1
|
Zhu Y, Shang L, Tang Y, Li Q, Ding L, Wang Y, Zhang T, Xie B, Ma J, Li X, Chen S, Yi X, Peng J, Liang Y, He A, Yan H, Zhu H, Zhang B, Zhu Y. Genome-Wide Profiling of H3K27ac Identifies TDO2 as a Pivotal Therapeutic Target in Metabolic Associated Steatohepatitis Liver Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404224. [PMID: 39364706 PMCID: PMC11615751 DOI: 10.1002/advs.202404224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/13/2024] [Indexed: 10/05/2024]
Abstract
H3K27ac has been widely recognized as a representative epigenetic marker of active enhancer, while its regulatory mechanisms in pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) remain elusive. Here, a genome-wide comparative study on H3K27ac activities and transcriptome profiling in high fat diet (HFD)-induced MASLD model is performed. A significantly enhanced H3K27ac density with abundant alterations of regulatory transcriptome is observed in MASLD rats. Based on integrative analysis of ChIP-Seq and RNA-Seq, TDO2 is identified as a critical contributor for abnormal lipid accumulation, transcriptionally activated by YY1-promoted H3K27ac. Furthermore, TDO2 depletion effectively protects against hepatic steatosis. In terms of mechanisms, TDO2 activates NF-κB pathway to promote macrophages M1 polarization, representing a crucial event in MASLD progression. A bovine serum albumin nanoparticle is fabricated to provide sustained release of Allopurinol (NPs-Allo) for TDO2 inhibition, possessing excellent biocompatibility and desired targeting capacity. Venous injection of NPs-Allo robustly alleviates HFD-induced metabolic disorders. This study reveals the pivotal role of TDO2 and its underlying mechanisms in pathogenesis of MASLD epigenetically and genetically. Targeting H3K27ac-TDO2-NF-κB axis may provide new insights into the pathogenesis of abnormal lipid accumulation and pave the way for developing novel strategies for MASLD prevention and treatment.
Collapse
Affiliation(s)
- Yaling Zhu
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Limeng Shang
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Yunshu Tang
- Laboratory Animal Research CenterSchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Qiushuang Li
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Lin Ding
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Yi Wang
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Tiantian Zhang
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Bin Xie
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Jinhu Ma
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Xinyu Li
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Shuwen Chen
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Xinrui Yi
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Jin Peng
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Youfeng Liang
- Department of CardiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui230001China
| | - Anyuan He
- School of Life SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Hong Yan
- Department of PathologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Department of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Huaqing Zhu
- Laboratory of Molecular Biology and Department of BiochemistryAnhui Medical UniversityHefeiAnhui230032China
| | - Buchun Zhang
- Department of CardiologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
| | - Yong Zhu
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| |
Collapse
|
2
|
Abo-Ser MM, Toson ESA, El-Bindary AA, Schlatter G, Shoueir KR. Smart chitosan nanogel for targeted doxorubicin delivery, ensuring precise release, and minimizing side effects in Ehrlich ascites carcinoma-bearing mice. Int J Biol Macromol 2024; 267:131390. [PMID: 38582473 DOI: 10.1016/j.ijbiomac.2024.131390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/16/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
In recent decades, bio-polymeric nanogels have become a forefront in medical research as innovative in-vivo drug carriers. This study introduces a pH-sensitive chitosan nanoparticles/P(N-Isopropylacrylamide-co-Acrylic acid) nanogel (CSNPs/P(NIPAm-co-AAc)), making significant advancements. The nanogel effectively encapsulated doxorubicin hydrochloride (Dx. HCl), a model drug, within its compartments through electrostatic binding. Comparing nano chitosan (CSNPs) before and after integrating copolymerized P(NIPAm-co-AAc), highlighting an improved and adaptable nanogel structure with responsive behaviors. The intraperitoneal delivery of Dx-loaded nanogel (Dx@N.gel) to Ehrlich ascites carcinoma (Eh)-bearing mice at doses equivalent to 1.5 and 3 mg/kg of Dx per day for 14 days exhibited superiority over the administration of free Dx. Dx@N.gel demonstrated heightened anticancer activity, significantly improving mean survival rates in Eh mice. The nanogel's multifaceted defense mechanism mitigated oxidative stress, inhibited lipid peroxidation, and curbed nitric oxide formation induced by free Dx. It effectively countered hepatic DNA deterioration, normalized elevated liver and cardiac enzyme levels, and ameliorated renal complications. This pH-responsive CSNPs/P(NIPAm-co-AAc) nanogel loaded with Dx represents a paradigm shift in antitumor drug delivery. Its efficacy and ability to minimize side effects, contrasting sharply with those of free Dx, offer a promising future where potent cancer therapies seamlessly align with patient well-being.
Collapse
Affiliation(s)
- Magy M Abo-Ser
- Department of Chemistry, Faculty of Science, Damietta University, 34517 Damietta, Egypt
| | - El-Shahat A Toson
- Department of Chemistry, Faculty of Science, Damietta University, 34517 Damietta, Egypt
| | - Ashraf A El-Bindary
- Department of Chemistry, Faculty of Science, Damietta University, 34517 Damietta, Egypt
| | - Guy Schlatter
- ICPEES, Institut de Chimie et Procédé pour l'Energie, l'Environnement et la Santé, CNRS, UMR 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France.
| | - Kamel R Shoueir
- ICPEES, Institut de Chimie et Procédé pour l'Energie, l'Environnement et la Santé, CNRS, UMR 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France; Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt.
| |
Collapse
|
3
|
Rajput H, Nangare S, Khan Z, Patil A, Bari S, Patil P. Design of lactoferrin functionalized carboxymethyl dextran coated egg albumin nanoconjugate for targeted delivery of capsaicin: Spectroscopic and cytotoxicity studies. Int J Biol Macromol 2024; 256:128392. [PMID: 38029917 DOI: 10.1016/j.ijbiomac.2023.128392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
The increased mortality rates associated with colorectal cancer highlight the pressing need for improving treatment approaches. While capsaicin (CAP) has shown promising anticancer activity, its efficacy is hampered due to low solubility, rapid metabolism, suboptimal bioavailability, and a short half-life. Therefore, this study aimed to prepare a lactoferrin-functionalized carboxymethyl dextran-coated egg albumin nanoconjugate (LF-CMD@CAP-EGA-NCs) for the targeted CAP delivery to enhance its potential for colorectal cancer therapy. Briefly, LF-CMD was synthesized through an esterification reaction involving LF as a receptor and CMD as a shell. Concurrently, CAP was incorporated into an EGA carrier using gelation and hydrophobic interactions. The subsequent production of LF-CMD@CAP-EGA-NCs was achieved through the Maillard reaction. Spectral characterizations confirmed the successful synthesis of smooth and spherical-shaped LF-CMD@CAP-EGA-NCs using LF-CMD and EGA-CAP nanoparticles, with high entrapment efficiency and satisfactory drug content. Furthermore, LF-CMD@CAP-EGA-NCs demonstrated a sustained release of CAP (76.52 ± 1.01 % in 24 h, R2 = 0.9966) in pH 5.8 buffer with anomalous transport (n = 0.68) owing to the shell of the CMD and EGA matrix. The nanoconjugate exhibited enhanced cytotoxicity in HCT116 and LoVo cell lines, which is attributed to the overexpression of LF receptors in colorectal HCT116 cells. Additionally, LF-CMD@CAP-EGA-NCs demonstrated excellent biocompatibility, as observed in the FHC-CRL-1831 cell line. In conclusion, LF-CMD@CAP-EGA-NCs can be considered as a promising approach for targeted delivery of CAP and other anticancer agents in colorectal cancer treatment.
Collapse
Affiliation(s)
- Hrishikesh Rajput
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur-425405, Dist: Dhule, MS, India; Department of Quality Assurance, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur-425405, Dist: Dhule, MS, India
| | - Sopan Nangare
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur-425405, Dist: Dhule, MS, India
| | - Zamir Khan
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur-425405, Dist: Dhule, MS, India
| | - Ashwini Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur-425405, Dist: Dhule, MS, India
| | - Sanjaykumar Bari
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur-425405, Dist: Dhule, MS, India; Department of Quality Assurance, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur-425405, Dist: Dhule, MS, India
| | - Pravin Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur-425405, Dist: Dhule, MS, India.
| |
Collapse
|
4
|
Ghalehkhondabi V, Fazlali A, Soleymani M. Temperature and pH-responsive PNIPAM@PAA Nanospheres with a Core-Shell Structure for Controlled Release of Doxorubicin in Breast Cancer Treatment. J Pharm Sci 2023; 112:1957-1966. [PMID: 37076101 DOI: 10.1016/j.xphs.2023.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Stimuli-responsive polymers have been of great interest in the fabrication of advanced drug delivery systems. In this study, a facile approach was developed to synthesize a dually temperature/pH-responsive drug delivery system with a core-shell structure to control the release of doxorubicin (DOX) at the target site. For this purpose, poly(acrylic acid) (PAA) nanospheres were first synthesized using the precipitation polymerization technique and were used as pH-responsive polymeric cores. Then, poly(N-isopropylacrylamide) (PNIPAM) with thermo-responsivity properties was coated on the outer surface of PAA cores via seed emulsion polymerization technique to render monodisperse PNIPAM-coated PAA (PNIPAM@PAA) nanospheres. The optimized PNIPAM@PAA nanospheres with an average particle size of 116.8 nm (PDI= 0.243), had a high negative surface charge (zeta potential= -47.6 mV). Then, DOX was loaded on PNIPAM@PAA nanospheres and the entrapment efficiency (EE) and drug loading (DL) capacity were measured to be 92.7% and 18.5%, respectively. The drug-loaded nanospheres exhibited a low leakage at neutral pH and physiological temperature, but drug release significantly enhanced at acidic pH (pH= 5.5), indicating the tumor-environment responsive drug release behavior of the prepared nanospheres. Also, kinetics studies showed that, the sustained release of DOX from PNIPAM@PAA nanospheres was consistent with the Fickian diffusion mechanism. Moreover, the anticancer efficacy of DOX-loaded nanospheres was evaluated in vitro against MCF-7 breast cancer cells. The obtained results revealed that, the incorporation of DOX into PNIPAM@PAA nanospheres increases its cytotoxicity against cancer cells compared to the free DOX. Our results suggest that, PNIPAM@PAA nanospheres can be considered as a promising vector to release anticancer drugs with dual-stimuli responsivity to pH and temperature.
