic activity, low aqueous solubility, poor bioavailability, and short half-life had hindered its use to exploit the potential. Also, the first-pass metabolism and undergoing enterohepatic recirculation are obscure in the minds of researchers for their in vitro studies. Many approaches have been investigated and shown promising results in manipulating their physicochemical properties to break this barrier. Nanocarriers are one of them to reduce the first-pass metabolism and to overcome other hurdles. This article reviews and highlights such encapsulation technologies. Nanoencapsulated RES improves in vitro antioxidant effect, and this review also highlights the new strategies and the concept behind how resveratrol can be handled and implemented with better therapeutic efficacy.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091 Yunnan, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, 650091 Yunnan, China
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Syed Umair Ahmad
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | | | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Riadh Marzouki
- Chemistry Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
- Chemistry Department, Faculty of Sciences of Sfax, University of Sfax, Tunisia
| | - Atif Amin Baig
- Unit of Biochemistry, Faculty of Medicine, University Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
21
|
Agrawal S, Garg A, Varshney V. Recent updates on applications of Lipid-based nanoparticles for site-specific drug delivery. Pharm Nanotechnol 2022; 10:24-41. [PMID: 35249522 DOI: 10.2174/2211738510666220304111848] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Site-specific drug delivery is a widespread and demanding area nowadays. Lipid-based nanoparticulate drug delivery systems have shown promising effects for targeting drugs among lymphatic systems, brain tissues, lungs, and skin. Recently, lipid nanoparticles are used for targeting the brain via the mucosal route for local therapeutic effects. Lipid nanoparticles (LNPs) can help in enhancing the efficacy and lowering the toxicities of anticancer drugs to treat the tumors, particularly in lymph after metastases of tumors. LNPs contain a non-polar core that can improve the absorption of lipophilic drugs into the lymph node and treat tumors. Cellular uptake of drugs can also be enhanced using LNPs and therefore, LNPs are the ideal carrier for treating intracellular infections such as leishmaniasis, tuberculosis and parasitic infection in the brain, etc. Furthermore, specific surface modifications with molecules like mannose, or PEG could improve the macrophage uptake and hence effectively eradicate parasites hiding in macrophages. METHOD An electronic literature search was conducted to update the advancements in the field of site-specific drug delivery utilizing lipid-based nanoparticles. A search of the Scopus database (https://www.scopus.com/home.uri) was conducted using the following keywords: lipid-based nanoparticles; site specific delivery. CONCLUSION Solid lipid nanoparticles have shown site-specific targeted delivery to various organs including the liver, oral mucosa, brain, epidermis, pulmonary and lymphatic systems. These lipid-based systems showed improved bioavailability as well as reduced side effects. Therefore, the focus of this article is to review the recent research studies on LNPs for site-specific or targeting drug delivery.
Collapse
Affiliation(s)
- Shivanshu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, U.P., India
| | - Anuj Garg
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, U.P., India
| | - Vikas Varshney
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, U.P., India
| |
Collapse
|
22
|
Shi G, Yang C, Wang Q, Wang S, Wang G, Ao R, Li D. Traditional Chinese Medicine Compound-Loaded Materials in Bone Regeneration. Front Bioeng Biotechnol 2022; 10:851561. [PMID: 35252158 PMCID: PMC8894853 DOI: 10.3389/fbioe.2022.851561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 01/01/2023] Open
Abstract
Bone is a dynamic organ that has the ability to repair minor injuries via regeneration. However, large bone defects with limited regeneration are debilitating conditions in patients and cause a substantial clinical burden. Bone tissue engineering (BTE) is an alternative method that mainly involves three factors: scaffolds, biologically active factors, and cells with osteogenic potential. However, active factors such as bone morphogenetic protein-2 (BMP-2) are costly and show an unstable release. Previous studies have shown that compounds of traditional Chinese medicines (TCMs) can effectively promote regeneration of bone defects when administered locally and systemically. However, due to the low bioavailability of these compounds, many recent studies have combined TCM compounds with materials to enhance drug bioavailability and bone regeneration. Hence, the article comprehensively reviewed the local application of TCM compounds to the materials in the bone regeneration in vitro and in vivo. The compounds included icariin, naringin, quercetin, curcumin, berberine, resveratrol, ginsenosides, and salvianolic acids. These findings will contribute to the potential use of TCM compound-loaded materials in BTE.
Collapse
Affiliation(s)
- Guiwen Shi
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chaohua Yang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Wang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Qing Wang, ; Rongguang Ao, ; Dejian Li,
| | - Song Wang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Gaoju Wang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rongguang Ao
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- *Correspondence: Qing Wang, ; Rongguang Ao, ; Dejian Li,
| | - Dejian Li
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- *Correspondence: Qing Wang, ; Rongguang Ao, ; Dejian Li,
| |
Collapse
|
23
|
Grilc NK, Sova M, Kristl J. Drug Delivery Strategies for Curcumin and Other Natural Nrf2 Modulators of Oxidative Stress-Related Diseases. Pharmaceutics 2021; 13:2137. [PMID: 34959418 PMCID: PMC8708625 DOI: 10.3390/pharmaceutics13122137] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress is associated with a wide range of diseases characterised by oxidant-mediated disturbances of various signalling pathways and cellular damage. The only effective strategy for the prevention of cellular damage is to limit the production of oxidants and support their efficient removal. The implication of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in the cellular redox status has spurred new interest in the use of its natural modulators (e.g., curcumin, resveratrol). Unfortunately, most natural Nrf2 modulators are poorly soluble and show extensive pre-systemic metabolism, low oral bioavailability, and rapid elimination, which necessitates formulation strategies to circumvent these limitations. This paper provides a brief introduction on the cellular and molecular mechanisms involved in Nrf2 modulation and an overview of commonly studied formulations for the improvement of oral bioavailability and in vivo pharmacokinetics of Nrf2 modulators. Some formulations that have also been studied in vivo are discussed, including solid dispersions, self-microemulsifying drug delivery systems, and nanotechnology approaches, such as polymeric and solid lipid nanoparticles, nanocrystals, and micelles. Lastly, brief considerations of nano drug delivery systems for the delivery of Nrf2 modulators to the brain, are provided. The literature reviewed shows that the formulations discussed can provide various improvements to the bioavailability and pharmacokinetics of natural Nrf2 modulators. This has been demonstrated in animal models and clinical studies, thereby increasing the potential for the translation of natural Nrf2 modulators into clinical practice.
