1
|
Yong J, Shu H, Zhang X, Yang K, Luo G, Yu L, Li J, Huang H. Natural Products-Based Inhaled Formulations for Treating Pulmonary Diseases. Int J Nanomedicine 2024; 19:1723-1748. [PMID: 38414528 PMCID: PMC10898359 DOI: 10.2147/ijn.s451206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024] Open
Abstract
Given the unique physiological and pathological characteristics of the lung, the direct, inhalable route is more conducive to pulmonary drug delivery and disease control than traditional systemic drug delivery, significantly circumventing drug loss, off-target effects, systemic and organ toxicity, etc., and is widely regarded as the preferred regimen for pulmonary drug delivery. However, very few lung diseases are currently treated with the preferred inhaled formulations, such as asthma, chronic obstructive pulmonary disease and pulmonary hypertension. And there is a lack of appropriate inhaled formulations for other critical lung diseases, such as lung cancer and pulmonary fibrosis, due to the fact that the physicochemical properties of the drugs and their pharmacokinetic profiles do not match the physiology of the lung, and conventional inhalation devices are unable to deliver them to the specific parts of the lung. Phytochemicals of natural origin, due to their wide availability and clear safety profile, hold great promise for the preparation of inhalable formulations to improve the current dilemma in the treatment of lung diseases. In particular, the preparation of inhalable formulations based on nano- and microparticulate carriers for drug delivery to deep lung tissues, which overcome the shortcomings of conventional inhalation therapies while targeting the drug activity directly to a specific part of the lung, may be the best approach to change the current dilemma of lung disease treatment. In this review, we discuss recent advances in nano- and micron-carrier-based inhalation formulations for the delivery of natural products for the treatment of pulmonary diseases, which may represent an opportunity for practical clinical translation of natural products.
Collapse
Affiliation(s)
- Jiangyan Yong
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, People’s Republic of China
| | - Hongli Shu
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, People’s Republic of China
| | - Xiao Zhang
- Department of Clinical Laboratory, Chengdu Children Special Hospital, Chengdu, Sichuan, 610031, People’s Republic of China
| | - Kun Yang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People’s Republic of China
| | - Guining Luo
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People’s Republic of China
| | - Lu Yu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People’s Republic of China
| | - Jiaqi Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People’s Republic of China
| | - Hong Huang
- Department of Clinical Laboratory, the People’s Hospital of Chongqing Liang Jiang New Area, Chongqing, 401121, People’s Republic of China
| |
Collapse
|
2
|
Ma Z, Zhang X, Ping L, Zhong Z, Zhang X, Zhuang X, Wang G, Guo Q, Zhan S, Qiu Z, Zhao Z, Li Q, Luo D. Supercritical antisolvent-fluidized bed for the preparation of dry powder inhaler for pulmonary delivery of nanomedicine. Int J Pharm 2023; 648:123580. [PMID: 37944677 DOI: 10.1016/j.ijpharm.2023.123580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
The supercritical antisolvent-fluidized bed coating process (SAS-FB) shows great potential as a technique to manufacture dry powder inhaler (DPI) that incorporate nanodrugs onto micronized matrix particles, capitalizing on the merits of both nanoparticle and pulmonary delivery. In this study, naringin (NAR), a pharmacologically active flavonoid with low solubility and in vivo degradation issues, was utilized as a model active pharmaceutical ingredient to construct nanomedicine-based DPI through SAS-FB. It is showed that processed NAR exhibited a near-spherical shape and an amorphous structure with an average size of around 130 nm. Notably, SAS-FB products prepared with different fluidized matrices resulted in varying deposition patterns, particularly when mixed with a coarse lactose to enhance the fine particle fraction (FPF) of the formulations. The FPF was positively associated with specific surface area of the SAS-FB products, while the specific surface area was directly related to surface roughness and particle size. In vitro dissolution studies using simulated lung fluid revealed that the NAR nanoparticles coated on the products were released immediately upon contact with solution, with a cumulative dissolution exceeding 90% within the first minute. Importantly, compared to oral raw NAR, the optimized DPI formulation demonstrated superior in vivo plasmatic and pulmonary AUC0→∞ by 51.33-fold and 104.07-fold respectively in a Sprague-Dawley rat model. Overall, SAS- FB technology provides a practical approach to produce nanomedicine DPI product that combine the benefits of nanoparticles with the aerodynamics properties of inhaled microparticles.
Collapse
Affiliation(s)
- Zhimin Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xuejuan Zhang
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, China
| | - Lu Ping
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zicheng Zhong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiubing Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaodong Zhuang
- Division of Infection and Immunity, University College London, London, UK
| | - Guanlin Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China
| | - Qiupin Guo
- Drug Non-Clinical Evaluation and Research Center of Guangzhou General Pharmaceutical Research Institute, Guangzhou 510240, China
| | - Shaofeng Zhan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhenwen Qiu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ziyu Zhao
- Department of Pharmacy, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, Guangdong, China.
| | - Qingguo Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Dandong Luo
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
3
|
Magramane S, Vlahović K, Gordon P, Kállai-Szabó N, Zelkó R, Antal I, Farkas D. Inhalation Dosage Forms: A Focus on Dry Powder Inhalers and Their Advancements. Pharmaceuticals (Basel) 2023; 16:1658. [PMID: 38139785 PMCID: PMC10747137 DOI: 10.3390/ph16121658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
In this review, an extensive analysis of dry powder inhalers (DPIs) is offered, focusing on their characteristics, formulation, stability, and manufacturing. The advantages of pulmonary delivery were investigated, as well as the significance of the particle size in drug deposition. The preparation of DPI formulations was also comprehensively explored, including physico-chemical characterization of powders, powder processing techniques, and formulation considerations. In addition to manufacturing procedures, testing methods were also discussed, providing insights into the development and evaluation of DPI formulations. This review also explores the design basics and critical attributes specific to DPIs, highlighting the significance of their optimization to achieve an effective inhalation therapy. Additionally, the morphology and stability of 3 DPI capsules (Spiriva, Braltus, and Onbrez) were investigated, offering valuable insights into the properties of these formulations. Altogether, these findings contribute to a deeper understanding of DPIs and their development, performance, and optimization of inhalation dosage forms.
