1
|
Sun Y, Shen X, Yang J, Tan C. Hyaluronic Acid-Coated Nanoliposomes as Delivery Systems for Fisetin: Stability, Membrane Fluidity, and Bioavailability. Foods 2024; 13:2406. [PMID: 39123596 PMCID: PMC11311619 DOI: 10.3390/foods13152406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 08/12/2024] Open
Abstract
Fisetin has shown numerous health benefits, whereas its food application is constrained by water insolubility, poor stability, and low bioaccessibility. This work investigated the potential of hyaluronic acid (HA)-coated nanoliposomes for the encapsulation and delivery of fisetin. It was observed that HA can adsorb onto the liposomal membrane through hydrogen bonding and maintain the spherical shape of nanoliposomes. Fluorescence analysis suggested that the HA coating restricted the motion and freedom of phospholipid molecules in the headgroup region and reduced the interior micropolarity of the nanoliposomes but did not affect the fluidity of the hydrophobic core. These effects were more pronounced for the HA with a low molecular weight (35 kDa) and moderate concentration (0.4%). The HA coating improved the storage and thermal stability of the nanoliposomes, as well as the digestive stability and bioaccessibility of the encapsulated fisetin. These findings could guide the development of HA-coated nanoliposomes for the controlled delivery of hydrophobic bioactives such as fisetin in functional foods.
Collapse
Affiliation(s)
| | | | | | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Y.S.); (X.S.); (J.Y.)
| |
Collapse
|
2
|
Zhang Y, Ma M, Yang J, Qiu X, Xin L, Lu Y, Huang H, Zeng Z, Zeng D. Preparation, Characterization, and Oral Bioavailability of Solid Dispersions of Cryptosporidium parvum Alternative Oxidase Inhibitors. Int J Mol Sci 2024; 25:7025. [PMID: 39000132 PMCID: PMC11241238 DOI: 10.3390/ijms25137025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
The phenylpyrazole derivative 5-amino-3-[1-cyano-2-(3-phenyl-1H-pyrazol-4-yl) vinyl]-1-phenyl-1H-pyrazole-4-carbonitrile (LN002), which was screened out through high-throughput molecular docking for the AOX target, exhibits promising efficacy against Cryptosporidium. However, its poor water solubility limits its oral bioavailability and therapeutic utility. In this study, solid dispersion agents were prepared by using HP-β-CD and Soluplus® and characterized through differential scanning calorimetry, Fourier transform infrared, powder X-ray diffraction, and scanning electron microscopy. Physical and chemical characterization showed that the crystal morphology of LN002 transformed into an amorphous state, thus forming a solid dispersion of LN002. The solid dispersion prepared with an LN002/HP-β-CD/Soluplus® mass ratio of 1:3:9 (w/w/w) exhibited significantly increased solubility and cumulative dissolution. Meanwhile, LN002 SDs showed good preservation stability under accelerated conditions of 25 °C and 75% relative humidity. The complexation of LN002 with HP-β-CD and Soluplus® significantly improved water solubility, pharmacological properties, absorption, and bioavailability.
Collapse
Affiliation(s)
- Yongxiang Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou 510642, China
| | - Minglang Ma
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou 510642, China
| | - Jinyu Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou 510642, China
| | - Xiaotong Qiu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou 510642, China
| | - Lin Xin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou 510642, China
| | - Yixing Lu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou 510642, China
| | - Huiguo Huang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou 510642, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou 510642, China
| | - Dongping Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou 510642, China
| |
Collapse
|
3
|
Yu W, Zhao Y, Ilyas I, Wang L, Little PJ, Xu S. The natural polyphenol fisetin in atherosclerosis prevention: a mechanistic review. J Pharm Pharmacol 2024:rgae053. [PMID: 38733634 DOI: 10.1093/jpp/rgae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
The incidence and mortality rate of atherosclerotic cardiovascular disease (ASCVD) is increasing yearly worldwide. Recently, a growing body of evidence has unveiled the anti-atherosclerotic properties of fisetin, a natural polyphenol compound. In this article, we reviewed the pharmacologic actions of fisetin on experimental atherosclerosis and its protective effects on disease-relevant cell types such as endothelial cells, macrophages, vascular smooth muscle cells, and platelets. Based on its profound cardiovascular actions, fisetin holds potential for clinical translation and could be developed as a potential therapeutic option for atherosclerosis and its related complications. Large-scale randomized clinical trials are warranted to ascertain the safety and efficacy of fisetin in patients with or high risk for ASCVD.
Collapse
Affiliation(s)
- Wei Yu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
- Anhui Renovo Pharmaceutical Co., Ltd, Hefei, Anhui, 230001, China
- Anhui Guozheng Pharmaceutical Co., Ltd, Hefei, Anhui, 230041, China
| | - Yaping Zhao
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Peter J Little
- Department of Pharmacy, Guangzhou Xinhua University, No. 721, Guangshan Road 1, Tianhe District, Guangzhou, 510520, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| |
Collapse
|
4
|
Dudek A, Szulc N, Pawlak A, Strugała-Danak P, Krawczyk-Łebek A, Perz M, Kostrzewa-Susłow E, Pruchnik H. Structural investigation of interactions between halogenated flavonoids and the lipid membrane along with their role as cytotoxic agents. Sci Rep 2024; 14:10561. [PMID: 38719884 PMCID: PMC11078956 DOI: 10.1038/s41598-024-61037-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
This study focuses on understanding the structural and molecular changes in lipid membranes under the influence of six halogenated flavonoid derivatives differing in the number and position of substitution of chlorine and bromine atoms (D1-D6). Utilizing various analytical techniques, including fluorometric methods, dynamic light scattering (DLS), attenuated Fourier transform infrared spectroscopy (ATR- FTIR), and FT-Raman spectroscopy, the research aims to elucidate the mechanisms underlying the interaction of flavonoids with cell membranes. Additionally, the study includes in silico analyses to explore the physicochemical properties of these compounds and their potential pharmaceutical applications, along with toxicity studies to assess their effects on cancer, normal, and red blood cells. Our study showed the ability of halogenated derivatives to interact mostly with the outer part of the membrane, especially in the lipid heads region however, some of them were able to penetrate deeper into the membrane and affect the fluidity of hydrocarbon chains. The potential to reduce cancer cell viability, the lack of toxicity towards erythrocytes, and the favourable physicochemical and pharmacokinetic properties suggest these halogenated flavonoids potential candidates for exploring their potential for medical use.
Collapse
Affiliation(s)
- Anita Dudek
- Department of Physics and Biophysics, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland.
| | - Natalia Szulc
- Department of Physics and Biophysics, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375, Wrocław, Poland
| | - Paulina Strugała-Danak
- Department of Physics and Biophysics, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Agnieszka Krawczyk-Łebek
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Martyna Perz
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Edyta Kostrzewa-Susłow
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Hanna Pruchnik
- Department of Physics and Biophysics, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| |
Collapse
|
5
|
Kedar T, Jalalpure S, Kurangi B. Cubosomal nanoformulation increase invitro dissolution and anticancer activity of Fisetin in A549 lung cancer cells. Ther Deliv 2024; 15:355-369. [PMID: 38639652 PMCID: PMC11160450 DOI: 10.4155/tde-2023-0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/05/2024] [Indexed: 04/20/2024] Open
Abstract
Aim: To prepare fisetin (FIS) cubosomal nanoformulation to increase aqueous solubility and anticancer activity. Methods: Top-down method using glyceryl monooleate (GMO) and Pluronic F-127. Results: Optimized using 2% GMO and 1% Pluronic F-127, reported 93.07 nm particle size, 80.10% drug entrapment, and reports more than 50% enhanced in vitro drug release than native FIS. MTT assay reports IC50 Values of FIS 16.59 μg/ml and optimized cubosomal FIS nanoformulation (FISCUB) 12.18 μg/ml. The colony numbers observed in clonogenic assay for FISCUB were 8.33 ± 0.58 and FIS 11.67 ± 1.15. In flow cytometry study, apoptotic cells in FISCUB and FIS-treated A549 cells were found to be 33.4 and 6.83% respectively. Conclusion: A stable cubosomal nanoformulation of FIS showed enhanced aqueous solubility and anticancer activity.
Collapse
Affiliation(s)
- Tukaram Kedar
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education & Research, Nehru Nagar, Belagavi-590010, Karnataka, India
- Dr Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education & Research, Nehru Nagar, Belagavi-590010, Karnataka, India
| | - Sunil Jalalpure
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education & Research, Nehru Nagar, Belagavi-590010, Karnataka, India
| | - Bhaskar Kurangi
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education & Research, Nehru Nagar, Belagavi-590010, Karnataka, India
| |
Collapse
|
6
|
Renault-Mahieux M, Seguin J, Vieillard V, Le DT, Espeau P, Lai-Kuen R, Richard C, Mignet N, Paul M, Andrieux K. Co-encapsulation of fisetin and cisplatin into liposomes: Stability considerations and in vivo efficacy on lung cancer animal model. Int J Pharm 2024; 651:123744. [PMID: 38145778 DOI: 10.1016/j.ijpharm.2023.123744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
Lung cancer is a highly vascularized tumor for which a combination between an antitumor agent, cisplatin, and an antiangiogenic molecule, fisetin, appears a promising therapeutic approach. In order to deliver both chemotherapies within the tumor, to enhance fisetin solubility and decrease cisplatin toxicity, an encapsulation of both drugs into liposomes was developed. Purification and freeze-drying protocols were optimized to improve both the encapsulation and liposome storage. The cytotoxicity of the encapsulated chemotherapies was evaluated on Lewis lung carcinoma (3LL) cell lines. The antitumor effect of the combination was evaluated in vivo on an ectopic mouse model of Lewis Lung carcinoma. The results showed that fisetin and cisplatin co-loaded liposomes were successfully prepared. Freeze-drying allowed a 30 days storage limiting the release of both drugs. The combination index between liposomal fisetin and liposomal cisplatin on 3LL cell line after 24 h of exposure showed a clear synergism: CI = 0.7 for the co loaded liposomes and CI = 0.9 for the mixture of cisplatin loaded and fisetin loaded liposomes. The co-encapsulating formulation showed in vivo efficacy against an ectopic murine model of Lewis Lung carcinoma with a probable reduction in the toxicity of cisplatin through co-encapsulation with fisetin.