Collapse
Affiliation(s)
- Vahab Ghalehkhondabi
- Department of Chemical Engineering, Faculty of Engineering, Arak University, 38156-88349, Arak, Iran; Research Institute of Advanced Technologies, Arak University, Arak 38156-88349, Iran
| | - Alireza Fazlali
- Department of Chemical Engineering, Faculty of Engineering, Arak University, 38156-88349, Arak, Iran; Research Institute of Advanced Technologies, Arak University, Arak 38156-88349, Iran
| | - Meysam Soleymani
- Department of Chemical Engineering, Faculty of Engineering, Arak University, 38156-88349, Arak, Iran; Research Institute of Advanced Technologies, Arak University, Arak 38156-88349, Iran.
| |
Collapse
|
5
|
Design of surface tailored carboxymethyl dextran-protein based nanoconjugates for paclitaxel: Spectroscopical characterizations and cytotoxicity assay. Int J Biol Macromol 2022; 222:1818-1829. [DOI: 10.1016/j.ijbiomac.2022.09.271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022]
|
6
|
Chen W, Yang X, Bao J, Lin Z, Li T, Wang Y, Zhang A, Hu J, Jin J. A Pilot Study on the Concentration, Distribution and Bioaccumulation of Polybrominated Diphenyl Ethers (PBDEs) in Tissues and Organs of Grassland Sheep. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12170. [PMID: 36231471 PMCID: PMC9566259 DOI: 10.3390/ijerph191912170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Polybrominated diphenyl ether (PBDE) concentrations in various tissues and organs of grassland sheep from Inner Mongolia, China, were determined. The abilities of PBDEs binding to ovine serum albumin (OSA) and Cytochrome P450 enzyme (CYP3A24) were assessed by fluorescence spectroscopy and molecular docking simulations. The PBDE concentrations in the sheep tissue and organ samples were 33.4-167 pg/g dw. The distribution of PBDEs in sheep organs and tissues is affected not only by the function of organs and tissues, but also by the characteristics of PBDEs. Adipose tissue tends to bioaccumulate more-brominated BDEs (BDE-154, -153, and -183), but muscle tissues and visceral organs mainly bioaccumulate less-brominated BDEs. The distribution of PBDEs in visceral organs is mainly affected by the transport of ovine serum albumin (OSA) and the metabolism of CYP3A24 enzyme. The distribution of PBDEs in adipose tissue and brain is mainly affected by their logKOW.
Collapse
Affiliation(s)
- Wenming Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xinrui Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Junsong Bao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ziyi Lin
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Tianwei Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ying Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Aiqin Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jicheng Hu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jun Jin
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Beijing Food and Environmental Health Engineering Center, Beijing 100081, China
| |
Collapse
|
7
|
Zi T, Liu Y, Zhang Y, Wang Z, Wang Z, Zhan S, Peng Z, Li N, Liu X, Liu F. Protective effect of melatonin on alleviating early oxidative stress induced by DOX in mice spermatogenesis and sperm quality maintaining. Reprod Biol Endocrinol 2022; 20:105. [PMID: 35850689 PMCID: PMC9290234 DOI: 10.1186/s12958-022-00977-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/07/2022] [Indexed: 11/10/2022] Open
Abstract
Doxorubicin (DOX) is an effective chemotherapy drug, but its clinical use has adverse effects on male reproduction. However, there are few studies about the specific biological processes related to male reproduction or strategies for improving fertility protection. In this paper, we examined the effects of DOX on spermatogenesis and sperm function, and tested the possible protective role of melatonin (MLT) against DOX's reproductive toxicity. DOX-treated mice showed signs of significantly impaired spermatogenesis, including vacuolated epithelial cells, decreased testis weights, and lowered sperm counts and motility. DOX also reduced germ cell proliferation (PCNA) and meiosis-related proteins (SYCP3), but this effect could be partially improved with MLT administration. HSPA2 expression was maintained, which indicated that although MLT did not improve sperm motility, it did have a significant protective effect on elongated sperm. IVF results showed that MLT could partially promote two-cell and blastocyte development that was restricted by DOX. MLT reversed DOX-driven changes in the testes, including the antioxidant indices of SOD1, CAT and PRDX6, and the apoptotic indices of BAX and Caspase3. These results suggest that MLT effectively prevents DOX-induced early reproductive toxicity, and increase our understanding of the molecular mechanisms underlying DOX's effects on male reproduction and the protective mechanism of MLT.
Collapse
Affiliation(s)
- Teng Zi
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - YaNan Liu
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - YuSheng Zhang
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - ZeLin Wang
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - ZhiXin Wang
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Song Zhan
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Zhu Peng
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Ning Li
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - XueXia Liu
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.
- School of Bioscience and Technology, Weifang Medical University, Weifang, China.
| | - FuJun Liu
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.
- School of Bioscience and Technology, Weifang Medical University, Weifang, China.
| |
Collapse
|
8
|
Solanki R, Rostamabadi H, Patel S, Jafari SM. Anticancer nano-delivery systems based on bovine serum albumin nanoparticles: A critical review. Int J Biol Macromol 2021; 193:528-540. [PMID: 34655592 DOI: 10.1016/j.ijbiomac.2021.10.040] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 01/23/2023]
Abstract
Among the health-promotional protein-based vehicles, bovine serum albumin nanoparticles (BSA NPs) are particularly interesting. Meeting requirements e. g., non-toxicity, non-immunogenicity, biodegradability, biocompatibility, and high drug-binding capacity, has introduced BSA NPs as a promising candidate for efficient anti-cancer drug delivery and its application is now a rapidly-growing strategy to promote cancer therapy. Nevertheless, the leverage of such carriers requires an in-depth understanding of structural/physicochemical features of the BSA molecule and its derived nanovehicles, together with the utilized nano-formulation approaches, effective variables in delivery mechanism, specific shortfalls, and recent nanoencapsulation progresses. The current review highlights the novel advances in the application of BSA NPs to engineer drug vehicles for delivering anti-cancer agents. The factors influencing the efficiency of the therapeutics in such nano-delivery systems, alongside their advantaged and limitations are also discussed.
Collapse
Affiliation(s)
- Raghu Solanki
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar 382030, India
| | - Hadis Rostamabadi
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sunita Patel
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar 382030, India.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
9
|
Chen D, Ge S, Zuo L, Wang S, Liu M, Li S. Adjudin-loaded redox-sensitive paclitaxel-prodrug micelles for overcoming multidrug resistance with efficient targeted Colon cancer therapy. Drug Deliv 2021; 27:1094-1105. [PMID: 32706289 PMCID: PMC7470106 DOI: 10.1080/10717544.2020.1797245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Multidrug resistance (MDR) is the primary cause for the failure of chemotherapy in the treatment of colon cancer. Recent research has indicated that the combination of a chemotherapeutic agent and a mitochondrial inhibitor might represent a promising strategy to help overcome MDR. However, for this approach to be clinically effective, it is important that the two drugs can be actively and simultaneously delivered into tumor cells at an optimal ratio and completely released drug within cells. To address these challenges, we designed and prepared a folate receptor-targeted and redox-responsive drug delivery system (FA-ss-P/A) that was able to co-deliver paclitaxel (PTX) and adjudin (ADD) to reverse colon cancer MDR. The PTX prodrug was obtained by conjugating PTX to dextrin via a disulfide-linkage. Then, folic acid (FA) was modified on the PTX prodrug. Finally, ADD, a mitochondrial inhibitor, was encapsulated in the PTX prodrug-formed micelles. A series of in vitro and in vivo experiments subsequently demonstrated that FA-ss-P/A can effectively reverse MDR by increasing cell uptake, inhibiting PTX efflux, and improving drug release.
