1
|
Chauhan D, Yadav PK, Sultana N, Agarwal A, Verma S, Chourasia MK, Gayen JR. Advancements in nanotechnology for the delivery of phytochemicals. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:385-398. [PMID: 38693014 DOI: 10.1016/j.joim.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/08/2024] [Indexed: 05/03/2024]
Abstract
Phytosomes (phytophospholipid complex) are dosage forms that have recently been introduced to increase the stability and therapeutic effect of herbal medicine. Currently, bioactive herbs and the phytochemicals they contain are considered to be the best remedies for chronic diseases. One promising approach to increase the efficacy of plant-based therapies is to improve the stability and bioavailability of their bio-active ingredients. Phytosomes employ phospholipids as their active ingredients, and use their amphiphilic properties to solubilize and protect herbal extracts. The unique properties of phospholipids in drug delivery and their use in herbal medicines to improve bioavailability results in significantly enhanced health benefits. The introduction of phytosome nanotechnology can alter and revolutionize the current state of drug delivery. The goal of this review is to explain the application of phytosomes, their future prospects in drug delivery, and their advantages over conventional formulations. Please cite this article as: Chauhan D, Yadav PK, Sultana N, Agarwal A, Verma S, Chourasia MK, Gayen JR. Advancements in nanotechnology for the delivery of phytochemicals. J Integr Med. 2024; 22(4): 385-398.
Collapse
Affiliation(s)
- Divya Chauhan
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Nazneen Sultana
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India
| | - Arun Agarwal
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Saurabh Verma
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Jiaur R Gayen
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
2
|
M E Gaafar P, Farid RM, Hazzah HA, AbouKilila HY, Helmy MW, Abdallah OY. Magnetic Lipid-Based hybrid nanosystems: A combined stimuli- responsive nanocarriers for enriched chemotherapeutic potential of L-carnosine in induced breast Ehrlich ascites tumor model. Int J Pharm 2024; 655:124000. [PMID: 38493840 DOI: 10.1016/j.ijpharm.2024.124000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Magnetic Lipid-Based Hybrid Nanosystems (M-LCNPs) is a novel nanoplatform that can respond to magnetic stimulus and are designed for delivering L-carnosine (CN), a challenging dipeptide employed in the treatment of breast cancer. CN exhibits considerable water solubility and undergoes in-vivo degradation, hence restricting its application. Consequently, it is anticipated that the developed M-LCNPs will enhance the effectiveness of CN. To ensure the physical stability of MNPs, they were initially coated with a mixture of oleic acid and oleylamine before being included in pegylated liquid crystalline nanoparticles (PLCNPs). The proposed M-LCNPs exhibited promising in-vitro characteristics, notably a small particle size (143.5 nm ± 1.25) and a high zeta potential (-39.5 mV ± 1.54), together with superparamagnetic behavior. The in-vitro release profile exhibited a prolonged release pattern. The IC50 values of M-LCNPs were 1.57 and 1.59 times lower than these of the CN solution after 24 and 48 hours, respectively. Female BALB/C female mice with an induced breast cancer (Ehrlich Ascites tumor [EAT] model) were used to study the influence of an external magnetic field on the chemotherapeutic activity and toxicity of CN loaded in the developed M-LCNPs. Stimuli-responsive M-LCNPs exhibited no apparent systemic toxicity in addition to enhanced chemotherapeutic efficacy compared to nontargeted M-LCNPs and CN solution, as evidenced by a reduction of % tumor growth (11.7%), VEGF levels (22.95 pg/g tissue), and cyclin D1 levels (27.61 ng/g tissue), and an increase in caspase-3 level (28.9 ng/g tissue). Ultimately, the developed stimuli-responsive CN loaded M-LCNPs presented a promising nanoplatform for breast cancer therapy.
Collapse
Affiliation(s)
- Passent M E Gaafar
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt.
| | - Ragwa M Farid
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Heba A Hazzah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - HussamElDin Y AbouKilila
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Maged W Helmy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Zhang X, Chen Y, Tang J, Chen C, Sun Y, Zhang H, Qiao M, Jin G, Liu X. GSH-activable heterotrimeric nano-prodrug for precise synergistic therapy of TNBC. Biomed Pharmacother 2024; 173:116375. [PMID: 38460372 DOI: 10.1016/j.biopha.2024.116375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
Combination chemotherapy is an effective approach for triple-negative breast cancer (TNBC) therapy, especially when drugs are administered at specific optimal ratios. However, at present, strategies involving precise and controllable ratios based on effective loading and release of drugs are unavailable. Herein, we designed and synthesized a glutathione (GSH)--responsive heterotrimeric prodrug and formulated it with an amphiphilic polymer to obtain nanoparticles (DSSC2 NPs) for precise synergistic chemotherapy of TNBC. The heterotrimeric prodrug was prepared using docetaxel (DTX) and curcumin (CUR) at the optimal synergistic ratio of 1: 2. DTX and CUR were covalently conjugated by disulfide linkers. Compared with control NPs, DSSC2 NPs had quantitative/ratiometric drug loading, high drug co-loading capacity, better colloidal stability, and less premature drug leakage. After systemic administration, DSSC2 NPs selectively accumulated in tumor tissues and released the encapsulated drugs triggered by high levels of GSH in cancer cells. In vitro and in vivo experiments validated that DSSC2 NPs released DTX and CUR at the predefined ratio and had a highly synergistic therapeutic effect on tumor suppression in TNBC, which can be attributed to ratiometric drug delivery and synchronous drug activation. Altogether, the heterotrimeric prodrug delivery system developed in this study represents an effective and novel approach for combination chemotherapy.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
| | - Yansong Chen
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
| | - Jingwei Tang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
| | - Chen Chen
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
| | - Yanfeng Sun
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
| | - Mengxiang Qiao
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
| | - Gongsheng Jin
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China.
| | - Xianfu Liu
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China.
| |
Collapse
|
4
|
Pardeshi S, Mohite P, Rajput T, Puri A. The Nanotech Potential of Curcumin in Pharmaceuticals: An Overview. Curr Drug Discov Technol 2024; 21:e260723219113. [PMID: 37493163 DOI: 10.2174/1570163820666230726125809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 07/27/2023]
Abstract
It is safe to use Curcumin as a cosmetic and therapeutic ingredient in pharmaceutical products. For the uses mentioned above and for fundamental research, it is essential to obtain pure Curcumin from plant sources. There is a requirement for effective extraction and purification techniques that adhere to green chemistry standards for efficiency improvement, process safety, and environmental friendliness. Several outstanding studies have looked into the extraction and purification of Curcumin. This review thoroughly covers the currently available curcumin extraction, synthesis, and transformation techniques. Additionally, Curcumin's poor solubility and low absorption in the human body have limited its potential for pharmaceutical use. However, recent developments in novel curcumin formulations utilizing nanotechnology delivery methods have provided new approaches to transport and maximize the human body's curcumin absorption efficiency. In this review, we explore the various curcumin nanoformulations and the potential medicinal uses of nano curcumin. Additionally, we review the necessary future research directions to recommend Curcumin as an excellent therapeutic candidate.
Collapse
Affiliation(s)
- Sagar Pardeshi
- Department of Pharmaceutics AET's St. John Institute of Pharmacy and Research, Manor Road, Palghar, Maharashtra- 401404, India
| | - Popat Mohite
- Department of Pharmaceutical Chemistry, AET's St. John Institute of Pharmacy and Research, Manor Road, Palghar, Maharashtra-401404, India
| | - Tanavirsing Rajput
- Department of Pharmaceutical Chemistry, AET's St. John Institute of Pharmacy and Research, Manor Road, Palghar, Maharashtra-401404, India
| | - Abhijeet Puri
- Department of Pharmacognosy, AET's St. John Institute of Pharmacy and Research, Manor Road, Palghar, Maharashtra-401404, India
| |
Collapse
|
5
|
Amiryaghoubi N, Fathi M, Safary A, Javadzadeh Y, Omidi Y. In situ forming alginate/gelatin hydrogel scaffold through Schiff base reaction embedded with curcumin-loaded chitosan microspheres for bone tissue regeneration. Int J Biol Macromol 2024; 256:128335. [PMID: 38007028 DOI: 10.1016/j.ijbiomac.2023.128335] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/21/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
In this study, we developed a biocompatible composite hydrogel that incorporates microspheres. This was achieved using a Schiff base reaction, which combines the amino and aldehyde groups present in gelatin (Gel) and oxidized alginate (OAlg). We suggest this hydrogel as a promising scaffold for bone tissue regeneration. To further boost its osteogenic capabilities and mechanical resilience, we synthesized curcumin (Cur)-loaded chitosan microspheres (CMs) and integrated them into the Gel-OAlg matrix. This formed a robust composite gel framework. We conducted comprehensive evaluations of various properties, including gelation time, morphology, compressive strength, rheological behavior, texture, swelling rate, in vitro degradation, and release patterns. A remarkable observation was that the inclusion of 30 mg/mL Cur-CMs significantly enhanced the hydrogel's mechanical and bioactive features. Over three weeks, the Gel-OAlg/Cur-CMs (30) composite showed a cumulative curcumin release of 35.57%. This was notably lower than that observed in standalone CMs and Gel-OAlg hydrogels. Additionally, the Gel-OAlg/Cur-CMs (30) hydrogel presented a reduced swelling rate and weight loss relative to hydrogels devoid of Cur-CMs. On the cellular front, the Gel-OAlg/Cur-CMs (30) hydrogel showcased superior biocompatibility. It also displayed increased calcium deposition, alkaline phosphatase (ALP) activity, and elevated osteogenic gene expression in human bone marrow mesenchymal stem cells (hBMSCs). These results solidify its potential as a scaffold for bone tissue regeneration.
