1
|
Hazt B, Read DJ, Harlen OG, Poon WCK, O'Connell A, Sarkar A. Mucoadhesion across scales: Towards the design of protein-based adhesives. Adv Colloid Interface Sci 2024; 334:103322. [PMID: 39489118 DOI: 10.1016/j.cis.2024.103322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Mucoadhesion is a special case of bioadhesion in which a material adheres to soft mucosal tissues. This review elucidates our current understanding of mucoadhesion across length, time, and energy scales by focusing on relevant structural features of mucus. We highlight the importance of both covalent and non-covalent interactions that can be tailored to maximize mucoadhesive interactions, particularly concerning proteinaceous mucoadhesives, which have been explored only to a limited extent so far in the literature. In particular, we highlight the importance of thiol groups, hydrophobic moieties, and charged species inherent to proteins as key levers to fine tune mucoadhesive performance. Some aspects of protein surface modification by grafting specific functional groups or coupling with polysaccharides to influence mucoadhesive performance are examined. Insights from this review offer a physicochemical roadmap to inform the development of biocompatible, protein-based mucoadhesive systems that can fulfil dual roles for both adhesion and delivery of actives, enabling the fabrication of advanced biomedical, nutritional and allied soft material technologies.
Collapse
Affiliation(s)
- Bianca Hazt
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, LS2 9JT, UK
| | - Daniel J Read
- School of Mathematics, University of Leeds, LS2 9JT, UK
| | | | - Wilson C K Poon
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Adam O'Connell
- Polymer Science Platform, Reckitt Benckiser Healthcare (UK) Ltd, Dansom Lane S, Hull, HU8 7DS, UK
| | - Anwesha Sarkar
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, LS2 9JT, UK.
| |
Collapse
|
2
|
Spósito L, Fonseca D, Gonçalves Carvalho S, Sábio RM, Marena GD, Bauab TM, Bagliotti Meneguin A, Parreira P, L Martins MC, Chorilli M. Engineering resveratrol-loaded chitosan nanoparticles for potential use against Helicobacter pylori infection. Eur J Pharm Biopharm 2024; 199:114280. [PMID: 38588828 DOI: 10.1016/j.ejpb.2024.114280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Helicobacter pylori (H. pylori) is a microorganism directly linked to severe clinical conditions affecting the stomach. The virulence factors and its ability to form biofilms increase resistance to conventional antibiotics, growing the need for new substances and strategies for the treatment of H. pylori infection. The trans-resveratrol (RESV), a bioactive polyphenol from natural sources, has a potential activity against this gastric pathogen. Here, Chitosan nanoparticles (NP) containing RESV (RESV-NP) were developed for H. pylori management. The RESV-NP were prepared using the ionic gelation method and characterized by Dynamic Light Scattering (DLS), Nanoparticle Tracking Analysis (NTA) and, Cryogenic Transmission Electron Microscopy (Cryo - TEM). The encapsulation efficiency (EE) and in vitro release rate of RESV were quantified using high-performance liquid chromatography (HPLC). RESV-NP performance against H. pylori was evaluated by the quantification of the minimum inhibitory/bactericidal concentrations (MIC/MBC), time to kill, alterations in H. pylori morphology in its planktonic form, effects against H. pylori biofilm and in an in vitro infection model. RESV-NP cytotoxicity was evaluated against AGS and MKN-74 cell lines and by hemolysis assay. Acute toxicity was tested using Galleria mellonella model assays. RESV-NP showed a spherical shape, size of 145.3 ± 24.7 nm, polydispersity index (PDI) of 0.28 ± 0.008, and zeta potential (ZP) of + 16.9 ± 1.81 mV in DLS, while particle concentration was 3.12 x 1011 NP/mL (NTA). RESV-NP EE was 72 %, with full release within the first 5 min. In microbiological assays, RESV-NP presented a MIC/MBC of 3.9 µg/mL, a time to kill of 24 h for complete eradication of H. pylori. At a concentration of 2xMIC (7.8 µg/mL), RESV-NP completely eradicated the H. pylori biofilm, and in an in vitro infection model, RESV-NP (4xMIC - 15.6 µg/mL) showed a significant decrease in bacterial load (1 Log10CFU/mL) when compared to the H. pylori J99 control. In addition, they did not demonstrate a toxic character at MIC concentration for both cell lines. The use of the RESV-NP with mucoadhesion profile is an interesting strategy for oral administration of substances targeting gastric disorders, linked to H. pylori infections.