Collapse
Affiliation(s)
- Nina Katarina Grilc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| | - Matej Sova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| | - Julijana Kristl
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| |
Collapse
|
24
|
Astley C, Houacine C, Zaabalawi A, Wilkinson F, Lightfoot AP, Alexander Y, Whitehead D, Singh KK, Azzawi M. Nanostructured Lipid Carriers Deliver Resveratrol, Restoring Attenuated Dilation in Small Coronary Arteries, via the AMPK Pathway. Biomedicines 2021; 9:biomedicines9121852. [PMID: 34944670 PMCID: PMC8699041 DOI: 10.3390/biomedicines9121852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 11/21/2022] Open
Abstract
Nanostructured lipid carriers (NLCs) are an emerging drug delivery platform for improved drug stability and the bioavailability of antihypertensive drugs and vasoprotective nutraceutical compounds, such as resveratrol (RV). The objective of this study was to ascertain NLCs’ potential to deliver RV and restore attenuated dilator function, using an ex vivo model of acute hypertension. Trimyristin–triolein NLCs were synthesized and loaded with RV. The uptake of RV-NLCs by human coronary artery endothelial cells (HCAECs) maintained their viability and reduced both mitochondrial and cytosolic superoxide levels. Acute pressure elevation in isolated coronary arteries significantly attenuated endothelial-dependent dilator responses, which were reversed following incubation in RV-NLCs, superoxide dismutase or apocynin (p < 0.0001). RV-NLCs demonstrated a five-fold increase in potency in comparison to RV solution. At elevated pressure, in the presence of RV-NLCs, incubation with Nω-nitro-l-arginine (L-NNA) or indomethacin resulted in a significant reduction in the restored dilator component (p < 0.0001), whereas apamin and TRAM-34 had no overall effect. Incubation with the adenosine monophosphate-activated protein kinase (AMPK) inhibitor dorsomorphin significantly attenuated dilator responses (p < 0.001), whereas the SIRT-1 inhibitor EX-527 had no effect. RV-NLCs improved the impaired endothelial-dependent dilation of small coronary arteries, following acute pressure elevation, via NO and downstream COX elements, mediated by AMPK. We suggest that RV-NLCs are an effective delivery modality for improved potency and sustained drug release into the vasculature. Our findings have important implications for the future design and implementation of antihypertensive treatment strategies.
Collapse
Affiliation(s)
- Cai Astley
- Centre for Bioscience, Department of Life Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK; (C.A.); (A.Z.); (F.W.); (A.P.L.); (Y.A.)
| | - Chahinez Houacine
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Azziza Zaabalawi
- Centre for Bioscience, Department of Life Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK; (C.A.); (A.Z.); (F.W.); (A.P.L.); (Y.A.)
| | - Fiona Wilkinson
- Centre for Bioscience, Department of Life Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK; (C.A.); (A.Z.); (F.W.); (A.P.L.); (Y.A.)
| | - Adam P. Lightfoot
- Centre for Bioscience, Department of Life Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK; (C.A.); (A.Z.); (F.W.); (A.P.L.); (Y.A.)
| | - Yvonne Alexander
- Centre for Bioscience, Department of Life Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK; (C.A.); (A.Z.); (F.W.); (A.P.L.); (Y.A.)
| | - Debra Whitehead
- Department of Natural Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK;
| | - Kamalinder K. Singh
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
- Correspondence: (K.K.S.); (M.A.)
| | - May Azzawi
- Centre for Bioscience, Department of Life Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK; (C.A.); (A.Z.); (F.W.); (A.P.L.); (Y.A.)
- Correspondence: (K.K.S.); (M.A.)
| |
Collapse
|
25
|
Yasmeen, Iqubal MK, Khan MA, Agarwal NB, Ali J, Baboota S. Nanoformulations-based advancement in the delivery of phytopharmaceuticals for skin cancer management. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Biocompatibility and Antimicrobial Activity of Nanostructured Lipid Carriers for Topical Applications Are Affected by Type of Oils Used in Their Composition. Pharmaceutics 2021; 13:pharmaceutics13111950. [PMID: 34834365 PMCID: PMC8618763 DOI: 10.3390/pharmaceutics13111950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 01/14/2023] Open
Abstract
Nanostructured lipid carriers (NLCs) have gained significant attention as tools for the dermal delivery of therapeutics due to their stability, biocompatibility, and ability to improve drug bioavailability. The use of natural plant oils (NPO) in NLC formulations has numerous benefits for the skin due to their therapeutic potential. This work shows the effect of NLC composition on bioavailability in epidermal cells and antimicrobial activity against Staphylococcus aureus. Sixteen systems containing fixed (sunflower, olive, corn, peanut, coconut, castor, and sweet almond) and essential (eucalyptus) oils, with different solid lipid (SL): liquid lipid (LL) ratios, were engineered. The structural properties, bioavailability, and antimicrobial action of the particles was studied. The choice of NPO influenced the physicochemical stability by changing the diameter of NLC formulations (between 160 nm and 185 nm) and Z-potential (between −46 mV and −61 mV). All of the systems were characterized by concentration-dependent cytocompatibility with human epidermal keratinocytes (HaCaT) and human dermal fibroblasts (HDFn). The SL:LL ratio in some NLC systems impacted cell cytotoxicity differently. Antimicrobial properties were observed in all 16 systems; however, the type of oil and SL:LL ratio affected the activity of the formulations. Two NLC-NPO systems were found to be non-cytotoxic to human cells lines at concentrations that completely inhibited bacterial growth. These results present a strong argument that the use of natural oils in NLC formulations presents a promising tool for the treatment of skin infections.
Collapse
|
27
|
Hosny KM, Alhakamy NA, Al Nahyah KS. The relevance of nanotechnology, hepato-protective agents in reducing the toxicity and augmenting the bioavailability of isotretinoin. Drug Deliv 2021; 28:123-133. [PMID: 33355019 PMCID: PMC7758053 DOI: 10.1080/10717544.2020.1862365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Acne Vulgaris is one of the most common chronic inflammatory skin disorders that affect majority of teen-agers worldwide. Isotretinoin (ITT) is the drug of choice in the management of acne, but, it suffers from serious side-effects including hepatotoxicity, and some psychological disturbances following its oral intake. The objective of this study was to develop and optimize ITT loaded nanoemulsions (ITT-SNEDDS) and to incorporate resveratrol (RSV)in optimum formulation to decrease ITT side effects The ITT solubility was first tested in various essential oils, surfactants, and co-surfactants to select the essential nanoemulsion ingredients. Mixture design was applied to study the effect of independent variables and their interactions on the selected dependent responses. The developed ITT-SNEDDS were characterized for their globule size and ex vivo permeation. The optimized batch was further loaded with RSV and evaluated for in vitro and ex vivo permeation and for in vivo hepatotoxicity. The developed ITT-SNEDDS exhibited globule size below 300 nm, up to 272.27 ± 7.12 mcg/cm2.h and 61.27 ± 2.83% of steady-state flux (JSS) and permeability % respectively. Optimum formulation consisted of 0.15 g oil mixture, 0.6 g of surfactant (Labrasol), and 0.250 g co-surfactant (Transcutol). Permeability studies confirmed the enhanced permeation percentage of ITT (40.77 ± 1.18%), and RSV (29.94 ± 2.02%) from optimized formulation, with enhanced steady-state flux (JSS). In vivo studies demonstrated the superior hepatoprotective activity of optimized formulation compared to a different drug formulations and marketed product. Therefore, RVS loaded ITT-SNEDDS might be a successful strategy for acne management with improved action, and minimum side effects.