Collapse
Affiliation(s)
- Nazanin Amiryaghoubi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Biotechnology Research Center and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran.
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
6
|
Omrani Z, Pourmadadi M, Yazdian F, Rashedi H. Preparation and characterization of pH-sensitive chitosan/starch/MoS 2 nanocomposite for control release of curcumin macromolecules drug delivery; application in the breast cancer treatment. Int J Biol Macromol 2023; 250:125897. [PMID: 37481179 DOI: 10.1016/j.ijbiomac.2023.125897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
In this work, chitosan (CS), Starch (S), and Molybdenum Disulfide (MoS2) were combined to create a nanocarrier that was utilized to treat breast cancer using the MCF-7 cell line. To analyze the features of the nanocarrier, Fourier-transform infrared spectroscopy (FTIR) and X-Ray diffraction (XRD) tests were performed, respectively, to discover physical interactions and chemical bonding. Field emission scanning electron microscopy (FE-SEM), Dynamic light scattering (DLS), and zeta potential analyses were performed and reported to determine the structural characteristics and morphology of nanoparticles, size distribution, and surface charge of nanocarriers, respectively. The average size of the nanocomposite was measured at around 279 nm, and the surface charge of the nanocarrier was determined to be +86.31 mV. The entrapment and drug loading efficiency of nanocarriers were 87.25 % and 46.5 %, respectively, which is an acceptable value. The kinetics and release mode of the drug were investigated, and it was found that the synthesized nanocarrier was sensitive to pH and that its release was stable. The amount of the nanocarriers' toxicity and cell death were evaluated using MTT tests and flow cytometry, respectively. In the present study, the nanocarrier was wholly nontoxic and had anticancer properties against the MCF-7 cell line. This nanocarrier is very important due to its non-toxicity and sensitivity to pH and can be used in drug delivery and medical applications.
Collapse
Affiliation(s)
- Zahra Omrani
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Hamid Rashedi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| |
Collapse
|
7
|
Nashaat D, Elsabahy M, Hassanein KMA, El-Gindy GA, Ibrahim EH. Development and in vivo evaluation of therapeutic phytosomes for alleviation of rheumatoid arthritis. Int J Pharm 2023; 644:123332. [PMID: 37625602 DOI: 10.1016/j.ijpharm.2023.123332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease associated with progressive articular damage, functional loss and comorbidity. Conventional RA therapy requires frequent dosing and prolonged use, and usually results in poor efficacy and severe toxicity. In the current study, for the first time, we describe a combination strategy using phytosomes co-loaded with curcumin (CUR) and leflunomide (LEF) to improve the clinical outcomes of RA therapy. Exploiting 23 factorial design, various compositions of CUR and LEF co-loaded phytosomes (CUR/LEF-phytosomes) were successfully prepared and were extensively characterized (e.g., particle size, zeta potential, drugs encapsulation efficiency, morphology, DSC, FTIR and release kinetics). The optimal CUR/LEF-loaded phytosomes (F2) demonstrated high stability and spherical morphology with a particle size of ca. 760 nm and negative zeta potential value of - 55.7, high entrapment for both drugs, and sustained release profile of the entrapped medications. In vivo, oral administration of the CUR/LEF-phytosomes (F2) in arthritic rats resulted in significant reduction of paw swelling and inflammatory markers, compared to the free drugs and their physical mixture. Histopathological examination revealed significant improvement in phytosomes-treated animal group with no signs of arthritis. CUR/LEF-loaded phytosomes provide an auspicious strategy for alleviation of RA.
Collapse
Affiliation(s)
- Dalia Nashaat
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Mahmoud Elsabahy
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; School of Biotechnology and BUC Research Center, Badr University in Cairo, Badr City, Cairo 11829, Egypt.
| | - Khaled M A Hassanein
- Pathology and Clinical Pathology Department, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Gamal A El-Gindy
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Ehsan H Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
8
|
Hendawy OM, Al-Sanea MM, Elbargisy RM, Rahman HU, Gomaa HAM, Mohamed AAB, Ibrahim MF, Kassem AM, Elmowafy M. Development of Olive Oil Containing Phytosomal Nanocomplex for Improving Skin Delivery of Quercetin: Formulation Design Optimization, In Vitro and Ex Vivo Appraisals. Pharmaceutics 2023; 15:1124. [PMID: 37111610 PMCID: PMC10145320 DOI: 10.3390/pharmaceutics15041124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
The objective of the current work was to fabricate, optimize and assess olive oil/phytosomal nanocarriers to improve quercetin skin delivery. Olive oil/phytosomal nanocarriers, prepared by a solvent evaporation/anti-solvent precipitation technique, were optimized using a Box-Behnken design, and the optimized formulation was appraised for in vitro physicochemical characteristics and stability. The optimized formulation was assessed for skin permeation and histological alterations. The optimized formulation (with an olive oil/PC ratio of 0.166, a QC/PC ratio of 1.95 and a surfactant concentration of 1.6%), and with a particle diameter of 206.7 nm, a zeta potential of -26.3 and an encapsulation efficiency of 85.3%, was selected using a Box-Behnken design. The optimized formulation showed better stability at ambient temperature when compared to refrigerating temperature (4 °C). The optimized formulation showed significantly higher skin permeation of quercetin when compared to an olive-oil/surfactant-free formulation and the control (~1.3-fold and 1.9-fold, respectively). It also showed alteration to skin barriers without remarkable toxicity aspects. Conclusively, this study demonstrated the use of olive oil/phytosomal nanocarriers as potential carriers for quercetin-a natural bioactive agent-to improve its skin delivery.
Collapse
Affiliation(s)
- Omnia M. Hendawy
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | | | - Hidayat Ur Rahman
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Hesham A. M. Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Ahmed A. B. Mohamed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed F. Ibrahim
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11651, Egypt
| | - Abdulsalam M. Kassem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11651, Egypt
| | - Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| |
Collapse
|
9
|
The Effect of Curcumin-Loaded Glucan Nanoparticles on Immune Cells: Size as a Critical Quality Attribute. Pharmaceutics 2023; 15:pharmaceutics15020623. [PMID: 36839945 PMCID: PMC9959491 DOI: 10.3390/pharmaceutics15020623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Curcumin is known for its multiple health benefits, largely due to its antioxidant and anti-inflammatory properties. It has been extensively studied as a therapeutic agent, however, it does not have good clinical efficacy due to its poor water solubility and bioavailability. Despite accepting the encapsulation of this compound in polymeric particles as one of the most promising strategies to increase its therapeutic value, these nanoparticles have fallen short of expectations due to a lack of assessment of their possible adverse effects on the immune system. Therefore, in this work, we report on a new method to encapsulate curcumin into glucan nanoparticles and their effects on cells of the immune system were evaluated. Two different-sized curcumin-loaded glucan NPs (GluCur 100 and GluCur 380) were produced, each with an encapsulation efficiency close to 100%, and were characterized regarding their size distribution, surface properties, and morphology. The results revealed the greatest hemolytic effect and cytotoxicity for the smallest particles (100 nm) tested in human PBMCs and RAW 264.7 cells. Although GluCur 380 NPs showed a weaker ROS production, they were able to inhibit the production of NO by macrophages. Furthermore, we found that the coagulation time was not affected by both sized-particles as well as platelet function. Additionally, both nanoparticles induced lymphocyte proliferation and TNF-α secretion by Mo-DCs. In conclusion, this report emphasizes the importance of the immunotoxicity assessment and how this is dependent on the intrinsic properties of nanomaterials, hopefully contributing to increasing the safety of nanomedicines.