Collapse
Affiliation(s)
- Morgane Renault-Mahieux
- Université Paris Cité, CNRS, Inserm, UTCBS, F-75006, Paris, France; Pharmacy Department, AP-HP, Henri Mondor Hospital Group, F-94010, France.
| | - Johanne Seguin
- Université Paris Cité, CNRS, Inserm, UTCBS, F-75006, Paris, France.
| | - Victoire Vieillard
- Pharmacy Department, AP-HP, Henri Mondor Hospital Group, F-94010, France.
| | - Dang-Tri Le
- Université Paris Cité, CNRS, Inserm, UTCBS, F-75006, Paris, France.
| | - Philippe Espeau
- Université Paris Cité, CNRS, Inserm, UTCBS, F-75006, Paris, France.
| | - René Lai-Kuen
- Plateau Technique Imagerie Cellulaire et Moléculaire, CNRS UMS3612, INSERM US25, Université de Paris, 75006, Paris, France
| | - Cyrille Richard
- Université Paris Cité, CNRS, Inserm, UTCBS, F-75006, Paris, France.
| | - Nathalie Mignet
- Université Paris Cité, CNRS, Inserm, UTCBS, F-75006, Paris, France.
| | - Muriel Paul
- Pharmacy Department, AP-HP, Henri Mondor Hospital Group, F-94010, France.
| | - Karine Andrieux
- Université Paris Cité, CNRS, Inserm, UTCBS, F-75006, Paris, France.
| |
Collapse
|
7
|
Wang C, Xiang Y, Ma W, Guo C, Wu X. Therapeutic Potential Evaluation of Silk Sericin Stabilized Fisetin to Ulcerative Colitis. Macromol Biosci 2024; 24:e2300277. [PMID: 37658682 DOI: 10.1002/mabi.202300277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Ulcerative colitis is a chronic inflammatory bowel disease with a high recurrence rate. Natural phytochemical compounds are increasingly being considered as preventative and supportive treatments for this condition. However, the poor water solubility and stability of many of these compounds limit their effectiveness in vivo. To address this issue, fisetin (FT), a natural phytochemical with poor solubility, is stabilized using silk sericin (SS) to create a composite (SS/FT). The therapeutic potential of the SS/FT on ulcerative colitis is extensively investigated, and the results showed that it effectively alleviated the body weight loss and colon length shortening induced by dextran sulfate sodium. Notably, SS/FT downregulated the immune response, decreased colonic histopathological lesions, and reduced the cGAS/STING signal activation. This suggests that SS/FT may offer a promising therapy for treating ulcerative colitis.
Collapse
Affiliation(s)
- Chunru Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yingjie Xiang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Wenjie Ma
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Chuanlong Guo
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiaochen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
8
|
Wang CW, Tsai HY, Hsu C, Hsieh CC, Wang IS, Chang CF, Su NW. Structure-specific metabolism of flavonol molecules by Bacillus subtilis var. natto BCRC 80517. Food Chem 2024; 430:136975. [PMID: 37549625 DOI: 10.1016/j.foodchem.2023.136975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/04/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023]
Abstract
Flavonols (3-hydroxy flavones) have been studied for their beneficial bioactivities for human health. Recently, we reported that a flavonoid phosphate synthetase (BsFPS) from Bacillus subtilis BCRC 80517 can transform several flavonoids into their phosphate conjugates, which become more water-soluble and thus increase the oral bioavailability. However, the in vivo metabolism of different flavonols has yet to be determined. Here, we investigated biotransformation of three flavonols (quercetin, kaempferol and fisetin) by B. subtilis BCRC 80517. C-ring cleavage products of quercetin and kaempferol, i.e., 2-protocatechuoyl-phloroglucinol carboxylic acid (2-PCPGCA), were produced, whereas two phosphate derivatives of fisetin (fisetin 4'-O-phosphate and fisetin 3'-O-phosphate) were generated by cultivation with B. subtilis BCRC 80517. Our results indicated that there are structure-specific metabolic pathways in B. subtilis toward different flavonols, where the 5-hydroxy group determines metabolic priority. Our findings provide new insights for developing bioproduction platform to produce flavonol phosphate derivatives for nutraceutical applications.
Collapse
Affiliation(s)
- Che-Wei Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Hsin-Ya Tsai
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Chen Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Ching-Chun Hsieh
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - I-Shu Wang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Nan-Wei Su
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan; Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
9
|
Sip S, Rosiak N, Sip A, Żarowski M, Hojan K, Cielecka-Piontek J. A Fisetin Delivery System for Neuroprotection: A Co-Amorphous Dispersion Prepared in Supercritical Carbon Dioxide. Antioxidants (Basel) 2023; 13:24. [PMID: 38275644 PMCID: PMC10812833 DOI: 10.3390/antiox13010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Fisetin (FIS), a senolytic flavonoid, mitigates age-related neuroprotective changes. An amorphous FIS dispersion with a co-carrier was prepared using supercritical fluid extraction with carbon dioxide (scCO2). Characterisation, including powder X-ray diffraction and Fourier-transform infrared spectroscopy, confirmed amorphization and assessed intermolecular interactions. The amorphous FIS dispersion exhibited enhanced solubility, dissolution profiles, and bioavailability compared to the crystalline form. In vitro, the amorphous FIS dispersion demonstrated antioxidant activity (the ABTS, CUPRAC, DDPH, FRAP assays) and neuroprotective effects by inhibiting acetylcholinesterase and butyrylcholinesterase. FIS modulated gut microbiota, reducing potentially pathogenic gram-negative bacteria without affecting probiotic microflora. These improvements in solubility, antioxidant and neuroprotective activities, and gut microbiome modulation suggest the potential for optimising FIS delivery systems to leverage its health-promoting properties while addressing oral functionality limitations.
Collapse
Affiliation(s)
- Szymon Sip
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (S.S.); (N.R.)
| | - Natalia Rosiak
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (S.S.); (N.R.)
| | - Anna Sip
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland;
| | - Marcin Żarowski
- Department of Developmental Neurology, Poznan University of Medical Sciences, Przybyszewski 49, 60-355 Poznan, Poland;
| | - Katarzyna Hojan
- Department of Occupational Therapy, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- Department of Rehabilitation, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (S.S.); (N.R.)
| |
Collapse
|
10
|
Mirza MA, Mahmood S, Hilles AR, Ali A, Khan MZ, Zaidi SAA, Iqbal Z, Ge Y. Quercetin as a Therapeutic Product: Evaluation of Its Pharmacological Action and Clinical Applications-A Review. Pharmaceuticals (Basel) 2023; 16:1631. [PMID: 38004496 PMCID: PMC10674654 DOI: 10.3390/ph16111631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Quercetin is the major polyphenolic flavonoid that belongs to the class called flavanols. It is found in many foods, such as green tea, cranberry, apple, onions, asparagus, radish leaves, buckwheat, blueberry, broccoli, and coriander. It occurs in many different forms, but the most abundant quercetin derivatives are glycosides and ethers, namely, Quercetin 3-O-glycoside, Quercetin 3-sulfate, Quercetin 3-glucuronide, and Quercetin 3'-metylether. Quercetin has antioxidant, anti-inflammatory, cardioprotective, antiviral, and antibacterial effects. It is found to be beneficial against cardiovascular diseases, cancer, diabetes, neuro-degenerative diseases, allergy asthma, peptic ulcers, osteoporosis, arthritis, and eye disorders. In pre-clinical and clinical investigations, its impacts on various signaling pathways and molecular targets have demonstrated favorable benefits for the activities mentioned above, and some global clinical trials have been conducted to validate its therapeutic profile. It is also utilized as a nutraceutical due to its pharmacological properties. Although quercetin has several pharmacological benefits, its clinical use is restricted due to its poor water solubility, substantial first-pass metabolism, and consequent low bioavailability. To circumvent this limited bioavailability, a quercetin-based nanoformulation has been considered in recent times as it manifests increased quercetin uptake by the epithelial system and enhances the delivery of quercetin to the target site. This review mainly focuses on pharmacological action, clinical trials, patents, marketed products, and approaches to improving the bioavailability of quercetin with the use of a nanoformulation.
Collapse
Affiliation(s)
- Mohd Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.A.M.); (S.A.A.Z.)