Collapse
Affiliation(s)
- Larissa Spósito
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, SP, Brazil; São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Biological Sciences, Araraquara, SP, Brazil; i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, Porto 4200-135, Portugal; INEB-Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, Porto 4200-135, Portugal
| | - Diana Fonseca
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, Porto 4200-135, Portugal; INEB-Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, Porto 4200-135, Portugal
| | - Suzana Gonçalves Carvalho
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, SP, Brazil
| | - Rafael Miguel Sábio
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, SP, Brazil
| | - Gabriel Davi Marena
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, SP, Brazil; São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Biological Sciences, Araraquara, SP, Brazil
| | - Taís Maria Bauab
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Biological Sciences, Araraquara, SP, Brazil
| | - Andréia Bagliotti Meneguin
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, SP, Brazil
| | - Paula Parreira
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, Porto 4200-135, Portugal; INEB-Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, Porto 4200-135, Portugal
| | - M Cristina L Martins
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, Porto 4200-135, Portugal; INEB-Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, Porto 4200-135, Portugal.
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, SP, Brazil.
| |
Collapse
|
3
|
Stachowiak-Trojanowska N, Walendziak W, Douglas TEL, Kozlowska J. Whey Protein Isolate as a Substrate to Design Calendula officinalis Flower Extract Controlled-Release Materials. Int J Mol Sci 2024; 25:5325. [PMID: 38791364 PMCID: PMC11120854 DOI: 10.3390/ijms25105325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The use of natural active substances and the development of new formulations are promising directions in the cosmetic and pharmacy industries. The primary purpose of this research was the production of microparticles based on whey protein isolate (WPI) and calcium alginate (ALG) containing Calendula officinalis flower extract and their incorporation into films composed of gelatin, WPI, and glycerol. Both swollen and dry microparticles were studied by optical microscopy and their sizes were measured. Water absorption by the microparticles, their loading capacity, and the release profile of flower extract were also characterized. The films were analyzed by mechanical tests (Young's modulus, tensile strength, elongation at break), swelling capacity, contact angle, and moisture content measurements. The presented data showed that the active ingredient was successfully enclosed in spherical microparticles and completely released after 75 min of incubation at 37 °C. The incorporation of the microparticles into polymer films caused a decrease in stiffness and tensile strength, simultaneously increasing the ductility of the samples. Moreover, the films containing microparticles displayed higher swelling ability and moisture content compared to those without them. Hence, the materials prepared in this study with Calendula officinalis flower extract encapsulated into polymeric microspheres can be a starting point for the development of new products intended for skin application; advantages include protection of the extract against external factors and a controlled release profile.
Collapse
Affiliation(s)
| | - Weronika Walendziak
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, ul. Gagarina 7, 87-100 Torun, Poland; (N.S.-T.); (W.W.)
| | | | - Justyna Kozlowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, ul. Gagarina 7, 87-100 Torun, Poland; (N.S.-T.); (W.W.)
| |
Collapse
|
4
|
Delanne-Cuménal A, Lainé E, Hoffart V, Verney V, Garrait G, Beyssac E. Effect of Molecules' Physicochemical Properties on Whey Protein/Alginate Hydrogel Rheology, Microstructure and Release Profile. Pharmaceutics 2024; 16:258. [PMID: 38399312 PMCID: PMC10892444 DOI: 10.3390/pharmaceutics16020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The encapsulation of molecules with different physicochemical properties (theophylline, blue dextran, salicylic acid and insulin) in whey protein (WP) and alginate (ALG) microparticles (MP) for oral administration was studied. MP based on WP/ALG were prepared by a cold gelation technique and coated with WP solution after reticulation. Molecules influenced polymer solution viscosity and elasticity, resulting in differences regarding encapsulation efficiency (from 23 to 100%), MP structure and swelling (>10%) and in terms of pH tested. Molecule release was due to diffusion and/or erosion of MP and was very dependent on the substance encapsulated. All the loaded MP were successfully coated, but variation in coating thickness (from 68 to 146 µm) and function of the molecules encapsulated resulted in differences in molecule release (5 to 80% in 1 h). Gel rheology modification, due to interactions between WP, ALG, calcium and other substances, was responsible for the highlighted differences. Measuring rheologic parameters before extrusion and reticulation appeared to be one of the most important aspects to study in order to successfully develop a vector with optimal biopharmaceutical properties. Our vector seems to be more appropriate for anionic high-molecular-weight substances, leading to high viscosity and elasticity and to MP enabling gastroresistance and controlled release of molecules at intestinal pH.
Collapse
Affiliation(s)
- A. Delanne-Cuménal
- UMR454 MEDIS, INRAE-UCA, 63000 Clermont-Ferrand, France; (A.D.-C.); (G.G.); (E.B.)
| | - E. Lainé
- UMR454 MEDIS, INRAE-UCA, 63000 Clermont-Ferrand, France; (A.D.-C.); (G.G.); (E.B.)
| | - V. Hoffart
- UMR8258 CNRS—U1022 Inserm, UTCBS, Université Paris Cité, 75013 Paris, France;
| | - V. Verney
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, 63000 Clermont-Ferrand, France;
| | - G. Garrait
- UMR454 MEDIS, INRAE-UCA, 63000 Clermont-Ferrand, France; (A.D.-C.); (G.G.); (E.B.)