Collapse
|
10
|
In vitro digestibility of Aucklandia costus-loaded nanophytosomes and their use in yoghurt as a food model. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Gong G, Qian W, Zhang L, Jia J, Xie J, Zhu Q, Liu W, Tu P, Gao M, Zhang L, Tang H, Su H, Wei K, Zhou C, Wang KK, Zhang Z, Pan Q. A curcumin-induced assembly of a transferrin nanocarrier system and its antitumor effect. Colloids Surf B Biointerfaces 2022; 217:112613. [DOI: 10.1016/j.colsurfb.2022.112613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 10/17/2022]
|
12
|
Ekrami A, Ghadermazi M, Ekrami M, Hosseini MA, Emam-Djomeh Z, Hamidi-Moghadam R. Development and evaluation of Zhumeria majdae essential oil-loaded nanoliposome against multidrug-resistant clinical pathogens causing nosocomial infection. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Thomas G, Koland M. Composition of Piperine with Enteric-Coated Chitosan Microspheres Enhances the Transepithelial Permeation of Curcumin in Sheep Intestinal Mucosa and Caco-2 Cells. JOURNAL OF HEALTH AND ALLIED SCIENCES NU 2022. [DOI: 10.1055/s-0041-1741417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
Objectives The purpose of this study was to investigate the efficacy of enteric-coated chitosan microspheres with herbal bioenhancer, piperine, as a suitable composition for improving the permeation of curcumin through biological membranes using suitable ex vivo models.
Material and Methods Chitosan microspheres of curcumin and piperine were prepared by an emulsion cross-linking method using glutaraldehydes the cross-linking agent and characterized for size, shape, entrapment efficiency, mucoadhesion, and in vitro release. The effect of piperine on the permeation of curcumin through excised sheep intestinal mucosa and Caco-2-cell monolayer was investigated.
Statistical Analysis The data from permeation studies were analyzed by Student's t-test using Statistical Package for the Social Sciences (SPSS) software (SPSS, Chicago, IL, United States) with p-values <0.05 indicating statistical significance.
Results The formulations showed mucoadhesion for a period of more than 6 hours which was influenced by the chitosan content. The rate of drug release of uncoated formulation followed first-order kinetics, and the mechanism of release was non-Fickian transport. Optimized formulation was coated with a pH-sensitive polymer, Eudragit S-100, by a solvent evaporation technique in different concentrations and evaluated for ex vivo permeation through sheep intestinal mucosa and Caco-2-cell monolayer. Scanning electron microscopy images of the optimized coated formulation showed spherical particles with smooth surfaces. The calculated permeation flux and permeability coefficient of curcumin from microspheres were at least 20% greater in the presence of piperine through the intestinal mucosa and 30% through the Caco-2-cell monolayer model. The permeability coefficient of curcumin from microspheres with piperine was 1.93 × 10 to 5 cm/sec and significantly greater (p < 0.05) than that of microspheres devoid of piperine and from aqueous dispersion (p < 0.005).
Conclusion The study confirmed the contribution of piperine and mucoadhesive microspheres toward improved permeation of curcumin through biological membranes, thereby providing an approach that has the potential of increasing transport through intestinal epithelial cells and possibly enhancing the oral bioavailability of this drug.
Collapse
Affiliation(s)
- Githa Thomas
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Marina Koland
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
14
|
Fathi F, Ebrahimi SN, Prior JAV, Machado SML, Kouchaksaraee RM, Oliveira MBPP, Alves RC. Formulation of Nano/Micro-Carriers Loaded with an Enriched Extract of Coffee Silverskin: Physicochemical Properties, In Vitro Release Mechanism and In Silico Molecular Modeling. Pharmaceutics 2022; 14:112. [PMID: 35057007 PMCID: PMC8781543 DOI: 10.3390/pharmaceutics14010112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 01/27/2023] Open
Abstract
Designing strategies for an effective transformation of food waste into high-value products is a priority to address environmental sustainability concerns. Coffee silverskin is the major by-product of the coffee roasting industry, being rich in compounds with health benefits. Such composition gives it the potential to be transformed into high-value products. In this study, coffee silverskin extracts were enriched, regarding caffeine and chlorogenic acid contents, by adsorbent column chromatography. The compounds content increased 3.08- and 2.75-fold, respectively, compared to the original extract. The enriched fractions were loaded into nano-phytosomes or cholesterol-incorporated nano-phytosomes (first coating layers) to improve the physiochemical properties and permeation rate. These nano-lipid carriers were also subjected to a secondary coating with different natural polymers to improve protection and stability against degradation. In parallel, and for comparison, different natural polymers were also used as first coating layers. The produced particles were evaluated regarding product yield, encapsulation efficiency, loading capacity, particle size, surface charge, and in vitro release simulating gastrointestinal conditions. All samples exhibited anionic surface charge. FTIR and molecular docking confirmed interactions between the phytoconstituents and lipid bilayers. The best docking score was observed for 5-caffeoylquinic acid (chlorogenic acid) exhibiting a stronger hydrogen binding to the lipid bilayer. Among several kinetic models tested, the particle release mechanism fitted well with the First-order, Korsmeyer-Peppas, and Higuchi models. Moreover, most of the formulated particles followed the diffusion-Fick law and anomalous transport.
Collapse
Affiliation(s)
- Faezeh Fathi
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.F.); (S.M.L.M.); (R.M.K.)
| | - Samad N. Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran;
| | - João A. V. Prior
- REQUIMTE/LAQV, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Susana M. L. Machado
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.F.); (S.M.L.M.); (R.M.K.)
| | - Reza Mohsenian Kouchaksaraee
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.F.); (S.M.L.M.); (R.M.K.)
| | - M. Beatriz P. P. Oliveira
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.F.); (S.M.L.M.); (R.M.K.)
| | - Rita C. Alves
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.F.); (S.M.L.M.); (R.M.K.)
| |
Collapse
|
15
|
Rajput A, Pingale P, Telange D, Chalikwar S, Borse V. Lymphatic transport system to circumvent hepatic metabolism for oral delivery of lipid-based nanocarriers. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Susilawati Y, Chaerunisa AY, Purwaningsih H. Phytosome drug delivery system for natural cosmeceutical compounds: Whitening agent and skin antioxidant agent. J Adv Pharm Technol Res 2021; 12:327-334. [PMID: 34820305 PMCID: PMC8588919 DOI: 10.4103/japtr.japtr_100_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 07/27/2020] [Accepted: 01/12/2021] [Indexed: 01/11/2023] Open
Abstract
Plants have been used as traditional medicine since ancient times for treating the diseases, metabolite active compounds from plants have excellent bioactivity, and pharmacological properties from plants are used as skin whitening agent and antioxidant in multiple mechanisms of action. However, these compounds have physicochemical limitations in terms of its poor solubility and penetration into the cells membrane. Phytosome drug delivery system can be the primary choice to improve the physicochemical properties, which allows increasing the effectiveness. This review aimed to summarize and discuss the phytosome formulations of potential active compounds as skin whitening agent and skin antioxidant, which obtained from Scopus, PubMed, and Google Scholar databases. We assessed that the main purpose of these phytosome formulations was to improve penetration, stability, and solubility of the active compounds. These studies proved that phytosome formulations can improve the physicochemical characteristics and effectiveness of compounds. The phytosome drug delivery system becomes a promising modification technique for natural compounds due to the ability to improve the physicochemical properties and increase the effectiveness. Phytosome formulation could be the excellent approach for cosmeceutical product with good effectivity in the future.
Collapse
Affiliation(s)
- Yasmiwar Susilawati
- Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, Indonesia
| | - Anis Yohana Chaerunisa
- Pharmaceutical and Technology Pharmaceutics, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, Indonesia
| | - Hesti Purwaningsih
- Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, Indonesia
| |
Collapse
|
17
|
Rabbani M, Pezeshki A, Ahmadi R, Mohammadi M, Tabibiazar M, Ahmadzadeh Nobari Azar F, Ghorbani M. Phytosomal nanocarriers for encapsulation and delivery of resveratrol- Preparation, characterization, and application in mayonnaise. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Fathi F, Ebrahimi SN, Valadão AIG, Andrade N, Costa ASG, Silva C, Fathi A, Salehi P, Martel F, Alves RC, Oliveira MBPP. Exploring Gunnera tinctoria: From Nutritional and Anti-Tumoral Properties to Phytosome Development Following Structural Arrangement Based on Molecular Docking. Molecules 2021; 26:5935. [PMID: 34641482 PMCID: PMC8512520 DOI: 10.3390/molecules26195935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022] Open
Abstract
Gunnera tinctoria, an underexplored invasive plant found in Azores, Portugal, was studied regarding its nutritional, antioxidant, and antitumoral properties. Higher antioxidant activity was found in baby leaves, followed by adult leaves and inflorescences. A phenolic fraction of the plant was enriched using adsorbent resin column chromatography (DiaionTM HP20LX, and Relite EXA90). Antitumoral effects were observed with the enriched fractions in breast (MCF-7) and pancreatic (AsPC-1) cancer cell lines, being more pronounced in the latter. To improve protection and membrane absorption rates of phenolic compounds, nano-phytosomes and cholesterol-conjugated phytosomes coated with natural polymers were loaded with the enriched fraction. The particles were characterized, and their physiochemical properties were evaluated and compared. All samples presented anionic charge and nanometer size in relation to the inner layer and micrometer size regarding the external layers. In addition, the molecular arrangement of phenolics within both types of phytosomes were studied for the first time by molecular docking. Polarity and molecular size were key factors on the molecular arrangement of the lipid bilayer. In conclusion, G. tinctoria showed to be an interesting source of nutrients and phenolic compounds with anti-tumoral potential. Moreover, phytosome loading with these compounds can increase their stability and bioavailability having in view future applications.