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ayah Rebhi Hilles
- INHART, International Islamic University Malaysia, Jalan Gombak, Kuala Lumpur 53100, Malaysia;
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Mohammed Zaafar Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.A.M.); (S.A.A.Z.)
| | - Syed Amir Azam Zaidi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.A.M.); (S.A.A.Z.)
| | - Zeenat Iqbal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.A.M.); (S.A.A.Z.)
| | - Yi Ge
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
11
|
Tang X, Deng P, Jiang Y, Zhang L, He Y, Yang H. An Overview of Recent Advances in the Neuroprotective Potentials of Fisetin against Diverse Insults in Neurological Diseases and the Underlying Signaling Pathways. Biomedicines 2023; 11:2878. [PMID: 38001882 PMCID: PMC10669030 DOI: 10.3390/biomedicines11112878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
The nervous system plays a leading role in the regulation of physiological functions and activities in the body. However, a variety of diseases related to the nervous system have a serious impact on human health. It is increasingly clear that neurological diseases are multifactorial pathological processes involving multiple cellular systems, and the onset of these diseases usually involves a diverse array of molecular mechanisms. Unfortunately, no effective therapy exists to slow down the progression or prevent the development of diseases only through the regulation of a single factor. To this end, it is pivotal to seek an ideal therapeutic approach for challenging the complicated pathological process to achieve effective treatment. In recent years, fisetin, a kind of flavonoid widely existing in fruits, vegetables and other plants, has shown numerous interesting biological activities with clinical potentials including anti-inflammatory, antioxidant and neurotrophic effects. In addition, fisetin has been reported to have diverse pharmacological properties and neuroprotective potentials against various neurological diseases. The neuroprotective effects were ascribed to its unique biological properties and multiple clinical pharmacological activities associated with the treatment of different neurological disorders. In this review, we summarize recent research progress regarding the neuroprotective potential of fisetin and the underlying signaling pathways of the treatment of several neurological diseases.
Collapse
Affiliation(s)
- Xiangwen Tang
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (X.T.); (L.Z.)
- Basic Medical School Academy, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China; (P.D.); (Y.J.)
| | - Peng Deng
- Basic Medical School Academy, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China; (P.D.); (Y.J.)
| | - Yizhen Jiang
- Basic Medical School Academy, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China; (P.D.); (Y.J.)
| | - Lingling Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (X.T.); (L.Z.)
| | - Yuqing He
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China;
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (X.T.); (L.Z.)
| |
Collapse
|
12
|
Szymczak J, Cielecka-Piontek J. Fisetin-In Search of Better Bioavailability-From Macro to Nano Modifications: A Review. Int J Mol Sci 2023; 24:14158. [PMID: 37762460 PMCID: PMC10532335 DOI: 10.3390/ijms241814158] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
As secondary plant metabolites, polyphenols are abundant in fruits and vegetables. They are in high demand because of their many health benefits. However, their low bioavailability makes them complex compounds to use for therapeutic purposes. Due to the limited solubility of phytocompounds, dietary supplements made from them may only be partially effective. Such molecules include fisetin, found in strawberries, and have shown great promise in treating Alzheimer's disease and cancer. Unfortunately, because of their limited water solubility, low absorption, and poor bioavailability, the assistance of nanotechnology is required to allow them to fulfil their potential fully. Here, we provide evidence that nanodelivery methods and structure modifications can improve fisetin bioavailability, which is linked to improvements in therapeutic efficacy. An open question remains as to which nanocarrier should be chosen to meet the abovementioned requirements and be able to enhance fisetin's therapeutic potential to treat a particular disease.
Collapse
Affiliation(s)
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| |
Collapse
|
13
|
Zhang J, Wang H, Ai C, Lu R, Chen L, Xiao J, Teng H. Food matrix-flavonoid interactions and their effect on bioavailability. Crit Rev Food Sci Nutr 2023; 64:11124-11145. [PMID: 37427580 DOI: 10.1080/10408398.2023.2232880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Flavonoid compounds exhibit a wide range of health benefits as plant-derived dietary components. Typically, co-consumed with the food matrix,they must be released from the matrix and converted into an absorbable form (bioaccessibility) before reaching the small intestine, where they are eventually absorbed and transferred into the bloodstream (bioavailability) to exert their biological activity. However, a large number of studies have revealed the biological functions of individual flavonoid compounds in different experimental models, ignoring the more complex but common relationships established in the diet. Besides, it has been appreciated that the gut microbiome plays a crucial role in the metabolism of flavonoids and food substrates, thereby having a significant impact on their interactions, but much progress still needs to be made in this area. Therefore, this review intends to comprehensively investigate the interactions between flavonoids and food matrices, including lipids, proteins, carbohydrates and minerals, and their effects on the nutritional properties of food matrices and the bioaccessibility and bioavailability of flavonoid compounds. Furthermore, the health effects of the interaction of flavonoid compounds with the gut microbiome have also been discussed.HIGHLIGHTSFlavonoids are able to bind to nutrients in the food matrix through covalent or non-covalent bonds.Flavonoids affect the digestion and absorption of lipids, proteins, carbohydrates and minerals in the food matrix (bioaccessibility).Lipids, proteins and carbohydrates may favorably affect the bioavailability of flavonoids.Improved intestinal flora may improve flavonoid bioavailability.
Collapse
Affiliation(s)
- Jingjing Zhang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo Ourense, Spain
| | - Hui Wang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| | - Chao Ai
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| | - Rui Lu
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo Ourense, Spain
| | - Lei Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| | - Jianbo Xiao
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo Ourense, Spain
| | - Hui Teng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| |
Collapse
|
14
|
Baldassari S, Balboni A, Drava G, Donghia D, Canepa P, Ailuno G, Caviglioli G. Phytochemicals and Cancer Treatment: Cell-Derived and Biomimetic Vesicles as Promising Carriers. Pharmaceutics 2023; 15:1445. [PMID: 37242687 PMCID: PMC10221807 DOI: 10.3390/pharmaceutics15051445] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The majority of anticancer agents currently used derive from natural sources: plants, frequently the ones employed in traditional medicines, are an abundant source of mono- and diterpenes, polyphenols, and alkaloids that exert antitumor activity through diverse mechanisms. Unfortunately, many of these molecules are affected by poor pharmacokinetics and limited specificity, shortcomings that may be overcome by incorporating them into nanovehicles. Cell-derived nanovesicles have recently risen to prominence, due to their biocompatibility, low immunogenicity and, above all, targeting properties. However, due to difficult scalability, the industrial production of biologically-derived vesicles and consequent application in clinics is difficult. As an efficient alternative, bioinspired vesicles deriving from the hybridization of cell-derived and artificial membranes have been conceived, revealing high flexibility and appropriate drug delivery ability. In this review, the most recent advances in the application of these vesicles to the targeted delivery of anticancer actives obtained from plants are presented, with specific focus on vehicle manufacture and characterization, and effectiveness evaluation performed through in vitro and in vivo assays. The emerging overall outlook appears promising in terms of efficient drug loading and selective targeting of tumor cells, suggesting further engrossing developments in the future.
Collapse
Affiliation(s)
- Sara Baldassari
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Alice Balboni
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Giuliana Drava
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Daniela Donghia
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Paolo Canepa
- Department of Physics, University of Genova, 16146 Genova, Italy;
| | - Giorgia Ailuno
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Gabriele Caviglioli
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| |
Collapse
|
15
|
Jeong HM, Kang HN, Lee YR, Kim EA, Lee EH, Shim JH. Improved low water solubility of fisetin by enzymatic encapsulation reaction using cycloamylose produced by cyclodextrin glucanotransferase. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
16
|
Haeri V, Karimi E, Oskoueian E. Synthesized nanoliposome-encapsulated kaempferol attenuates liver health parameters and gene expression in mice challenged by cadmium-induced toxicity. Biotechnol Appl Biochem 2023; 70:429-438. [PMID: 35696633 DOI: 10.1002/bab.2368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 05/01/2022] [Indexed: 11/08/2022]
Abstract
In the present research, we encapsulated a flavonoid called kaempferol into nanoliposomal structures and the health-promoting effects of synthesized nanoliposome-loaded kaempferol (NLK) were evaluated in mice challenged by cadmium-induced . The NLK characteristics, such as size, zeta potential, and polydispersity index, were 218.4 nm, -28.55 mV, and 0.29, respectively. The in vivo experiment revealed that the mice receiving water containing cadmium (2 mg/kg body weight/day) showed significant (p < 0.05) weight loss, an increase in liver enzyme activities, and hepatic oxidative stress. Dietary supplementation with NLK at concentrations of 2.5 and 5 mg/kg mice body weight notably (p < 0.05) improved the body weight, liver enzyme activities, hepatic oxidative stress, and antioxidant potential of the liver. Our findings elucidated that NLK could alleviate the toxicity of cadmium in mice challenged by cadmium-induced toxicity.
Collapse
Affiliation(s)
- Vahideh Haeri
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, IRAN
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, IRAN
| | - Ehsan Oskoueian
- Department of Research and Development, Arka Industrial Cluster, Mashhad, Iran
| |
Collapse
|
17
|
Kumar RM, Kumar H, Bhatt T, Jain R, Panchal K, Chaurasiya A, Jain V. Fisetin in Cancer: Attributes, Developmental Aspects, and Nanotherapeutics. Pharmaceuticals (Basel) 2023; 16:196. [PMID: 37259344 PMCID: PMC9961076 DOI: 10.3390/ph16020196] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 09/21/2023] Open
Abstract
Cancer is one of the major causes of mortality, globally. Cancerous cells invade normal cells and metastasize to distant sites with the help of the lymphatic system. There are several mechanisms involved in the development and progression of cancer. Several treatment strategies including the use of phytoconstituents have evolved and been practiced for better therapeutic outcomes against cancer. Fisetin is one such naturally derived flavone that offers numerous pharmacological benefits, i.e., antioxidant, anti-inflammatory, antiangiogenic, and anticancer properties. It inhibits the rapid growth, invasiveness, and metastasis of tumors by hindering the multiplication of cancer cells, and prompts apoptosis by avoiding cell division related to actuation of caspase-9 and caspase-8. However, its poor bioavailability associated with its extreme hydrophobicity hampers its clinical utility. The issues related to fisetin delivery can be addressed by adapting to the developmental aspects of nanomedicines, such as formulating it into lipid or polymer-based systems, including nanocochleates and liposomes. This review aims to provide in-depth information regarding fisetin as a potential candidate for anticancer therapy, its properties and various formulation strategies.