| | - E. Beyssac
- UMR454 MEDIS, INRAE-UCA, 63000 Clermont-Ferrand, France; (A.D.-C.); (G.G.); (E.B.)
| |
Collapse
|
5
|
Sodium Alginate—Natural Microencapsulation Material of Polymeric Microparticles. Int J Mol Sci 2022; 23:ijms232012108. [PMID: 36292962 PMCID: PMC9603258 DOI: 10.3390/ijms232012108] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
From the multitude of materials currently available on the market that can be used in the development of microparticles, sodium alginate has become one of the most studied natural anionic polymers that can be included in controlled-release pharmaceutical systems alongside other polymers due to its low cost, low toxicity, biocompatibility, biodegradability and gelatinous die-forming capacity in the presence of Ca2+ ions. In this review, we have shown that through coacervation, the particulate systems for the dispensing of drugs consisting of natural polymers are nontoxic, allowing the repeated administration of medicinal substances and the protection of better the medicinal substances from degradation, which can increase the capture capacity of the drug and extend its release from the pharmaceutical form.
Collapse
|
6
|
Popescu V, Molea A, Moldovan M, Lopes PM, Mazilu Moldovan A, Popescu GL. The Influence of Enzymatic Hydrolysis of Whey Proteins on the Properties of Gelatin-Whey Composite Hydrogels. MATERIALS 2021; 14:ma14133507. [PMID: 34201757 PMCID: PMC8269533 DOI: 10.3390/ma14133507] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
Amino-acids, peptides, and protein hydrolysates, together with their coordinating compounds, have various applications as fertilizers, nutritional supplements, additives, fillers, or active principles to produce hydrogels with therapeutic properties. Hydrogel-based patches can be adapted for drug, protein, or peptide delivery, and tissue healing and regeneration. These materials have the advantage of copying the contour of the wound surface, ensuring oxygenation, hydration, and at the same time protecting the surface from bacterial invasion. The aim of this paper is to describe the production of a new type of hydrogel based on whey protein isolates (WPI), whey protein hydrolysates (WPH), and gelatin. The hydrogels were obtained by utilizing a microwave-assisted method using gelatin, glycerol, WPI or WPH, copper sulfate, and water. WPH was obtained by enzymatic hydrolysis of whey protein isolates in the presence of bromelain. The hydrogel films obtained have been characterized by FT-IR and UV-VIS spectroscopy. The swelling degree and swelling kinetics have also been determined.
Collapse
Affiliation(s)
- Violeta Popescu
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania; (V.P.); (P.M.L.); (A.M.M.)
| | - Andreia Molea
- Automotive Engineering and Transports Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania;
| | - Marioara Moldovan
- Institute of Chemistry Raluca Ripan, Babes-Bolyai University, 30 Fantanele Str., 400294 Cluj-Napoca, Romania;
| | - Pompilia Mioara Lopes
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania; (V.P.); (P.M.L.); (A.M.M.)
| | - Amalia Mazilu Moldovan
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania; (V.P.); (P.M.L.); (A.M.M.)
| | - George Liviu Popescu
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania; (V.P.); (P.M.L.); (A.M.M.)
- Automotive Engineering and Transports Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania;
- Correspondence: ; Tel.: +40-743174196
| |
Collapse
|
7
|
Synthesis and In Vivo Evaluation of Insulin-Loaded Whey Beads as an Oral Peptide Delivery System. Pharmaceutics 2021; 13:pharmaceutics13050656. [PMID: 34064415 PMCID: PMC8147814 DOI: 10.3390/pharmaceutics13050656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/14/2023] Open
Abstract
For many diabetics, daily, lifelong insulin injections are required to effectively manage blood glucose levels and the complications associated with the disease. This can be a burden and reduces patient quality of life. Our goal was to develop a more convenient oral delivery system that may be suitable for insulin and other peptides. Insulin was entrapped in 1.5-mm beads made from denatured whey protein isolate (dWPI) using gelation. Beads were then air-dried with fumed silica, Aerosil®. The encapsulation efficiency was ~61% and the insulin loading was ~25 µg/mg. Dissolution in simulated gastric-, and simulated intestinal fluids (SGF, SIF) showed that ~50% of the insulin was released from beads in SGF, followed by an additional ~10% release in SIF. The omission of Aerosil® allowed greater insulin release, suggesting that it formed a barrier on the bead surface. Circular dichroism analysis of bead-released insulin revealed an unaltered secondary structure, and insulin bioactivity was retained in HepG2 cells transfected to assess activation of the endogenous insulin receptors. Insulin-entrapped beads were found to provide partial protection against pancreatin for at least 60 min. A prototype bead construct was then synthesised using an encapsulator system and tested in vivo using a rat intestinal instillation bioassay. It was found that 50 IU/kg of entrapped insulin reduced plasma glucose levels by 55% in 60 min, similar to that induced by subcutaneously (s.c.)-administered insulin (1 IU/kg). The instilled insulin-entrapped beads produced a relative bioavailability of 2.2%. In conclusion, when optimised, dWPI-based beads may have potential as an oral peptide delivery system.