Collapse
Affiliation(s)
- Faezeh Fathi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran 1983969411, Iran; (F.F.); (S.N.E.); (P.S.)
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira No. 280, 4050-313 Porto, Portugal; (A.I.G.V.); (N.A.); (A.S.G.C.); (R.C.A.)
| | - Samad N. Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran 1983969411, Iran; (F.F.); (S.N.E.); (P.S.)
| | - Ana I. G. Valadão
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira No. 280, 4050-313 Porto, Portugal; (A.I.G.V.); (N.A.); (A.S.G.C.); (R.C.A.)
| | - Nelson Andrade
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira No. 280, 4050-313 Porto, Portugal; (A.I.G.V.); (N.A.); (A.S.G.C.); (R.C.A.)
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (C.S.); (F.M.)
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Anabela S. G. Costa
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira No. 280, 4050-313 Porto, Portugal; (A.I.G.V.); (N.A.); (A.S.G.C.); (R.C.A.)
| | - Cláudia Silva
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (C.S.); (F.M.)
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Alireza Fathi
- Sana Technologists Segal Private Company (STM), Ashrafi Esfahani, Tehran 1469963811, Iran;
| | - Peyman Salehi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran 1983969411, Iran; (F.F.); (S.N.E.); (P.S.)
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (C.S.); (F.M.)
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Rita C. Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira No. 280, 4050-313 Porto, Portugal; (A.I.G.V.); (N.A.); (A.S.G.C.); (R.C.A.)
| | - Maria Beatriz P. P. Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira No. 280, 4050-313 Porto, Portugal; (A.I.G.V.); (N.A.); (A.S.G.C.); (R.C.A.)
| |
Collapse
|
19
|
Annisa R, Yuwono M, Hendradi E. Formulation and characterization of Eleutherine palmifolia extract-loaded self-nanoemulsifying drug delivery system (SNEDDS). J Basic Clin Physiol Pharmacol 2021; 32:859-865. [PMID: 34214309 DOI: 10.1515/jbcpp-2020-0400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/19/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES This study aimed to determine the effect of different components and ratios of oil, surfactant, and cosurfactant on E. palmifolia extract-loaded SNEDDS. METHODS E. palmifolia extract loaded SNEDDS was formulated from virgin coconut oil, Miglyol 812 as oil, using Tween 80 and Transcutol as surfactants, as well as propylene glycol and PEG 400 as cosurfactants. The optimization design formula consisted of eight design formulas in five ratio formulas, thus a total of 40 formulas were optimized using different components and ratios of oil, surfactant, and cosurfactant. These ratios used were 1:1:1, 1:2:1, 1:3:1, 1:4:1, as well as 1:5:1, and the formula's components were determined based on the optimization results. RESULTS The optimal formula of E. palmifolia extract loaded SNEDDS had the ratio 1:1:1 (formula A) of Miglyol 812:Tween 80:PEG 400 and 1:3:1 (formula E) of Miglyol 812:Tween 80:propylene glycol. Meanwhile, the optimal formulation characteristics showed a transmittance value above 90%, pH range of 5.10-5.20, 2.21-14.51 cP viscosity, emulsification time below 120 s, and particle size of 24.71-136.77 nm. CONCLUSIONS The optimal formula of E. palmifolia extract-loaded SNEDDS, were obtained using different components and ratios. These are Miglyol:Tween 80:PEG 400 at a component ratio of 1:1:1 (formula A) and Miglyol 812:Tween 80:propylene glycol at a component ratio of 1:3:1 (formula E).
Collapse
Affiliation(s)
- Rahmi Annisa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia.,Department of Pharmacy, Faculty of Medicine and Health Science, Universitas Islam Negeri Maulana Malik Ibrahim, Malang, Indonesia
| | - Mochammad Yuwono
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Esti Hendradi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
20
|
Gaafar PME, El-Salamouni NS, Farid RM, Hazzah HA, Helmy MW, Abdallah OY. Pegylated liquisomes: A novel combined passive targeting nanoplatform of L-carnosine for breast cancer. Int J Pharm 2021; 602:120666. [PMID: 33933646 DOI: 10.1016/j.ijpharm.2021.120666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 01/02/2023]
Abstract
PEGylated Liquisomes (P-Liquisomes), a novel drug delivery system was designed for the first time by incorporating phospholipid complex in PEGylated liquid crystalline nanoparticles (P-LCNPs). L-carnosine (CN), a challenging dipeptide, has proven to be a promising anti-cancer drug. However, it exhibits high water solubility and extensive in-vivo degradation that halts its use. The objective of this work was to investigate the ability of our novel system to improve the CN anticancer activity by prolonging it's release and protecting it in-vivo. In-vitro appraisal revealed spherical light-colored vesicles encapsulated in the liquid crystals, confirming the successful formation of the combined system. P-Liquisomes were nano-sized (149.3 ± 1.4 nm), with high ZP (-40.2 ± 1.5 mV), complexation efficiency (97.5 ± 0.9%) and outstanding sustained release of only 75.4% released after 24 h, compared to P-LCNPs and Phytosomes. The results obtained with P-Liquisomes are considered as a break through compared to P-LCNPs or Phytosomes alone, especially when dealing with the hydrophilic CN. In-vitro cytotoxicity evaluation, revealed superior cytotoxic effect of P-Liquisomes (IC50 = 25.9) after 24 h incubation. Besides, P-Liquisomes proved to be non-toxic in-vivo and succeeded to show superior chemopreventive activity manifested by reduction of; % tumor growth (7.1%), VEGF levels (14.3 pg/g tissue), cyclin D1 levels 15.5 ng/g tissue and elevation in caspase-3 level (36.4 ng/g tissue), compared to Phytosomes and CN solution. Conclusively, P-Liquisomes succeded to achieve the maximum therapeutic outcome of CN without altering its activity and might be used as a sustained delivery system for other promising hydrophilic compounds.
Collapse
Affiliation(s)
- Passent M E Gaafar
- Department of Pharmaceutics, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt.
| | - Noha S El-Salamouni
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Ragwa M Farid
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Heba A Hazzah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Maged W Helmy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
21
|
Lipid nanovesicles for biomedical applications: 'What is in a name'? Prog Lipid Res 2021; 82:101096. [PMID: 33831455 DOI: 10.1016/j.plipres.2021.101096] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/28/2021] [Accepted: 03/28/2021] [Indexed: 12/12/2022]
Abstract
Vesicles, generally defined as self-assembled structures formed by single or multiple concentric bilayers that surround an aqueous core, have been widely used for biomedical applications. They can either occur naturally (e.g. exosomes) or be produced artificially and range from the micrometric scale to the nanoscale. One the most well-known vesicle is the liposome, largely employed as a drug delivery nanocarrier. Liposomes have been modified along the years to improve physicochemical and biological features, resulting in long-circulating, ligand-targeted and stimuli-responsive liposomes, among others. In this process, new nomenclatures were reported in an extensive literature. In many instances, the new names suggest the emergence of a new nanocarrier, which have caused confusion as to whether the vesicles are indeed new entities or could simply be considered modified liposomes. Herein, we discussed the extensive nomenclature of vesicles based on the suffix "some" that are employed for drug delivery and composed of various types and proportions of lipids and others amphiphilic compounds. New names have most often been selected based on changes of vesicle lipid composition, but the payload, structural complexity (e.g. multicompartment) and new/improved proprieties (e.g. elasticity) have also inspired new vesicle names. Based on this discussion, we suggested a rational classification for vesicles.
Collapse
|
22
|
Singh AK, Singh A. Preparation, Characterization and In Vitro Antioxidant Potential of Boldine-phospholipid Complex. CURRENT DRUG THERAPY 2021. [DOI: 10.2174/1574885515999201021165556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Boldine, is an aporphine alkaloid that possesses potent antioxidant activity.
Despite having enormous potential, the clinical application of boldine was restricted because of its
poor bioavailability attributed to its poor aqueous solubility and rapid clearance from the body. The
drug phospholipid complexation techniques were frequently employed to overcome the limitation of
low bioavailability of phytoconstituents/herbal extract.
Objective:
The boldine phospholipid complex (BOL-PC) formulation was developed for enhancing
antioxidant potential of boldine by preparing its phospholipid complex.
Methods:
Boldine loaded phospholipid (BOL-PC) complex was prepared by refluxing followed by
solvent evaporation method and subjected to various physicochemical and spectral analysis. Further,
the in-vitro antioxidant activity was evaluated by DPPH free radical scavenging method.