Collapse
Affiliation(s)
- Rachna M. Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Tanvi Bhatt
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Kanan Panchal
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad, Telangana 500078, India
| | - Akash Chaurasiya
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad, Telangana 500078, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| |
Collapse
|
18
|
Ma P, Seguin J, Ly KN, Henríquez LC, Plansart E, Hammad K, Gahoual R, Dhôtel H, Izabelle C, Saubamea B, Richard C, Escriou V, Mignet N, Corvis Y. Designing fisetin nanocrystals for enhanced in cellulo anti-angiogenic and anticancer efficacy. Int J Pharm X 2022; 4:100138. [DOI: 10.1016/j.ijpx.2022.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
|
19
|
Flavonoids: Food associations, therapeutic mechanisms, metabolism and nanoformulations. Food Res Int 2022; 157:111442. [PMID: 35761682 DOI: 10.1016/j.foodres.2022.111442] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 01/09/2023]
Abstract
Flavonoids possess an impressive therapeutic potential, thereby imparting them a nutraceutical character. As it becomes increasingly common to consume foods associated with healing properties, it is imperative to understand the associations of different foods with different classes of nutraceutic compounds, and their mechanisms of therapeutic action. At the same time, it is important to address the limitations thereof so that plausible future directions may be drawn. This review summarizes the food associations of flavonoids, and discusses the mechanisms responsible for imparting them their nutraceutic properties, detailing the nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway, inhibition of inflammatory signaling pathways such as toll-like receptor (TLR), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), cyclooxygenase 2 (COX-2) and lipoxygenase-2 (LOX-2) mediators. Further on, the review explains the mechanism of flavonoids metabolism, reasons for low bioavailability and thereafter recapitulates the role of technological interventions to overcome the limitations, with a particular focus on nanoformulations that utilize the synergy between flavonoids and biocompatible materials used as nanocarriers, as reported in works spanning over a decade. It is the Generally Recognized as Safe (GRAS) classified carriers that will become the basis for developing functional formulations. It is promisingly noteworthy that some flavonoid formulations have been commercialized and mentioned therein. Such commercially viable and safe for consumption technological applications pave way for bringing science to the table, and add value to the innate properties of flavonoids.
Collapse
|
20
|
Ockun MA, Baranauskaite J, Uner B, Kan Y, Kırmızıbekmez H. Preparation, characterization and evaluation of liposomal-freeze dried anthocyanin-enriched Vaccinium arctostaphylos L. fruit extract incorporated into fast dissolving oral films. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
21
|
Teja PK, Mithiya J, Kate AS, Bairwa K, Chauthe SK. Herbal nanomedicines: Recent advancements, challenges, opportunities and regulatory overview. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153890. [PMID: 35026510 DOI: 10.1016/j.phymed.2021.153890] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 11/14/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Herbal Nano Medicines (HNMs) are nano-sized medicine containing herbal drugs as extracts, enriched fractions or biomarker constituents. HNMs have certain advantages because of their increased bioavailability and reduced toxicities. There are very few literature reports that address the common challenges of herbal nanoformulations, such as selecting the type/class of nanoformulation for an extract or a phytochemical, selection and optimisation of preparation method and physicochemical parameters. Although researchers have shown more interest in this field in the last decade, there is still an urgent need for systematic analysis of HNMs. PURPOSE This review aims to provide the recent advancement in various herbal nanomedicines like polymeric herbal nanoparticles, solid lipid nanoparticles, phytosomes, nano-micelles, self-nano emulsifying drug delivery system, nanofibers, liposomes, dendrimers, ethosomes, nanoemulsion, nanosuspension, and carbon nanotube; their evaluation parameters, challenges, and opportunities. Additionally, regulatory aspects and future perspectives of herbal nanomedicines are also being covered to some extent. METHODS The scientific data provided in this review article are retrieved by a thorough analysis of numerous research and review articles, textbooks, and patents searched using the electronic search tools like Sci-Finder, ScienceDirect, PubMed, Elsevier, Google Scholar, ACS, Medline Plus and Web of Science. RESULTS In this review, the authors suggested the suitability of nanoformulation for a particular type of extracts or enriched fraction of phytoconstituents based on their solubility and permeability profile (similar to the BCS class of drugs). This review focuses on different strategies for optimising preparation methods for various HNMs to ensure reproducibility in context with all the physicochemical parameters like particle size, surface area, zeta potential, polydispersity index, entrapment efficiency, drug loading, and drug release, along with the consistent therapeutic index. CONCLUSION A combination of herbal medicine with nanotechnology can be an essential tool for the advancement of herbal medicine research with enhanced bioavailability and fewer toxicities. Despite the challenges related to traditional medicine's safe and effective use, there is huge scope for nanotechnology-based herbal medicines. Overall, it is well stabilized that herbal nanomedicines are safer, have higher bioavailability, and have enhanced therapeutic value than conventional herbal and synthetic drugs.
Collapse
Affiliation(s)
- Parusu Kavya Teja
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Jinal Mithiya
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Abhijeet S Kate
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Khemraj Bairwa
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India..
| | - Siddheshwar K Chauthe
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India..
| |
Collapse
|
22
|
Harish V, Tewari D, Gaur M, Yadav AB, Swaroop S, Bechelany M, Barhoum A. Review on Nanoparticles and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:457. [PMID: 35159802 PMCID: PMC8839643 DOI: 10.3390/nano12030457] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 01/27/2023]
Abstract
In the last few decades, the vast potential of nanomaterials for biomedical and healthcare applications has been extensively investigated. Several case studies demonstrated that nanomaterials can offer solutions to the current challenges of raw materials in the biomedical and healthcare fields. This review describes the different nanoparticles and nanostructured material synthesis approaches and presents some emerging biomedical, healthcare, and agro-food applications. This review focuses on various nanomaterial types (e.g., spherical, nanorods, nanotubes, nanosheets, nanofibers, core-shell, and mesoporous) that can be synthesized from different raw materials and their emerging applications in bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-foods. Depending on their morphology (e.g., size, aspect ratio, geometry, porosity), nanomaterials can be used as formulation modifiers, moisturizers, nanofillers, additives, membranes, and films. As toxicological assessment depends on sizes and morphologies, stringent regulation is needed from the testing of efficient nanomaterials dosages. The challenges and perspectives for an industrial breakthrough of nanomaterials are related to the optimization of production and processing conditions.
Collapse
Affiliation(s)
- Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144401, India; (V.H.); (D.T.)
| | - Devesh Tewari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144401, India; (V.H.); (D.T.)
| | - Manish Gaur
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India;
| | - Awadh Bihari Yadav
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India;
| | - Shiv Swaroop
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India;
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM UMR 5635, University Montpellier, ENSCM, CNRS, 34730 Montpellier, France
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Ain Helwan, Cairo 11795, Egypt
- National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, D09 Y074 Dublin, Ireland
| |
Collapse
|
23
|
Osmoporation is a versatile technique to encapsulate fisetin using the probiotic bacteria Lactobacillus acidophilus. Appl Microbiol Biotechnol 2022; 106:1031-1044. [DOI: 10.1007/s00253-021-11735-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 12/21/2022]
|
24
|
Nanotechnology Applications of Flavonoids for Viral Diseases. Pharmaceutics 2021; 13:pharmaceutics13111895. [PMID: 34834309 PMCID: PMC8625292 DOI: 10.3390/pharmaceutics13111895] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/14/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Recent years have witnessed the emergence of several viral diseases, including various zoonotic diseases such as the current pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Other viruses, which possess pandemic-causing potential include avian flu, Ebola, dengue, Zika, and Nipah virus, as well as the re-emergence of SARS (Severe Acute Respiratory Syndrome) and MERS (Middle East Respiratory Syndrome) coronaviruses. Notably, effective drugs or vaccines against these viruses are still to be discovered. All the newly approved vaccines against the SARS-CoV-2-induced disease COVID-19 possess real-time possibility of becoming obsolete because of the development of ‘variants of concern’. Flavonoids are being increasingly recognized as prophylactic and therapeutic agents against emerging and old viral diseases. Around 10,000 natural flavonoid compounds have been identified, being phytochemicals, all plant-based. Flavonoids have been reported to have lesser side effects than conventional anti-viral agents and are effective against more viral diseases than currently used anti-virals. Despite their abundance in plants, which are a part of human diet, flavonoids have the problem of low bioavailability. Various attempts are in progress to increase the bioavailability of flavonoids, one of the promising fields being nanotechnology. This review is a narrative of some anti-viral dietary flavonoids, their bioavailability, and various means with an emphasis on the nanotechnology system(s) being experimented with to deliver anti-viral flavonoids, whose systems show potential in the efficient delivery of flavonoids, resulting in increased bioavailability.