Collapse
Affiliation(s)
- Khaled M Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid S Al Nahyah
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
28
|
Kamalkazemi E, Abedi-Gaballu F, Mohammad Hosseini TF, Mohammadi A, Mansoori B, Dehghan G, Baradaran B, Sheibani N. Glimpse into Cellular Internalization and Intracellular Trafficking of Lipid-Based Nanoparticles in Cancer Cells. Anticancer Agents Med Chem 2021; 22:1897-1912. [PMID: 34488605 DOI: 10.2174/1871520621666210906101421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/14/2021] [Accepted: 06/27/2021] [Indexed: 11/22/2022]
Abstract
Lipid-based nanoparticles as drug delivery carriers have been mainly used for delivery of anti-cancer therapeutic agents. Lipid-based nanoparticles, due to their smaller particle size and similarity to cell membranes, are readily internalized into cancer cells. Interestingly, cancer cells also overexpress receptors for specific ligands including folic acid, hyaluronic acid, and transferrin on their surface. This allows the use of these ligands for surface modification of the lipid-based nanoparticle. These modifications then allow the specific recognition of these ligand-coated nanoparticles by their receptors on cancer cells allowing the targeted gradual intracellular accumulation of the functionalized nanoplatforms. These interactions could eventually enhance the internalization of desired drugs via increasing ligand-receptor mediated cellular uptake of the nanoplatforms. The cellular internalization of the nanoplatforms also varies and depends on their physicochemical properties including particle size, zeta potential, and shape. The cellular uptake is also influenced by the types of ligand internalization pathway utilized by cells such as phagocytosis, macropinocytosis, and multiple endocytosis pathways. In this review, we will classify and discuss lipid based nanoparticles engineered to express specific ligands, and are recognized by their receptors on cancer cell, and their cellular internalization pathways. Moreover, the intracellular fate of nanoparticles decorated with specific ligands and the best internalization pathways (caveolae mediated endocytosis) for safe cargo delivery will be discussed.
Collapse
Affiliation(s)
- Elham Kamalkazemi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz. Iran
| | | | | | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz. Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI . United States
| |
Collapse
|
29
|
Enhancing Bioavailability of Nutraceutically Used Resveratrol and Other Stilbenoids. Nutrients 2021; 13:nu13093095. [PMID: 34578972 PMCID: PMC8470508 DOI: 10.3390/nu13093095] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
Stilbenoids are interesting natural compounds with pleiotropic in vitro and in vivo activity. Their well-documented biological properties include anti-inflammatory effects, anticancer effects, effects on longevity, and many others. Therefore, they are nowadays commonly found in foods and dietary supplements, and used as a part of treatment strategy in various types of diseases. Bioactivity of stilbenoids strongly depends on different types of factors such as dosage, food composition, and synergistic effects with other plant secondary metabolites such as polyphenols or vitamins. In this review, we summarize the existing in vitro, in vivo, and clinical data from published studies addressing the optimization of bioavailability of stilbenoids. Stilbenoids face low bioavailability due to their chemical structure. This can be improved by the use of novel drug delivery systems or enhancers, which are discussed in this review. Current in vitro and in vivo evidence suggests that both approaches are very promising and increase the absorption of the original substance by several times. However, data from more clinical trials are required.
Collapse
|
30
|
Sharifi-Rad J, Quispe C, Mukazhanova Z, Knut E, Turgumbayeva A, Kipchakbayeva A, Seitimova G, Mahomoodally MF, Lobine D, Koay A, Wang J, Sheridan H, Leyva-Gómez G, Prado-Audelo MLD, Cortes H, Rescigno A, Zucca P, Sytar O, Imran M, Rodrigues CF, Cruz-Martins N, Ekiert H, Kumar M, Abdull Razis AF, Sunusi U, Kamal RM, Szopa A. Resveratrol-Based Nanoformulations as an Emerging Therapeutic Strategy for Cancer. Front Mol Biosci 2021; 8:649395. [PMID: 34540888 PMCID: PMC8440914 DOI: 10.3389/fmolb.2021.649395] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Resveratrol is a polyphenolic stilbene derivative widely present in grapes and red wine. Broadly known for its antioxidant effects, numerous studies have also indicated that it exerts anti-inflammatory and antiaging abilities and a great potential in cancer therapy. Regrettably, the oral administration of resveratrol has pharmacokinetic and physicochemical limitations such as hampering its effects so that effective administration methods are demanding to ensure its efficiency. Thus, the present review explores the published data on the application of resveratrol nanoformulations in cancer therapy, with the use of different types of nanodelivery systems. Mechanisms of action with a potential use in cancer therapy, negative effects, and the influence of resveratrol nanoformulations in different types of cancer are also highlighted. Finally, the toxicological features of nanoresveratrol are also discussed.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Zhazira Mukazhanova
- Department of Natural Sciences and Technologies, Sarsen Amanzholov East Kazakhstan State University, Ust-Kamenogorsk, Kazakhstan
| | - Ewa Knut
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, Kraków, Poland
| | - Aknur Turgumbayeva
- Asfendiyarov Kazakh National Medical University, School Pharmacy, Almaty, Kazakhstan
- Al-Farabi Kazakh National University, Higher School of Medicine, Almaty, Kazakhstan
| | - Aliya Kipchakbayeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Gulnaz Seitimova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Devina Lobine
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Aaron Koay
- Trinity College Dublin, NatPro (Natural Products Research Centre), School of Pharmacy and Pharmaceutical Science, Dublin, Ireland
| | - Jinfan Wang
- Trinity College Dublin, NatPro (Natural Products Research Centre), School of Pharmacy and Pharmaceutical Science, Dublin, Ireland
| | - Helen Sheridan
- Trinity College Dublin, NatPro (Natural Products Research Centre), School of Pharmacy and Pharmaceutical Science, Dublin, Ireland
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico City, Mexico
| | - María L. Del Prado-Audelo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico City, Mexico
| | - Hernán Cortes
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico City, Mexico
| | - Antonio Rescigno
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Oksana Sytar
- Department of Plant Biology, Institute of Biology, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Célia F. Rodrigues
- Laboratory for Process Engineering, Environment, Biotechnology and Energy—Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, Kraków, Poland
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR – Central Institute for Research on Cotton Technology, Mumbai, India
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Usman Sunusi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biochemistry, Bayero University Kano, Kano, Nigeria
| | - Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Pharmacology, Federal University Dutse, Dutse, Nigeria
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, Kraków, Poland
| |
Collapse
|
31
|
Sommonte F, Arduino I, Racaniello GF, Lopalco A, Lopedota AA, Denora N. The Complexity of the Blood-Brain Barrier and the Concept of Age-Related Brain Targeting: Challenges and Potential of Novel Solid Lipid-Based Formulations. J Pharm Sci 2021; 111:577-592. [PMID: 34469749 DOI: 10.1016/j.xphs.2021.08.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022]
Abstract
Diseases that affect the Central Nervous System (CNS) are one of the most exciting challenges of recent years, as they are ubiquitous and affect all ages. Although these disorders show different etiologies, all treatments share the same difficulty represented by the Blood-Brain Barrier (BBB). This barrier acts as a protective system of the delicate cerebral microenvironment, isolating it and making extremely arduous delivering drugs to the brain. To overtake the obstacles provided by the BBB it is essential to explore the changes that affect it, to understand how to exploit these findings in the study and design of innovative brain targeted formulations. Interestingly, the concept of age-related targeting could prove to be a winning choice, as it allows to consider the type of treatment according to the different needs and peculiarities depending on the disease and the age of onset. In this review was considered the prospective contribution of lipid-based formulations, namely Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs), which have been highlighted as able to overcome some limitations of other innovative approaches, thus representing a promising strategy for the non-invasive specific treatment of CNS-related diseases.