Results:
The formation of the complex was confirmed by 1H NMR and thermal analysis. SEM and PXRD revealed partial
amorphization of drug in complex formed. The BOL-PC dissolution rate and solubility was significantly improved
compared to the parent compound. The maximum % yield and % EE was found to be 95.92± 0.01732 and 95.89±0.3502
respectively in the optimized formulation (F3) which exhibited concentration-dependent antioxidant property.
Conclusion:
It was concluded from the study that the phospholipid complexation of boldine has better
antioxidant potential and improved the solubility, dissolution profile which may facilitate its oral absorption
and enhances its chances for clinical application.
Collapse
Affiliation(s)
- Arun Kumar Singh
- Research Scholar, Department of Pharmaceutical Sciences Bhimtal Campus, Kumaun University, Nainital Uttarakhand,India
| | - Anita Singh
- Department of Pharmaceutical Sciences Bhimtal Campus, Kumaun University, Nainital Uttarakhand,India
| |
Collapse
|
23
|
Use of combined nanocarrier system based on chitosan nanoparticles and phospholipids complex for improved delivery of ferulic acid. Int J Biol Macromol 2021; 171:288-307. [PMID: 33418046 DOI: 10.1016/j.ijbiomac.2020.12.211] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 02/05/2023]
Abstract
A novel nanocarrier system of phospholipids complex loaded chitosan nanoparticles (FAPLC CNPs) was developed to improve the oral bioavailability and antioxidant potential of FA. FAPLC CNPs were optimized using a Box-Behnken Design (BBD). FAPLC CNPs were characterized using differential scanning calorimetry, Fourier transforms infrared spectroscopy, powder x-ray diffractometry, proton nuclear magnetic resonance, solubility, in vitro dissolution, ex vivo permeation, and in vivo antioxidant activity in carbon tetrachloride (CCl4)-induced albino rat model. The characterization studies indicated a formation of the complex as well as FAPLC CNPs. The FAPLC CNPs exhibited a lower particle size ~123.27 nm, PDI value ~0.31, and positive zeta potential ~32 mV respectively. Functional characterization studies revealed a significant improvement in the aqueous solubility, dissolution, and permeation rate of FAPLC and FAPLC CNPs compared to FA and FA CNPs. The FAPLC CNPs showed significant enhancement of in vivo antioxidant activity of FA by restoring the elevated marker enzymes in the CCl4-intoxicated rat model compared to FA CNPs. Moreover, the pharmacokinetic analysis demonstrated a significant enhancement of oral bioavailability of FA from FAPLC CNPs compared to FA CNPs. These findings show that FAPLC CNPs could be used as an effective nanocarrier for improving the oral delivery of FA.
Collapse
|
24
|
Magri A, Petriccione M, Cerqueira MA, Gutiérrez TJ. Self-assembled lipids for food applications: A review. Adv Colloid Interface Sci 2020; 285:102279. [PMID: 33070103 DOI: 10.1016/j.cis.2020.102279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Lipids play an important role in human nutrition. Several foodstuffs can be manufactured from the simple, compound and derived lipids. In particular, the use of self-assembled lipids (SLs, e.g. self-assembled L-α-lecithin) has brought great attention for the development of tailored, tuned and targeted colloidal structures loading degradation-sensitive substances with valuable antimicrobial, antioxidant and nutraceutical properties for food applications. For example, polyunsaturated fatty acids (PUFAs) and essential oils can be protected from degradation, thus improving their bioavailability in general terms in consumers. From a nanotechnological point of view, SLs allow the development of advanced and multifaceted architectures, in which each molecule of them are used as building blocks to obtain designed and ordered structures. It is important to note before beginning this review, that simple and compound lipids are the main SLs, while essential fatty acids and derived lipids in general have been considered by many research groups as the bulk loaded substances within several structures from self-assembled carbohydrates, proteins and lipids. However, this review paper is addressed on the analysis of the lipid-lipid self-assembly. Lipids can be self-assembled into various structures (micelles, vesicular systems, lyotropic liquid crystals, oleogels and films) to be used in different food applications: coatings, controlled and sustained release materials, emulsions, functional foods, etc. SLs can be obtained via non-covalent chemical interactions, primarily by hydrogen, hydrophilic and ionic bonding, which are influenced by the conditions of ionic strength, pH, temperature, among others. This manuscript aims to give an analysis of the specific state-of-the-art of SLs for food applications, based primarily on the literature reported in the past five years.
Collapse
|
25
|
Yang B, Dong Y, Wang F, Zhang Y. Nanoformulations to Enhance the Bioavailability and Physiological Functions of Polyphenols. Molecules 2020; 25:E4613. [PMID: 33050462 PMCID: PMC7587200 DOI: 10.3390/molecules25204613] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
Polyphenols are micronutrients that are widely present in human daily diets. Numerous studies have demonstrated their potential as antioxidants and anti-inflammatory agents, and for cancer prevention, heart protection and the treatment of neurodegenerative diseases. However, due to their vulnerability to environmental conditions and low bioavailability, their application in the food and medical fields is greatly limited. Nanoformulations, as excellent drug delivery systems, can overcome these limitations and maximize the pharmacological effects of polyphenols. In this review, we summarize the biological activities of polyphenols, together with systems for their delivery, including phospholipid complexes, lipid-based nanoparticles, protein-based nanoparticles, niosomes, polymers, micelles, emulsions and metal nanoparticles. The application of polyphenol nanoparticles in food and medicine is also discussed. Although loading into nanoparticles solves the main limitation to application of polyphenolic compounds, there are some concerns about their toxicological safety after entry into the human body. It is therefore necessary to conduct toxicity studies and residue analysis on the carrier.
Collapse
Affiliation(s)
| | | | | | - Yu Zhang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; (B.Y.); (Y.D.); (F.W.)
| |
Collapse
|
26
|
Grgić J, Šelo G, Planinić M, Tišma M, Bucić-Kojić A. Role of the Encapsulation in Bioavailability of Phenolic Compounds. Antioxidants (Basel) 2020; 9:E923. [PMID: 32993196 PMCID: PMC7601682 DOI: 10.3390/antiox9100923] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Plant-derived phenolic compounds have multiple positive health effects for humans attributed to their antioxidative, anti-inflammatory, and antitumor properties, etc. These effects strongly depend on their bioavailability in the organism. Bioaccessibility, and consequently bioavailability of phenolic compounds significantly depend on the structure and form in which they are introduced into the organism, e.g., through a complex food matrix or as purified isolates. Furthermore, phenolic compounds interact with other macromolecules (proteins, lipids, dietary fibers, polysaccharides) in food or during digestion, which significantly influences their bioaccessibility in the organism, but due to the complexity of the mechanisms through which phenolic compounds act in the organism this area has still not been examined sufficiently. Simulated gastrointestinal digestion is one of the commonly used in vitro test for the assessment of phenolic compounds bioaccessibility. Encapsulation is a method that can positively affect bioaccessibility and bioavailability as it ensures the coating of the active component and its targeted delivery to a specific part of the digestive tract and controlled release. This comprehensive review aims to present the role of encapsulation in bioavailability of phenolic compounds as well as recent advances in coating materials used in encapsulation processes. The review is based on 258 recent literature references.
Collapse
Affiliation(s)
| | | | | | | | - Ana Bucić-Kojić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia; (J.G.); (G.Š.); (M.P.); (M.T.)
| |
Collapse
|
27
|
Molaveisi M, Shahidi‐Noghabi M, Naji‐Tabasi S. Vitamin
D3
‐loaded
nanophytosomes
for enrichment purposes: Formulation, structure optimization, and controlled release. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Mohammad Molaveisi
- Department of Food Chemistry Research Institute of Food Science and Technology (RIFST) Mashhad Iran
| | - Mostafa Shahidi‐Noghabi
- Department of Food Chemistry Research Institute of Food Science and Technology (RIFST) Mashhad Iran
| | - Sara Naji‐Tabasi
- Department of Food Nanotechnology Research Institute of Food Science and Technology (RIFST) Mashhad Iran
| |
Collapse
|
28
|
Green synthesis of gold nanoparticles coated doxorubicin liposomes using procyanidins for light–controlled drug release. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Phospholipid complex-loaded self-assembled phytosomal soft nanoparticles: evidence of enhanced solubility, dissolution rate, ex vivo permeability, oral bioavailability, and antioxidant potential of mangiferin. Drug Deliv Transl Res 2020; 11:1056-1083. [PMID: 32696222 DOI: 10.1007/s13346-020-00822-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this study, self-assembled phytosomal soft nanoparticles encapsulated with phospholipid complex (MPLC SNPs) using a combination of solvent evaporation and nanoprecipitation method were developed to enhance the biopharmaceutical and antioxidant potential of MGN. The mangiferin-Phospholipon® 90H complex (MPLC) was produced by the solvent evaporation method and optimized using central composite design (CCD). The optimized MPLC was converted into MPLC SNPs using the nanoprecipitation method. The physicochemical and functional characterization of MPLC and MPLC SNPs was carried out by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), powder X-ray diffractometer (PXRD), proton nuclear magnetic resonance (1H-NMR), solubility, in vitro dissolution, oral bioavailability, and in vivo antioxidant studies. A CCD formed stable MPLC with the optimal values of 1:1.76, 50.55 °C, and 2.02 h, respectively. Characterization studies supported the formation of a complex. MPLC and MPLC SNPs both enhanced the aqueous solubility (~ 32-fold and ~ 39-fold), dissolution rate around ~ 98% via biphasic release pattern, and permeation rate of ~ 97%, respectively, compared with MGN and MGN SNPs. Liver function tests and in vivo antioxidant studies exhibited that MPLC SNPs significantly preserved the CCl4-intoxicated liver marker and antioxidant marker enzymes, compared with MGN SNPs. The oral bioavailability of MPLC SNPs was increased appreciably up to ~ 10-fold by increasing the main pharmacokinetic parameters such as Cmax, Tmax, and AUC. Thus, MPLC SNPs could be engaged as a nanovesicle delivery system for improving the biopharmaceutical and antioxidant potential of MGN. Graphical abstract.