Collapse
|
25
|
Sengupta P, Bose A, Sen K. Liposomal Encapsulation of Phenolic Compounds for Augmentation of Bio‐Efficacy: A Review. ChemistrySelect 2021. [DOI: 10.1002/slct.202101821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Priti Sengupta
- Department of Chemistry University of Calcutta 92, APC Road Kolkata 700009 India
- Department of Chemistry Presidency University 86/1 College Street Kolkata 700073 India
| | - Adity Bose
- Department of Chemistry Presidency University 86/1 College Street Kolkata 700073 India
| | - Kamalika Sen
- Department of Chemistry University of Calcutta 92, APC Road Kolkata 700009 India
| |
Collapse
|
26
|
Recent advances in colloidal technology for the improved bioavailability of the nutraceuticals. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
27
|
Enaru B, Socaci S, Farcas A, Socaciu C, Danciu C, Stanila A, Diaconeasa Z. Novel Delivery Systems of Polyphenols and Their Potential Health Benefits. Pharmaceuticals (Basel) 2021; 14:946. [PMID: 34681170 PMCID: PMC8538464 DOI: 10.3390/ph14100946] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022] Open
Abstract
Liposome-based delivery systems have been studied and used more frequently in recent years due to their advantages, such as low toxicity, specificity, and the ability to protect the encapsulated substance from environmental factors, which could otherwise degrade the active compound and reduce its effectiveness. Given these benefits, many researchers have encapsulated polyphenols in liposomes, thus increasing their bioavailability and stability. Similarly, polyphenols encapsulated in liposomes are known to produce more substantial effects on targeted cells than unencapsulated polyphenols, while having minimal cytotoxicity in healthy cells. Although polyphenols play a role in preventing many types of disease and generally have beneficial effects on health, we solely focused on their chemopreventive effects on cancer through liposomes in this review. Our goal was to summarize the applicability and efficacy of liposomes encapsulated with different classes of polyphenols on several types of cancer, thus opening the opportunity for future studies based on these drug delivery systems.
Collapse
Affiliation(s)
- Bianca Enaru
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.); (S.S.); (A.F.); (C.S.)
| | - Sonia Socaci
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.); (S.S.); (A.F.); (C.S.)
| | - Anca Farcas
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.); (S.S.); (A.F.); (C.S.)
| | - Carmen Socaciu
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.); (S.S.); (A.F.); (C.S.)
| | - Corina Danciu
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| | - Andreea Stanila
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.); (S.S.); (A.F.); (C.S.)
| | - Zorita Diaconeasa
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.); (S.S.); (A.F.); (C.S.)
| |
Collapse
|
28
|
Khatoon S, Kalam N, Shaikh MF, Hasnain MS, Hafiz AK, Ansari MT. Nanoencapsulation of Polyphenols as Drugs and Supplements for Enhancing Therapeutic Profile - A Review. Curr Mol Pharmacol 2021; 15:77-107. [PMID: 34551693 DOI: 10.2174/1874467214666210922120924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/18/2021] [Accepted: 08/06/2021] [Indexed: 11/22/2022]
Abstract
Polyphenolic phytoconstituents have been widely in use worldwide since ages and are categorised as secondary metabolites of plants. The application of polyphenols such as quercetin, resveratrol. curcumin as nutritional supplement has been researched widely. The use of polyphenols, and specifically quercetin for improving the memory and mental endurance have shown significant effects among rats. Even though similar results has not been resonated among human but encouraging preclinical results have encouraged researchers to explore other polyphenols to study the effects as supplements among athletes. The phytopharmacological research has elucidated the use of natural polyphenols to prevent and treat various physiological and metabolic disorders owing to its free radical scavenging properties, anti-inflammatory, anti-cancer and immunomodulatory effects. In spite of the tremendous pharmacological profile, one of the most dominant problem regarding the use of polyphenolic compounds is their low bioavailability. Nanonization is considered as one of the most prominent approaches among many. This article aims to review and discuss the molecular mechanisms of recently developed nanocarrier-based drug delivery systems for polyphenols and its application as drugs and supplements. Nanoformulations of natural polyphenols are bioactive agents, such as quercetin, kaempferol, fisetin, rutin, hesperetin, and naringenin epigalloccatechin-3-gallate, genistein, ellagic acid, gallic acid, chlorogenic acid, ferulic acid, curcuminoids and stilbenes is expected to have better efficacy. These delivery systems are expected to provide higher penetrability of polyphenols at cellular levels and exhibit a controlled release of the drugs. It is widely accepted that natural polyphenols do demonstrate significant therapeutic effect. However, the hindrances in their absorption, specificity and bioavailability can be overcome using nanotechnology.
Collapse
Affiliation(s)
- Saima Khatoon
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences Jamia Hamdard, New Delhi. India
| | - Nida Kalam
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi. India
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor. Malaysia
| | - M Saquib Hasnain
- Faculty of Pharmacy, Shri Venkateshwara University, Uttar Pradesh. India
| | | | | |
Collapse
|
29
|
Pandey R, Bhairam M, Shukla SS, Gidwani B. Colloidal and vesicular delivery system for herbal bioactive constituents. ACTA ACUST UNITED AC 2021; 29:415-438. [PMID: 34327650 DOI: 10.1007/s40199-021-00403-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVES The main objective of the present review is to explore and examine the effectiveness of currently developed novel techniques to resolve the issues which are associated with the herbal constituents/extract. METHODS A systematic thorough search and collection of reviewed information from Science direct, PubMed and Google Scholar databases based on various sets of key phrases have been performed. All the findings from these data have been studied and briefed based on their relevant and irrelevant information. RESULT Herbal drugs are gaining more popularity in the modern world due to their applications in curing various ailments with minimum toxic effects, side effect or adverse effect. However, various challenges exist with herbal extracts/plant actives such as poor solubility (water/lipid), poor permeation, lack of targeting specificity, instability in highly acidic pH, and liver metabolism, etc. Nowadays with the expansion in the technology, novel drug delivery system provides avenues and newer opportunity towards the delivery of herbal drugs with improved physical chemical properties, pharmacokinetic and pharmacodynamic. Developing nano-strategies like Polymeric nanoparticles, Liposomes, Niosomes, Microspheres, Phytosomes, Nanoemulsion and Self Nano Emulsifying Drug Delivery System, etc. imparts benefits for delivery of phyto formulation and herbal bioactives. Nano formulation of phytoconstituents/ herbal extract could lead to enhancement of aqueous solubility, dissolution, bioavailability, stability, reduce toxicity, permeation, sustained delivery, protection from enzymatic degradation, etc. CONCLUSION: Based on the above findings, the conclusion can be drawn that the nano sized novel drug delivery systems of herbal and herbal bioactives have a potential future for upgrading the pharmacological action and defeating or overcoming the issues related with these constituents. The aims of the present review was to summarize and critically analyze the recent development of nano sized strategies for promising phytochemicals delivery systems along with their therapeutic applications supported by experimental evidence and discussing the opportunities for further aspects.
Collapse
Affiliation(s)
- Ravindra Pandey
- Columbia Institute of Pharmacy Raipur, Raipur, Chhattisgarh, India.
| | - Monika Bhairam
- Columbia Institute of Pharmacy Raipur, Raipur, Chhattisgarh, India
| | | | - Bina Gidwani
- Columbia Institute of Pharmacy Raipur, Raipur, Chhattisgarh, India
| |
Collapse
|
30
|
Renault-Mahieux M, Vieillard V, Seguin J, Espeau P, Le DT, Lai-Kuen R, Mignet N, Paul M, Andrieux K. Co-Encapsulation of Fisetin and Cisplatin into Liposomes for Glioma Therapy: From Formulation to Cell Evaluation. Pharmaceutics 2021; 13:pharmaceutics13070970. [PMID: 34206986 PMCID: PMC8309049 DOI: 10.3390/pharmaceutics13070970] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
(1) Background: Glioblastoma (GBM) is the most frequent cerebral tumor. It almost always relapses and there is no validated treatment for second-line GBM. We proposed the coencapsulation of fisetin and cisplatin into liposomes, aiming to (i) obtain a synergistic effect by combining the anti-angiogenic effect of fisetin with the cytotoxic effect of cisplatin, and (ii) administrate fisetin, highly insoluble in water. The design of a liposomal formulation able to encapsulate, retain and deliver both drugs appeared a challenge. (2) Methods: Liposomes with increasing ratios of cholesterol/DOPC were prepared and characterized in term of size, PDI and stability. The incorporation of fisetin was explored using DSC. The antiangiogneic and cytotoxic activities of the selected formulation were assayed in vitro. (3) Results: We successfully developed an optimized liposomal formulation incorporating both drugs, composed by DOPC/cholesterol/DODA-GLY-PEG2000 at a molar ratio of 75.3/20.8/3.9, with a diameter of 173 ± 8 nm (PDI = 0.12 ± 0.01) and a fisetin and cisplatin drug loading of 1.7 ± 0.3% and 0.8 ± 0.1%, respectively, with a relative stability over time. The maximum incorporation of fisetin into the bilayer was determined at 3.2% w/w. Then, the antiangiogenic activity of fisetin was maintained after encapsulation. The formulation showed an additive effect of cisplatin and fisetin on GBM cells; (4) Conclusions: The developed co-loaded formulation was able to retain the activity of fisetin, was effective against GBM cells and is promising for further in vivo experimentations.