Collapse
Affiliation(s)
- Federica Sommonte
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy
| | - Ilaria Arduino
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy
| | | | - Antonio Lopalco
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy
| | - Angela Assunta Lopedota
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy
| | - Nunzio Denora
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy.
| |
Collapse
|
32
|
Sawanny R, Pramanik S, Agarwal U. Role of Phytochemicals in the Treatment of Breast Cancer: Natural Swords Battling Cancer Cells. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394716666210106123255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Breast cancer is the most common type of malignancy among ladies (around 30% of
newly diagnosed patients every year). To date, various modern treatment modalities for breast cancer,
such as radiotherapy, surgical method, hormonal therapy, and chemotherapeutic drug utilisation,
are available. However, adverse drug reactions, therapeutic resistance, metastasis, or cancer reoccurrence
chances remain the primary causes of mortality for breast cancer patients. To overcome
all the potential drawbacks, we need to investigate novel techniques and strategies that are not considered
previously to treat breast cancer effectively with safety and efficacy. For centuries, we
utilise phytochemicals to treat various diseases because of their safety, low-cost, and least or no
side effects. Recently, naturally produced phytochemicals gain immense attention as potential
breast cancer therapeutics because of their ideal characteristics; for instance, they operate via modulating
molecular pathways associated with cancer growth and progression. The primary mechanism
involves inhibition of cell proliferation, angiogenesis, migration, invasion, increasing anti-oxidant
status, initiation of the arrest of the cell cycle, and apoptosis. Remedial viability gets effectively enhanced
when phytochemicals work as adjuvants with chemotherapeutic drugs. This comprehensive
review revolves around the latest chemopreventive, chemotherapeutic, and chemoprotective treatments
with their molecular mechanisms to treat breast cancer by utilising phytochemicals such as
vinca alkaloids, resveratrol, curcumin, paclitaxel, silibinin, quercetin, genistein, and epigallocatechin
gallate. The authors wish to extend the field of phytochemical study for its scientific validity
and its druggability.
Collapse
Affiliation(s)
- Rajni Sawanny
- Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Institutional Area, Greater Noida, Uttar Pradesh-201306, India
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu-600036, India
| | - Unnati Agarwal
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Delhi, Grand Trunk Road, Phagwara, Punjab-144001, India
| |
Collapse
|
33
|
Kurangi B, Jalalpure S, Jagwani S. Formulation and Evaluation of Resveratrol Loaded Cubosomal Nanoformulation for Topical Delivery. Curr Drug Deliv 2021; 18:607-619. [PMID: 32881670 DOI: 10.2174/1567201817666200902150646] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
AIM The aim of the study was to formulate, characterize, and evaluate the Resveratrol- loaded Cubosomes (RC) for topical application. BACKGROUND Resveratrol (RV) is a nutraceutical compound with exciting pharmacological potential in different diseases, including cancers. Many studies on resveratrol have been reported for anti- melanoma activity. Due to its low bioavailability, the therapeutic activities of resveratrol are strongly limited. Hence, an approach with nanotechnology has been made to increase its activity through transdermal drug delivery. OBJECTIVE To formulate, characterize, and evaluate the resveratrol-loaded cubosomes (RC). To evaluate Resveratrol-loaded Cubosomal Gel (RC-Gel) for its topical application. METHODS RC was formulated by homogenization technique and optimized using a 2-factor 3-level factorial design. Formulated RCs were characterized for particle size, zeta potential, and entrapment efficiency. Optimized RC was evaluated for in vitro release and stability study. Optimized RC was further formulated into cubosomal gel (RC-Gel) using carbopol and evaluated for drug permeation and deposition. Furthermore, developed RC-Gel was evaluated for its topical application using skin irritancy, toxicity, and in vivo local bioavailability studies. RESULTS The optimized RC indicated cubic-shaped structure with mean particle size, entrapment efficiency, and zeta potential were 113±2.36 nm, 85.07 ± 0.91%, and -27.40 ± 1.40 mV, respectively. In vitro drug release of optimized RC demonstrated biphasic drug release with the diffusion-controlled release of resveratrol (RV) (87.20 ± 3.91%). The RC-Gel demonstrated better drug permeation and deposition in mice skin layers. The composition of RC-Gel has been proved non-irritant to mice skin. In vivo local bioavailability study depicted the good potential of RC-Gel for skin localization. CONCLUSION The RC nanoformulation proposes a promising drug delivery system for melanoma treatment simply through topical application.
Collapse
Affiliation(s)
- Bhaskar Kurangi
- Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi-590010, Karnataka, India
| | - Sunil Jalalpure
- Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi-590010, Karnataka, India
| | - Satveer Jagwani
- Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi-590010, Karnataka, India
| |
Collapse
|
34
|
Wei B, Wang W, Liu X, Xu C, Wang Y, Wang Z, Xu J, Guan J, Zhou P, Mao Y. Gelatin methacrylate hydrogel scaffold carrying resveratrol-loaded solid lipid nanoparticles for enhancement of osteogenic differentiation of BMSCs and effective bone regeneration. Regen Biomater 2021; 8:rbab044. [PMID: 34394955 PMCID: PMC8358478 DOI: 10.1093/rb/rbab044] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
Critical-sized bone defects caused by traumatic fractures, tumour resection and congenital malformation are unlikely to heal spontaneously. Bone tissue engineering is a promising strategy aimed at developing in vitro replacements for bone transplantation and overcoming the limitations of natural bone grafts. In this study, we developed an innovative bone engineering scaffold based on gelatin methacrylate (GelMA) hydrogel, obtained via a two-step procedure: first, solid lipid nanoparticles (SLNs) were loaded with resveratrol (Res), a drug that can promote osteogenic differentiation and bone formation; these particles were then encapsulated at different concentrations (0.01%, 0.02%, 0.04% and 0.08%) in GelMA to obtain the final Res-SLNs/GelMA scaffolds. The effects of these scaffolds on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and bone regeneration in rat cranial defects were evaluated using various characterization assays. Our in vitro and in vivo investigations demonstrated that the different Res-SLNs/GelMA scaffolds improved the osteogenic differentiation of BMSCs, with the ideally slow and steady release of Res; the optimal scaffold was 0.02 Res-SLNs/GelMA. Therefore, the 0.02 Res-SLNs/GelMA hydrogel is an appropriate release system for Res with good biocompatibility, osteoconduction and osteoinduction, thereby showing potential for application in bone tissue engineering.
Collapse
Affiliation(s)
- Bangguo Wei
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu 233004, China
| | - Wenrui Wang
- School of Life Sciences, Bengbu Medical College, Bengbu 233030, China
| | - Xiangyu Liu
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu 233004, China
| | - Chenxi Xu
- School of Life Sciences, Bengbu Medical College, Bengbu 233030, China
| | - Yanan Wang
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu 233004, China
| | - Ziqi Wang
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu 233030, China
| | - Jinnuo Xu
- School of Life Sciences, Bengbu Medical College, Bengbu 233030, China
| | - Jianzhong Guan
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu 233004, China
| | - Pinghui Zhou
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu 233004, China
| | - Yingji Mao
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu 233004, China
| |
Collapse
|
35
|
de Souza Guedes L, Martinez RM, Bou-Chacra NA, Velasco MVR, Rosado C, Baby AR. An Overview on Topical Administration of Carotenoids and Coenzyme Q10 Loaded in Lipid Nanoparticles. Antioxidants (Basel) 2021; 10:1034. [PMID: 34206935 PMCID: PMC8300771 DOI: 10.3390/antiox10071034] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
Carotenoids and coenzyme Q10 are naturally occurring antioxidant compounds that are also found in human skin. These bioactive compounds have been the focus of considerable research due to their antioxidant, anti-inflammatory, and photoprotective properties. In this review, the current state of the art in the encapsulation of carotenoids and coenzyme Q10 in lipid nanoparticles to improve their bioavailability, chemical stability, and skin absorption is discussed. Additionally, the main findings are highlighted on the cytotoxic and photoprotective effects of these systems in the skin.