Collapse
Affiliation(s)
- Sabrina Magramane
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Kristina Vlahović
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Péter Gordon
- Department of Electronics Technology, Budapest University of Technology and Economics, Egry J. Str. 18, H-1111 Budapest, Hungary;
| | - Nikolett Kállai-Szabó
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Romána Zelkó
- Department of Pharmacy Administration, Semmelweis University, Hőgyes Str. 7–9, H-1092 Budapest, Hungary;
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Dóra Farkas
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| |
Collapse
|
4
|
Celi SS, Fernández-García R, Afonso-Urich AI, Ballesteros MP, Healy AM, Serrano DR. Co-Delivery of a High Dose of Amphotericin B and Itraconazole by Means of a Dry Powder Inhaler Formulation for the Treatment of Severe Fungal Pulmonary Infections. Pharmaceutics 2023; 15:2601. [PMID: 38004579 PMCID: PMC10675812 DOI: 10.3390/pharmaceutics15112601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Over the past few decades, there has been a considerable rise in the incidence and prevalence of pulmonary fungal infections, creating a global health problem due to a lack of antifungal therapies specifically designed for pulmonary administration. Amphotericin B (AmB) and itraconazole (ITR) are two antifungal drugs with different mechanisms of action that have been widely employed in antimycotic therapy. In this work, microparticles containing a high dose of AmB and ITR (20, 30, and 40% total antifungal drug loading) were engineered for use in dry powder inhalers (DPIs) with an aim to improve the pharmacological effect, thereby enhancing the existing off-label choices for pulmonary administration. A Design of Experiment (DoE) approach was employed to prepare DPI formulations consisting of AmB-ITR encapsulated within γ-cyclodextrin (γ-CD) alongside functional excipients, such as mannitol and leucine. In vitro deposition indicated a favourable lung deposition pattern characterised by an upper ITR distribution (mass median aerodynamic diameter (MMAD) ~ 6 µm) along with a lower AmB deposition (MMAD ~ 3 µm). This offers significant advantages for treating fungal infections, not only in the lung parenchyma but also in the upper respiratory tract, considering that Aspergillus spp. can cause upper and lower airway disorders. The in vitro deposition profile of ITR and larger MMAD was related to the higher unencapsulated crystalline fraction of the drug, which may be altered using a higher concentration of γ-CD.
Collapse
Affiliation(s)
- Salomé S. Celi
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Raquel Fernández-García
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Andreina I. Afonso-Urich
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - M. Paloma Ballesteros
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Facultad de Farmacia, Instituto Universitario de Farmacia Industrial, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Dolores R. Serrano
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Facultad de Farmacia, Instituto Universitario de Farmacia Industrial, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
5
|
Naringin: Nanotechnological Strategies for Potential Pharmaceutical Applications. Pharmaceutics 2023; 15:pharmaceutics15030863. [PMID: 36986723 PMCID: PMC10054771 DOI: 10.3390/pharmaceutics15030863] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Polyphenols comprise a number of natural substances, such as flavonoids, that show interesting biological effects. Among these substances is naringin, a naturally occurring flavanone glycoside found in citrus fruits and Chinese medicinal herbs. Several studies have shown that naringin has numerous biological properties, including cardioprotective, cholesterol-lowering, anti-Alzheimer’s, nephroprotective, antiageing, antihyperglycemic, antiosteoporotic and gastroprotective, anti-inflammatory, antioxidant, antiapoptotic, anticancer and antiulcer effects. Despite its multiple benefits, the clinical application of naringin is severely restricted due to its susceptibility to oxidation, poor water solubility, and dissolution rate. In addition, naringin shows instability at acidic pH, is enzymatically metabolized by β-glycosidase in the stomach and is degraded in the bloodstream when administered intravenously. These limitations, however, have been overcome thanks to the development of naringin nanoformulations. This review summarizes recent research carried out on strategies designed to improve naringin’s bioactivity for potential therapeutic applications.
Collapse
|
6
|
Xiroudaki S, Sabbatini S, Pecoraro C, Cascioferro S, Diana P, Wauthoz N, Antognelli C, Monari C, Giovagnoli S, Schoubben A. Development of a new indole derivative dry powder for inhalation for the treatment of biofilm-associated lung infections. Int J Pharm 2023; 631:122492. [PMID: 36528190 DOI: 10.1016/j.ijpharm.2022.122492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
The aim of this work was to produce an inhalable dry powder formulation of a new anti-biofilm compound (SC38). For this purpose, chitosan was used as a polymeric carrier and l-leucine as a dispersibility enhancer. SC38 was entrapped by spray-drying into previously optimized chitosan microparticles. The final formulation was fully characterized in vitro in terms of particle morphology, particle size and distribution, flowability, aerodynamic properties, anti-biofilm activity and effects on lung cell viability. The SC38-loaded chitosan microparticles exhibited favorable aerodynamic properties with emitted and respirable fractions higher than 80 % and 45 % respectively. The optimized formulation successfully inhibited biofilm formation at microparticle concentrations starting from 20 μg/mL for methicillin-sensitive and 100 μg/mL for methicillin-resistant Staphylococcus aureus and showed a relatively safe profile in lung cells after 72 h exposure. Future in vivo tolerability and efficacy studies are needed to unravel the potential of this novel formulation for the treatment of difficult-to-treat biofilm-mediated lung infections.