Collapse
|
8
|
Cendon FV, Salomão BB, Jorge RMM, Mathias AL. Mechanical and optical evaluation of alginate hydrospheres produced with different cross-linking salts for industrial application. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-020-04787-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Fuchs S, Ernst AU, Wang LH, Shariati K, Wang X, Liu Q, Ma M. Hydrogels in Emerging Technologies for Type 1 Diabetes. Chem Rev 2020; 121:11458-11526. [DOI: 10.1021/acs.chemrev.0c01062] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Stephanie Fuchs
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Alexander U. Ernst
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Long-Hai Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kaavian Shariati
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Xi Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Qingsheng Liu
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Minglin Ma
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
10
|
Meneguin AB, Silvestre ALP, Sposito L, de Souza MPC, Sábio RM, Araújo VHS, Cury BSF, Chorilli M. The role of polysaccharides from natural resources to design oral insulin micro- and nanoparticles intended for the treatment of Diabetes mellitus: A review. Carbohydr Polym 2020; 256:117504. [PMID: 33483027 DOI: 10.1016/j.carbpol.2020.117504] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/26/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022]
Abstract
Oral administration of insulin (INS) would represent a revolution in the treatment of diabetes, considering that this route mimics the physiological dynamics of endogenous INS. Nano- and microencapsulation exploiting the advantageous polysaccharides properties has been considered an important technological strategy to protect INS against harsh conditions of gastrointestinal tract, in the same time that improve the permeability via transcellular and/or paracellular pathways, safety and in some cases even selectivity for targeting delivery of INS. In fact, some polysaccharides also give to the systems functional properties such as pH-responsiveness, mucoadhesiveness under specific physiological conditions and increased intestinal permeability. In general, all polysaccharides can be functionalized with specific molecules becoming more selective to the cells to which INS is delivered. The present review highlights the advances in the past 10 years on micro- and nanoencapsulation of INS exploiting the unique natural properties of polysaccharides, including chitosan, starch, alginate, pectin, and dextran, among others.
Collapse
Affiliation(s)
- Andréia Bagliotti Meneguin
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil.
| | | | - Larissa Sposito
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| | | | - Rafael Miguel Sábio
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| | - Victor Hugo Sousa Araújo
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| |
Collapse
|
11
|
Chen DG, Zhao CW, Gong YC, Li ZL, Li YP, Xiong XY. Study on the Influencing Factors of Hypoglycemic Effect of Folate Targeted Polymersomes Encapsulating Insulin. J Pharm Sci 2020; 110:2105-2113. [PMID: 33309681 DOI: 10.1016/j.xphs.2020.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/14/2020] [Accepted: 11/25/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE To study the effects of the density of folic acid (FA) on the hypoglycemic ability of FA-targeted polymersomes as oral insulin carriers. Also to study the change of the hypoglycemic effect of FA-targeted mixed polymersomes added with various mass ratio of d-α-tocopherol polyethylene glycol 1000 succinate (TPGS). METHODS The FA-targeted polymersomes with different FA molar contents were prepared. The in vitro insulin release experiments in different media for FA-targeted polymersomes with various FA contents were studied. Their quantitative cellular uptake in Caco-2 cells was examined. The in vivo hypoglycemic activity of FA-targeted polymersomes was also studied with diabetic rats. The polymersomes with the optimal FA molar content was chosen to prepare mixed polymersomes with various TPGS contents. RESULTS Among insulin-loaded FA-targeted polymersomes with four different FA molar contents, insulin-loaded polymersomes with 10% FA molar content (insulin-loaded 10%FA-Ps) showed the hightest cellular uptake and the best hypoglycemic response. In addition, the insulin-loaded FA-Ps/TPGS5:1 mixed polymersomes exhibited higher cellular uptake and better hypoglycemic response than the other two insulin-loaded mixed polymersomes adding TPGS did. CONCLUSIONS FA-Ps/TPGS5:1 could be a promising formulation for the oral administration of insulin.