Collapse
|
30
|
Agrawal S, Yallatikar T, Gurjar P. Brassica Nigra: Ethopharmacological Review of a Routinely Used Condiment. Curr Drug Discov Technol 2020. [PMID: 29521240 DOI: 10.2174/1570163815666180308143400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Brassica nigra belonging to the family Brassicaceae (syn - black mustard) comprises of dried seeds and is widely cultivated in Mediterranean region and various other countries like India and Europe. The Plant is neither reported in any official book nor reported systematically for pharmacological effects. METHODS We undertook a structured search of all the official books including pharmacopoeias and ayurvedic textbooks. The data was collected, sorted and compiled to bring the chemical constituents and uses of B. nigra. RESULTS B. nigra contains glycosinolates which undergoes hydrolysis in the presence of myrosinase enzyme yields allyl isothiocyante. The bitter taste and pungent odor is due to the isothiocyanates. B. Nigra shows various activities that are medically important such as anticancer, anti-bacterial, antifungal, anti-helminthic, protection against renal and hepatic toxicity and can also be used in diabetes treatment. Black mustards are also used in cardiovascular and neurological disorders. CONCLUSION The present review explores the historical background including the macroscopic and microscopic characteristics, chemical constituents, pharmacological action, various evaluation parameters, formulations and uses of black mustard.
Collapse
Affiliation(s)
- Surendra Agrawal
- Department of Quality Assurance, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Vile Parle (West), Mumbai 400056, India
| | - Tapasya Yallatikar
- Department of Quality Assurance, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Vile Parle (West), Mumbai 400056, India
| | - Pravina Gurjar
- Quality Assurance, Sharadchandra Pawar College of Pharmacy, Otur, Dist: Pune, Maharashtra, India
| |
Collapse
|
31
|
A pilot study of the effect of curcumin on epigenetic changes and DNA damage among patients with non-alcoholic fatty liver disease: A randomized, double-blind, placebo-controlled, clinical trial. Complement Ther Med 2020; 51:102447. [PMID: 32507446 DOI: 10.1016/j.ctim.2020.102447] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/15/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The enhancement of oxidative stress in non-alcoholic fatty liver disease (NAFLD) patients may cause mutation in DNA by deamination of cytosine to 5-hydroxyuracil or uracil. This study aimed to discover the effects of curcumin on NAFLD progress, DNA damage caused by oxidative stress, and promoter methylation of mismatch repair enzymes. MATERIAL AND METHODS in this study, 54 NAFLD patients were randomly devided into two groups, according to a double blind parallel design either phytosomal curcumin (250 mg/day) or placebo for 8 weeks. Fasting blood samples and anthropometric measures were taken twice, once at the baseline and once at the end of the study. Promoter methylation and 8-hydroxy-2' -deoxyguanosine (8-OHdG) concentration as DNA damage mediator were measured by restriction enzymes and enzyme-linked immunosorbent assay, respectively. RESULT Analysis was performed on 44 patients. According to our between groups analysis, curcumin significantly reduced the methylation in MutL homolog 1 (MLH1) and MutS homolog 2 (MSH2) promoter regions. The within-group comparison revealed that anthropometric variables significantly decreased. However, the result of the between groups comparison indicated no significant changes in the anthropometric variables except for BMI. Liver enzymes and 8-OHdG did not significantly change at the end of the study, neither in curcumin group nor in placebo group. CONCLUSION Curcumin might be able to reduce the risk of mismatch base pair in DNA among the NAFLD patients. However, it did not change the DNA damage mediator and liver enzymes. For confirming these results, more studies with longer duration, more numbers of examined genes, higher dose of curcumin, and larger sample size are required.
Collapse
|
32
|
Huang Z, Brennan CS, Zhao H, Liu J, Guan W, Mohan MS, Stipkovits L, Zheng H, Kulasiri D. Fabrication and assessment of milk phospholipid-complexed antioxidant phytosomes with vitamin C and E: A comparison with liposomes. Food Chem 2020; 324:126837. [PMID: 32339791 DOI: 10.1016/j.foodchem.2020.126837] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 11/17/2022]
Abstract
Evidences have shown that phytosome assemblies are novel drug delivery system. However, studies of phytosomes in food applications are scarce. The characteristics of milk phospholipid assemblies and their functionality in terms of in vitro digestibility and bioavailability of encapsulated nutrients (ascorbic acid and α-tocopherol) were studied. The phytosomes were fabricated using ethanolic evaporation technique. Spectral analysis revealed that polar parts of phospholipids formed hydrogen bonds with ascorbic acid hydroxyl groups, further, incorporating ascorbic acid or α-tocopherol into the phospholipid assembly changed the chemical conformation of the complexes. Phospholipid-ascorbic acid phytosomes yielded an optimal complexing index of 98.52 ± 0.03% at a molar ratio of 1:1. Phytosomes exhibited good biocompatibility on intestinal epithelial cells. The cellular uptake of ascorbic acid was 29.06 ± 1.18% for phytosomes. It was higher than that for liposomes (24.14 ± 0.60%) and for ascorbic acid aqueous solution (1.17 ± 0.70%).
Collapse
Affiliation(s)
- Zhiguang Huang
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Christchurch 7647, New Zealand; Riddet Research Institute, Palmerston North 4442, New Zealand
| | - Charles Stephen Brennan
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Christchurch 7647, New Zealand; Riddet Research Institute, Palmerston North 4442, New Zealand.
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Jianfu Liu
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Wenqiang Guan
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| | - Maneesha S Mohan
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Christchurch 7647, New Zealand
| | - Letitia Stipkovits
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Christchurch 7647, New Zealand
| | - Haotian Zheng
- Department of Food, Bioprocessing and Nutrition Sciences, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh, NC 27695, United States; Dairy Innovation Institute, California Polytechnic State University, San Luis Obispo, CA 93407, United States
| | - Don Kulasiri
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Christchurch 7647, New Zealand
| |
Collapse
|
33
|
Hasan M, Elkhoury K, Belhaj N, Kahn C, Tamayol A, Barberi-Heyob M, Arab-Tehrany E, Linder M. Growth-Inhibitory Effect of Chitosan-Coated Liposomes Encapsulating Curcumin on MCF-7 Breast Cancer Cells. Mar Drugs 2020; 18:E217. [PMID: 32316578 PMCID: PMC7230998 DOI: 10.3390/md18040217] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/04/2020] [Accepted: 04/13/2020] [Indexed: 12/16/2022] Open
Abstract
Current anticancer drugs exhibit limited efficacy and initiate severe side effects. As such, identifying bioactive anticancer agents that can surpass these limitations is a necessity. One such agent, curcumin, is a polyphenolic compound derived from turmeric, and has been widely investigated for its potential anti-inflammatory and anticancer effects over the last 40 years. However, the poor bioavailability of curcumin, caused by its low absorption, limits its clinical use. In order to solve this issue, in this study, curcumin was encapsulated in chitosan-coated nanoliposomes derived from three natural lecithin sources. Liposomal formulations were all in the nanometric scale (around 120 nm) and negatively charged (around -40 mV). Among the three lecithins, salmon lecithin presented the highest growth-inhibitory effect on MCF-7 cells (two times lower growth than the control group for 12 µM of curcumin and four times lower for 20 µM of curcumin). The soya and rapeseed lecithins showed a similar growth-inhibitory effect on the tumor cells. Moreover, coating nanoliposomes with chitosan enabled a higher loading efficiency of curcumin (88% for coated liposomes compared to 65% for the non-coated liposomes) and a stronger growth-inhibitory effect on MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Mahmoud Hasan
- LIBio, Université de Lorraine, F-54000 Nancy, France; (M.H.); (K.E.); (N.B.); (C.K.)
| | - Kamil Elkhoury
- LIBio, Université de Lorraine, F-54000 Nancy, France; (M.H.); (K.E.); (N.B.); (C.K.)
| | - Nabila Belhaj
- LIBio, Université de Lorraine, F-54000 Nancy, France; (M.H.); (K.E.); (N.B.); (C.K.)
| | - Cyril Kahn
- LIBio, Université de Lorraine, F-54000 Nancy, France; (M.H.); (K.E.); (N.B.); (C.K.)