Collapse
Affiliation(s)
- Luciana de Souza Guedes
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| | - Renata Miliani Martinez
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| | - Nádia A. Bou-Chacra
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| | - Maria Valéria Robles Velasco
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| | - Catarina Rosado
- CBIOS, Universidade Lusófona’s Research Center for Biosciences & Health Technologies, 1749-024 Lisbon, Portugal;
| | - André Rolim Baby
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| |
Collapse
|
36
|
Mitxelena-Iribarren O, Lizarbe-Sancha S, Campisi J, Arana S, Mujika M. Different Microfluidic Environments for In Vitro Testing of Lipid Nanoparticles against Osteosarcoma. Bioengineering (Basel) 2021; 8:bioengineering8060077. [PMID: 34199965 PMCID: PMC8228877 DOI: 10.3390/bioengineering8060077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 11/18/2022] Open
Abstract
The use of lipid nanoparticles as biodegradable shells for controlled drug delivery shows promise as a more effective and targeted tumor treatment than traditional treatment methods. Although the combination of target therapy with nanotechnology created new hope for cancer treatment, methodological issues during in vitro validation of nanovehicles slowed their application. In the current work, the effect of methotrexate (MTX) encapsulated in different matrices was evaluated in a dynamic microfluidic platform. Effects on the viability of osteosarcoma cells in the presence of recirculation of cell media, free MTX and two types of blank and drug-containing nanoparticles were successfully assessed in different tumor-mimicking microenvironments. Encapsulated MTX was more effective than the equal dose free drug treatment, as cell death significantly increased under the recirculation of both types of drug-loaded nanoparticles in all concentrations. In fact, MTX-nanoparticles reduced cell population 50 times more than the free drug when 150-µM drug dose was recirculated. Moreover, when compared to the equivalent free drug dose recirculation, cell number was reduced 60 and 100 points more under recirculation of each nanoparticle with a 15-µM drug concentration. Thus, the results obtained with the microfluidic model present MTX-lipid nanoparticles as a promising and more effective therapy for pediatric osteosarcoma treatment than current treatment options.
Collapse
Affiliation(s)
- Oihane Mitxelena-Iribarren
- CEIT-Basque Research and Technology Alliance (BRTA), Manuel Lardizábal 15, 20018 Donostia-San Sebastián, Spain; (S.L.-S.); (J.C.); (S.A.); (M.M.)
- School of Engineering at San Sebastián, Universidad de Navarra, Manuel Lardizábal 13, 20018 Donostia-San Sebastián, Spain
- Correspondence:
| | - Sara Lizarbe-Sancha
- CEIT-Basque Research and Technology Alliance (BRTA), Manuel Lardizábal 15, 20018 Donostia-San Sebastián, Spain; (S.L.-S.); (J.C.); (S.A.); (M.M.)
- School of Engineering at San Sebastián, Universidad de Navarra, Manuel Lardizábal 13, 20018 Donostia-San Sebastián, Spain
| | - Jay Campisi
- CEIT-Basque Research and Technology Alliance (BRTA), Manuel Lardizábal 15, 20018 Donostia-San Sebastián, Spain; (S.L.-S.); (J.C.); (S.A.); (M.M.)
- School of Engineering at San Sebastián, Universidad de Navarra, Manuel Lardizábal 13, 20018 Donostia-San Sebastián, Spain
- Department of Biology, Regis University, Denver, CO 80221, USA
| | - Sergio Arana
- CEIT-Basque Research and Technology Alliance (BRTA), Manuel Lardizábal 15, 20018 Donostia-San Sebastián, Spain; (S.L.-S.); (J.C.); (S.A.); (M.M.)
- School of Engineering at San Sebastián, Universidad de Navarra, Manuel Lardizábal 13, 20018 Donostia-San Sebastián, Spain
| | - Maite Mujika
- CEIT-Basque Research and Technology Alliance (BRTA), Manuel Lardizábal 15, 20018 Donostia-San Sebastián, Spain; (S.L.-S.); (J.C.); (S.A.); (M.M.)
- School of Engineering at San Sebastián, Universidad de Navarra, Manuel Lardizábal 13, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
37
|
Annaji M, Poudel I, Boddu SHS, Arnold RD, Tiwari AK, Babu RJ. Resveratrol-loaded nanomedicines for cancer applications. Cancer Rep (Hoboken) 2021; 4:e1353. [PMID: 33655717 PMCID: PMC8222557 DOI: 10.1002/cnr2.1353] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/16/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Resveratrol (3, 5, 4' -trihydroxystilbene), a natural polyphenol and phytoalexin, has drawn considerable attention in the past decade due to its wide variety of therapeutic activities such as anticancer, anti-inflammatory, and antioxidant properties. However, its poor water solubility, low chemical stability, and short biological half-life limit its clinical utility. RECENT FINDINGS Nanoparticles overcome the limitations associated with conventional chemotherapeutic drugs, such as limited availability of drugs to the tumor tissues, high systemic exposures, and consequent toxicity to healthy tissues. This review focuses on the physicochemical properties of resveratrol, the therapeutic potential of resveratrol nano-formulations, and the anticancer activity of resveratrol encapsulated nanoparticles on various malignancies such as skin, breast, prostate, colon, liver, ovarian, and lung cancers (focusing on both in vitro and in vivo studies). CONCLUSIONS Nanotechnology approaches have been extensively utilized to achieve higher solubility, improved oral bioavailability, enhanced stability, and controlled release of resveratrol. The resveratrol nanoparticles have markedly enhanced its anticancer activity both in vitro and in vivo, thus considering it as a potential strategy to fight various cancers.
Collapse
Affiliation(s)
- Manjusha Annaji
- Department of Drug Discovery and DevelopmentAuburn UniversityAuburnAlabamaUSA
| | - Ishwor Poudel
- Department of Drug Discovery and DevelopmentAuburn UniversityAuburnAlabamaUSA
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health SciencesAjman UniversityAjmanUnited Arab Emirates
| | - Robert D. Arnold
- Department of Drug Discovery and DevelopmentAuburn UniversityAuburnAlabamaUSA
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical SciencesUniversity of ToledoToledoOhioUSA
| | - R. Jayachandra Babu
- Department of Drug Discovery and DevelopmentAuburn UniversityAuburnAlabamaUSA
| |
Collapse
|
38
|
Zidar A, Kristl J, Kocbek P, Zupančič Š. Treatment challenges and delivery systems in immunomodulation and probiotic therapies for periodontitis. Expert Opin Drug Deliv 2021; 18:1229-1244. [PMID: 33760648 DOI: 10.1080/17425247.2021.1908260] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Periodontitis is a widespread illness that arises due to disrupted interplay between the oral microbiota and the host immune response. In some cases, conventional therapies can provide temporary remission, although this is often followed by disease relapse. Recent studies of periodontitis pathology have promoted the development of new therapeutics to improve treatment options, together with local application using advanced drug delivery systems.Areas covered: This paper provides a critical review of the status of current treatment approaches to periodontitis, with a focus on promising immunomodulation and probiotic therapies. These are based on delivery of small molecules, peptides, proteins, DNA or RNA, and probiotics. The key findings on novel treatment strategies and formulation of advanced delivery systems, such as nanoparticles and nanofibers, are highlighted.Expert opinion: Multitarget therapy based on antimicrobial, immunomodulatory, and probiotic active ingredients incorporated into advanced delivery systems for application to the periodontal pocket can improve periodontitis treatment outcomes. Translation of such adjuvant therapy from laboratory to patient is expected in the future.