Collapse
Affiliation(s)
- Dao Ge Chen
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Cheng Wu Zhao
- Department of Sports Medicine, The First Hospital of Jilin University, 71 Xinmin Road, Changchun, Jilin 130021, PR China
| | - Yan Chun Gong
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Zi Ling Li
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Yu Ping Li
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Xiang Yuan Xiong
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| |
Collapse
|
12
|
Production of omega-3 fatty acid-enriched broiler chicken meat by the application of nanoencapsultsed flaxseed oil prepared via ultrasonication. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
13
|
Abbasi F, Samadi F, Jafari SM, Ramezanpour S, Shams Shargh M. Ultrasound-assisted preparation of flaxseed oil nanoemulsions coated with alginate-whey protein for targeted delivery of omega-3 fatty acids into the lower sections of gastrointestinal tract to enrich broiler meat. ULTRASONICS SONOCHEMISTRY 2019; 50:208-217. [PMID: 30249371 DOI: 10.1016/j.ultsonch.2018.09.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/04/2018] [Accepted: 09/15/2018] [Indexed: 05/22/2023]
Abstract
Flaxseed oil is one of the richest sources of α-linolenic acid (ALA). However, the susceptibility of ALA to oxidation and also lack of the convenient methods to deliver these invaluable compound into the lower sections of gastrointestinal tract (GIT) are still unknown. The objective of the current study was to establish a method for ALA targeted delivery into the lower sections of GIT to enrich broiler meat. An in vitro study was performed to use ultrasound to produce oil-in-water nanoemulsions of flaxseed oil stabilized by different wall materials for controlled release of ALA in GIT. The fabricated nanoemulsions were assessed in terms of particle size distribution, zeta-potential, encapsulation efficiency, field emission scanning electron microscopy (FESEM), and in vitro gastric and intestinal digestions. Results indicated that the nanoemulsions coated by a combination of whey protein-sodium alginate (WP/SA) had a relatively uniform distribution and all particles distributed in less than 1000 nm. The values of zeta-potential for nanoemulsions stabilized by whey protein (WP), sodium alginate (SA) and WP/SA were -31.4, -29.3 and -45.5 mV, respectively. The wall combination of WP/SA showed the best encapsulation efficiency followed by WP. The FESEM results indicated spherical and non-aggregated structures for three types of nanoemulsions. The nanoemulsions stabilized by WP/SA showed a high resistance to in vitro gastric digestion but a relatively rapid release during intestinal digestion. An in vivo study was conducted to enrich broiler meat with ALA, using the best wall material from the in vitro study. In total, 300 one-day-old broilers (Ross, 308) were assigned into 5 experimental treatments including: basal diet (BD), basal diet plus flaxseed oil (BD + FO, 1 mL/kg body weight), basal diet plus ultrasonicated flaxseed oil nanoemulsions stabilized by WP/SA (BD + FON, 1 mL/kg body weight), basal diet plus flaxseed oil and vitamin E (BD + FO + E, 1 mL/kg body weight and 200 mg/kg diet vitamin E) and basal diet plus ultrasonicated flaxseed oil nanoemulsions stabilized by WP/SA and vitamin E (BD + FON + E, 1 mL/kg body weight of nanoemulsion and 200 mg/kg diet vitamin E). Each experimental treatment included 4 replicates in a completely randomized design. Results showed a better feed conversion ratio (FCR) in birds treated with dietary treatments compared with those received basal diet. A greater incorporation of ALA and total poly unsaturated fatty acids (PUFA) omega-3 were observed in thigh and breast meat of birds fed by ultrasonicated flaxseed oil nanoemulsions. In comparison to birds fed with BD, a favourably lower PUFA omega-6/omega-3 ratio was observed in birds received nanoemulsions of flaxseed oil. In general, the current study showed that using ultrasound to produce nanoemulsions stabilized by WP/SA has potential to protect ALA of flaxseed oil from gastric digestion and could be used as delivery carriers of ALA omega-3 fatty acid to the posterior sections of chicken GIT. Moreover, ultrasonic fabrication of nanoemulsion has potential to enrich broiler meat by ALA fatty acid.
Collapse
Affiliation(s)
- Fatemeh Abbasi
- Department of Animal and Poultry Physiology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Firooz Samadi
- Department of Animal and Poultry Physiology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Sanaz Ramezanpour
- Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mahmoud Shams Shargh
- Department of Animal and Poultry Nutrition, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
14
|
Pérez-Luna VH, González-Reynoso O. Encapsulation of Biological Agents in Hydrogels for Therapeutic Applications. Gels 2018; 4:E61. [PMID: 30674837 PMCID: PMC6209244 DOI: 10.3390/gels4030061] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 01/03/2023] Open
Abstract
Hydrogels are materials specially suited for encapsulation of biological elements. Their large water content provides an environment compatible with most biological molecules. Their crosslinked nature also provides an ideal material for the protection of encapsulated biological elements against degradation and/or immune recognition. This makes them attractive not only for controlled drug delivery of proteins, but they can also be used to encapsulate cells that can have therapeutic applications. Thus, hydrogels can be used to create systems that will deliver required therapies in a controlled manner by either encapsulation of proteins or even cells that produce molecules that will be released from these systems. Here, an overview of hydrogel encapsulation strategies of biological elements ranging from molecules to cells is discussed, with special emphasis on therapeutic applications.