Collapse
Affiliation(s)
- Deli Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Sitang Ge
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lugen Zuo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shuanhu Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Mulin Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shiqing Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
10
|
Ye Z, Zhang Y, Liu Y, Liu Y, Tu J, Shen Y. EGFR Targeted Cetuximab-Valine-Citrulline (vc)-Doxorubicin Immunoconjugates- Loaded Bovine Serum Albumin (BSA) Nanoparticles for Colorectal Tumor Therapy. Int J Nanomedicine 2021; 16:2443-2459. [PMID: 33814909 PMCID: PMC8009551 DOI: 10.2147/ijn.s289228] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Background Specific modifications to carriers to achieve targeted delivery of chemotherapeutics into malignant tissues are a critical point for efficient diagnosis and therapy. In this case, bovine serum albumin (BSA) was conjugated with cetuximab–valine–citrulline (vc)–doxorubicin (DOX) to target epidermal growth factor receptor (EGFR) and enable the release of drug in EGFR-overexpressed tumor cells. Methods Maleimidocaproyl–valine–citrulline–p-aminobenzylcarbonyl-p-nitrophenol (MC-Val-Cit-PAB-PNP) and DOX were used to synthesize MC-Val-Cit-PAB-DOX, which was further linked with cetuximab to prepare antibody–drug conjugates (ADCs). Then, the ADCs were adsorbed to the surface of the BSA nanoparticles (NPs), which were prepared by a desolvation method to obtain cetuximab-vc-DOX-BSA-NPs. The cetuximab-vc-DOX conjugates adsorbed on the surface of the BSA nanoparticles were determined and optimized by size exclusion chromatography. An in vitro cytotoxicity study was conducted using a colon carcinoma cell line with different EGFR-expression levels to test the selectivity of cetuximab-vc-DOX-NPs. Results The vc-DOX and cetuximab-vc-DOX conjugates were both synthesized successfully and their structural characteristics confirmed by 1H-NMR and SDS-PAGE. The MTT assay showed stronger cytotoxicity of cetuximab-vc-DOX-NPs versus control IgG-vc-DOX-NPs in EGFR–overexpressing RKO cells. Cellular binding and intracellular accumulation determined by flow cytometry and confocal laser scanning microscopy revealed the strong binding ability of cetuximab-vc-DOX-NPs to RKO cells. The in vivo imaging study demonstrated that cetuximab-vc-DOX-NPs exhibited higher fluorescent intensity in tumor tissues than non-decorated nanoparticles (IgG-vc-DOX-NPs). In vivo tumor inhibition and survival tests showed that cetuximab-vc-DOX-NPs revealed higher tumor inhibition efficacy and lower systemic toxicity than control IgG-vc-DOX- NPs Conclusion The obtained results emphasize that cetuximab-vc-DOX-NPs, with good tumor-targeting ability and low systemic toxicity, are a promising targeting system for drug delivery.
Collapse
Affiliation(s)
- Zixuan Ye
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yue Zhang
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yuanfen Liu
- Jiangsu Health Vocational College, Nanjing, People's Republic of China
| | - Yanyan Liu
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jiasheng Tu
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yan Shen
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
11
|
İnan B, Özçimen D. Microalgal Bioprocess Toward the Production of Microalgal Oil Loaded Bovine Serum Albumin Nanoparticles. Protein J 2021; 40:377-387. [PMID: 33755855 DOI: 10.1007/s10930-021-09975-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Microalgal biotechnology has increased rapidly owing to have high value bioactive compounds and numerous consumer products that can be utilized from microalgae. With the development of novel cultivation and processing methods, microalgal biotechnology can meet the high demands of food, energy and pharmaceutical industries. In this context, especially for food and pharmaceutical applications, encapsulation of microalgal bioactive compounds is carried out to protect the compound from oxidation and degradation. In this study, a microalgal production process was carried out and microalgal oil loaded bovine serum albumin (BSA) nanoparticle production using glucose as cross-linking agent was investigated. The influences of different process parameters such as initial BSA concentration, glucose concentration and desolvation temperature on the size of BSA nanoparticles were investigated to achieve very small size nanoparticles. Furthermore, data obtained from the experiments were assessed statistically to model the process. It was found that the obtained nanoparticles showed spherical shape with the mean particle size of around 200-300 nm with zeta potential of about - 23 mV. Also, stability test showed that, there was not any change in particle size for one month storage and nanoparticle structure enhance the protection of microalgae oil from oxidation. At last, antibacterial effect of nanoparticles was presented against E. coli ATCC 8739 and L. monocytogenes ATCC 13932. In here, we demonstrated a microalgal bioprocess which consists of microalgae production to obtain microalgal oil riched in bioactive and, encapsulation of microalgal oil to protect it from environmental conditions.
Collapse
Affiliation(s)
- Benan İnan
- Bioengineering Department, Yıldız Technical University, 34220, Istanbul, Turkey.
| | - Didem Özçimen
- Bioengineering Department, Yıldız Technical University, 34220, Istanbul, Turkey
| |
Collapse
|
12
|
H. Alkhatib M, M. Alkreathy H, I. Al Omar M, S. Balamash K, Abdu 4 F, Esmat A. Doxorubicin supplemented with pravastatin in lipid nanoemulsion induces antineoplastic activity with limited hepatotoxicity and cardiotoxicity in tumor-bearing mice. ASIAN JOURNAL OF PHARMACEUTICAL RESEARCH AND HEALTH CARE 2021. [DOI: 10.18311/ajprhc/2021/26066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Khot S, Rawal SU, Patel MM. Dissolvable-soluble or biodegradable polymers. DRUG DELIVERY DEVICES AND THERAPEUTIC SYSTEMS 2021:367-394. [DOI: 10.1016/b978-0-12-819838-4.00024-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Li X, Ma Y, Zhong XL, Wang LS. Silver sulfide nanoparticles on MWCNTs stabilized by poloxamer: An enhanced electrochemical sensor for high sensitivity detection of 2,4,6-trinitrotoluene. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Folic acid-modified bovine serum albumin nanoparticles with doxorubicin and chlorin e6 for effective combinational chemo-photodynamic therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111343. [DOI: 10.1016/j.msec.2020.111343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
|
16
|
Teran-Saavedra NG, Sarabia-Sainz JA, Velázquez-Contreras EF, Ramos-Clamont Montfort G, Pedroza-Montero M, Vazquez-Moreno L. Albumin-Albumin/Lactosylated Core-Shell Nanoparticles: Therapy to Treat Hepatocellular Carcinoma for Controlled Delivery of Doxorubicin. Molecules 2020; 25:E5432. [PMID: 33233564 PMCID: PMC7699757 DOI: 10.3390/molecules25225432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/28/2022] Open
Abstract
Doxorubicin (Dox) is the most widely used chemotherapeutic agent and is considered a highly powerful and broad-spectrum for cancer treatment. However, its application is compromised by the cumulative side effect of dose-dependent cardiotoxicity. Because of this, targeted drug delivery systems (DDS) are currently being explored in an attempt to reduce Dox systemic side-effects. In this study, DDS targeting hepatocellular carcinoma (HCC) has been designed, specifically to the asialoglycoprotein receptor (ASGPR). Dox-loaded albumin-albumin/lactosylated (core-shell) nanoparticles (tBSA/BSALac NPs) with low (LC) and high (HC) crosslink using glutaraldehyde were synthesized. Nanoparticles presented spherical shapes with a size distribution of 257 ± 14 nm and 254 ± 14 nm, as well as an estimated surface charge of -28.0 ± 0.1 mV and -26.0 ± 0.2 mV, respectively. The encapsulation efficiency of Dox for the two types of nanoparticles was higher than 80%. The in vitro drug release results showed a sustained and controlled release profile. Additionally, the nanoparticles were revealed to be biocompatible with red blood cells (RBCs) and human liver cancer cells (HepG2 cells). In cytotoxicity assays, Dox-loaded nanoparticles decrease cell viability more efficiently than free Dox. Specific biorecognition assays confirmed the interaction between nanoparticles and HepG2 cells, especially with ASGPRs. Both types of nanoparticles may be possible DDS specifically targeting HCC, thus reducing side effects, mainly cardiotoxicity. Therefore, improving the quality of life from patients during chemotherapy.
Collapse
Affiliation(s)
- Nayelli Guadalupe Teran-Saavedra
- Departamento de Investigacion en Polimeros y Materiales, Universidad de Sonora, Bulevar Luis Encinas y Rosales s/n, Colonia Centro, Hernosillo, Sonora 83000, Mexico; (N.G.T.-S.); (E.F.V.-C.)
| | - Jose Andrei Sarabia-Sainz
- Departamento de Investigacion en Física, Universidad de Sonora, P.O. Box 5-088, Hermosillo, Sonora 83190, Mexico;
| | - Enrique Fernando Velázquez-Contreras
- Departamento de Investigacion en Polimeros y Materiales, Universidad de Sonora, Bulevar Luis Encinas y Rosales s/n, Colonia Centro, Hernosillo, Sonora 83000, Mexico; (N.G.T.-S.); (E.F.V.-C.)
| | - Gabriela Ramos-Clamont Montfort
- Centro de Investigacion en Alimentacion y Desarrollo, A.C. Carretera Gustavo E. Aztiazaran 46, Hermosillo, Sonora 83304, Mexico; (G.R.-C.M.); (L.V.-M.)
| | - Martín Pedroza-Montero
- Departamento de Investigacion en Física, Universidad de Sonora, P.O. Box 5-088, Hermosillo, Sonora 83190, Mexico;
| | - Luz Vazquez-Moreno
- Centro de Investigacion en Alimentacion y Desarrollo, A.C. Carretera Gustavo E. Aztiazaran 46, Hermosillo, Sonora 83304, Mexico; (G.R.-C.M.); (L.V.-M.)
| |
Collapse
|
17
|
Li H, Zeng Y, Zhang H, Gu Z, Gong Q, Luo K. Functional gadolinium-based nanoscale systems for cancer theranostics. J Control Release 2020; 329:482-512. [PMID: 32898594 DOI: 10.1016/j.jconrel.2020.08.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Cancer theranostics is a new strategy for combating cancer that integrates cancer imaging and treatment through theranostic agents to provide an efficient and safe way to improve cancer prognosis. Design and synthesis of these cancer theranostic agents are crucial since these agents are required to be biocompatible, tumor-specific, imaging distinguishable and therapeutically efficacious. In this regard, several types of gadolinium (Gd)-based nanomaterials have been introduced to combine different therapeutic agents with Gd to enhance the efficacy of therapeutic agents. At the same time, the entire treatment procedure could be monitored via imaging tools due to incorporation of Gd ions, Gd chelates and Gd/other imaging probes in the theranostic agents. This review aims to overview recent advances in the Gd-based nanomaterials for cancer theranostics and perspectives for Gd nanomaterial-based cancer theranostics are provided.