Collapse
Affiliation(s)
- Styliani Xiroudaki
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| | - Samuele Sabbatini
- Department of Medicine and Surgery, Medical Microbiology Section, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy.
| | - Camilla Pecoraro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| | - Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| | - Nathalie Wauthoz
- Unit of Pharmaceutics and Biopharmaceutics, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Campus Plaine, 1050 Brussels, Belgium.
| | - Cinzia Antognelli
- Department of Medicine and Surgery, Biosciences and Medical Embryology Section, University of Perugia, 06132 Perugia, Italy.
| | - Claudia Monari
- Department of Medicine and Surgery, Medical Microbiology Section, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy.
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| | - Aurélie Schoubben
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| |
Collapse
|
7
|
Tse JY, Koike A, Kadota K, Uchiyama H, Fujimori K, Tozuka Y. Porous particles and novel carrier particles with enhanced penetration for efficient pulmonary delivery of antitubercular drugs. Eur J Pharm Biopharm 2021; 167:116-126. [PMID: 34363979 DOI: 10.1016/j.ejpb.2021.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/01/2021] [Accepted: 07/31/2021] [Indexed: 12/23/2022]
Abstract
This study aimed to design dry powder inhaler formulations using a hydrophilic polymeric polysaccharide, phytoglycogen (PyG), as a multi-functional additive that increases the phagocytic activity of macrophage-like cells and enhances pulmonary delivery of drugs. The safety and usefulness of PyG were determined using in vitro cell-based studies. Dry powder inhaler formulations of an antitubercular drug, rifampicin, were fabricated by spray drying with PyG. The cytotoxicity, effects on phagocytosis, particle size, and morphology were evaluated. The aerosolization properties of the powder formulations were evaluated using an Andersen cascade impactor (ACI). Scanning electron microscope images of the particles on each ACI stage were captured to observe the deposition behavior. PyG showed no toxicity in A549, Calu-3, or RAW264.7 cell lines. At concentrations of 0.5 and 1 g/L, PyG facilitated the cellular uptake of latex beads and the expression of pro-inflammatory cytokine genes in RAW264.7 cells. Formulations with outstanding inhalation potential were produced. The fine particle fraction (aerodynamic size 2-7 µm) of the porous particle batch reached nearly 60%, whereas in the formulation containing wrinkled carrier particles, the extra-fine particle fraction (aerodynamic particle size < 2 μm) was 25.0% ± 1.7%. The deposition of porous and wrinkled particles on individual ACI stages was distinct. The inclusion of PyG dramatically improved the inhalation performance of porous and wrinkled powder formulations. These easily inhaled immunostimulatory carrier particles may advance the state of research by enhancing the therapeutic effect and alveolar delivery of antitubercular drugs.
Collapse
Affiliation(s)
- Jun Yee Tse
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Atsushi Koike
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Ko Fujimori
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
8
|
Rivoira MA, Rodriguez V, Talamoni G, de Talamoni NT. New Perspectives in the Pharmacological Potential of Naringin in Medicine. Curr Med Chem 2021; 28:1987-2007. [PMID: 32496985 DOI: 10.2174/0929867327666200604171351] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Naringin (NAR) is a flavonoid enriched in several medicinal plants and fruits. An increasing interest in this molecule has emerged because it has the potential to contribute to alleviating many health problems. OBJECTIVE This review briefly describes the NAR pharmacokinetics and it mainly focuses on the in vitro and in vivo animal studies showing NAR beneficial effects on cardiovascular, metabolic, neurological and pulmonary disorders and cancer. The anabolic effects of NAR on different models of bone and dental diseases are also analyzed. In addition, the evidence of the NAR action on the gastrointestinal tract is reported as well as its influence on the microbiota composition and activity. Finally, current research on NAR formulations and clinical applications are discussed. METHODS The PubMed database was searched until 2019, using the keywords NAR, naringenin, cardiovascular and metabolic disorders, neurological and pulmonary disorders, cancer, bone and dental diseases, gastrointestinal tract, microbiota, NAR formulations, clinical trials. RESULTS The number of studies related to the bioavailability and pharmacokinetics of NAR is limited. Positive effects of NAR have been reported on cardiovascular diseases, Type 2 Diabetes Mellitus (T2DM), metabolic syndrome, pulmonary disorders, neurodegenerative diseases, cancer, and gastrointestinal pathologies. The current NAR formulations seem to improve its bioavailability, which would allow its clinical applications. CONCLUSION NAR is endowed with broad biological effects that could improve human health. Since a scarce number of clinical studies have been performed, the NAR use requires more investigation in order to know better their safety, efficacy, delivery, and bioavailability in humans.