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | | | - Elmira Arab-Tehrany
- LIBio, Université de Lorraine, F-54000 Nancy, France; (M.H.); (K.E.); (N.B.); (C.K.)
| | - Michel Linder
- LIBio, Université de Lorraine, F-54000 Nancy, France; (M.H.); (K.E.); (N.B.); (C.K.)
| |
Collapse
|
34
|
Peng Y, Chen L, Ye S, Kang Y, Liu J, Zeng S, Yu L. Research and development of drug delivery systems based on drug transporter and nano-formulation. Asian J Pharm Sci 2020; 15:220-236. [PMID: 32373201 PMCID: PMC7193453 DOI: 10.1016/j.ajps.2020.02.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/16/2020] [Accepted: 02/29/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, the continuous occurrence of multi-drug resistance in the clinic has made people pay more attention to the transporter. Changes in the expression and activity of transporters can cause corresponding changes in drug pharmacokinetics and pharmacodynamics. The drug-drug interactions (DDI) caused by transporters can seriously affect drug effectiveness and toxicity. In the development of pharmaceutical preparations, people have increasingly concerned about the effects and regulation of transporters in drug effects. To improve the targeting and physicochemical properties of drugs, the development of targeted agents is very rapid. Among them, novel nano-formulations are the best. With the continuous innovation and development of nano-formulation, its application has become more and more extensive. Nano-formulation has exerted certain advantages in the drug development based on transporters, and is also involved in the combination of targeted transporters. This review focuses on the application of novel nano-agents targeting transporters and the introduction of drug-transporter-based nano-formulations.
Collapse
Affiliation(s)
- Yi Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lu Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng Ye
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yu Kang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junqing Liu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Su Zeng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lushan Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
35
|
Rashid M, Malik MY, Singh SK, Chaturvedi S, Gayen JR, Wahajuddin M. Bioavailability Enhancement of Poorly Soluble Drugs: The Holy Grail in Pharma Industry. Curr Pharm Des 2019; 25:987-1020. [DOI: 10.2174/1381612825666190130110653] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/24/2019] [Indexed: 02/07/2023]
Abstract
Background:
Bioavailability, one of the prime pharmacokinetic properties of a drug, is defined as the
fraction of an administered dose of unchanged drug that reaches the systemic circulation and is used to describe
the systemic availability of a drug. Bioavailability assessment is imperative in order to demonstrate whether the
drug attains the desirable systemic exposure for effective therapy. In recent years, bioavailability has become
the subject of importance in drug discovery and development studies.
Methods:
A systematic literature review in the field of bioavailability and the approaches towards its enhancement
have been comprehensively done, purely focusing upon recent papers. The data mining was performed
using databases like PubMed, Science Direct and general Google searches and the collected data was exhaustively
studied and summarized in a generalized manner.
Results:
The main prospect of this review was to generate a comprehensive one-stop summary of the numerous
available approaches and their pharmaceutical applications in improving the stability concerns, physicochemical
and mechanical properties of the poorly water-soluble drugs which directly or indirectly augment their bioavailability.
Conclusion:
The use of novel methods, including but not limited to, nano-based formulations, bio-enhancers,
solid dispersions, lipid-and polymer-based formulations which provide a wide range of applications not only
increases the solubility and permeability of the poorly bioavailable drugs but also improves their stability, and
targeting efficacy. Although, these methods have drastically changed the pharmaceutical industry demand for the
newer potential methods with better outcomes in the field of pharmaceutical science to formulate various dosage
forms with adequate systemic availability and improved patient compliance, further research is required.
Collapse
Affiliation(s)
- Mamunur Rashid
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | - Mohd Yaseen Malik
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | - Sandeep K. Singh
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | - Swati Chaturvedi
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | - Jiaur R Gayen
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | | |
Collapse
|
36
|
Pavan Rudhrabatla V, Jalababu R, Krishna Rao K, Suresh Reddy K. Fabrication and characterisation of curcumin loaded pH dependent sodium alginate-g-poly(acryloyl phenylalanine)-cl-ethylene glycol vinyl ether-co- hydroxyethyl acrylate hydrogels and their in-vitro, in-vivo and toxicological evaluation studies. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
Hasan M, Elkhoury K, Kahn CJF, Arab-Tehrany E, Linder M. Preparation, Characterization, and Release Kinetics of Chitosan-Coated Nanoliposomes Encapsulating Curcumin in Simulated Environments. Molecules 2019; 24:E2023. [PMID: 31137865 PMCID: PMC6572090 DOI: 10.3390/molecules24102023] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 11/16/2022] Open
Abstract
Curcumin, a natural polyphenol, has many biological properties, such as anti-inflammatory, antioxidant, and anti-carcinogenic properties, yet, its sensitivity to light, oxygen, and heat, and its low solubility in water renders its preservation and bioavailability challenging. To increase its bioaccessibility, we fabricated nanoliposomes and chitosan-coated nanoliposomes encapsulating curcumin, and we evaluated the systems in terms of their physicochemical characteristics and release profiles in simulated gastrointestinal mediums. Chitosan-coating enhanced the stability of nanoliposomes and slowed the release of curcumin in the simulated gastrointestinal (GI) environment. This study demonstrates that nanoliposomes and chitosan-coated nanoliposomes are promising carriers for poorly soluble lipophilic compounds with low oral bioavailability, such as curcumin.
Collapse
Affiliation(s)
- Mahmoud Hasan
- Laboratoire D'ingénierie des Biomolécules, Université de Lorraine, EA 4367, France.
| | - Kamil Elkhoury
- Laboratoire D'ingénierie des Biomolécules, Université de Lorraine, EA 4367, France.
| | - Cyril J F Kahn
- Laboratoire D'ingénierie des Biomolécules, Université de Lorraine, EA 4367, France.
| | - Elmira Arab-Tehrany
- Laboratoire D'ingénierie des Biomolécules, Université de Lorraine, EA 4367, France.
| | - Michel Linder
- Laboratoire D'ingénierie des Biomolécules, Université de Lorraine, EA 4367, France.
| |
Collapse
|
38
|
Keivani Nahr F, Ghanbarzadeh B, Hamishehkar H, Kafil HS, Hoseini M, Moghadam BE. Investigation of physicochemical properties of essential oil loaded nanoliposome for enrichment purposes. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
39
|
Telange DR, Nirgulkar SB, Umekar MJ, Patil AT, Pethe AM, Bali NR. Enhanced transdermal permeation and anti-inflammatory potential of phospholipids complex-loaded matrix film of umbelliferone: Formulation development, physico-chemical and functional characterization. Eur J Pharm Sci 2019; 131:23-38. [DOI: 10.1016/j.ejps.2019.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 10/27/2022]
|
40
|
Luo C, Yang Q, Lin X, Qi C, Li G. Preparation and drug release property of tanshinone IIA loaded chitosan-montmorillonite microspheres. Int J Biol Macromol 2019; 125:721-729. [DOI: 10.1016/j.ijbiomac.2018.12.072] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 12/22/2022]
|
41
|
Saheb M, Fereydouni N, Nemati S, Barreto GE, Johnston TP, Sahebkar A. Chitosan-based delivery systems for curcumin: A review of pharmacodynamic and pharmacokinetic aspects. J Cell Physiol 2019; 234:12325-12340. [PMID: 30697728 DOI: 10.1002/jcp.28024] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/26/2018] [Indexed: 12/24/2022]
Abstract
Effective drug delivery is one of the most important issues associated with the administration of therapeutic agents that have low oral bioavailability. Curcumin is an active ingredient in the turmeric plant, which has low oral bioavailability due to its poor aqueous solubility. One strategy that has been considered for enhancing the aqueous solubility, and, thus, its oral bioavailability, is the use of chitosan as a carrier for curcumin. Chitosan is a biodegradable and biocompatible polymer that is relatively water-soluble. Therefore, various studies have sought to improve the aqueous solubility of chitosan. The use of different pharmaceutical excipients and formulation strategies has the potential to improve aqueous solubility, formulation processing, and the overall delivery of hydrophobic drugs. This review focuses on various methods utilized for chitosan-based delivery of curcumin.