Collapse
Affiliation(s)
- Víctor H Pérez-Luna
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, 10 West 33rd Street, Chicago, IL 60616, USA.
| | - Orfil González-Reynoso
- Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán # 1451, Guadalajara, Jalisco C.P. 44430, Mexico.
| |
Collapse
|
15
|
Sun Q, Zhang Z, Zhang R, Gao R, McClements DJ. Development of Functional or Medical Foods for Oral Administration of Insulin for Diabetes Treatment: Gastroprotective Edible Microgels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4820-4826. [PMID: 29701967 DOI: 10.1021/acs.jafc.8b00233] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Insulin and an antacid [Mg(OH)2] were co-encapsulated inside calcium alginate microgels (diameter = 280 μm) using a vibrating nozzle injector. Confocal microscopy indicated that insulin was successfully encapsulated inside the microgels and remained inside them after they were exposed to simulated gastric conditions. Localized fluorescence intensity measurements indicated that the internal pH of the antacid-loaded microgels was around pH 7.4 after incubation in acidic gastric fluids but below the limit of detection (pH < 4) in the antacid-free microgels. After incubation in small intestine conditions, around 30% of the insulin was released from the antacid-loaded microgels over a 2 h period. Encapsulation of insulin within the antacid-loaded microgels increased its biological activity after exposure to simulated gastric conditions. In particular, the encapsulated insulin significantly increased Akt phosphorylation at both Thr308 and Ser473 in L6 myotubes when compared to free insulin.
Collapse
Affiliation(s)
- Quancai Sun
- School of Food and Biological Engineering , Jiangsu University , Zhenjiang , Jiangsu 212001 , People's Republic of China
| | - Zipei Zhang
- Department of Food Science , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| | - Ruojie Zhang
- Department of Food Science , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| | - Ruichang Gao
- School of Food and Biological Engineering , Jiangsu University , Zhenjiang , Jiangsu 212001 , People's Republic of China
| | - David Julian McClements
- Department of Food Science , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
16
|
Retrograded starch/pectin coated gellan gum-microparticles for oral administration of insulin: A technological platform for protection against enzymatic degradation and improvement of intestinal permeability. Eur J Pharm Biopharm 2018; 123:84-94. [DOI: 10.1016/j.ejpb.2017.11.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/06/2017] [Accepted: 11/23/2017] [Indexed: 01/01/2023]
|
17
|
Wong CY, Al-Salami H, Dass CR. Microparticles, microcapsules and microspheres: A review of recent developments and prospects for oral delivery of insulin. Int J Pharm 2017; 537:223-244. [PMID: 29288095 DOI: 10.1016/j.ijpharm.2017.12.036] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/17/2017] [Indexed: 01/02/2023]
Abstract
Diabetes mellitus is a chronic metabolic health disease affecting the homeostasis of blood sugar levels. However, subcutaneous injection of insulin can lead to patient non-compliance, discomfort, pain and local infection. Sub-micron sized drug delivery systems have gained attention in oral delivery of insulin for diabetes treatment. In most of the recent literature, the terms "microparticles" and "nanoparticle" refer to particles where the dimensions of the particle are measured in micrometers and nanometers respectively. For instance, insulin-loaded particles are defined as microparticles with size larger than 1 μm by most of the research groups. The size difference between nanoparticles and microparticles proffers numerous effects on the drug loading efficiency, aggregation, permeability across the biological membranes, cell entry and tissue retention. For instance, microparticulate drug delivery systems have demonstrated a number of advantages including protective effect against enzymatic degradation, enhancement of peptide stability, site-specific and controlled drug release. Compared to nanoparticulate drug delivery systems, microparticulate formulations can facilitate oral absorption of insulin by paracellular, transcellular and lymphatic routes. In this article, we review the current status of microparticles, microcapsules and microspheres for oral administration of insulin. A number of novel techniques including layer-by-layer coating, self-polymerisation of shell, nanocomposite microparticulate drug delivery system seem to be promising for enhancing the oral bioavailability of insulin. This review draws several conclusions for future directions and challenges to be addressed for optimising the properties of microparticulate drug formulations and enhancing their hypoglycaemic effects.
Collapse
Affiliation(s)
- Chun Y Wong
- School of Pharmacy and Biomedical Science, Curtin University, Bentley 6102, Australia; Curtin Health Innovation Research Institute, Bentley 6102, Australia
| | - Hani Al-Salami
- School of Pharmacy and Biomedical Science, Curtin University, Bentley 6102, Australia; Curtin Health Innovation Research Institute, Bentley 6102, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Science, Curtin University, Bentley 6102, Australia; Curtin Health Innovation Research Institute, Bentley 6102, Australia.