Collapse
Affiliation(s)
- María Angélica Rivoira
- Laboratorio "Dr. Fernando Canas", Catedra de Bioquimica y Biologia Molecular, Facultad de Ciencias Medicas, INICSA (CONICET-Universidad Nacional de Cordoba), Pabellon Argentina, 2do. Piso, Ciudad Universitaria, 5000 Cordoba, Argentina
| | - Valeria Rodriguez
- Laboratorio "Dr. Fernando Canas", Catedra de Bioquimica y Biologia Molecular, Facultad de Ciencias Medicas, INICSA (CONICET-Universidad Nacional de Cordoba), Pabellon Argentina, 2do. Piso, Ciudad Universitaria, 5000 Cordoba, Argentina
| | - Germán Talamoni
- Laboratorio "Dr. Fernando Canas", Catedra de Bioquimica y Biologia Molecular, Facultad de Ciencias Medicas, INICSA (CONICET-Universidad Nacional de Cordoba), Pabellon Argentina, 2do. Piso, Ciudad Universitaria, 5000 Cordoba, Argentina
| | - Nori Tolosa de Talamoni
- Laboratorio "Dr. Fernando Canas", Catedra de Bioquimica y Biologia Molecular, Facultad de Ciencias Medicas, INICSA (CONICET-Universidad Nacional de Cordoba), Pabellon Argentina, 2do. Piso, Ciudad Universitaria, 5000 Cordoba, Argentina
| |
Collapse
|
9
|
Benke E, Winter C, Szabó-Révész P, Roblegg E, Ambrus R. The effect of ethanol on the habit and in vitro aerodynamic results of dry powder inhalation formulations containing ciprofloxacin hydrochloride. Asian J Pharm Sci 2021; 16:471-482. [PMID: 34703496 PMCID: PMC8520052 DOI: 10.1016/j.ajps.2021.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/02/2022] Open
Abstract
In the case of dry powder inhalation systems (DPIs), the development of carrier-free formulations has gained increased attention. Thereby, spray-drying is a promising technology and is widely used to produce carrier-free DPIs. Numerous works have been published about the co-spray-drying of active ingredients with various solid excipients and their effect on the physicochemical characteristics and aerodynamic properties of the formulations. However, only a few studies have been reported about the role of the solvents used in the stock solutions of spray-dried formulations. In the present work, DPI microcomposites containing ciprofloxacin hydrochloride were prepared by spray-drying in the presence of different ethanol concentrations. The work expresses the roughness, depth and width of the dimples for particle size as a novel calculation possibility, and as a correlation between the MMAD/D0.5 ratio and correlating it with cohesion work, these new terms and correlations have not been published – to the best of our knowledge – which has resulted in gap-filling findings. As a result, different proportions of solvent mixtures could be interpreted and placed in a new perspective, in which the influence of different concentrations of ethanol on the habit of the DPI formulations, and thus on in vitro aerodynamic results. Based on these, it became clear why we obtained the best in vitro aerodynamic results for DPI formulation containing 30% ethanol in the stock solution.
Collapse
Affiliation(s)
- Edit Benke
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged H-6720, Hungary
| | - Christina Winter
- Institute of Pharmaceutical Sciences, Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, Graz A-8010, Austria
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz A-8010, Austria
| | - Piroska Szabó-Révész
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged H-6720, Hungary
| | - Eva Roblegg
- Institute of Pharmaceutical Sciences, Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, Graz A-8010, Austria
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz A-8010, Austria
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged H-6720, Hungary
- Corresponding author.
| |
Collapse
|
10
|
Supercritical emulsion extraction fabricated PLA/PLGA micro/nano carriers for growth factor delivery: Release profiles and cytotoxicity. Int J Pharm 2021; 592:120108. [DOI: 10.1016/j.ijpharm.2020.120108] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/27/2022]
|
11
|
Design and Characterization of Spray-Dried Chitosan-Naltrexone Microspheres for Microneedle-Assisted Transdermal Delivery. Pharmaceutics 2020; 12:pharmaceutics12060496. [PMID: 32485999 PMCID: PMC7355536 DOI: 10.3390/pharmaceutics12060496] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/13/2020] [Accepted: 05/25/2020] [Indexed: 11/16/2022] Open
Abstract
Naltrexone (NTX) hydrochloride is a potent opioid antagonist with significant first-pass metabolism and notable untoward effects when administered orally or intramuscularly. Microneedle (MN)-assisted transdermal delivery is an attractive alternative that can improve therapeutic delivery to deeper skin layers. In this study, chitosan-NTX microspheres were developed via spray-drying, and their potential for transdermal NTX delivery in association with MN skin treatment was assessed. A quality-by-design approach was used to evaluate the impact of key input variables (chitosan molecular weight, concentration, chitosan-NTX ratio, and feed flow rate) on microsphere physical characteristics, encapsulation efficiency, and drug-loading capacity. Formulated microspheres had high encapsulation efficiencies (70%-87%), with drug-loading capacities ranging from 10%-43%. NTX flux through MN-treated skin was 11.6 ± 2.2 µg/cm2·h from chitosan-NTX microspheres, which was significantly higher than flux across intact skin. Combining MN-assisted delivery with the chitosan microsphere formulation enabled NTX delivery across the skin barrier, while controlling the dose released to the skin.