Collapse
Affiliation(s)
- Mahsa Saheb
- Department of Basic Science, Islamic Azad University of Damghan, Damghan, Iran
| | - Narges Fereydouni
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeideh Nemati
- Department of Basic Science, Islamic Azad University of Damghan, Damghan, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri, Kansas City, Missouri
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
42
|
|
43
|
Hesari A, Azizian M, Sheikhi A, Nesaei A, Sanaei S, Mahinparvar N, Derakhshani M, Hedayt P, Ghasemi F, Mirzaei H. Chemopreventive and therapeutic potential of curcumin in esophageal cancer: Current and future status. Int J Cancer 2018; 144:1215-1226. [PMID: 30362511 DOI: 10.1002/ijc.31947] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 09/15/2018] [Accepted: 10/10/2018] [Indexed: 12/15/2022]
Abstract
Esophageal cancer is a common malignant tumor with an increasing trend during the past three decades. Currently, esophagectomy, often in combination with neoadjuvant chemo- and radiotherapy, is the cornerstone of curative treatment for esophageal cancer. However, esophagostomy is related to significant risks of perioperative mortality and morbidity, as well as lengthy recovery. Moreover, the adjuvant therapies including chemotherapy and radiotherapy are associated with numerous side effects, limiting compliance and outcome. The dietary agent curcumin has been extensively studied over the past few decades and is known to have many biological activities especially in regard to the prevention and potential treatment of cancer. This review summarizes the chemo-preventive and chemotherapeutic potential of curcumin in esophageal cancer in both preclinical and clinical settings.
Collapse
Affiliation(s)
- AmirReza Hesari
- Molecular and Medicine Research Center, Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mitra Azizian
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Alireza Sheikhi
- Department of Medical Biochemistry, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Abolfazl Nesaei
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Shahin Sanaei
- General Practitioner, Medical Researcher, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nazanin Mahinparvar
- General Practitioner, Medical Researcher, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Pegah Hedayt
- Department of Pathology, Medical University of Isfahan, Isfahan, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
44
|
Song W, Su X, Gregory DA, Li W, Cai Z, Zhao X. Magnetic Alginate/Chitosan Nanoparticles for Targeted Delivery of Curcumin into Human Breast Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E907. [PMID: 30400634 PMCID: PMC6267575 DOI: 10.3390/nano8110907] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 01/09/2023]
Abstract
Curcumin is a promising anti-cancer drug, but its applications in cancer therapy are limited, due to its poor solubility, short half-life and low bioavailability. In this study, curcumin loaded magnetic alginate/chitosan nanoparticles were fabricated to improve the bioavailability, uptake efficiency and cytotoxicity of curcumin to Human Caucasian Breast Adenocarcinoma cells (MDA-MB-231). Alginate and chitosan were deposited on Fe₃O₄ magnetic nanoparticles based on their electrostatic properties. The nanoparticle size ranged from 120⁻200 nm, within the optimum range for drug delivery. Controllable and sustained release of curcumin was obtained by altering the number of chitosan and alginate layers on the nanoparticles. Confocal fluorescence microscopy results showed that targeted delivery of curcumin with the aid of a magnetic field was achieved. The fluorescence-activated cell sorting (FACS) assay indicated that MDA-MB-231 cells treated with curcumin loaded nanoparticles had a 3⁻6 fold uptake efficiency to those treated with free curcumin. The 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay indicated that the curcumin loaded nanoparticles exhibited significantly higher cytotoxicity towards MDA-MB-231 cells than HDF cells. The sustained release profiles, enhanced uptake efficiency and cytotoxicity to cancer cells, as well as directed targeting make MACPs promising candidates for cancer therapy.
Collapse
Affiliation(s)
- Wenxing Song
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China.
| | - Xing Su
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK.
| | - David Alexander Gregory
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.
| | - Wei Li
- Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S3 7HQ, UK.
| | - Zhiqiang Cai
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China.
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
45
|
Pimentel-Moral S, Teixeira MC, Fernandes AR, Arráez-Román D, Martínez-Férez A, Segura-Carretero A, Souto EB. Lipid nanocarriers for the loading of polyphenols - A comprehensive review. Adv Colloid Interface Sci 2018; 260:85-94. [PMID: 30177215 DOI: 10.1016/j.cis.2018.08.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 01/01/2023]
Abstract
Polyphenols are secondary metabolites found in all vascular plants and constitute a large group of at least 10,000 unique compounds. Particular attention is currently being paid to polyphenols attributed to their beneficial effects in the protection and prevention of several diseases. While their use in food, pharmaceutical and cosmetic industries is largely documented, several environmental conditions (e.g. light, temperature or oxygen) may affect the physicochemical stability of polyphenols, compromising their bioactivity in vivo. To overcome these limitations, the loading of polyphenols into nanoparticles has been proposed aiming at both increasing their bioavailability and reducing eventual side effects. Lipid nanoparticles offer several advantages, namely their biodegradability and low toxicity, with the additional capacity to modify the release profile of loaded drugs. This paper is a review of the recent advances of lipid nanocarriers commonly used for the encapsulation of polyphenols, highlighting their added value to increase bioavailability and bioactivity of this group of compounds as well as their application in several diseases.
Collapse
Affiliation(s)
- S Pimentel-Moral
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; Research and Development Centre for Functional Food (CIDAF), Health Science Technological Park, 18016 Granada, Spain; Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - M C Teixeira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - A R Fernandes
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - D Arráez-Román
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; Research and Development Centre for Functional Food (CIDAF), Health Science Technological Park, 18016 Granada, Spain.
| | - A Martínez-Férez
- Chemical Engineering Department, University of Granada, 18071 Granada, Spain.
| | - A Segura-Carretero
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; Research and Development Centre for Functional Food (CIDAF), Health Science Technological Park, 18016 Granada, Spain.
| | - E B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
46
|
Kim Y, Clifton P. Curcumin, Cardiometabolic Health and Dementia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102093. [PMID: 30250013 PMCID: PMC6210685 DOI: 10.3390/ijerph15102093] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/15/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023]
Abstract
Current research indicates curcumin [diferuloylmethane; a polyphenolic compound isolated from the rhizomes of the dietary spice turmeric (Curcuma longa)] exerts a beneficial effect on health which may be partly attributable to its anti-oxidative and anti-inflammatory properties. The aim of this review is to examine potential mechanisms of the actions of curcumin in both animal and human studies. Curcumin modulates relevant molecular target pathways to improve glucose and lipid metabolism, suppress inflammation, stimulate antioxidant enzymes, facilitate insulin signalling and reduce gut permeability. Curcumin also inhibits Aβ and tau accumulation in animal models and enhances mitochondria and synaptic function. In conclusion, in high-dose animal studies and in vitro, curcumin exerts a potential beneficial effect on cardiometabolic disease. However, human studies are relatively unconvincing. More intervention studies should be conducted with the new curcumin formulation with improved oral bioavailability.
Collapse
Affiliation(s)
- Yoona Kim
- Department of Food and Nutrition/Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea.
| | - Peter Clifton
- School of Pharmacy and Medical Sciences, University of South Australia, General Post Office Box 2471, Adelaide, SA 5001, Australia.
| |
Collapse
|
47
|
Shakeri A, Cicero AFG, Panahi Y, Mohajeri M, Sahebkar A. Curcumin: A naturally occurring autophagy modulator. J Cell Physiol 2018; 234:5643-5654. [PMID: 30239005 DOI: 10.1002/jcp.27404] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022]
Abstract
Autophagy is a self-degradative process that plays a pivotal role in several medical conditions associated with infection, cancer, neurodegeneration, aging, and metabolic disorders. Its interplay with cancer development and treatment resistance is complicated and paramount for drug design since an autophagic response can lead to tumor suppression by enhancing cellular integrity and tumorigenesis by improving tumor cell survival. In addition, autophagy denotes the cellular ability of adapting to stress though it may end up in apoptosis activation when cells are exposed to a very powerful stress. Induction of autophagy is a therapeutic option in cancer and many anticancer drugs have been developed to this aim. Curcumin as a hydrophobic polyphenol compound extracted from the known spice turmeric has different pharmacological effects in both in vitro and in vivo models. Many reports exist reporting that curcumin is capable of triggering autophagy in several cancer cells. In this review, we will focus on how curcumin can target autophagy in different cellular settings that may extend our understanding of new pharmacological agents to overcome relevant diseases.
Collapse
Affiliation(s)
- Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arrigo F G Cicero
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Yunes Panahi
- Chemical Injuries Research Center, System Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Mohajeri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
48
|
Vu HT, Hook SM, Siqueira SD, Müllertz A, Rades T, McDowell A. Are phytosomes a superior nanodelivery system for the antioxidant rutin? Int J Pharm 2018; 548:82-91. [DOI: 10.1016/j.ijpharm.2018.06.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/17/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022]
|
49
|
Chitosan - Shea butter solid nanoparticles assemblies for the preparation of a novel nanoparticles in microparticles system containing curcumin. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.05.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Shishir MRI, Xie L, Sun C, Zheng X, Chen W. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.018] [Citation(s) in RCA: 272] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|