Collapse
Affiliation(s)
- Haonan Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yujun Zeng
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA 91711, USA
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
18
|
Nouri A, Faraji Dizaji B, Kianinejad N, Jafari Rad A, Rahimi S, Irani M, Sharifian Jazi F. Simultaneous linear release of folic acid and doxorubicin from ethyl cellulose/chitosan/g-C 3 N 4 /MoS 2 core-shell nanofibers and its anticancer properties. J Biomed Mater Res A 2020; 109:903-914. [PMID: 32776414 DOI: 10.1002/jbm.a.37081] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022]
Abstract
The folic acid (FA) and doxorubicin (DOX) have been doped into the g-C3 N4 /MoS2 incorporated-chitosan/ethyl cellulose (EC) core-shell nanofibers for targeted delivery of FA and DOX against HeLa and MCF-7 cell lines. The g-C3 N4 /MoS2 nanosheets and core-shell nanofibers were characterized using Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and UV-Vis tests. The drug loading factor, the degradation rate, and the DOX and FA release behavior from core-shell nanofibers have been investigated. The pharmacokinetic results revealed the linear release with non-Fickian diffusion of the both anticancer drugs from nanofibers during 7 days. The DAPI staining and MTT assays of the nanofibers immersed in MCF-7 and HeLa cell lines were studied to determine the potential of DOX and FA doped-core-shell nanofibrous matrix for MCF-7 and HeLa cells death in vitro. The maximum MCF-7 and HeLa cells death percentages were found to be 89 and 85%, respectively, using EC/chitosan/g-C3 N4 /MoS2 /DOX/FA core-shell nanofibers after 7 days. The high activity of g-C3 N4 /MoS2 /DOX/FA loaded-core-shell nanofibers for studied cancer cells killing was achieved.
Collapse
Affiliation(s)
- Arezo Nouri
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
| | - Babak Faraji Dizaji
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey
| | - Nazanin Kianinejad
- Department of Pharmaceutical Science, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Azadeh Jafari Rad
- Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran
| | - Seyedhamidreza Rahimi
- Department of Biomedical Engineering, Islamic Azad University, Tehran Science Research Branch, Tehran, Iran
| | - Mohammad Irani
- Department of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Fariborz Sharifian Jazi
- Mining and Metallurgical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
19
|
Heat Shock Protein 90 (Hsp90)-Inhibitor-Luminespib-Loaded-Protein-Based Nanoformulation for Cancer Therapy. Polymers (Basel) 2020; 12:polym12081798. [PMID: 32796651 PMCID: PMC7465148 DOI: 10.3390/polym12081798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 01/08/2023] Open
Abstract
Drugs targeting heat shock protein 90 (Hsp90) have been extensively explored for their anticancer potential in advanced clinical trials. Nanoformulations have been an important drug delivery platform for the anticancer molecules like Hsp90 inhibitors. It has been reported that bovine serum albumin (BSA) nanoparticles (NPs) serve as carriers for anticancer drugs, which have been extensively explored for their therapeutic efficacy against cancers. Luminespib (also known as NVP-AUY922) is a new generation Hsp90 inhibitor that was introduced recently. It is one of the most studied Hsp90 inhibitors for a variety of cancers in Phase I and II clinical trials and is similar to its predecessors such as the ansamycin class of molecules. To our knowledge, nanoformulations for luminespib remain unexplored for their anticancer potential. In the present study, we developed aqueous dispensable BSA NPs for controlled delivery of luminespib. The luminespib-loaded BSA NPs were characterized by SEM, TEM, FTIR, XPS, UV-visible spectroscopy and fluorescence spectroscopy. The results suggest that luminespib interacts by non-covalent reversible interactions with BSA to form drug-loaded BSA NPs (DNPs). Our in vitro evaluations suggest that DNP-based aqueous nanoformulations can be used in both pancreatic (MIA PaCa-2) and breast (MCF-7) cancer therapy.
Collapse
|
20
|
Kargozar S, Baino F, Hamzehlou S, Hamblin MR, Mozafari M. Nanotechnology for angiogenesis: opportunities and challenges. Chem Soc Rev 2020; 49:5008-5057. [PMID: 32538379 PMCID: PMC7418030 DOI: 10.1039/c8cs01021h] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis plays a critical role within the human body, from the early stages of life (i.e., embryonic development) to life-threatening diseases (e.g., cancer, heart attack, stroke, wound healing). Many pharmaceutical companies have expended huge efforts on both stimulation and inhibition of angiogenesis. During the last decade, the nanotechnology revolution has made a great impact in medicine, and regulatory approvals are starting to be achieved for nanomedicines to treat a wide range of diseases. Angiogenesis therapies involve the inhibition of angiogenesis in oncology and ophthalmology, and stimulation of angiogenesis in wound healing and tissue engineering. This review aims to summarize nanotechnology-based strategies that have been explored in the broad area of angiogenesis. Lipid-based, carbon-based and polymeric nanoparticles, and a wide range of inorganic and metallic nanoparticles are covered in detail. Theranostic and imaging approaches can be facilitated by nanoparticles. Many preparations have been reported to have a bimodal effect where they stimulate angiogenesis at low dose and inhibit it at higher doses.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, 917794-8564 Mashhad, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 101 29 Torino, Italy
| | - Sepideh Hamzehlou
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Masoud Mozafari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Fan Q, Cui X, Guo H, Xu Y, Zhang G, Peng B. Application of rare earth-doped nanoparticles in biological imaging and tumor treatment. J Biomater Appl 2020; 35:237-263. [DOI: 10.1177/0885328220924540] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Rare earth-doped nanoparticles have been widely used in disease diagnosis, drug delivery, tumor therapy, and bioimaging. Among various bioimaging methods, the fluorescence imaging technology based on the rare earth-doped nanoparticles can visually display the cell activity and lesion evolution in living animals, which is a powerful tool in biological technology and has being widely applied in medical and biological fields. Especially in the band of near infrared (700–1700 nm), the emissions show the characteristics of deep penetration due to low absorption, low photon scattering, and low autofluorescence interference. Furthermore, the rare earth-doped nanoparticles can be endowed with the water solubility, biocompatibility, drug-loading ability, and the targeting ability for different tumors by surface functionalization. This confirms its potential in the cancer diagnosis and treatment. In this review, we summarized the recent progress in the application of rare earth-doped nanoparticles in the field of bioimaging and tumor treatment. The luminescent mechanism, properties, and structure design were also discussed.
Collapse
Affiliation(s)
- Qi Fan
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing, PR China
| | - Xiaoxia Cui
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| | - Haitao Guo
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| | - Yantao Xu
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| | - Guangwei Zhang
- Zhejiang Fountain Aptitude Technology Inc., Hangzhou, Zhejiang, PR China
| | - Bo Peng
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
22
|
UiO-66 metal organic framework nanoparticles loaded carboxymethyl chitosan/poly ethylene oxide/polyurethane core-shell nanofibers for controlled release of doxorubicin and folic acid. Int J Biol Macromol 2020; 150:178-188. [DOI: 10.1016/j.ijbiomac.2020.02.067] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 12/20/2022]
|
23
|
Iqbal S, Blenner M, Alexander-Bryant A, Larsen J. Polymersomes for Therapeutic Delivery of Protein and Nucleic Acid Macromolecules: From Design to Therapeutic Applications. Biomacromolecules 2020; 21:1327-1350. [DOI: 10.1021/acs.biomac.9b01754] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shoaib Iqbal
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Mark Blenner
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Angela Alexander-Bryant
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Jessica Larsen
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
24
|
Soleymani M, Khalighfard S, Khodayari S, Khodayari H, Kalhori MR, Hadjighassem MR, Shaterabadi Z, Alizadeh AM. Effects of multiple injections on the efficacy and cytotoxicity of folate-targeted magnetite nanoparticles as theranostic agents for MRI detection and magnetic hyperthermia therapy of tumor cells. Sci Rep 2020; 10:1695. [PMID: 32015364 PMCID: PMC6997166 DOI: 10.1038/s41598-020-58605-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/16/2020] [Indexed: 01/28/2023] Open
Abstract
Folate-targeted iron oxide nanoparticles (FA@Fe3O4 NPs) were prepared by a one-pot hydrothermal method and then used as cancer theranostic agents by combining magnetic resonance imaging (MRI) and magnetic hyperthermia therapy (MHT). Crystal structure, morphology, magnetic properties, surface functional group, and heating efficacy of the synthesized nanoparticles were characterized by XRD, TEM, VSM, FTIR, and hyperthermia analyses. The results indicated that the crystal structure, magnetic properties, and heating efficacy of the magnetite nanoparticles were improved by hydrothermal treatment. Toxicity of the prepared NPs was assessed in vitro and in vivo on the mammary cells and BALB/c mice, respectively. The results of the in vitro toxicity analysis showed that the FA@Fe3O4 NPs are relatively safe even at high concentrations of the NPs up to 1000 µg mL-1. Also, the targetability of the FA@Fe3O4 NPs for the detection of folate over-expressed cancer cells was evaluated in an animal model of breast tumor using MRI analysis. It was observed that T2-weighted magnetic resonance signal intensity was decreased with the three-time injection of the FA@Fe3O4 NPs with 24 h interval at a safe dose (50 mg kg-1), indicating the accumulation and retention of the NPs within the tumor tissues. Moreover, the therapeutic efficacy of the MHT using the FA@Fe3O4 NPs was evaluated in vivo in breast tumor-bearing mice. Hyperthermia treatment was carried out under a safe alternating magnetic field permissible for magnetic hyperthermia treatment (f = 150 kHz, H = 12.5 mT). The therapeutic effects of the MHT were evaluated by monitoring the tumor volume during the treatment period. The results showed that the mice in the control group experienced an almost 3.5-fold increase in the tumor volume during 15 days, while, the mice in the MHT group had a mild increase in the tumor volume (1.8-fold) within the same period (P < 0.05). These outcomes give promise that FA@Fe3O4 NPs can be used as theranostic agents for the MRI and MHT applications.