Collapse
|
12
|
Molina C, Kaialy W, Chen Q, Commandeur D, Nokhodchi A. Agglomerated novel spray-dried lactose-leucine tailored as a carrier to enhance the aerosolization performance of salbutamol sulfate from DPI formulations. Drug Deliv Transl Res 2019; 8:1769-1780. [PMID: 29260462 PMCID: PMC6280810 DOI: 10.1007/s13346-017-0462-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Spray-drying allows to modify the physicochemical/mechanical properties of particles along with their morphology. In the present study, L-leucine with varying concentrations (0.1, 0.5, 1, 5, and 10% w/v) were incorporated into lactose monohydrate solution for spray-drying to enhance the aerosolization performance of dry powder inhalers containing spray-dried lactose-leucine and salbutamol sulfate. The prepared spray-dried lactose-leucine carriers were analyzed using laser diffraction (particle size), differential scanning calorimetry (thermal behavior), scanning electron microscopy (morphology), powder X-ray diffraction (crystallinity), Fourier transform infrared spectroscopy (interaction at molecular level), and in vitro aerosolization performance (deposition). The results showed that the efficacy of salbutamol sulfate’s aerosolization performance was, in part, due to the introduction of L-leucine in the carrier, prior to being spray-dried, accounting for an increase in the fine particle fraction (FPF) of salbutamol sulfate from spray-dried lactose-leucine (0.5% leucine) in comparison to all other carriers. It was shown that all of the spray-dried carriers were spherical in their morphology with some agglomerates and contained a mixture of amorphous, α-lactose, and β-lactose. It was also interesting to note that spray-dried lactose-leucine particles were agglomerated during the spray-drying process to make coarse particles (volume mean diameter of 79 to 87 μm) suitable as a carrier in DPI formulations.
Collapse
Affiliation(s)
- Carlos Molina
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK
| | - Waseem Kaialy
- School of Pharmacy, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Qiao Chen
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK
| | - Daniel Commandeur
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK. .,Drug Applied Research Center and Faculty of Pharmacy, Tabriz Medical Sciences University, Tabriz, Iran.
| |
Collapse
|
13
|
Cui Y, Zhang X, Wang W, Huang Z, Zhao Z, Wang G, Cai S, Jing H, Huang Y, Pan X, Wu C. Moisture-Resistant Co-Spray-Dried Netilmicin with l-Leucine as Dry Powder Inhalation for the Treatment of Respiratory Infections. Pharmaceutics 2018; 10:pharmaceutics10040252. [PMID: 30513738 PMCID: PMC6321429 DOI: 10.3390/pharmaceutics10040252] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/16/2018] [Accepted: 10/29/2018] [Indexed: 12/27/2022] Open
Abstract
Netilmicin (NTM) is one of the first-line drugs for lower respiratory tract infections (LRTI) therapy, but its nephrotoxicity and ototoxicity caused by intravenous injection restrict its clinical application. Dry powder inhalation (DPI) is a popular local drug delivery system that is introduced as a solution. Due to the nature of NTM hygroscopicity that hinders its direct use through DPI, in this study, L-leucine (LL) was added into NTM dry powder to reduce its moisture absorption rate and improve its aerosolization performance. NTM DPIs were prepared using spray-drying with different LL proportions. The particle size, density, morphology, crystallinity, water content, hygroscopicity, antibacterial activity, in vitro aerosolization performance, and stability of each formulation were characterized. NTM DPIs were suitable for inhalation and amorphous with a corrugated surface. The analysis indicated that the water content and hygroscopicity were decreased with the addition of LL, whilst the antibacterial activity of NTM was maintained. The optimal formulation ND₂ (NTM:LL = 30:1) showed high fine particle fraction values (85.14 ± 8.97%), which was 2.78-fold those of ND₀ (100% NTM). It was stable after storage at 40 ± 2 °C, 75 ± 5% relative humidity (RH). The additional LL in NTM DPI successfully reduced the hygroscopicity and improved the aerosolization performance. NTM DPIs were proved to be a feasible and desirable approach for the treatment of LRTI.
Collapse
Affiliation(s)
- Yingtong Cui
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Xuejuan Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
- Institute for Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Wen Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Zhengwei Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Ziyu Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Guanlin Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Shihao Cai
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China.
| | - Hui Jing
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Ying Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
14
|
Mehta P, Bothiraja C, Mahadik K, Kadam S, Pawar A. Phytoconstituent based dry powder inhalers as biomedicine for the management of pulmonary diseases. Biomed Pharmacother 2018; 108:828-837. [PMID: 30372894 DOI: 10.1016/j.biopha.2018.09.094] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/15/2018] [Accepted: 09/16/2018] [Indexed: 12/14/2022] Open
Abstract
Pulmonary disease represents a major global health issue. They are commonly treated by various synthetic molecules. But, frequent high-dose of oral and injectable drugs may lead to severe side effects and this juncture demands inhaled formulations that facilitate effective drug delivery to the lower airways with negligible side effects. Natural phytoconstituents or phytoalexin (i.e. plant antibiotics) have showed an unique treatment array with minimum side effects and great capability to treat intrapulmonary and extrapulmonary diseases compared to synthetic drugs. Moreover, the progress of disciplines such as nanotechnology, material science and particle engineering allows further improvement of the treatment capability and efficiency. This article review and analyze literatures on inhaled phytoconstituents which were published in the last 10 years. Additionally, it will also offer the researcher with some basic background information for phytoconstituents profile, formulation requirements and drug delivery systems.