Collapse
Affiliation(s)
- Anže Zidar
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Julijana Kristl
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Kocbek
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Špela Zupančič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
39
|
De S, Gopikrishna A, Keerthana V, Girigoswami A, Girigoswami K. An Overview of Nanoformulated Nutraceuticals and their Therapeutic Approaches. CURRENT NUTRITION & FOOD SCIENCE 2021. [DOI: 10.2174/1573401316999200901120458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background:
Economic development and vast changes in food habits have accelerated
the consumption of junk foods, which are the leading causes of several disorders that turn the majority
of the people to use various herbal formulations or drugs for preventing various lifestyle diseases.
Nutraceuticals are the borderline apparatus between nutrients and drugs that provide supplementation
of the particular nutrient with a favorable health effect.
Objective:
Various nutraceutical compounds like vitamins, spices, polyphenols, prebiotics, and probiotics
in the form of powders, tablets, and capsules are currently marketed globally. Among them,
previous literature have reported that polyphenols are the most promising compounds that have
been proven to treat various chronic diseases like cancer, hypertension, diabetes mellitus (DM), osteoporosis,
osteoarthritis, dyslipidemia, multiple sclerosis, congenital anomalies, Alzheimer’s disease,
etc. It is warranted to discuss the benefits of nanoformulations of nutraceuticals.
Methods:
We have searched PubMed using the keywords nutraceuticals, nanoformulations, therapeutic
approaches, bionanotechnology, and therapeutics. The relevant papers and classical papers
in this field were selected to write this review.
Results and Discussion:
The different classifications of nutraceuticals were described in this review.
The comparison between the different categories of nutraceuticals with their nanoformulated
forms was made, explaining the benefits of nanoformulations regarding stability, bioavailability,
enhanced anti-oxidant properties, etc. A glimpse of the drawbacks of nanoformulations was also included.
Conclusion:
The current review highlights an overview of various nanoformulated nutraceuticals
and their approach towards the treatment of multiple diseases.
Collapse
Affiliation(s)
- Shaoli De
- Department of Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Chennai-603103, India
| | - Agraharam Gopikrishna
- Department of Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Chennai-603103, India
| | - Vedhantham Keerthana
- Department of Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Chennai-603103, India
| | - Agnishwar Girigoswami
- Department of Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Chennai-603103, India
| | - Koyeli Girigoswami
- Department of Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Chennai-603103, India
| |
Collapse
|
40
|
Khan MA, Chen L, Liang L. Improvement in storage stability and resveratrol retention by fabrication of hollow zein-chitosan composite particles. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106477] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
41
|
Rahman MH, Akter R, Bhattacharya T, Abdel-Daim MM, Alkahtani S, Arafah MW, Al-Johani NS, Alhoshani NM, Alkeraishan N, Alhenaky A, Abd-Elkader OH, El-Seedi HR, Kaushik D, Mittal V. Resveratrol and Neuroprotection: Impact and Its Therapeutic Potential in Alzheimer's Disease. Front Pharmacol 2020; 11:619024. [PMID: 33456444 PMCID: PMC7804889 DOI: 10.3389/fphar.2020.619024] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive cortex and hippocampal neurodegenerative disease which ultimately causes cognitively impaired decline in patients. The AD pathogen is a very complex process, including aggregation of Aβ (β-amyloid peptides), phosphorylation of tau-proteins, and chronic inflammation. Exactly, resveratrol, a polyphenol present in red wine, and many plants are indicated to show the neuroprotective effect on mechanisms mostly above. Resveratrol plays an important role in promotion of non-amyloidogenic cleavage of the amyloid precursor protein. It also enhances the clearance of amyloid beta-peptides and reduces the damage of neurons. Most experimental research on AD and resveratrol has been performed in many species, both in vitro and in vivo, during the last few years. Nevertheless, resveratrol’s effects are restricted by its bioavailability in the reservoir. Therefore, scientists have tried to improve its efficiency by using different methods. This review focuses on recent work done on the cell and animal cultures and also focuses on the neuroprotective molecular mechanisms of resveratrol. It also discusses about the therapeutic potential onto the treatment of AD.
Collapse
Affiliation(s)
- Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka, Bangladesh
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka, Bangladesh
| | - Tanima Bhattacharya
- School of Chemistry and Chemical Engineering, Hubei University, Wuhan, China
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed W Arafah
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Norah S Al-Johani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Norah M Alhoshani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nora Alkeraishan
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Alhanof Alhenaky
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Omar H Abd-Elkader
- Physics & Astronomy Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Hesham R El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China.,Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
42
|
Maqsoudlou A, Assadpour E, Mohebodini H, Jafari SM. The influence of nanodelivery systems on the antioxidant activity of natural bioactive compounds. Crit Rev Food Sci Nutr 2020; 62:3208-3231. [PMID: 33356489 DOI: 10.1080/10408398.2020.1863907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bioactive compounds may lose their antioxidant activity (e.g., phenolic compounds) at elevated temperatures, enhanced oxidative conditions and severe light exposures so they should be protected by various strategies such as nano/microencapsulation methods. Encapsulation technology has been employed as a proper method for using antioxidant ingredients and to provide easy dispersibility of antioxidants in all matrices including food and pharmaceutical products. It can improve the food fortification processes, release of antioxidant ingredients, and extending the shelf-life and bioavailability of them when ingested in the intestine. In this study, our main goal is to have an overview of the influence of nanoencapsulation on the bioactivity and bioavailability, and cellular activities of antioxidant ingredients in different delivery systems. Also, the effect of encapsulation process conditions, storage conditions, carrier wall materials, and release profile on the antioxidant activity of different natural bioactives are explained. Finally, analytical techniques for measuring antioxidant activity of nanoencapsulated ingredients will be covered.