Collapse
Affiliation(s)
- Meysam Soleymani
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-88349, Iran
- Brain and Spinal Cord Injury research center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Khalighfard
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Biology, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Saeed Khodayari
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Khodayari
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Kalhori
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahmoud Reza Hadjighassem
- Brain and Spinal Cord Injury research center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ali Mohammad Alizadeh
- Brain and Spinal Cord Injury research center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Chen W, Li J, Dong Z, Bao J, Zhang A, Shen G, Wang Y, Hu J, Jin J. Correlations between dechlorane plus concentrations in paired hair and indoor dust samples and differences between dechlorane plus isomer concentrations in hair from males and females. CHEMOSPHERE 2019; 231:378-384. [PMID: 31141740 DOI: 10.1016/j.chemosphere.2019.05.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
Dechlorane plus (DP) is found widely in environmental media. Determining DP concentrations in dust and hair and identifying relationships between the concentrations in dust and hair could improve our understanding of the effects of DP in humans. DP concentrations in 48 hair samples from male and female students and in 30 indoor dust samples from dormitories and classrooms used by the students were determined. The objective was to determine the difference of DP concentration between indoor dust and hair, and to explore the effect of DP in dust on DP in hair of male and female students. The mean DP concentration was significantly higher in male dormitory dust than female dormitory dust, and the estimated DP dose through exposure to dust was also significantly higher for males than females. However, the mean DP concentration was significantly higher for hair from females than from males. The median DP fanti was significantly lower for hair than dust, indicating DP may be stereoselectively metabolized by humans. The median DP fanti was significantly higher for hair from females than from males, indicating DP may be metabolized differently by males and females. Human serum albumin preferred combination with anti-DP, rather than syn-DP. DP in indoor dust was not a major direct source of the DP in the hair, meaning DP in hair mainly came from within the body. There may be significant differences in DP, particularly anti-DP, metabolism in males and females.
Collapse
Affiliation(s)
- Wenming Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Junqi Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Zheng Dong
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Junsong Bao
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Aiqin Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Gangyi Shen
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Ying Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Jicheng Hu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Jun Jin
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
26
|
Zhou J, Zhang J, Gao G, Wang H, He X, Chen T, Ke L, Rao P, Wang Q. Boiling Licorice Produces Self-Assembled Protein Nanoparticles: A Novel Source of Bioactive Nanomaterials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9354-9361. [PMID: 31339706 DOI: 10.1021/acs.jafc.9b03208] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
As a popular ingredient for western and traditional Chinese medicine, the root and rhizome of Chinese licorice (Glycyrrhiza uralensis Fisch.) is often administered in the form of a decoction. The protein nanoparticles (NPs) self-assembled during the process of decoction. A major constitutive protein (GLP) was purified and determined to have a molecular weight of 28 kDa with an N-terminal sequence of NPDGL IACYC GQYCW. Over 80% of the purified GLP self-assembled into spherical NPs with diameters of 74.1 ± 0.7 nm and ζ-potential of -24.3 ± 1.7 mV when boiled in Tris-HCl buffer (pH = 7.9, 20 mM) at 100 °C for 60 min. Each nanoparticle was estimated by the SEC-MALLS approach to be composed of approximately 23 protein molecules. The NPs and GLP showed low cellular toxicity upon four types of cells including MDCK, L-02, HepG2, and Caco2 cells, while the NPs promoted proliferation of normal hepatocytes by 67%. The NPs solubilized the insoluble astragaloside IV by encapsulation. The results suggest a great potential for GLP-NPs as a promising prototype of a type of drug vehicle, a novel source of bioactive nanomaterials from herbal proteins, as well as a new mode of function with herbal components.
Collapse
Affiliation(s)
- Jianwu Zhou
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou 310012 , China
| | - Jian Zhang
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou 310012 , China
| | - Guanzhen Gao
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou 310012 , China
| | - Huiqin Wang
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou 310012 , China
| | - Xiaoyan He
- Institute of Biotechnology , Fuzhou University , Fuzhou 350000 , China
| | - Tianbao Chen
- School of Pharmacy , Queen's University Belfast , Belfast BT9 7BL , United Kingdom
| | - Lijing Ke
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou 310012 , China
| | - Pingfan Rao
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou 310012 , China
| | - Qiang Wang
- Institute of Food Science and Technology , Chinese Academy of Agricultural Sciences , Beijing 100193 , China
| |
Collapse
|
27
|
Sonthanasamy RSA, Sulaiman NMN, Tan LL, Lazim AM. Comprehensive spectroscopic studies of synergism between Gadong starch based carbon dots and bovine serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 218:85-96. [PMID: 30954801 DOI: 10.1016/j.saa.2019.03.108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Carbon dots (C-dots) were used to study the binding mechanisms with serum protein, bovine serum albumin (BSA) by using two notable binding systems known as non-covalent and covalent interaction. Interaction between C-dots and BSA were estimated by Stern-Volmer equation and Double Log Regression Model (DLRM). According to the fluorescent intensity, quenching of model carrier protein by C-dots was due to dynamic quenching for non-covalent and static quenching for covalent binding. The binding site constant, KA and number of binding site, for covalent interaction is 1754.7L/mol and n≈1 (0.6922) were determined by DLRM on fluorescence quenching results. The blue shift of the fluorescence spectrum, from 450nm to 421nm (non-covalent) and 430nm (covalent) and suggested that both the microenvironment of C-dots and protein changed in relation to the protein concentration. The fluorescence intensity results show that protein structure has a significant role in Protein-C-dots interactions and type of binding influence physicochemical properties of C-dots differently. Understanding to this bio interface is important to utilize both quantum dots and biomolecules for biomedical field. It can be a useful guideline to design further applications in biomedical and bioimaging.
Collapse
Affiliation(s)
- Regina Sisika A Sonthanasamy
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Nik Muslihuddin Nik Sulaiman
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Ling Ling Tan
- Southest Asia Disaster Preventation Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Azwan Mat Lazim
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
28
|
Narmani A, Rezvani M, Farhood B, Darkhor P, Mohammadnejad J, Amini B, Refahi S, Abdi Goushbolagh N. Folic acid functionalized nanoparticles as pharmaceutical carriers in drug delivery systems. Drug Dev Res 2019; 80:404-424. [PMID: 31140629 DOI: 10.1002/ddr.21545] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/02/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022]
Abstract
Conventional chemotherapeutic approaches in cancer therapy such as surgery, chemotherapy, and radiotherapy have several disadvantages due to their nontargeted distributions in the whole body. On the other hand, nanoparticles (NPs) based therapies are remarkably progressing to solve several limitations of conventional drug delivery systems (DDSs) including nonspecific biodistribution and targeting, poor water solubility, weak bioavailability and biodegradability, low pharmacokinetic properties, and so forth. The enhanced permeability and retention effect escape from P-glycoprotein trap in cancer cells as a passive targeting mechanism, and active targeting strategies are also other most important advantages of NPs in cancer diagnosis and therapy. Folic acid (FA) is one of the biologic molecules which has been targeted overexpressed-folic acid receptor (FR) on the surface of cancer cells. Therefore, conjugation of FA to NPs most easily enhances the FR-mediated targeting delivery of therapeutic agents. Here, the recent works in FA which have been decorated NPs-based DDSs are discussed and cancer therapy potency of these NPs in clinical trials are presented.
