1
|
Abedin S, Adeleke OA. State of the art in pediatric nanomedicines. Drug Deliv Transl Res 2024; 14:2299-2324. [PMID: 38324166 DOI: 10.1007/s13346-024-01532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
In recent years, the continuous development of innovative nanopharmaceuticals is expanding their biomedical and clinical applications. Nanomedicines are being revolutionized to circumvent the limitations of unbound therapeutic agents as well as overcome barriers posed by biological interfaces at the cellular, organ, system, and microenvironment levels. In many ways, the use of nanoconfigured delivery systems has eased challenges associated with patient differences, and in our opinion, this forms the foundation for their potential usefulness in developing innovative medicines and diagnostics for special patient populations. Here, we present a comprehensive review of nanomedicines specifically designed and evaluated for disease management in the pediatric population. Typically, the pediatric population has distinguishing needs relative to those of adults majorly because of their constantly growing bodies and age-related physiological changes, which often need specialized drug formulation interventions to provide desirable therapeutic effects and outcomes. Besides, child-centric drug carriers have unique delivery routes, dosing flexibility, organoleptic properties (e.g., taste, flavor), and caregiver requirements that are often not met by traditional formulations and can impact adherence to therapy. Engineering pediatric medicines as nanoconfigured structures can potentially resolve these limitations stemming from traditional drug carriers because of their unique capabilities. Consequently, researchers from different specialties relentlessly and creatively investigate the usefulness of nanomedicines for pediatric disease management as extensively captured in this compilation. Some examples of nanomedicines covered include nanoparticles, liposomes, and nanomicelles for cancer; solid lipid and lipid-based nanostructured carriers for hypertension; self-nanoemulsifying lipid-based systems and niosomes for infections; and nanocapsules for asthma pharmacotherapy.
Collapse
Affiliation(s)
- Saba Abedin
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Oluwatoyin A Adeleke
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
2
|
Caleffi‐Marchesini ER, Herling AA, Macente J, Bonan RH, de Freitas Lima P, Moreno R, Alexandre V, Charbe NB, Borghi‐Pangoni FB, Cristofoletti R, Diniz A. Adult and pediatric physiologically-based biopharmaceutics modeling to explain lamotrigine immediate release absorption process. CPT Pharmacometrics Syst Pharmacol 2024; 13:208-221. [PMID: 37916262 PMCID: PMC10864931 DOI: 10.1002/psp4.13071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
Physiologically-based biopharmaceutics modeling (PBBM) has potential to accelerate the development of new drug and formulations. An important application of PBBM is for special populations such as pediatrics that have pharmacokinetics dependent on the maturation process. Lamotrigine (LTG) is a Biopharmaceutics Classification System (BCS) II drug and is widely prescribed. Therefore, the goal of this study was to assess the biopharmaceutics risk of the low-soluble drug LTG when the ontogeny on gastrointestinal tract (GIT) physiological parameters are considered. An oral physiologically-based pharmacokinetic model and a PBBM were developed and verified using GastroPlus™ software for both adults and children (2-12 years old, 12-52 kg). The biopharmaceutics properties and GIT physiological parameters were evaluated by sensitivity analysis. High doses were simulated assuming a worst case scenario, that is, the dose of 200 mg for adults and 5 mg/kg (up to the maximum of 200 mg) for 2-year-old children. Although several authors have suggested that ontogeny may have an effect on gastrointestinal fluid volume, our study found no evidence of interference between fluid and dose volumes with in vivo dissolution of LTG. The most impactful parameter was found to be the gastric transit time. Therefore, the hypothesis is developed to examine whether LTG exhibits characteristics of a BCS II classification in vitro while showing BCS I-like behavior in vivo. This hypothesis could act as a base for conducting novel studies on model-informed precision dosing, tailored to specific populations and clinical conditions. In addition, it could be instrumental in assessing the influence of various release profiles on in vivo performance for both adult and pediatric populations.