Collapse
Affiliation(s)
- Piyush Mehta
- Department of Quality Assurance, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune 38, Maharashtra, India
| | - C Bothiraja
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune 38, Maharashtra, India
| | - Kakasaheb Mahadik
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune 411038, Maharashtra, India
| | - Shivajirao Kadam
- Bharati Vidyapeeth Bhavan, Bharati Vidyapeeth (Deemed to be University), LBS Road, Pune 30, Maharashtra, India
| | - Atmaram Pawar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune 38, Maharashtra, India.
| |
Collapse
|
15
|
Sommerfeld Ross S, Gharse S, Sanchez L, Fiegel J. Dry powder aerosols to co-deliver antibiotics and nutrient dispersion compounds for enhanced bacterial biofilm eradication. Int J Pharm 2017; 531:14-23. [PMID: 28826725 DOI: 10.1016/j.ijpharm.2017.08.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/20/2017] [Accepted: 08/02/2017] [Indexed: 02/01/2023]
Abstract
The purpose of this study was to formulate a dry powder for inhalation containing a combination treatment for eradication of Pseudomonas aeruginosa bacterial biofilms. Dry powders containing an antibiotic (ciprofloxacin hydrochloride, CH) and nutrient dispersion compound (glutamic acid, GA) at a ratio determined to eliminate the biofilms were generated by spray drying. Leucine was added to the spray dried formulation to aid powder flowability. A central composite design of experiments was performed to determine the effects of solution and processing parameters on powder yield and aerodynamic properties. Combinations of CH and GA eradicated bacterial biofilms at lower antibiotic concentrations compared to CH alone. Spray dried powders were produced with yields up to 43% and mass mean aerodynamic diameters (MMAD) in the respirable range. Powder yield was primarily affected by variables that determine cyclone efficiency, i.e. atomizer and solution flow rates and solution concentration; while MMAD was mainly determined by solution concentration. Fine particle fractions (FPF)<4.46μm and <2.82μm of the powders ranged from 56 to 70% and 35 to 46%, respectively. This study demonstrates that dry powder aerosols containing high concentrations of a combination treatment effective against P. aeruginosa biofilms could be developed with high yield, aerodynamic properties appropriate for inhalation, and no loss of potency.
Collapse
Affiliation(s)
- S Sommerfeld Ross
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA, 52242, USA
| | - S Gharse
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA, 52242, USA
| | - L Sanchez
- Department of Chemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - J Fiegel
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA, 52242, USA; Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
16
|
Momin MA, Sinha S, Tucker IG, Doyle C, Das SC. Dry powder formulation of kanamycin with enhanced aerosolization efficiency for drug-resistant tuberculosis. Int J Pharm 2017; 528:107-117. [DOI: 10.1016/j.ijpharm.2017.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 01/05/2023]
|
17
|
Pápay ZE, Kósa A, Böddi B, Merchant Z, Saleem IY, Zariwala MG, Klebovich I, Somavarapu S, Antal I. Study on the Pulmonary Delivery System of Apigenin-Loaded Albumin Nanocarriers with Antioxidant Activity. J Aerosol Med Pulm Drug Deliv 2017; 30:274-288. [DOI: 10.1089/jamp.2016.1316] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Zsófia Edit Pápay
- Department of Pharmaceutics, Semmelweis University, Budapest, Hungary
| | - Annamária Kósa
- Department of Plant Anatomy, Institute of Biology, Eötvös Lóránd University, Budapest, Hungary
| | - Béla Böddi
- Department of Plant Anatomy, Institute of Biology, Eötvös Lóránd University, Budapest, Hungary
| | - Zahra Merchant
- Department of Pharmaceutics, UCL School of Pharmacy, London, United Kingdom
| | - Imran Y Saleem
- Formulation and Drug Delivery Research, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Mohammed Gulrez Zariwala
- Department of Biomedical Science, Faculty of Science and Technology, University of Westminster, London, United Kingdom
| | - Imre Klebovich
- Department of Pharmaceutics, Semmelweis University, Budapest, Hungary
| | | | - István Antal
- Department of Pharmaceutics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
18
|
Feng T, Wang K, Liu F, Ye R, Zhu X, Zhuang H, Xu Z. Structural characterization and bioavailability of ternary nanoparticles consisting of amylose, α-linoleic acid and β-lactoglobulin complexed with naringin. Int J Biol Macromol 2017; 99:365-374. [DOI: 10.1016/j.ijbiomac.2017.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/15/2017] [Accepted: 03/01/2017] [Indexed: 01/07/2023]
|
19
|
Abstract
This review reports on the beneficial pharmacological properties of naturally occurring polyphenols for the treatment of inflammatory pulmonary diseases. In addition, it presents an overview of the different types of inhalable formulations which have been developed in order to achieve efficient delivery of polyphenols to the respiratory tract. The main biological activities of polyphenols (anti-oxidant and anti-inflammatory) are covered, with particular emphasis on the studies describing their therapeutic effects on different factors and conditions characteristic of lung pathologies. Special focus is on the technological aspects which influence the pulmonary delivery of drugs. The various polyphenol-based inhalable formulations reported in the literature are examined with specific attention to the preparation methodologies, aerosol performance, lung deposition and in vitro and in vivo polyphenol uptake by the pulmonary epithelial cells.