| |
Collapse
|
18
|
Villaverde Cendon F, Matos Jorge RM, Weinschutz R, Mathias AL. Effect of matrix composition, sphere size and hormone concentration on diffusion coefficient of insulin for controlled gastrointestinal delivery for diabetes treatment. J Microencapsul 2017; 35:13-25. [DOI: 10.1080/02652048.2017.1409820] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | | | - Regina Weinschutz
- Chemical Engineering Department, Federal University of Paraná, Curitiba, Brazil
| | - Alvaro Luiz Mathias
- Chemical Engineering Department, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
19
|
Tsirigotis-Maniecka M, Lamch Ł, Chojnacka I, Gancarz R, Wilk KA. Microencapsulation of hesperidin in polyelectrolyte complex microbeads: Physico-chemical evaluation and release behavior. J FOOD ENG 2017. [DOI: 10.1016/j.jfoodeng.2017.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Grigor’ev D, Musabekov KB, Musabekov NK, Kusainova ZZ. The immobilization of antineoplastic drug cyclophosphamide in calcium alginate. POLYMER SCIENCE SERIES A 2017. [DOI: 10.1134/s0965545x17040022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Atomization of denatured whey proteins as a novel and simple way to improve oral drug delivery system properties. Int J Biol Macromol 2017; 105:801-809. [PMID: 28732731 DOI: 10.1016/j.ijbiomac.2017.07.114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/14/2017] [Accepted: 07/17/2017] [Indexed: 01/17/2023]
Abstract
In the sphere of drug delivery, denatured whey protein (DWP) has in recent times gained press. However, to date, no scalable and affordable dosage form has been developed. The objective of our study was to evaluate the potential use of spray-dried DWP as a ready to use excipient for oral drug delivery. Therefore, solid state, FTIR spectra and wettability were studied. Dissolution, mucoadhesion and the effect on paracellular permeability were also evaluated. The spray-dried DWP particles were spherical with 4μm mean diameter. Further, relative to native WP, the spray-dried DWP particles bore reduced wettability, and their structure was characterized by the exposure of a high amount of free thiol and by the formation of intermolecular β-sheets. The DWP powders were mucoadhesive, enzymatic inhibitors, biocompatible and they induced the opening of tight junctions. Our study shows great potential for the use of spray-drying as a technique to modify the dissolution rate of drugs and enhance the oral bioavailability of molecules. That is, the use of spray drying as a single step ready to use DWP excipient.
Collapse
|
22
|
Comparison of the protective effect of self-emulsifying peptide drug delivery systems towards intestinal proteases and glutathione. Int J Pharm 2017; 523:357-365. [DOI: 10.1016/j.ijpharm.2017.03.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/08/2017] [Accepted: 03/15/2017] [Indexed: 02/03/2023]
|
23
|
Holkem AT, Raddatz GC, Barin JS, Moraes Flores ÉM, Muller EI, Codevilla CF, Jacob-Lopes E, Ferreira Grosso CR, de Menezes CR. Production of microcapsules containing Bifidobacterium BB-12 by emulsification/internal gelation. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.07.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Rafael EGC, Fredy CC, Arnulfo TD. Protection of Lactobacillus acidophilus under in vitro gastrointestinal conditions employing binary microcapsules containing inulin. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/ajb2016.15700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
25
|
O'Neill GJ, Jacquier JC, Mukhopadhya A, Egan T, O'Sullivan M, Sweeney T, O'Riordan ED. In vitro and in vivo evaluation of whey protein hydrogels for oral delivery of riboflavin. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.09.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
26
|
Kanjanakawinkul W, Medlicott NJ, Rades T, Puttipipatkhachorn S, Pongjanyakul T. Lysozyme-magnesium aluminum silicate microparticles: Molecular interaction, bioactivity and release studies. Int J Biol Macromol 2015; 80:651-8. [PMID: 26193680 DOI: 10.1016/j.ijbiomac.2015.07.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 07/07/2015] [Accepted: 07/10/2015] [Indexed: 11/28/2022]
Abstract
The objectives of this study were to investigate the adsorption behavior of lysozyme (LSZ) onto magnesium aluminum silicate (MAS) at various pHs and to characterize the LSZ-MAS microparticles obtained from the molecular interaction between LSZ and MAS. The results showed that LSZ could be bound onto the MAS layers at different pHs, leading to the formation of LSZ-MAS microparticles. The higher preparation pH permitted greater adsorption affinity but a lower adsorption capacity of LSZ onto MAS. LSZ could interact with MAS via hydrogen bonds and electrostatic forces, resulting in the formation of intercalated nanocomposites. The particle size, %LSZ adsorbed, and LSZ release rate of LSZ-MAS microparticles increased when the LSZ-MAS ratio was increased. The secondary structure of LSZ bound onto the MAS layers in microparticles prepared at various pHs was altered compared with that of native LSZ. Moreover, the LSZ extracted from microparticles prepared at pH 4 showed an obvious change in the tertiary structure, leading to a decrease in the biological activity of the LSZ released. These findings suggested that LSZ can strongly interact with MAS to form microparticles that may potentially be used as delivery systems for sustained protein release.