Collapse
Affiliation(s)
- Morgane Renault-Mahieux
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, 4 Avenue de l’Observatoire, 75006 Paris, France; (M.R.-M.); (J.S.); (P.E.); (D.T.L.); (N.M.)
- Henri Mondor Hospital Group, Pharmacy Department, Assistance Publique—Hôpitaux de Paris (AP-HP), 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France; (V.V.); (M.P.)
| | - Victoire Vieillard
- Henri Mondor Hospital Group, Pharmacy Department, Assistance Publique—Hôpitaux de Paris (AP-HP), 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France; (V.V.); (M.P.)
| | - Johanne Seguin
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, 4 Avenue de l’Observatoire, 75006 Paris, France; (M.R.-M.); (J.S.); (P.E.); (D.T.L.); (N.M.)
| | - Philippe Espeau
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, 4 Avenue de l’Observatoire, 75006 Paris, France; (M.R.-M.); (J.S.); (P.E.); (D.T.L.); (N.M.)
| | - Dang Tri Le
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, 4 Avenue de l’Observatoire, 75006 Paris, France; (M.R.-M.); (J.S.); (P.E.); (D.T.L.); (N.M.)
| | - René Lai-Kuen
- UMS3612 Centre National de la Recherche Scientifique (CNRS), US25 Institut NATIONAL de la Santé et de la Recherche Médicale (INSERM), Plateforme Mutualisée de l’Institut du Médicament (P-MIM), Plateau Technique Imagerie Cellulaire et Moléculaire, Université de Paris, 75006 Paris, France;
| | - Nathalie Mignet
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, 4 Avenue de l’Observatoire, 75006 Paris, France; (M.R.-M.); (J.S.); (P.E.); (D.T.L.); (N.M.)
| | - Muriel Paul
- Henri Mondor Hospital Group, Pharmacy Department, Assistance Publique—Hôpitaux de Paris (AP-HP), 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France; (V.V.); (M.P.)
| | - Karine Andrieux
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, 4 Avenue de l’Observatoire, 75006 Paris, France; (M.R.-M.); (J.S.); (P.E.); (D.T.L.); (N.M.)
- Correspondence: ; Tel.: +33-(0)1-53-73-97-63
| |
Collapse
|
31
|
Huang C, Xue LF, Hu B, Liu HH, Huang SB, Khan S, Meng Y. Calycosin-loaded nanoliposomes as potential nanoplatforms for treatment of diabetic nephropathy through regulation of mitochondrial respiratory function. J Nanobiotechnology 2021; 19:178. [PMID: 34120609 PMCID: PMC8201677 DOI: 10.1186/s12951-021-00917-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/28/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUNDS One of the most common complications in diabetic nephropathy is generation of high levels of ROS which can be regulated by herbal antioxidants. However, polyphenols like calycosin, the bioactive compound of Radix astragali suffer from low solubility and poor bioavailability. METHODS Therefore, in the present study, calycosin-loaded nanoliposomes were fabricated and characterized by TEM, DLS and FTIR techniques. Afterwards, the drug loading (DL) and entrapment efficiency (EE), drug release, solubility, stability, and pharmacodynamic assays were performed. Finally, the antinephropathic effects of calycosin-loaded-nanoliposomes on mitochondria of kidney cells were explored by MTT, ROS, MDA, mitochondrial respiratory function assays. RESULTS The result showed that the size, hydrodynamic radius, zeta potential, EE, and DL were, 80 nm, 133.99 ± 21.44 nm, - 20.53 ± 3.57, 88.37 ± 2.28%, and 7.48 ± 1.19%, respectively. The outcomes of in vitro release assay showed that calycosin-loaded nanoliposomes were significantly slow-release in dialysis media with pH 1.2, pH 6.9 and pH 7.4, at about 30 min, the dissolution of calycosin from nanoliposome became almost complete, and after 2 months, the calycosin-loaded nanoliposomes were still stable. Pharmacokinetic assay revealed that the AUC0-t of calycosin in calycosin-loaded nanoliposome group was 927.39 ± 124.91 μg/L*h, which was 2.26 times than that of the free calycosin group (**P < 0.01). Additionally, the MRT0-t and t1/2 of calycosin in the calycosin-loaded nanoliposome group were prolonged by 1.54 times and 1.33 times than that of free calycosin group, respectively (*P < 0.05). Finally, it was shown that calycosin-loaded nanoliposomes regulated the viability, ROS production, lipid peroxidation and function of mitochondria in kidney cells of diabetic rats as a model of diabetic nephropathy. CONCLUSION In conclusion it may be suggested that new therapies based on nano-formulated calycosin can restore mitochondrial function which can improve diabetic nephropathy.
Collapse
Affiliation(s)
- Chunrong Huang
- Department of Gastroenterology, The First Hospital Affiliated To Jinan University, Guangzhou, China
| | - Lian-Fang Xue
- Department of Clinical Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bo Hu
- Department of Nephrology, The First Hospital Affiliated To Jinan University, NO.613, Huangpu Avenue West, Guangzhou, 510150, China
| | - Huan-Huan Liu
- Department of Nephrology, The First Hospital Affiliated To Jinan University, NO.613, Huangpu Avenue West, Guangzhou, 510150, China
| | - Si-Bo Huang
- Department of Nephrology, The First Hospital Affiliated To Jinan University, NO.613, Huangpu Avenue West, Guangzhou, 510150, China
| | - Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yu Meng
- Department of Nephrology, The First Hospital Affiliated To Jinan University, NO.613, Huangpu Avenue West, Guangzhou, 510150, China.
- Central laboratory, the Fifth Affiliated Hospital of Jinan University, Heyuan, China.
| |
Collapse
|
32
|
Abstract
The present review describes 108 new examples of naturally occurring flavans and
flavanones having cytotoxic potential, which have been reported during the period of 2005 to
mid-2020. These compounds are found either as aglycones or as glycosides, comprising
flavans, flavanones, isoflavanones and miscellaneous flavanones (homo- and bi-flavanones).
The main topics addressed in this review are source, structure, and cytotoxic activity in detail
and the structure-activity relationship.
Collapse
Affiliation(s)
- Arindam Gangopadhyay
- Department of Chemistry, Rampurhat College, Rampurhat, Birbhum, West Bengal, India
| |
Collapse
|
33
|
Nanoformulation Development to Improve the Biopharmaceutical Properties of Fisetin Using Design of Experiment Approach. Molecules 2021; 26:molecules26103031. [PMID: 34069585 PMCID: PMC8160650 DOI: 10.3390/molecules26103031] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
This study aimed to design an effective nanoparticle-based carrier for the oral delivery of fisetin (FST) with improved biopharmaceutical properties. FST-loaded nanoparticles were prepared with polyvinyl alcohol (PVA) and poly(lactic-co-glycolic acid) (PLGA) by the interfacial deposition method. A central composite design of two independent variables, the concentration of PVA and the amount of PLGA, was applied for the optimization of the preparative parameter. The responses, including average particle size, polydispersity index, encapsulation efficiency, and zeta potential, were assessed. The optimized formulation possessed a mean particle size of 187.9 nm, the polydispersity index of 0.121, encapsulation efficiency of 79.3%, and zeta potential of −29.2 mV. The morphological observation demonstrated a globular shape for particles. Differential scanning calorimetry and powder X-ray diffraction studies confirmed that the encapsulated FST was presented as the amorphous state. The dissolution test indicated a 3.06-fold increase for the accumulating concentrations, and the everted gut sac test showed a 4.9-fold gain for permeability at the duodenum region. In conclusion, the optimized FST-loaded nanoparticle formulation in this work can be developed as an efficient oral delivery system of FST to improve its biopharmaceutic properties.
Collapse
|
34
|
Vazhappilly CG, Amararathna M, Cyril AC, Linger R, Matar R, Merheb M, Ramadan WS, Radhakrishnan R, Rupasinghe HPV. Current methodologies to refine bioavailability, delivery, and therapeutic efficacy of plant flavonoids in cancer treatment. J Nutr Biochem 2021; 94:108623. [PMID: 33705948 DOI: 10.1016/j.jnutbio.2021.108623] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/21/2021] [Accepted: 02/28/2021] [Indexed: 02/06/2023]
Abstract
Over the last two decades, several advancements have been made to improve the therapeutic efficacy of plant flavonoids, especially in cancer treatment. Factors such as low bioavailability, poor flavonoid stability and solubility, ineffective targeted delivery, and chemo-resistance hinder the application of flavonoids in anti-cancer therapy. Many anti-cancer compounds failed in the clinical trials because of unexpected altered clearance of flavonoids, poor absorption after administration, low efficacy, and/or adverse effects. Hence, the current research strategies are focused on improving the therapeutic efficacy of plant flavonoids, especially by enhancing their bioavailability through combination therapy, engineering gut microbiota, regulating flavonoids interaction with adenosine triphosphate binding cassette efflux transporters, and efficient delivery using nanocrystal and encapsulation technologies. This review aims to discuss different methodologies with examples from reported dietary flavonoids that showed an enhanced anti-cancer efficacy in both in vitro and in vivo models. Further, the review discusses the recent progress in biochemical modifications of flavonoids to improve bioavailability, solubility, and therapeutic efficacy.