Collapse
Affiliation(s)
- Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Melina Rezvani
- Department of Biology, Faculty of Sciences, Payame Noor University, Tehran, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Parvaneh Darkhor
- Department of Medical Physics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mohammadnejad
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Bahram Amini
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Soheila Refahi
- Department of Medical Physics, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nouraddin Abdi Goushbolagh
- Department of Medical Physics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
29
|
Carvalho JA, da Silva Abreu A, Tedesco AC, Junior MB, Simioni AR. Functionalized photosensitive gelatin nanoparticles for drug delivery application. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:508-525. [PMID: 30776983 DOI: 10.1080/09205063.2019.1580664] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this study, zinc phthalocyanine (ZnPc) was loaded onto gelatin nanoparticles functionalized with polyelectrolytes (polystyrene sulfonate/polyallylamine hydrochloride) by layer-by-layer (LbL) assembly. The process yield and the encapsulation efficiency were 76.0% ± 2.5 and 86.0% ± 1.8, respectively. The functionalized photosensitive gelatin nanoparticles (FPGN) had a mean diameter of 396.5 ± 45.8 nm, narrow distribution size with a polydispersity index of 0.106. The obvious switching of zeta potential indicates successful alternating deposition of the polyanion PSS and polycation PAH directly on the gelatin nanoparticles. The in vitro drug release investigation found that the LbL deposited polyelectrolyte bilayer is very efficient to reduce the release rate and assuage the initial burst for drugs loaded in gelatin nanoparticles. The photobiological activity of FPGN was evaluated on mouse macrophage carcinoma line J774 A-1. The cells viability decreased with the increase of the light dose in the range of 1-10.0 J.cm-2. ZnPc-loaded in functionalized gelatin nanoparticles are the release systems that promise photodynamic therapy use.
Collapse
Affiliation(s)
- Janicy Arantes Carvalho
- a Organic Synthesis Laboratory , Research and Development Institute - IPD Vale do Paraíba University , São José dos Campos , Brazil
| | - Alexandro da Silva Abreu
- a Organic Synthesis Laboratory , Research and Development Institute - IPD Vale do Paraíba University , São José dos Campos , Brazil
| | - Antonio Claudio Tedesco
- b Chemistry Department Photobiology and Photomedicine Group , University of São Paulo , Ribeirão Preto , São Paulo , Brazil
| | - Milton Beltrame Junior
- a Organic Synthesis Laboratory , Research and Development Institute - IPD Vale do Paraíba University , São José dos Campos , Brazil
| | - Andreza Ribeiro Simioni
- a Organic Synthesis Laboratory , Research and Development Institute - IPD Vale do Paraíba University , São José dos Campos , Brazil
| |
Collapse
|
30
|
Xu L, Jiang G, Chen H, Zan Y, Hong S, Zhang T, Zhang Y, Pei R. Folic acid-modified fluorescent dye-protein nanoparticles for the targeted tumor cell imaging. Talanta 2019; 194:643-648. [DOI: 10.1016/j.talanta.2018.10.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/23/2018] [Accepted: 10/28/2018] [Indexed: 01/12/2023]
|
31
|
Li N, Zhou T, Wu F, Wang R, Zhao Q, Zhang JQ, Yang BC, Ma BL. Pharmacokinetic mechanisms underlying the detoxification effect of Glycyrrhizae Radix et Rhizoma (Gancao): drug metabolizing enzymes, transporters, and beyond. Expert Opin Drug Metab Toxicol 2019; 15:167-177. [DOI: 10.1080/17425255.2019.1563595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Na Li
- Department of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Zhou
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Wu
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Wang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Zhao
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ji-Quan Zhang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bai-Can Yang
- Department of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing-Liang Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
32
|
Ha PT, Le TTH, Bui TQ, Pham HN, Ho AS, Nguyen LT. Doxorubicin release by magnetic inductive heating and in vivo hyperthermia-chemotherapy combined cancer treatment of multifunctional magnetic nanoparticles. NEW J CHEM 2019. [DOI: 10.1039/c9nj00111e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multifunctional nanosystems help to control drug release and highly improve the cancer treatment efficacy in in vivo models.
Collapse
Affiliation(s)
- Phuong Thu Ha
- Institute of Materials Science
- Vietnam Academy of Science and Technology
- Cau Giay District
- Vietnam
| | - Thi Thu Huong Le
- Institute of Materials Science
- Vietnam Academy of Science and Technology
- Cau Giay District
- Vietnam
- Vietnam National University of Agriculture
| | | | - Hong Nam Pham
- Institute of Materials Science
- Vietnam Academy of Science and Technology
- Cau Giay District
- Vietnam
| | - Anh Son Ho
- Vietnam Military Medical University
- Ha Dong District
- Vietnam
| | | |
Collapse
|
33
|
Bian W, Wang M, Ahsan B, Lin S, Ren Z, Huang JA, Wang J. Gefitinib-loaded Nanoparticles with Folic Acid-modified Dextran Surface Prepared by Flash Nanoprecipitation. CHEM LETT 2018. [DOI: 10.1246/cl.180686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wei Bian
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, P. R. China
- Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200237, P. R. China
| | - Mingwei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Bilal Ahsan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shan Lin
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zenghua Ren
- Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200237, P. R. China
| | - Jian-An Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, P. R. China
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
34
|
Protein-polysaccharide nanohybrids: Hybridization techniques and drug delivery applications. Eur J Pharm Biopharm 2018; 133:42-62. [PMID: 30300719 DOI: 10.1016/j.ejpb.2018.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/27/2022]
Abstract
Complex nanosystems fabricated by hybridization of different types of materials such as lipids, proteins, or polysaccharides are usually superior to simple ones in terms of features and applications. Proteins and polysaccharides hold great potential for development of nanocarriers for drug delivery purposes based on their unique biocompatibility, biodegradability, ease of functionalization, improved biodistribution and minimal toxicity profiles. Protein-polysaccharide nanohybrids have gained a lot of attention in the past few years particularly for drug delivery applications. In this review, different hybridization techniques utilized in the fabrication of such nanohybrids including electrostatic complexation, Maillard conjugation, chemical coupling and electrospinning were thoroughly reviewed. Moreover, various formulation factors affecting the characteristics of the formed nanohybrids were discussed. We also reviewed in depth the outcomes of such hybridization ranging from stability enhancement, to toxicity reduction, improved biocompatibility, and drug release modulation. We also gave an insight on their limitations and what hinders their clinical translation and market introduction.
Collapse
|
35
|
Tang Y, Li Y, Xu R, Li S, Hu H, Xiao C, Wu H, Zhu L, Ming J, Chu Z, Xu H, Yang X, Li Z. Self-assembly of folic acid dextran conjugates for cancer chemotherapy. NANOSCALE 2018; 10:17265-17274. [PMID: 30191943 DOI: 10.1039/c8nr04657c] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Folic acid (FA) has long been used as a specific targeting agent since many cancer cells overexpress folate receptors (FRs). Herein, novel functionalities of FA will be explored: directed self-assembly of nanoparticles for drug delivery together with pH responsive release. By conjugating with dextran (DEX), DEX-FA exerts a pH dependent self-assembly behavior: it self-associates into nanoparticles (NPs) around physiological pH (pH 7) and disassembles at higher pH (pH > 9). Doxorubicin (DOX), a model antitumor drug, has been successfully encapsulated via electrostatic interactions between DOX and FA. Moreover, the pH responsive release behaviors of DOX are controlled by FA. The DOX@DEX-FA NPs exhibit typical FA-FRs-mediated endocytosis in vitro and targeted delivery in vivo, altogether contributing to an enhanced antitumor efficacy, alleviated side effects, and elongated overall survival in a 4T1 subcutaneous tumor-bearing mouse model. The DOX@DEX-FA NPs have been demonstrated to be a simple, safe and efficient nanoplatform, holding significant translation potential for treating FR-overexpressing cancers. This study may present novel functionalities of FA in cancer-targeted nanotherapeutics.
Collapse
Affiliation(s)
- Yuxiang Tang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Luo M, Yang X, Ruan X, Xing W, Chen M, Mu F. Enhanced Stability and Oral Bioavailability of Folic Acid-Dextran-Coenzyme Q 10 Nanopreparation by High-Pressure Homogenization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9690-9696. [PMID: 30141926 DOI: 10.1021/acs.jafc.8b02660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The preparation of folic acid-dextran-coenzyme Q10 (FA-DEX-CoQ10) nanopreparation was optimized by high-pressure homogenization to improve the dissolution and oral bioavailability of CoQ10. The preparation conditions of FA-DEX-CoQ10 nanopreparation were optimized by single-factor and orthogonal experimental design. The properties of CoQ10 raw materials, CoQ10 physical mixtures, and FA-DEX-CoQ10 nanopreparation were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The concentration of CoQ10 in rat plasma was determined by high-performance liquid chromatography, and the corresponding pharmacokinetic parameters were calculated. The optimal preparation method is as follows: mass ratio of CoQ10/FA-DEX of 1:18, mass ratio of stabilizer/CoQ10 of 0.4:1, 6 homogenization cycles, and homogenization pressure of 800 bar. These conditions resulted in a mean particle size of 87.6 nm. SEM showed that the particles was spherical. DSC and XRD analyses showed that the crystallinity of FA-DEX-CoQ10 nanopreparation decreased. FA-DEX-CoQ10 possesses long-term stability. By single-factor and orthogonal experiments, the dissolution rate, Cmax, and area under the curve (AUC) of the optimized FA-DEX-CoQ10 nanopreparation were 3.95, 2.7, and 2.4 times as much as those of the raw materials. The results showed that FA-DEX-CoQ10 nanopreparation had better oral bioavailability.