Collapse
Affiliation(s)
| | - Amanda Antunes Herling
- Pharmacokinetics and Biopharmaceutics LaboratoryState University of MaringáMaringáPRBrazil
| | - Julia Macente
- Pharmacokinetics and Biopharmaceutics LaboratoryState University of MaringáMaringáPRBrazil
| | | | | | - Rafaela Moreno
- Centro Universitário Barão de MauáRibeirão PretoSPBrazil
| | - Veriano Alexandre
- Hospital das Clínicas, Faculdade de MedicinaUniversidade de São PauloRibeirão PretoSPBrazil
| | - Nitin Bharat Charbe
- Center for Pharmacometrics & Systems PharmacologyUniversity of FloridaOrlandoFloridaUSA
| | | | - Rodrigo Cristofoletti
- Center for Pharmacometrics & Systems PharmacologyUniversity of FloridaOrlandoFloridaUSA
| | - Andréa Diniz
- Pharmacokinetics and Biopharmaceutics LaboratoryState University of MaringáMaringáPRBrazil
| |
Collapse
|
3
|
Shawahna R, Saba'aneh H, Daraghmeh A, Qassarwi Y, Franco V, Declèves X. Solubility of lamotrigine in age-specific biorelevant media that simulated the fasted- and fed-conditions of the gastric and intestinal environments in pediatrics and adults: implications for traditional, re-formulated, modified, and new oral formulations. BMC Biotechnol 2023; 23:36. [PMID: 37684623 PMCID: PMC10492362 DOI: 10.1186/s12896-023-00809-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Lamotrigine is an effective antiseizure medication that can be used in the management of focal and generalized epilepsies in pediatric patients. This study was conducted to quantify and compare the solubility of lamotrigine in age-specific biorelevant media that simulated the fasted and fed conditions of the gastric and intestinal environments in pediatrics and adults. Another aim was to predict how traditional, re-formulated, modified, and new oral formulations would behave in the gastric and intestinal environments across different age groups. METHODS Solubility studies of lamotrigine were conducted in 16 different age-specific biorelevant media over the pH range and temperature specified by the current biopharmaceutical classification system-based criteria. The age-specific biorelevant media simulated the environments in the stomach and proximal gastrointestinal tract in both fasted and fed conditions of adults and pediatric sub-populations. The solubility of lamotrigine was determined using a pre-validated HPLC-UV method. RESULTS Lamotrigine showed low solubility in the 16 age-specific biorelevant media as indicated by a dose number of > 1. There were significant age-specific variabilities in the solubility of lamotrigine in the different age-specific biorelevant media. Pediatric/adult solubility ratios of lamotrigine fell outside the 80-125% range in 6 (50.0%) and were borderline in 3 (25.0%) out of the 12 compared media. These ratios indicated that the solubility of lamotrigine showed considerable differences in 9 out of the 12 (75.0%) of the compared media. CONCLUSION Future studies are still needed to generate more pediatric biopharmaceutical data to help understand the performances of oral dosage forms in pediatric sub-populations.
Collapse
Affiliation(s)
- Ramzi Shawahna
- Department of Physiology, Pharmacology and Toxicology, Faculty of Medicine and Health Sciences, An-Najah National University, New Campus, Building: 19, Office: 1340, P.O. Box 7, Nablus, Palestine.
- Clinical Research Center, An-Najah National University Hospital, Nablus, 44839, Palestine.
| | - Hala Saba'aneh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Amal Daraghmeh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Yara Qassarwi
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Valentina Franco
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, Pavia, 27100, Italy
- Clinical and Experimental Pharmacology Unit, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, 27100, Italy
| | - Xavier Declèves
- Biologie du Médicament-Toxicologie, AP-HP, Hôpital Cochin, 27 rue du Faubourg St. Jacques, Paris, 75679, France
- Faculty of Health, Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, 75006, France
| |
Collapse
|
4
|
Sun L, Sun W, Liu M, Li N, Liu Y, Cao X, Chen L, Ren X, Wang H, Wang M. Wedelolactone induces natural killer cell activity and the improvement to bioavailability using polysaccharides from Ligustri Lucidi Fructus. Int J Biol Macromol 2023:125208. [PMID: 37285884 DOI: 10.1016/j.ijbiomac.2023.125208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
Wedelolactone (WDL) is the major bioactive component in Ecliptae Herba. This present study investigated the effects of WDL on natural killer cell functions and possible underlying mechanisms. It was proved that wedelolactone enhanced the killing ability of NK92-MI by upregulating the expression of perforin and granzyme B through the JAK/STAT signaling pathway. Additionally, wedelolactone could induce the migration of NK-92MI cells by promoting CCR7 and CXCR4 expressions. However, the application of WDL is limited due to poor solubility and bioavailability. Accordingly, this study investigated the impact of polysaccharides from Ligustri Lucidi Fructus (LLFPs) on WDL. The biopharmaceutical properties and pharmacokinetic characteristics were determined to compare WDL individually and in combination with LLFPs. The results showed that LLFPs could benefit the biopharmaceutical properties of WDL. Specifically, stability, solubility, and permeability were increased by 1.19-1.82-fold, 3.22-fold, and 1.08-fold higher than those of WDL alone, respectively. Furthermore, the pharmacokinetic study revealed that LLFPs could remarkably improve AUC(0-t) (150.34 vs. 50.47 ng/mL ∗ h), t1/2 (40.78 vs. 2.81 h), and MRT(0-∞) (46.64 vs. 5.05 h) for WDL. In conclusion, WDL would be considered a potential immunopotentiator, and LLFPs could overcome the instability and insolubility, ultimately improving the bioavailability of this plant-derived phenolic coumestan.