Collapse
Affiliation(s)
| | | | - Thomas Rades
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Satit Puttipipatkhachorn
- Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Thaned Pongjanyakul
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
27
|
Zhang Y, Gong J, Yu H, Guo Q, Defelice C, Hernandez M, Yin Y, Wang Q. Alginate-whey protein dry powder optimized for target delivery of essential oils to the intestine of chickens. Poult Sci 2014; 93:2514-25. [DOI: 10.3382/ps.2013-03843] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
28
|
O’Neill GJ, Egan T, Jacquier JC, O’Sullivan M, Dolores O’Riordan E. Whey microbeads as a matrix for the encapsulation and immobilisation of riboflavin and peptides. Food Chem 2014; 160:46-52. [DOI: 10.1016/j.foodchem.2014.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/23/2014] [Accepted: 03/01/2014] [Indexed: 11/28/2022]
|
29
|
Lv Y, Zhang J, Song Y, Wang B, Wang S, Zhao S, Lv G, Ma X. Natural Anionic Polymer Acts as Highly Efficient Trypsin Inhibitor Based on an Electrostatic Interaction Mechanism. Macromol Rapid Commun 2014; 35:1606-10. [DOI: 10.1002/marc.201400267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/11/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Yan Lv
- Laboratory of Biomedical Material Engineering; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; 457 Zhongshan Road Dalian 116023 PR China
- University of the Chinese Academy of Sciences; 19 Yuquan Road Beijing 100049 PR China
| | - Jianbin Zhang
- Laboratory of Biomedical Material Engineering; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; 457 Zhongshan Road Dalian 116023 PR China
- University of the Chinese Academy of Sciences; 19 Yuquan Road Beijing 100049 PR China
| | - Yizhe Song
- Laboratory of Biomedical Material Engineering; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; 457 Zhongshan Road Dalian 116023 PR China
- University of the Chinese Academy of Sciences; 19 Yuquan Road Beijing 100049 PR China
| | - Bing Wang
- Laboratory of Biomedical Material Engineering; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; 457 Zhongshan Road Dalian 116023 PR China
- University of the Chinese Academy of Sciences; 19 Yuquan Road Beijing 100049 PR China
| | - Shujun Wang
- Laboratory of Biomedical Material Engineering; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; 457 Zhongshan Road Dalian 116023 PR China
| | - Shan Zhao
- Laboratory of Biomedical Material Engineering; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; 457 Zhongshan Road Dalian 116023 PR China
- University of the Chinese Academy of Sciences; 19 Yuquan Road Beijing 100049 PR China
| | - Guojun Lv
- Laboratory of Biomedical Material Engineering; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; 457 Zhongshan Road Dalian 116023 PR China
| | - Xiaojun Ma
- Laboratory of Biomedical Material Engineering; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; 457 Zhongshan Road Dalian 116023 PR China
| |
Collapse
|
30
|
Mo R, Jiang T, Di J, Tai W, Gu Z. Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chem Soc Rev 2014; 43:3595-629. [PMID: 24626293 DOI: 10.1039/c3cs60436e] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Insulin is essential for type 1 and advanced type 2 diabetics to maintain blood glucose levels and prolong lives. The traditional administration requires frequent subcutaneous insulin injections that are associated with poor patient compliance, including pain, local tissue necrosis, infection, and nerve damage. Taking advantage of emerging micro- and nanotechnologies, numerous alternative strategies integrated with chemical approaches for insulin delivery have been investigated. This review outlines recent developments in the controlled delivery of insulin, including oral, nasal, pulmonary, transdermal, subcutaneous and closed-loop insulin delivery. Perspectives from new materials, formulations and devices at the micro- or nano-scales are specifically surveyed. Advantages and limitations of current delivery methods, as well as future opportunities and challenges are also discussed.
Collapse
Affiliation(s)
- Ran Mo
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | | | |
Collapse
|
31
|
Déat-Lainé E, Hoffart V, Garrait G, Beyssac E. Whey protein and alginate hydrogel microparticles for insulin intestinal absorption: evaluation of permeability enhancement properties on Caco-2 cells. Int J Pharm 2013; 453:336-42. [PMID: 23796829 DOI: 10.1016/j.ijpharm.2013.06.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/04/2013] [Accepted: 06/07/2013] [Indexed: 01/05/2023]
Abstract
The evaluation of encapsulated insulin intestinal absorption enhancement was investigated by in vitro methods. Insulin-loaded microparticles (INS-MP) made of whey protein (WP) and alginate (ALG) were prepared by a cold gelation technique. Effect of INS encapsulation toward trypsin and chymotrypsin degradation was performed. Permeability studies using in vitro (Caco-2 cells) experiments were conducted. INS was partially protected by encapsulation toward enzymatic degradation. Moreover INS transport experiments showed that WP and, in lesser extent, ALG were able to enhance INS absorption both as MP and as polymeric solutions by opening the tight junctions. These experiments reinforced the interest of encapsulation in WP/ALG hydrogel combination.
Collapse
Affiliation(s)
- Emmanuelle Déat-Lainé
- Université d'Auvergne, UFR Pharmacie, Equipe d'accueil Conception, Ingénierie et Développement de l'Aliment et du Médicament (EA CIDAM), Clermont-Ferrand F-63001, France
| | | | | | | |
Collapse
|