Collapse
|
37
|
Carvalho JA, Abreu AS, Ferreira VTP, Gonçalves EP, Tedesco AC, Pinto JG, Ferreira-Strixino J, Beltrame Junior M, Simioni AR. Preparation of gelatin nanoparticles by two step desolvation method for application in photodynamic therapy. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1287-1301. [PMID: 29561222 DOI: 10.1080/09205063.2018.1456027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Gelatin nanoparticles have recently been receiving considerable attention because they offer a good option as release systems due to their low cost, biocompatibility, biodegradability and its application in several types of formulations. This study aim was to evaluate the potential application of gelatin nanoparticles entrapping a photosensitizer in Photodynamic Therapy. Gelatin nanoparticles were studied by steady-state techniques and the biological activity evaluated by in vitro MTT assay. The particles were spherical in shape exhibiting a 273 nm diameter with a low tendency to aggregate. The loading efficiency was 76%. Photosensitizer photophysical properties were shown to be preserved after GN encapsulation. The cells viability obtaining 85% cells death compared with control. The results demonstrate that gelatin nanoparticles can be successfully applied for photosensitizers encapsulation or other active drugs and be used as an optimal medium for a variety of bioactive materials, which can also be encapsulated by the proposed method.
Collapse
Affiliation(s)
- Janicy Arantes Carvalho
- a Organic Synthesis Laboratory, Research and Development Institute - IPD, Vale do Paraíba University , São José dos Campos , Brazil
| | - Alexandro Silva Abreu
- a Organic Synthesis Laboratory, Research and Development Institute - IPD, Vale do Paraíba University , São José dos Campos , Brazil
| | | | - Erika Peterson Gonçalves
- a Organic Synthesis Laboratory, Research and Development Institute - IPD, Vale do Paraíba University , São José dos Campos , Brazil
| | - Antonio Claudio Tedesco
- c Chemistry Department, Photobiology and Photomedicine Group , University of São Paulo , Ribeirão Preto , Brazil
| | - Juliana Guerra Pinto
- d Photodynamic Therapy Laboratory, Research and Development Institute - IPD , Vale do Paraíba University , São José dos Campos , Brazil
| | - Juliana Ferreira-Strixino
- d Photodynamic Therapy Laboratory, Research and Development Institute - IPD , Vale do Paraíba University , São José dos Campos , Brazil
| | - Milton Beltrame Junior
- a Organic Synthesis Laboratory, Research and Development Institute - IPD, Vale do Paraíba University , São José dos Campos , Brazil
| | - Andreza Ribeiro Simioni
- a Organic Synthesis Laboratory, Research and Development Institute - IPD, Vale do Paraíba University , São José dos Campos , Brazil
| |
Collapse
|
38
|
Loureiro A, Noro J, Abreu AS, Nogueira E, Soares da Costa D, Silva C, Cavaco-Paulo A. Absence of Albumin Improves in Vitro Cellular Uptake and Disruption of Poloxamer 407-Based Nanoparticles inside Cancer Cells. Mol Pharm 2018; 15:527-535. [PMID: 29291347 DOI: 10.1021/acs.molpharmaceut.7b00893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Novel nanoparticles based on Poloxamer 407 and vegetable oil were produced by high pressure homogenization. Functionalization of those nanoparticles was made by incorporation of folic acid (FA)-Poloxamer 407 conjugate. These nanoparticles showed suitable characteristics for intravenous therapeutic applications similarly to PEGylated albumin-based nanoparticles, previously described by our research group. Here, we found that the absence of albumin at the interface of Poloxamer 407-based nanoparticles improves the overall process of in vitro cellular uptake and nanoparticle disruption inside cancer cells (folate receptor, FR, positive cells). The results presented here suggest that interfacial composition of those nanoparticles is of paramount importance for drug trafficking inside cancer cells.
Collapse
Affiliation(s)
- Ana Loureiro
- Centre of Biological Engineering, University of Minho, Campus de Gualtar , 471 0-057, Braga, Portugal
| | - Jennifer Noro
- Centre of Biological Engineering, University of Minho, Campus de Gualtar , 471 0-057, Braga, Portugal
| | - Ana S Abreu
- Institute of Polymers and Composites (IPC) and Institute of Nanostructures, Nanomodelling and Nanofabrication (I3N), University of Minho, Campus de Azurém , 4800-058 Guimarães, Portugal
| | - Eugénia Nogueira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar , 471 0-057, Braga, Portugal
| | - Diana Soares da Costa
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , Ave Park, 4805-016 Taipas, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Carla Silva
- Centre of Biological Engineering, University of Minho, Campus de Gualtar , 471 0-057, Braga, Portugal
| | - Artur Cavaco-Paulo
- Centre of Biological Engineering, University of Minho, Campus de Gualtar , 471 0-057, Braga, Portugal
| |
Collapse
|
39
|
Alkhatib MH, Alshehri WS, Abdu FB. In Vivo Evaluation of the Anticancer Activity of the Gemcitabine and Doxorubicin Combined in a Nanoemulsion. J Pharm Bioallied Sci 2018; 10:35-42. [PMID: 29657506 PMCID: PMC5887650 DOI: 10.4103/jpbs.jpbs_225_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Context Doxorubicin (DOX) and gemcitabine (GEM) are anticancer drugs that were combined in a nanoemulsion (NE) to reduce their adverse side effects. Aim To detect the antitumor activity of the combination formulas of GEM and DOX, loaded either in water (GEM+DOX-Sol) or in NEs (GEM-DOX combination/loaded NE [GEM+DOX/LNE]), in female Swiss albino mice inoculated with Ehrlich ascites carcinoma (EAC). Settings and Design The anticancer assessment of the NE formulas was implemented in 200 mice, which were divided into 10 groups. Materials and Methods It includes the detection of the change in body weight, analysis of the hematological and serum biochemical profiles, and study of the histopathologic alterations of the heart tissues. Statistical Analysis One-factor analysis of variance was used. Results Mice treated with GEM + DOX/LNE, which have an z-average of 155.38±2.33nm and zeta potential of -38.5±1.3 mV, recorded a considerable improvement in the mean survival time (MST), which was 60 days, as compared to the EAC control group, which has an MST of 28 days. It also restored the hematological and serum biochemical parameters toward normal values. Conclusions The combination of GEM and DOX in NE has significantly diminished the cardiotoxicity of DOX and hematotoxicity of GEM while improving their antitumor properties.
Collapse
Affiliation(s)
- Mayson H Alkhatib
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wafa S Alshehri
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Faiza B Abdu
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
40
|
Choi JS, Park JS. Surface modification of docetaxel nanocrystals with HER2 antibody to enhance cell growth inhibition in breast cancer cells. Colloids Surf B Biointerfaces 2017; 159:139-150. [DOI: 10.1016/j.colsurfb.2017.07.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/14/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
|
41
|
Qasim M, Asghar K, Dharmapuri G, Das D. Investigation of novel superparamagnetic Ni 0.5Zn 0.5Fe 2O 4@albumen nanoparticles for controlled delivery of anticancer drug. NANOTECHNOLOGY 2017; 28:365101. [PMID: 28675377 DOI: 10.1088/1361-6528/aa7d81] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In the present work, multifunctional Ni0.5Zn0.5Fe2O4@albumen (NZF@Alb) and doxorubicin-loaded Ni0.5Zn0.5Fe2O4@albumen (NZF@Alb-Dox) core-shell nanoparticles have been prepared by a green and simple method using inexpensive chicken egg albumen and have been characterized for different physiochemical properties. The structural, morphological, thermal, and magnetic properties of the prepared nanoparticles have been investigated by an x-ray diffractometer, high-resolution transmission electron microscopy (HRTEM), field emission scanning electron microscopy, Fourier-transformed infrared, thermogravimetric analysis, and vibrating sample magnetometer techniques. Superparamagnetic Ni0.5Zn0.5Fe2O4 nanoparticles (NZF NPs) with the mean size ∼20 nm were coated with albumen matrix by an ultrasonication process. Inverse fast Fourier transform-assisted HRTEM micrographs and FTIR analysis revealed the coating of amorphous albumen on crystalline NZF NPs. NZF@Alb and NZF@Alb-Dox NPs have the mean size (D50) of ∼100 nm, good stability, and magnetic controllability. Magnetic measurements (field (H)-dependent magnetization (M)) show all samples to be super-paramagnetic in nature. Biocompatibilities of the NZF and NZF@Alb NPs were confirmed by in vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against RAW 264.7 cells. NZF@Alb NPs have been found to be more biocompatible than bare NZF. In Vitro Dox release behavior from NZF@Alb-Dox NPs has been studied at pH 7.4 and 5, and a sustained and pH-dependent drug release profile were observed. In vitro cytotoxicity or anticancer activity of the blank NZF@Alb NPs, free Dox, and NZF@Alb-Dox NPs against HeLa cells (cancer cell line) were also examined by MTT assay. The obtained results suggest that this scalable egg-albumen-based magnetic nanoformulation is suitable for targeted drug delivery applications. Thus, the present study could be extremely useful for the advancement of albumin-based nanocarrier design and development for biomedical applications such as targeted and controlled delivery of anticancer drugs.