Collapse
Affiliation(s)
- Valentina Trotta
- a Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Santo Scalia
- a Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| |
Collapse
|
20
|
Hittinger M, Mell NA, Huwer H, Loretz B, Schneider-Daum N, Lehr CM. Autologous Co-culture of Primary Human Alveolar Macrophages and Epithelial Cells for Investigating Aerosol Medicines. Part II: Evaluation of IL-10-loaded Microparticles for the Treatment of Lung Inflammation. Altern Lab Anim 2016; 44:349-360. [DOI: 10.1177/026119291604400405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Acute respiratory distress syndrome is linked to inflammatory processes in the human lung. The aim of this study was to mimic in vitro the treatment of lung inflammation by using a cell-based human autologous co-culture model. As a potential trial medication, we developed a pulmonary dry powder formulation loaded with interleukin-10 (IL-10), a potent anti-inflammatory cytokine. The inflammatory immune response was stimulated by lipopolysaccharide. The co-culture was combined with the Pharmaceutical Aerosol Deposition Device on Cell Cultures (PADDOCC), to deposit the IL-10-loaded microparticles on the inflamed co-culture model at the air–liquid interface. This treatment significantly reduced the secretion of interleukin-6 and tumour necrosis factor, as compared to the deposition of placebo (unloaded) particles. Our results show that the alveolar co-culture model, in combination with a deposition device such as the PADDOCC, may serve as a powerful tool for testing the safety and efficacy of dry powder formulations for pulmonary drug delivery.
Collapse
Affiliation(s)
- Marius Hittinger
- PharmBioTec GmbH, Saarbrücken, Germany
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
| | - Nico Alexander Mell
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
- Biopharmaceutics and Pharmaceutical Technology, Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Hanno Huwer
- Heart & Thoracic Surgery, SHG Kliniken Völklingen, Saarbrücken, Germany
| | - Brigitta Loretz
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
| | - Nicole Schneider-Daum
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
| | - Claus-Michael Lehr
- PharmBioTec GmbH, Saarbrücken, Germany
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
- Biopharmaceutics and Pharmaceutical Technology, Department of Pharmacy, Saarland University, Saarbrücken, Germany
| |
Collapse
|
21
|
Nishimura T, Kadota K, Kunita A, Nakayama Y, Tagishi H, Tozuka Y. Morphological control of tranilast attached to carrier particles by amino acid addition. ADV POWDER TECHNOL 2016. [DOI: 10.1016/j.apt.2016.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Kaialy W, Nokhodchi A. The use of freeze-dried mannitol to enhance the in vitro aerosolization behaviour of budesonide from the Aerolizer®. POWDER TECHNOL 2016. [DOI: 10.1016/j.powtec.2015.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Suzuki Y, Okuda T, Okamoto H. Development of New Formulation Dry Powder for Pulmonary Delivery Using Amino Acids to Improve Stability. Biol Pharm Bull 2016; 39:394-400. [DOI: 10.1248/bpb.b15-00822] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Yang XF, Xu Y, Qu DS, Li HY. The influence of amino acids on aztreonam spray-dried powders for inhalation. Asian J Pharm Sci 2015. [DOI: 10.1016/j.ajps.2015.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
25
|
Schoubben A, Blasi P, Giontella A, Giovagnoli S, Ricci M. Powder, capsule and device: An imperative ménage à trois for respirable dry powders. Int J Pharm 2015; 494:40-8. [DOI: 10.1016/j.ijpharm.2015.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 11/30/2022]
|
26
|
Feasibility of highly branched cyclic dextrin as an excipient matrix in dry powder inhalers. Eur J Pharm Sci 2015; 79:79-86. [PMID: 26360838 DOI: 10.1016/j.ejps.2015.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/27/2015] [Accepted: 09/02/2015] [Indexed: 11/24/2022]
Abstract
We investigated the feasibility of highly branched cyclic dextrin (HBCD) as an excipient matrix in dry powder inhalers (DPIs). The fine particles of HBCD and HBCD/active pharmaceutical ingredients (APIs) were prepared by spray-drying an ethanol-aqueous solution containing HBCD. The particle size of spray-dried HBCD itself was approximately 3.0μm with a wrinkled shape. Solid-state fluorescence emission spectroscopy of 1-naphthoic acid (1-NPA) showed that it was dispersed in a molecular dispersion/solid solution, if the model compound of 1-NPA was spray-dried with HBCD. Powder X-ray diffraction and differential scanning calorimetry indicate that 1-NPA was in the amorphous state after spray-drying with HBCD, which is confirmed by the fluorescence measurements, 1-NPA could be incorporated into HBCD. When the antimycobacterial agent, rifampicin, was spray-dried with HBCD for the purpose of pulmonary administration, the emitted dose and fine-particle fraction of the spray-dried particles of rifampicin with HBCD were 95.7±1.7% and 39.5±5.7%, respectively. The results indicated that HBCD possessed a high potential as an excipient in DPIs, not only by molecular association of API molecules with HBCD, but also by that of API fine crystals.