Collapse
Affiliation(s)
| | - Madumani Amararathna
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Asha Caroline Cyril
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Rebecca Linger
- Department of Pharmaceutical and Administrative Sciences, University of Charleston, Charleston, West Virginia, USA
| | - Rachel Matar
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Maxime Merheb
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Wafaa S Ramadan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE; College of Medicine, University of Sharjah, Sharjah, UAE
| | - Rajan Radhakrishnan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - H P Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada; Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
35
|
Lepeltier E, Levet V, Lee T, Mignet N, Shen J, Fenniri H, Corvis Y. Editorial: Supramolecular Nanomaterials for Engineering, Drug Delivery, and Medical Applications. Front Chem 2020; 8:626468. [PMID: 33363121 PMCID: PMC7755928 DOI: 10.3389/fchem.2020.626468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Affiliation(s)
- Elise Lepeltier
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, Inserm 1066, CNRS, Angers, France
| | - Vincent Levet
- GSK Vaccines, Rue de l'Institut 89, Rixensart, Belgium
| | - Tu Lee
- Department of Chemical and Materials Engineering, National Central University, Taoyuan City, Taiwan
| | - Nathalie Mignet
- Université de Paris, CNRS, Inserm, UTCBS, Chemical and Biological Technologies for Health Group (utcbs.cnrs.fr), Faculté de Pharmacie, Paris, France
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Hicham Fenniri
- Departments of Chemical Engineering, Bioengineering, Chemistry & Chemical Biology, Northeastern University, Boston, MA, United States
| | - Yohann Corvis
- Université de Paris, CNRS, Inserm, UTCBS, Chemical and Biological Technologies for Health Group (utcbs.cnrs.fr), Faculté de Pharmacie, Paris, France
| |
Collapse
|
36
|
Chen B, Wang X, Zhang Y, Huang K, Liu H, Xu D, Li S, Liu Q, Huang J, Yao H, Lin X. Improved solubility, dissolution rate, and oral bioavailability of main biflavonoids from Selaginella doederleinii extract by amorphous solid dispersion. Drug Deliv 2020; 27:309-322. [PMID: 32037895 PMCID: PMC7034131 DOI: 10.1080/10717544.2020.1716876] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Amentoflavone, robustaflavone, 2″,3″-dihydro-3′,3‴-biapigenin, 3′,3‴-binaringenin, and delicaflavone are five major hydrophobic components in the total biflavonoids extract from Selaginella doederleinii (TBESD) that display favorable anticancer properties. The purpose of this study was to develop a new oral delivery formulation to improve the solubilities, dissolution rates, and oral bioavailabilities of the main ingredients in TBESD by the solid dispersion technique. Solid dispersions of TBESD with various hydrophilic polymers were prepared, and different technologies were applied to select the suitable carrier and method. TBESD amorphous solid dispersion (TBESD-ASD) with polyvinylpyrrolidone K-30 was successfully prepared by the solvent evaporation method. The physicochemical properties of TBESD-ASD were investigated by scanning electron microscopy, differential scanning calorimetry, and Fourier-transform infrared spectroscopy. As a result, TBESD was found to be molecularly dispersed in the amorphous carrier. The solubilities and dissolution rates of all five ingredients in the TBESD-ASD were significantly increased (nearly 100% release), compared with raw TBESD. Meanwhile, TBESD-ASD showed good preservation stability for 3 months under accelerated conditions of 40 °C and 75% relative humidity. A subsequent pharmacokinetic study in rats revealed that Cmax and AUC0–t of all five components were significantly increased by the solid dispersion preparation. An in vivo study clearly revealed that compared to raw TBESD, a significant reduction in tumor size and microvascular density occurred after oral administration of TBESD-ASD to xenograft-bearing tumor mice. Collectively, the developed TBESD-ASD with the improved solubility, dissolution rates and oral bio-availabilities of the main ingredients could be a promising chemotherapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Bing Chen
- Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, China.,Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xuewen Wang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yanyan Zhang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Kangping Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Hao Liu
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Dafen Xu
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Shaoguang Li
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Qicai Liu
- Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, China.,Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China
| | - Jianyong Huang
- Department of Pharmaceutical, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hong Yao
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, China
| | - Xinhua Lin
- Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, China.,Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
37
|
Beyrami M, Karimi E, Oskoueian E. Synthesized chrysin-loaded nanoliposomes improves cadmium-induced toxicity in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:40643-40651. [PMID: 32671712 DOI: 10.1007/s11356-020-10113-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
In this study, chrysin as a natural flavonoid was encapsulated in nanoliposomal structures, and the synthesized nanoliposome-loaded chrysin (NLC) was further characterized for its physical properties and cytoprotective effects in mice that received cadmium-containing water. The results showed that the synthesized NLC is possessed spherical structure with the size of 185.1 nm and negative surface charge of - 26 mV with a poly dispersity index of 0.26. The mice received cadmium (2 mg/kg body weight/day) through drinking water showed weight loss and decease in the feed intake significantly (p ≤ 0.05). The cadmium notably (p ≤ 0.05) increased the liver enzymes including aspartate aminotransferase, alanine transaminase, and alkaline phosphatase; altered the liver metal deposition (cadmium, copper, manganese, selenium, and zinc); and induced hepatic oxidative stress (inducible nitric oxide synthase, catalase, superoxide dismutase, and glutathione peroxidase genes) with no remarkable histopathological changes. Furthermore, the cadmium impaired the morphology of jejunum through reducing villus height and villus width and increasing the crypt depth. Providing NLC as a dietary supplement at the concentrations of 2.5 and 5 mg/kg mice body weight significantly (p ≤ 0.05) improved the feed intake and body weight gain, modulated the liver enzymes, and alleviated the hepatic oxidative stress. The NLC also improved the antioxidant mineral deposition in the liver and morphohistological structure of jejunum. Consequently, the NLC is suggested as a potential dietary supplement to alleviate the symptoms of cadmium-induced toxicity in mice.
Collapse
Affiliation(s)
- Mahsan Beyrami
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Ehsan Oskoueian
- Mashhad Branch, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Mashhad, Iran.
| |
Collapse
|
38
|
Subramani T, Ganapathyswamy H. An overview of liposomal nano-encapsulation techniques and its applications in food and nutraceutical. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:3545-3555. [PMID: 32903987 PMCID: PMC7447741 DOI: 10.1007/s13197-020-04360-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
Encapsulation in packaging of food ingredients is of great interest at micro and nano levels. It is a distinct process leading to the entrapping of one substance within another material. Lipid oriented encapsulation methods are currently considered as a superior choice for encapsulation of sensitive ingredients, focusing on foods and dietary supplements of hydrophobic and hydrophilic molecules along with bioactive compounds, food ingredients supplementary systems for therapeutic purpose. Liposome and nanoliposome techniques have been widely used in food industry in nutrient enrichment and supplements. It enhances the sensory attributes and shelf life of the food product and serves as an alternative to micro encapsulation. These lipid and water oriented systems have distinguished advantages and provide higher surface area in food processing, which increases product solubility, bioavailability and permits accurate targeting of the encapsulated material to a greater extent in food and nutraceutical production. This review article focuses on nanoliposome, its preparation techniques, advantages and application of nanoliposome in food and nutraceutical process.
Collapse
Affiliation(s)
- Thirukkumar Subramani
- Department of Food Science and Nutrition, Community Science College and Research Institute, Tamil Nadu Agricultural University, Madurai, Tamil Nadu 625104 India
| | - Hemalatha Ganapathyswamy
- Department of Food Science and Nutrition, Community Science College and Research Institute, Tamil Nadu Agricultural University, Madurai, Tamil Nadu 625104 India
| |
Collapse
|
39
|
Kumar R, Kumar R, Khursheed R, Awasthi A, Ramanunny AK, Kaur J, Khurana N, Singh SK, Khurana S, Pandey NK, Kapoor B, Sharma N. Validated Reverse Phase-High-Performance Liquid Chromatography Method for Estimation of Fisetin in Self-Nanoemulsifying Drug Delivery System. Assay Drug Dev Technol 2020; 18:274-281. [DOI: 10.1089/adt.2020.983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rakesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | | | - Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Shelly Khurana
- Deparment of Pharmacy, Government Polytechnic College, Amritsar, Punjab, India
| | - Narendra Kumar Pandey
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Neha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
40
|
Alhareth K, Valero L, Mohamed KE, Fliedel L, Roques C, Gil S, Mignet N, Fournier T, Andrieux K. Qualitative and quantitative analysis of the uptake of lipoplexes by villous placenta explants. Int J Pharm 2019; 567:118479. [DOI: 10.1016/j.ijpharm.2019.118479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 01/18/2023]
|
41
|
Singh M, Devi S, Rana VS, Mishra BB, Kumar J, Ahluwalia V. Delivery of phytochemicals by liposome cargos: recent progress, challenges and opportunities. J Microencapsul 2019; 36:215-235. [PMID: 31092084 DOI: 10.1080/02652048.2019.1617361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bio-availability is a major concern in delivery of dietary phytochemicals for better bio-efficacy. The reduced bio-availability of food bioactive compounds is evident due to degradation during human digestion process which involves liberation, absorption, distribution, metabolism and elimination. The bio-efficacy of any nutrient can be increased by increasing bio-availability. Different technologies are available for engineered efficient delivery systems; still many challenges remain with advancement of delivery systems. The ease of preparedness and adaptability of liposomes has resulted in wide-range of applicability and acceptability in scientific field, especially as delivery vehicles. In view, of properties like biocompatibility and biodegradability, liposomes have been modified with different usable methodologies for delivery of phytochemicals. The aim of this review is to abridge liposomes, methods of preparation, their application as delivery cargo in dietary phytochemicals, result of using different preparation techniques on properties.