Collapse
Affiliation(s)
- Mohd Qasim
- School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046, India
| | | | | | | |
Collapse
|
42
|
Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett 2017; 190:64-83. [PMID: 28760499 DOI: 10.1016/j.imlet.2017.07.015] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/04/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022]
Abstract
Surgery, chemotherapy, radiotherapy, and hormone therapy are the main common anti-tumor therapeutic approaches. However, the non-specific targeting of cancer cells has made these approaches non-effective in the significant number of patients. Non-specific targeting of malignant cells also makes indispensable the application of the higher doses of drugs to reach the tumor region. Therefore, there are two main barriers in the way to reach the tumor area with maximum efficacy. The first, inhibition of drug delivery to healthy non-cancer cells and the second, the direct conduction of drugs into tumor site. Nanoparticles (NPs) are the new identified tools by which we can deliver drugs into tumor cells with minimum drug leakage into normal cells. Conjugation of NPs with ligands of cancer specific tumor biomarkers is a potent therapeutic approach to treat cancer diseases with the high efficacy. It has been shown that conjugation of nanocarriers with molecules such as antibodies and their variable fragments, peptides, nucleic aptamers, vitamins, and carbohydrates can lead to effective targeted drug delivery to cancer cells and thereby cancer attenuation. In this review, we will discuss on the efficacy of the different targeting approaches used for targeted drug delivery to malignant cells by NPs.
Collapse
|
43
|
Liu Z, Xu G, Wang C, Li C, Yao P. Shear-responsive injectable supramolecular hydrogel releasing doxorubicin loaded micelles with pH-sensitivity for local tumor chemotherapy. Int J Pharm 2017; 530:53-62. [PMID: 28739501 DOI: 10.1016/j.ijpharm.2017.07.063] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 07/06/2017] [Accepted: 07/20/2017] [Indexed: 11/24/2022]
Abstract
In this study, glycol chitosan-Pluronic F127 conjugate (GC-PF127), produced by an amidation reaction between terminal-carboxylated PF127 and glycol chitosan (GC), was used to prepare doxorubicin (DOX)-loaded micelles. The DOX/GC-PF127 micelles produced at optimal conditions had sizes of about 150nm and pH-sensitive surface charges. DOX/GC-PF127 hydrogel formed after addition of α-cyclodextrin into DOX/GC-PF127 micelle solution. The hydrogel had good shear-responsive, injectable and rapid recovery properties. In vitro release experiment confirmed that the hydrogel could sustainedly release DOX/GC-PF127 micelles via the dissociation of the hydrogel. After peritumoral injection into H22 tumor-bearing mice, the hydrogel could greatly increase DOX accumulation in tumor tissue and synchronously avoid DOX accumulation in normal tissues including heart. At similar total DOX dose administrated, the tumors of free DOX treatment group grew slowly after thrice intravenous injections, the tumors of the micelle group did not grow after twice intravenous injections, and the tumors of the hydrogel group disappeared almost after once peritumoral injection. This study demonstrates that injectable DOX/GC-PF127 hydrogel, which can sustainedly release DOX-loaded micelles with tumor-targeting function, is a promising system for local tumor chemotherapy.
Collapse
Affiliation(s)
- Zhijia Liu
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Centre of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Guangrui Xu
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Centre of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Chaonan Wang
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Centre of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Chunyang Li
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Centre of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Ping Yao
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Centre of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
44
|
Wei T, Du D, Wang Z, Zhang W, Lin Y, Dai Z. Rapid and sensitive detection of microRNA via the capture of fluorescent dyes-loaded albumin nanoparticles around functionalized magnetic beads. Biosens Bioelectron 2017; 94:56-62. [PMID: 28257975 DOI: 10.1016/j.bios.2017.02.044] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/20/2017] [Accepted: 02/24/2017] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) play important roles in gene regulation and cancer development. Nowadays, it is still a challenge to detect low-abundance miRNAs. Here, we present a magnetic fluorescent miRNA sensing system for the rapid and sensitive detection of miRNAs from cell lysates and serum samples. In this system, albumin nanoparticles (Alb NPs) were prepared from inherent biocompatible bovine serum albumin (BSA). A large number of fluorescent dyes were loaded into Alb NPs to make Alb NPs serve as signal molecular nanocarriers for signal amplification. Benefited from the reactive functional groups-carboxyl groups of Alb NPs, p19 protein, a viral protein that can bind and sequester short RNA duplex effectively and selectively, was modified successfully to the surface of the fluorescent dyes-loaded Alb NPs, thus enabling the probe:target miRNA duplex recognition and binding. Followed by the introduction of gold nanoparticles coated magnetic microbeads (Au NPs-MBs), which were prepared through a novel and simple method, the system combined the merits of the rapid and efficient collection given by MBs with the good affinities to attach probe molecules endowed by the coated gold layer. A broad linear detection range of 10fM-10nM and a low detection limit of 9fM were obtained within 100min by detecting a model target miRNA-21. The feasibility of this method for rapid and sensitive quantification might advance the use of miRNAs as biomarkers in clinical praxis significantly.
Collapse
Affiliation(s)
- Tianxiang Wei
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China; School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA; School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Zhaoyin Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Weiwei Zhang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA.
| | - Zhihui Dai
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
45
|
Yin B, Wang C, Liu Z, Yao P. Peptide-polysaccharide conjugates with adjustable hydrophilicity/hydrophobicity as green and pH sensitive emulsifiers. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.08.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
46
|
Choi JS, Meghani N. Impact of surface modification in BSA nanoparticles for uptake in cancer cells. Colloids Surf B Biointerfaces 2016; 145:653-661. [DOI: 10.1016/j.colsurfb.2016.05.050] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/18/2016] [Accepted: 05/17/2016] [Indexed: 11/26/2022]
|
47
|
All natural cellulose acetate—Lemongrass essential oil antimicrobial nanocapsules. Int J Pharm 2016; 510:508-15. [DOI: 10.1016/j.ijpharm.2016.01.060] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/19/2016] [Accepted: 01/23/2016] [Indexed: 12/20/2022]
|
48
|
Pushpamalar J, Veeramachineni AK, Owh C, Loh XJ. Biodegradable Polysaccharides for Controlled Drug Delivery. Chempluschem 2016; 81:504-514. [DOI: 10.1002/cplu.201600112] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 04/30/2016] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - Cally Owh
- Institute of Materials Research and Engineering (IMRE); A*STAR; 3 Research Link Singapore 117602 Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE); A*STAR; 3 Research Link Singapore 117602 Singapore
- Department of Materials Science and Engineering; National University of Singapore; 9 Engineering Drive 1 Singapore 117576 Singapore
- Singapore Eye Research Institute; 11 Third Hospital Avenue Singapore 168751 Singapore
| |
Collapse
|
49
|
Mogoşanu GD, Grumezescu AM, Bejenaru C, Bejenaru LE. Polymeric protective agents for nanoparticles in drug delivery and targeting. Int J Pharm 2016; 510:419-29. [PMID: 26972379 DOI: 10.1016/j.ijpharm.2016.03.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/09/2016] [Indexed: 01/08/2023]
Abstract
Surface modification/functionalization of nanoparticles (NPs) using polymeric protective agents is an issue of great importance and actuality for drug delivery and targeting. Improving the blood circulation half-life of surface-protected nanocarriers is closely related to the elimination of main biological barriers and limiting factors (protein absorption and opsonization), due to the phagocytic activity of reticuloendothelial system. For passive or active targeted delivery, in biomedical area, surface-functionalized NPs with tissue-recognition ligands were designed and optimized as a result of modern research techniques. Also, multi-functionalized nanostructures are characterized by enhanced bioavailability, efficacy, targeted localization, active cellular uptake, and low side effects. Surface-protected NPs are obtained from biocompatible, biodegradable and less toxic natural polymers (dextran, β-cyclodextrin, chitosan, hyaluronic acid, heparin, gelatin) or synthetic polymers, such as poly(lactic acid), poly(lactic-co-glycolic) acid, poly(ε-caprolactone) and poly(alkyl cyanoacrylates). PEGylation is one of the most important functionalization methods providing steric stabilization, long circulating and 'stealth' properties for both polymeric and inorganic-based nanosystems. In addition, for their antimicrobial, antiviral and antitumor effects, cutting-edge researches in the field of pharmaceutical nanobiotechnology highlighted the importance of noble metal (platinum, gold, silver) NPs decorated with biopolymers.
Collapse
Affiliation(s)
- George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxidic Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania.
| | - Cornelia Bejenaru
- Department of Vegetal & Animal Biology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| |
Collapse
|
50
|
Hepatoma-Targeted Radionuclide Immune Albumin Nanospheres: (131)I-antiAFPMcAb-GCV-BSA-NPs. Anal Cell Pathol (Amst) 2016; 2016:9142198. [PMID: 26981334 PMCID: PMC4770115 DOI: 10.1155/2016/9142198] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/11/2016] [Indexed: 12/21/2022] Open
Abstract
An effective strategy has been developed for synthesis of radionuclide immune albumin nanospheres (131I-antiAFPMcAb-GCV-BSA-NPs). In vitro as well as in vivo targeting of 131I-antiAFPMcAb-GCV-BSA-NPs to AFP-positive hepatoma was examined. In cultured HepG2 cells, the uptake and retention rates of 131I-antiAFPMcAb-GCV-BSA-NPs were remarkably higher than those of 131I alone. As well, the uptake rate and retention ratios of 131I-antiAFPMcAb-GCV-BSA-NPs in AFP-positive HepG2 cells were also significantly higher than those in AFP-negative HEK293 cells. Compared to 131I alone, 131I-antiAFPMcAb-GCV-BSA-NPs were much more easily taken in and retained by hepatoma tissue, with a much higher T/NT. Due to good drug-loading, high encapsulation ratio, and highly selective affinity for AFP-positive tumors, the 131I-antiAFPMcAb-GCV-BSA-NPs are promising for further effective radiation-gene therapy of hepatoma.
Collapse
|