Collapse
Affiliation(s)
- Atefe Maqsoudlou
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Elham Assadpour
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hossein Mohebodini
- Department of Animal Science and Food Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
43
|
Jain R, Sarode I, Singhvi G, Dubey SK. Nanocarrier Based Topical Drug Delivery- A Promising Strategy for Treatment of Skin Cancer. Curr Pharm Des 2020; 26:4615-4623. [DOI: 10.2174/1381612826666200826140448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/29/2020] [Indexed: 11/22/2022]
Abstract
Skin cancers are one of the most widespread and complex forms of the disease, resulting in very high
mortality rates across the world. The current treatments available for skin cancer include chemotherapy, surgery,
radiotherapy, etc. The selected treatment options for skin cancer are usually decided based on the condition of a
patient and the type of skin cancer. The effectiveness of skin cancer therapy is still limited because of poor penetrability
of the drug into stratum corneum or lesions, low efficacy, required higher concentration of the active
pharmaceutical ingredients to reach a therapeutic effect. Besides, low bioavailability at the site of action, the
requirement of high dose, causes skin irritation, which significantly hinders the drug absorption through the stratum
corneum. Thus, nanocarriers have been used to bypass the problems associated with conventional anti-cancer
drug delivery systems. In the current scenario, nanotechnology-based therapy has shown great potential in the
management of skin cancer, and these can be used for a more efficient drug delivery system to treat cancers. In
this review article, the information on different nanocarrier systems for skin cancer has been elucidated. Moreover,
the various nanoparticulate strategies and their effectiveness to treat skin cancer have been discussed.
Collapse
Affiliation(s)
- Rupesh Jain
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Ila Sarode
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| |
Collapse
|
44
|
Borges A, de Freitas V, Mateus N, Fernandes I, Oliveira J. Solid Lipid Nanoparticles as Carriers of Natural Phenolic Compounds. Antioxidants (Basel) 2020; 9:E998. [PMID: 33076501 PMCID: PMC7602534 DOI: 10.3390/antiox9100998] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Phenolic compounds are one of the most widespread classes of compounds in nature, with several beneficial biological effects being associated with their anti-oxidant and anti-carcinogenic activities. Their application in the prevention or treatment of numerous chronic diseases have been studied, but a major drawback is still the low bioavailability of these compounds, as well as their instability towards pH, temperature, and light in some cases. Nanotechnology has emerged as an alternative to overcome these limitations, and the use of lipidic encapsulation systems is a promising technique to achieve an efficient drug delivery, protecting molecules from external factors and improving their bioavailability. In this review, solid lipid nanoparticles and nanostructured lipid carriers are highlighted as an important tool for the improvement of the bioavailability and stability of natural phenolic compounds, including their preparation methods and functionalization approaches and the discussion of several applications for putative use in cosmetic and pharmacologic products.
Collapse
Affiliation(s)
| | | | | | - Iva Fernandes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, S/N, 4169-007 Porto, Portugal; (A.B.); (V.d.F.); (N.M.)
| | - Joana Oliveira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, S/N, 4169-007 Porto, Portugal; (A.B.); (V.d.F.); (N.M.)
| |
Collapse
|
45
|
Salama L, Pastor ER, Stone T, Mousa SA. Emerging Nanopharmaceuticals and Nanonutraceuticals in Cancer Management. Biomedicines 2020; 8:E347. [PMID: 32932737 PMCID: PMC7554840 DOI: 10.3390/biomedicines8090347] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Nanotechnology is the science of nanoscale, which is the scale of nanometers or one billionth of a meter. Nanotechnology encompasses a broad range of technologies, materials, and manufacturing processes that are used to design and/or enhance many products, including medicinal products. This technology has achieved considerable progress in the oncology field in recent years. Most chemotherapeutic agents are not specific to the cancer cells they are intended to treat, and they can harm healthy cells, leading to numerous adverse effects. Due to this non-specific targeting, it is not feasible to administer high doses that may harm healthy cells. Moreover, low doses can cause cancer cells to acquire resistance, thus making them hard to kill. A solution that could potentially enhance drug targeting and delivery lies in understanding the complexity of nanotechnology. Engineering pharmaceutical and natural products into nano-products can enhance the diagnosis and treatment of cancer. Novel nano-formulations such as liposomes, polymeric micelles, dendrimers, quantum dots, nano-suspensions, and gold nanoparticles have been shown to enhance the delivery of drugs. Improved delivery of chemotherapeutic agents targets cancer cells rather than healthy cells, thereby preventing undesirable side effects and decreasing chemotherapeutic drug resistance. Nanotechnology has also revolutionized cancer diagnosis by using nanotechnology-based imaging contrast agents that can specifically target and therefore enhance tumor detection. In addition to the delivery of drugs, nanotechnology can be used to deliver nutraceuticals like phytochemicals that have multiple properties, such as antioxidant activity, that protect cells from oxidative damage and reduce the risk of cancer. There have been multiple advancements and implications for the use of nanotechnology to enhance the delivery of both pharmaceutical and nutraceutical products in cancer prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
| | | | | | - Shaker A. Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (L.S.); (E.R.P.); (T.S.)
| |
Collapse
|
46
|
Sipos B, Szabó-Révész P, Csóka I, Pallagi E, Dobó DG, Bélteky P, Kónya Z, Deák Á, Janovák L, Katona G. Quality by Design Based Formulation Study of Meloxicam-Loaded Polymeric Micelles for Intranasal Administration. Pharmaceutics 2020; 12:pharmaceutics12080697. [PMID: 32722099 PMCID: PMC7464185 DOI: 10.3390/pharmaceutics12080697] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
Our study aimed to develop an “ex tempore” reconstitutable, viscosity enhancer- and preservative-free meloxicam (MEL)-loaded polymeric micelle formulation, via Quality by Design (QbD) approach, exploiting the nose-to-brain pathway, as a suitable tool in the treatment of neuroinflammation. The anti-neuroinflammatory effect of nose-to-brain NSAID polymeric micelles was not studied previously, therefore its investigation is promising. Critical product parameters, encapsulation efficiency (89.4%), Z-average (101.22 ± 2.8 nm) and polydispersity index (0.149 ± 0.7) and zeta potential (−25.2 ± 0.4 mV) met the requirements of the intranasal drug delivery system (nanoDDS) and the targeted profile liquid formulation was transformed into a solid preservative-free product by freeze-drying. The viscosity (32.5 ± 0.28 mPas) and hypotonic osmolality (240 mOsmol/L) of the reconstituted formulation provides proper and enhanced absorption and probably guarantees the administration of the liquid dosage form (nasal drop and spray). The developed formulation resulted in more than 20 times faster MEL dissolution rate and five-fold higher nasal permeability compared to starting MEL. The prediction of IVIVC confirmed the great potential for in vivo brain distribution of MEL. The nose-to-brain delivery of NSAIDs such as MEL by means of nanoDDS as polymeric micelles offers an innovative opportunity to treat neuroinflammation more effectively.
Collapse
Affiliation(s)
- Bence Sipos
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary; (B.S.); (P.S.-R.); (I.C.); (E.P.); (D.G.D.)
| | - Piroska Szabó-Révész
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary; (B.S.); (P.S.-R.); (I.C.); (E.P.); (D.G.D.)
| | - Ildikó Csóka
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary; (B.S.); (P.S.-R.); (I.C.); (E.P.); (D.G.D.)
| | - Edina Pallagi
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary; (B.S.); (P.S.-R.); (I.C.); (E.P.); (D.G.D.)
| | - Dorina Gabriella Dobó
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary; (B.S.); (P.S.-R.); (I.C.); (E.P.); (D.G.D.)
| | - Péter Bélteky
- Faculty of Science and Informatics, Department of Applied & Environmental Chemistry, H-6720 Szeged, Hungary; (P.B.); (Z.K.)
| | - Zoltán Kónya
- Faculty of Science and Informatics, Department of Applied & Environmental Chemistry, H-6720 Szeged, Hungary; (P.B.); (Z.K.)
| | - Ágota Deák
- Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, H-6720 Szeged, Hungary; (Á.D.); (L.J.)
| | - László Janovák
- Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, H-6720 Szeged, Hungary; (Á.D.); (L.J.)
| | - Gábor Katona
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary; (B.S.); (P.S.-R.); (I.C.); (E.P.); (D.G.D.)