Collapse
Affiliation(s)
- Mangat Singh
- a Bioproduct Chemistry Laboratory , Center of Innovative and Applied Bioprocessing , Mohali , India
| | - Shanti Devi
- b Chemistry Division , Forest Research Institute , Dehradun , India
| | - Virendra S Rana
- c Division of Agricultural Chemicals , ICAR-Indian Agricultural Research Institute , New Delhi , India
| | - Bhuwan B Mishra
- a Bioproduct Chemistry Laboratory , Center of Innovative and Applied Bioprocessing , Mohali , India
| | - Jitendra Kumar
- c Division of Agricultural Chemicals , ICAR-Indian Agricultural Research Institute , New Delhi , India
| | - Vivek Ahluwalia
- a Bioproduct Chemistry Laboratory , Center of Innovative and Applied Bioprocessing , Mohali , India
| |
Collapse
|
42
|
Dutta S, Moses JA, Anandharamakrishnan C. Encapsulation of Nutraceutical Ingredients in Liposomes and Their Potential for Cancer Treatment. Nutr Cancer 2019; 70:1184-1198. [DOI: 10.1080/01635581.2018.1557212] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sayantani Dutta
- Computational Modeling and Nano Scale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - Jeyan Arthur Moses
- Computational Modeling and Nano Scale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - C. Anandharamakrishnan
- Computational Modeling and Nano Scale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| |
Collapse
|
43
|
Feng C, Yuan X, Chu K, Zhang H, Ji W, Rui M. Preparation and optimization of poly (lactic acid) nanoparticles loaded with fisetin to improve anti-cancer therapy. Int J Biol Macromol 2018; 125:700-710. [PMID: 30521927 DOI: 10.1016/j.ijbiomac.2018.12.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/26/2018] [Accepted: 12/01/2018] [Indexed: 12/16/2022]
Abstract
Fisetin is a natural flavonoid with promising antitumor activity, whereas its clinical application is limited by its hydrophobic property. In this study, we aimed to load fisetin into poly(lactic acid) (PLA) nanoparticles to increase fisetin's solubility and therapeutic efficacy. Based on spontaneous emulsification solvent diffusion (SESD) method, the formulation of PLA nanoparticles was optimized by two successive experimental designs. One-factor-at-a-time variation experiments were first applied to investigate the effects of four process variables on three responses, including drug encapsulation efficiency, average particles size and cumulative drug release ratio, followed by determining the possible ranges of these variables. Subsequently, the combinations of four variables at best levels were evaluated using a Taguchi orthogonal array design with regard to the same three responses. Eventually, the nanoparticle prepared by optimized procedure showed a narrow size distribution around 226.85 ± 4.78 nm with a high encapsulation efficiency of 90.35%. The incorporation of fisetin in nanoparticles was subsequently confirmed by FT-IR and DSC spectroscopy. Furthermore, cytotoxicity assay against HCT116 colon cancer cells in vitro and antitumor test in a xenograft 4T1 breast cancer model in vivo demonstrated that the antitumor effect of drug-loaded nanoparticles was superior to that of free drug solution.
Collapse
Affiliation(s)
- Chunlai Feng
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| | - Xianqin Yuan
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Kexin Chu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Haisheng Zhang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Wei Ji
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Mengjie Rui
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
44
|
Mehta P, Pawar A, Mahadik K, Bothiraja C. Emerging novel drug delivery strategies for bioactive flavonol fisetin in biomedicine. Biomed Pharmacother 2018; 106:1282-1291. [DOI: 10.1016/j.biopha.2018.07.079] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/09/2018] [Accepted: 07/14/2018] [Indexed: 02/09/2023] Open
|
45
|
Liposomes as Gene Delivery Vectors for Human Placental Cells. Molecules 2018; 23:molecules23051085. [PMID: 29734663 PMCID: PMC6099662 DOI: 10.3390/molecules23051085] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/20/2018] [Accepted: 04/30/2018] [Indexed: 02/06/2023] Open
Abstract
Nanomedicine as a therapeutic approach for pregnancy-related diseases could offer improved treatments for the mother while avoiding side effects for the fetus. In this study, we evaluated the potential of liposomes as carriers for small interfering RNAs to placental cells. Three neutral formulations carrying rhodamine-labelled siRNAs were evaluated on an in vitro model, i.e., human primary villous cytotrophoblasts. siRNA internalization rate from lipoplexes were compared to the one in the presence of the lipofectamine reagent and assessed by confocal microscopy. Results showed cellular internalization of nucleic acid with all three formulations, based on two cationic lipids, either DMAPAP or CSL-3. Moreover, incubation with DMAPAP+AA provided a rate of labelled cells as high as with lipofectamine (53 ± 15% and 44 ± 12%, respectively) while being more biocompatible. The proportion of cells which internalized siRNA were similar when using DMAPAP/DDSTU (16 ± 5%) and CSL-3 (22 ± 5%). This work highlights that liposomes could be a promising approach for gene therapy dedicated to pregnant patients.
Collapse
|
46
|
Pawar A, Singh S, Rajalakshmi S, Shaikh K, Bothiraja C. Development of fisetin-loaded folate functionalized pluronic micelles for breast cancer targeting. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:347-361. [PMID: 29334247 DOI: 10.1080/21691401.2018.1423991] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The natural flavonoid fisetin (FS) has shown anticancer properties but its in-vivo administration remains challenging due to its poor aqueous solubility. The aim of the study was to develop FS loaded pluronic127 (PF)-folic acid (FA) conjugated micelles (FS-PF-FA) by the way of increasing solubility, bioavailability and active targetability of FS shall increase its therapeutic efficacy. FA-conjugated PF was prepared by carbodiimide crosslinker chemistry. FS-PF-FA micelles were prepared by thin-film hydration method and evaluated in comparison with free FS and FS loaded PF micelles (FS-PF). The smooth surfaces with spherical in shape of FS-PF-PF micelles displayed smaller in size (103.2 ± 6.1 nm), good encapsulation efficiency (82.50 ± 1.78%), zeta potential (-26.7 ± 0.44 mV) and sustained FS release. Bioavailability of FS from FS-PF-PF micelles was increased by 6-fold with long circulation time, slower plasma elimination and no sign of tissue toxicity as compared to free FS. Further, the FS-PF-FA micelles demonstrated active targeting effect on folate overexpressed human breast cancer MCF-7 cells. The concentration of the drug needed for growth inhibition of 50% of cells in a designed time period (GI50) was 14.3 ± 1.2 µg/ml for FS while it was greatly decreased to 9.8 ± 0.78 µg/ml, i.e. a 31.46% decrease for the FS-PF. Furthermore, the GI50 value for FS-PF-FA was 4.9 ± 0.4 µg/ml, i.e. a 65.737% decrease compared to FS and 50% decrease compare to FS-PF. The results indicate that the FS-PF-FA micelles have the potential to be applied for targeting anticancer drug delivery.
Collapse
Affiliation(s)
- Atmaram Pawar
- a Department of Pharmaceutics , Poona College of Pharmacy, Bharati Vidyapeeth Deemed University , Pune , India
| | - Srishti Singh
- a Department of Pharmaceutics , Poona College of Pharmacy, Bharati Vidyapeeth Deemed University , Pune , India
| | - S Rajalakshmi
- b Department of Pharmaceutics , Dr. D. Y. Patil College of Pharmacy , Pune , India
| | - Karimunnisa Shaikh
- c Department of Pharmaceutics , Modern College of Pharmacy , Pune , India
| | - C Bothiraja
- a Department of Pharmaceutics , Poona College of Pharmacy, Bharati Vidyapeeth Deemed University , Pune , India
| |
Collapse
|
47
|
Valero L, Alhareth K, Gil S, Simasotchi C, Roques C, Scherman D, Mignet N, Fournier T, Andrieux K. Assessment of dually labelled PEGylated liposomes transplacental passage and placental penetration using a combination of two ex-vivo human models: the dually perfused placenta and the suspended villous explants. Int J Pharm 2017; 532:729-737. [DOI: 10.1016/j.ijpharm.2017.07.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/18/2022]
|
48
|
Design and development of dry powder sulfobutylether-β-cyclodextrin complex for pulmonary delivery of fisetin. Eur J Pharm Biopharm 2017; 113:1-10. [DOI: 10.1016/j.ejpb.2016.11.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/25/2016] [Accepted: 11/30/2016] [Indexed: 11/21/2022]
|
49
|
Huang M, Su E, Zheng F, Tan C. Encapsulation of flavonoids in liposomal delivery systems: the case of quercetin, kaempferol and luteolin. Food Funct 2017; 8:3198-3208. [DOI: 10.1039/c7fo00508c] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The instability of dietary flavonoids is currently a challenge for their incorporation in functional foods.
Collapse
Affiliation(s)
- Meigui Huang
- Department of Food Science and Technology
- College of Light Industry Science and Engineering
- Nanjing Forestry University
- Nanjing 210037
- PR China
| | - Erzheng Su
- Department of Food Science and Technology
- College of Light Industry Science and Engineering
- Nanjing Forestry University
- Nanjing 210037
- PR China
| | - Fuping Zheng
- Beijing Laboratory for Food Quality and Safety
- Beijing Technology and Business University
- Beijing 100048
- PR China
| | - Chen Tan
- Department of Food Science
- College of Agriculture & Life Science
- Cornell University
- USA
| |
Collapse
|
50
|
Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactives. J Control Release 2016; 241:110-124. [DOI: 10.1016/j.jconrel.2016.09.017] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 12/18/2022]
|