Collapse
|
27
|
Resistant maltodextrin as a shell material for encapsulation of naringin: Production and physicochemical characterization. J FOOD ENG 2015. [DOI: 10.1016/j.jfoodeng.2015.03.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Nanospray drying as a novel technique for the manufacturing of inhalable NSAID powders. ScientificWorldJournal 2015; 2014:838410. [PMID: 25580462 PMCID: PMC4279258 DOI: 10.1155/2014/838410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 11/11/2014] [Accepted: 11/26/2014] [Indexed: 11/17/2022] Open
Abstract
The aim of this research was to evaluate the potential of the nanospray drier as a novel apparatus for the manufacturing of a dry powder for inhalation containing ketoprofen lysinate, a nonsteroidal anti-inflammatory drug able to control the inflammation in cystic fibrosis patients. We produced several ketoprofen lysinate and leucine powder batches by means of nanospray dryer, studying the influence of process parameters on yield, particle properties (size distribution and morphology), and, mainly, aerodynamic properties of powders. Micronized particles were prepared from different hydroalcoholic solutions (alcohol content from 0 to 30% v/v) using ketoprofen in its lysine salt form and leucine as dispersibility enhancer in different ratios (from 5 to 15% w/w) with a total solid concentration ranging from 1 to 7% w/v. Results indicated that the spray head equipped with a 7 µm nozzle produced powders too big to be inhaled. The reduction of nozzle size from 7 to 4 µm led to smaller particles suitable for inhalation but, at the same time, caused a dramatic increase in process time. The selection of process variables, together with the nozzle pretreatment with a surfactant solution, allowed us to obtain a free flowing powder with satisfying aerosol performance, confirming the usefulness of the nanospray drier in the production of powder for inhalation.
Collapse
|
29
|
Kaewjan K, Srichana T. Nano spray-dried pyrazinamide-l-leucine dry powders, physical properties and feasibility used as dry powder aerosols. Pharm Dev Technol 2014; 21:68-75. [DOI: 10.3109/10837450.2014.971373] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Drug/polymer nanoparticles prepared using unique spray nozzles and recent progress of inhaled formulation. Asian J Pharm Sci 2014. [DOI: 10.1016/j.ajps.2014.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
31
|
Rattanupatam T, Srichana T. Budesonide dry powder for inhalation: effects of leucine and mannitol on the efficiency of delivery. Drug Deliv 2014; 21:397-405. [DOI: 10.3109/10717544.2013.868555] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Pomázi A, Ambrus R, Szabó-Révész P. Physicochemical stability and aerosolization performance of mannitol-based microcomposites. J Drug Deliv Sci Technol 2014. [DOI: 10.1016/s1773-2247(14)50080-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Effect of polymers for aerolization properties of mannitol-based microcomposites containing meloxicam. Eur Polym J 2013. [DOI: 10.1016/j.eurpolymj.2013.03.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Stigliani M, Aquino RP, Del Gaudio P, Mencherini T, Sansone F, Russo P. Non-steroidal anti-inflammatory drug for pulmonary administration: Design and investigation of ketoprofen lysinate fine dry powders. Int J Pharm 2013; 448:198-204. [DOI: 10.1016/j.ijpharm.2013.03.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/15/2013] [Accepted: 03/16/2013] [Indexed: 11/25/2022]
|
35
|
Boraey MA, Hoe S, Sharif H, Miller DP, Lechuga-Ballesteros D, Vehring R. Improvement of the dispersibility of spray-dried budesonide powders using leucine in an ethanol–water cosolvent system. POWDER TECHNOL 2013. [DOI: 10.1016/j.powtec.2012.02.047] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
36
|
Gentamicin and leucine inhalable powder: What about antipseudomonal activity and permeation through cystic fibrosis mucus? Int J Pharm 2013; 440:250-5. [DOI: 10.1016/j.ijpharm.2012.05.077] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/30/2012] [Accepted: 05/31/2012] [Indexed: 01/22/2023]
|
37
|
Wan F, Maltesen M, Bjerregaard S, Foged C, Rantanen J, Yang M. Particle engineering technologies for improving the delivery of peptide and protein drugs. J Drug Deliv Sci Technol 2013. [DOI: 10.1016/s1773-2247(13)50052-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Becker NI, Encarnação JA, Kalko EKV, Tschapka M. The effects of reproductive state on digestive efficiency in three sympatric bat species of the same guild. Comp Biochem Physiol A Mol Integr Physiol 2012; 162:386-90. [PMID: 22561664 DOI: 10.1016/j.cbpa.2012.04.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 04/21/2012] [Accepted: 04/21/2012] [Indexed: 10/28/2022]
Abstract
The functional link between food as an energy source and metabolizable energy is the digestive tract. The digestive organs may change in size, structure, or retention time in response to energetic demands of the animal. Very efficient digestive tracts may be better at processing food but require higher energetic investments for maintenance even when post-absorptive. These costs influence the resting metabolic rate (RMR) that is defined as the energy necessary to fuel vital metabolic functions in a resting animal. In bats a trade-off between the necessity for a highly efficient digestive tract and moderate energetic maintenance costs may be particularly important. We hypothesized that low RMR coincides with low digestive efficiency (defined as apparent metabolizable energy coefficient (MEC)) and that phases of increased energetic demand are compensated for by increased digestive efficiency. We measured RMR and apparent MEC in the bats species Myotis nattereri, M. bechsteinii, and Plecotus auritus. In support of our hypothesis, M. nattereri has the lowest mass-specific RMR of the three species and the lowest apparent MEC. However, apparent MEC did not change during phases with differing energetic demands in any of the bat species, probably because bats operate at the limit of their sustainable energy demand.
Collapse
Affiliation(s)
- Nina I Becker
- Institute of Experimental Ecology, University of Ulm, Albert Einstein Allee 11, D-89069 Ulm, Germany.
| | | | | | | |
Collapse
|
39
|
Aquino R, Prota L, Auriemma G, Santoro A, Mencherini T, Colombo G, Russo P. Dry powder inhalers of gentamicin and leucine: formulation parameters, aerosol performance and in vitro toxicity on CuFi1 cells. Int J Pharm 2012; 426:100-107. [DOI: 10.1016/j.ijpharm.2012.01.026] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 11/26/2022]
|