- Correspondence: ; Tel.: +36-62-545-575
| |
Collapse
|
47
|
Salman Ul Islam, Ahmed MB, Mazhar Ul-Islam, Shehzad A, Lee YS. Switching from Conventional to Nano-natural Phytochemicals to Prevent and Treat Cancers: Special Emphasis on Resveratrol. Curr Pharm Des 2020; 25:3620-3632. [PMID: 31605574 DOI: 10.2174/1381612825666191009161018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/01/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Natural phytochemicals and their derivatives have been used in medicine since prehistoric times. Natural phytochemicals have potential uses against various disorders, including cancers. However, due to low bioavailability, their success in clinical trials has not been reproduced. Nanotechnology has played a vital role in providing new directions for diagnosis, prevention, and treatment of different disorders, and of cancer in particular. Nanotechnology has demonstrated the capability to deliver conventional natural products with poor solubility or a short half-life to target specific sites in the body and regulate the release of drugs. Among the natural products, the phytoalexin resveratrol has demonstrated therapeutic effects, including antioxidant, antiinflammatory, and anti-proliferative effects, as well as the potential to inhibit the initiation and promotion of cancer. However, low water solubility and extensive first-pass metabolism lead to poor bioavailability of resveratrol, hindering its potential. Conventional dosage forms of resveratrol, such as tablets, capsules, dry powder, and injections, have met with limited success. Nanoformulations are now being investigated to improve the pharmacokinetic characteristics, as well as to enhance the bioavailability and targetability of resveratrol. OBJECTIVES This review details the therapeutic effectiveness, mode of action, and pharmacokinetic limitations of resveratrol, as well as discusses the successes and challenges of resveratrol nanoformulations. Modern nanotechnology techniques to enhance the encapsulation of resveratrol within nanoparticles and thereby enhance its therapeutic effects are emphasized. CONCLUSION To date, no resveratrol-based nanosystems are in clinical use, and this review would provide a new direction for further investigations on innovative nanodevices that could consolidate the anticancer potential of resveratrol.
Collapse
Affiliation(s)
- Salman Ul Islam
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Muhammad B Ahmed
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah, Oman
| | - Adeeb Shehzad
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Young S Lee
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
48
|
Tabrez S, Jabir NR, Adhami VM, Khan MI, Moulay M, Kamal MA, Mukhtar H. Nanoencapsulated dietary polyphenols for cancer prevention and treatment: successes and challenges. Nanomedicine (Lond) 2020; 15:1147-1162. [PMID: 32292109 DOI: 10.2217/nnm-2019-0398] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Many dietary polyphenols have been investigated for their therapeutic potential either as single agents or in combinations. Despite the significant anticancer potential of these polyphenols in in vitro cell culture and in vivo animal models, their clinical applications have been limited because of challenges such as ineffective systemic delivery, stability and low bioavailability. Nanoencapsulation of these polyphenols could prolong circulation, improve localization, enhance efficacy and reduce the chances of multidrug resistance. This review summarized the use of various polyphenols especially epigallocatechin gallate, quercetin, curcumin and resveratrol as nanoformulations for cancer prevention and treatment. Despite some success, more research is warranted to design a nanoencapsulated combination of polyphenols, effective in in vitro, in vivo and human systems.
Collapse
Affiliation(s)
- Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Nasimudeen R Jabir
- Department of Biochemistry, Centre for Research & Development, PRIST University, Vallam, Thanjavur, Tamil Nadu, 613403, India
| | | | - Mohammad Imran Khan
- Department of Biochemistry, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammed Moulay
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hasan Mukhtar
- Department of Dermatology, University of Wisconsin-Madison, WI 53706, USA
| |
Collapse
|
49
|
Resveratrol Nanoparticles: A Promising Therapeutic Advancement over Native Resveratrol. Processes (Basel) 2020. [DOI: 10.3390/pr8040458] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The importance of fruit-derived resveratrol (RES) in the treatment of various diseases has been discussed in various research publications. Those research findings have indicated the ability of the molecule as therapeutic in the context of in vitro and in vivo conditions. Mostly, the application of RES in in vivo conditions, encapsulation processes have been carried out using various nanoparticles that are made of biocompatible biomaterials, which are easily digested or metabolized, and RES is absorbed effectively. These biomaterials are non-toxic and are safe to be used as components in the biotherapeutics. They are made from naturally available by-products of food materials like zein or corn or components of the physiological system as with lipids. The versatility of the RES nanoparticles in their different materials, working range sizes, specificity in their targeting in various human diseases, and the mechanisms associated with them are discussed in this review.
Collapse
|
50
|
Davies S, Contri RV, Guterres SS, Pohlmann AR, Guerreiro ICK. Simultaneous nanoencapsulation of lipoic acid and resveratrol with improved antioxidant properties for the skin. Colloids Surf B Biointerfaces 2020; 192:111023. [PMID: 32361374 DOI: 10.1016/j.colsurfb.2020.111023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022]
Abstract
Cutaneous aging is intimately related to redox imbalance, which is mainly caused by ultraviolet radiation exposure. The aim of the present investigation was to develop lipid-core nanocapsules for the co-nanoencapsulation of resveratrol and lipoic acid aiming to improve the chemical stability and photostability of the compounds, as well as their antioxidant properties. Lipid-core nanocapsules were developed and characterized according to their mean size, size distribution, zeta potential, pH value, drug content, encapsulation efficiency, release profile, stability under storage, photostability and skin permeation profile. In vitro antioxidant activity was analyzed by lipid peroxidation method and the in vitro cytotoxicity by MTT assay and cellular count, using BALB/c-3T3 fibroblasts. It was possible to co-nanoencapsulate resveratrol and lipoic acid into particles of average diameter close to 200 nm, low polydispersity index and encapsulation efficiencies around 90 %. Nanoencapsulation increased the substances stability under storage and photostability under UVA light exposure, besides controlling substances release. The actives were able to permeate a skin model membrane when nanoencapsulated, with a faster permeation of lipoic acid. The antioxidant activity was potentiated by the co-nanoencapsulation of resveratrol and lipoic acid, without signs of cytotoxicity to fibroblasts. Therefore, the co-nanoencapsulation of resveratrol and lipoic acid is promising for application in topical formulations aiming antioxidant effects.
Collapse
Affiliation(s)
- Samuel Davies
- Programa de Pós Graduação em Ciências farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Renata Vidor Contri
- Programa de Pós Graduação em Ciências farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - Silvia Stanisçuaski Guterres
- Programa de Pós Graduação em Ciências farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós Graduação em Nanotecnologia Farmacêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Adriana Raffin Pohlmann
- Programa de Pós Graduação em Ciências farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós Graduação em Nanotecnologia Farmacêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Irene Clemes Kulkamp Guerreiro
- Programa de Pós Graduação em Ciências farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós Graduação em Nanotecnologia Farmacêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|