Collapse
Affiliation(s)
- Lili Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Sun
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Meiqi Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Na Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yi Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xuexiao Cao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lu Chen
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hong Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Meng Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
5
|
Oral drug delivery strategies for development of poorly water soluble drugs in paediatric patient population. Adv Drug Deliv Rev 2022; 190:114507. [PMID: 36049580 DOI: 10.1016/j.addr.2022.114507] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/14/2022] [Accepted: 08/17/2022] [Indexed: 01/24/2023]
Abstract
Selecting the appropriate formulation and solubility-enabling technology for poorly water soluble drugs is an essential element in the development of formulations for paediatric patients. Different methodologies and structured strategies are available to select a suitable approach and guide formulation scientists for development of adult formulations. However, there is paucity of available literature for selection of technology and overcoming the challenges in paediatric formulation development. The need for flexible dosing, and the limited knowledge of the safety of many formulation excipients in paediatric subjects, impose significant constraints and in some instances require adaptation of the approaches taken to formulating these drugs for the adult population. Selection of the best drug delivery system for paediatrics requires an efficient, systematic approach that considers a drug's physical and chemical properties and the targeted patient population's requirements. This review is a step towards development of a strategy for the design of solubility enhancing paediatric formulations of highly insoluble drugs. The aim of this review is to provide an overview of different approaches and strategies to consider in order to assist development of paediatric formulation for poorly water-soluble drugs with the provision of examples of some marketed products. In addition, it provides recommendations to overcome the range of challenges posed by these strategies and adaptations of the adult approach/product presentation required to enable paediatric drug development and administration.
Collapse
|
6
|
Guimarães M, Maharaj A, Edginton A, Vertzoni M, Fotaki N. Understanding the Impact of Age-Related Changes in Pediatric GI Solubility by Multivariate Data Analysis. Pharmaceutics 2022; 14:pharmaceutics14020356. [PMID: 35214088 PMCID: PMC8880315 DOI: 10.3390/pharmaceutics14020356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to understand drug solubilization as a function of age and identify drugs at risk of altered drug solubility in newborns and young infants in comparison to adults. Multivariate statistical analysis was used to understand drug solubilization as a function of drug’s physicochemical properties and the composition of gastrointestinal fluids. The solubility of seven poorly soluble compounds was assessed in adult and age-specific fasted and fed state biorelevant media. Partial least squares regression (PLS-R) was used to assess the influence of (i) drug physicochemical properties and (ii) age-related changes in simulated GI fluids, as well as (iii) their interactions, on the pediatrics-to-adult solubility ratio (Sp/Sa (%)). For five out of seven of the compounds investigated, Sp/Sa (%) values fell outside of the 80–125% limits in at least one of the pediatric media. Lipophilicity was responsible for driving drug solubility differences between adults and children in all the biorelevant media investigated, while drug ionization was most relevant in the fed gastric media, and the fasted/fed intestinal media. The concentration of bile salts and lecithin in the fasted and fed intestinal media was critical in influencing drug solubility, while food composition (i.e., cow’s milk formula vs. soy formula) was a critical parameter in the fed gastric state. Changes in GI fluid composition between younger pediatric patients and adults can significantly alter drug luminal solubility. The use of pediatric biorelevant media can be helpful to identify the risk of altered drug solubilization in younger patients during drug development.
Collapse
Affiliation(s)
- Mariana Guimarães
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK;
| | - Anil Maharaj
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Andrea Edginton
- School of Pharmacy, University of Waterloo, Waterloo, ON N2G 1C5, Canada;
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, 157 72 Athens, Greece;
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK;
- Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
- Correspondence: ; Tel.: +44-1225-386728; Fax: +44-1225-386114
| |
Collapse
|
7
|
Guimarães M, Somville P, Vertzoni M, Fotaki N. Performance Evaluation of Montelukast Pediatric Formulations: Part I-Age-Related In Vitro Conditions. AAPS J 2022; 24:26. [PMID: 35013835 PMCID: PMC8817206 DOI: 10.1208/s12248-021-00661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
This study aimed to explore the potential of biopharmaceutics in vitro tools to predict drug product performance in the pediatric population. Biorelevant dissolution set-ups were used to predict how age and medicine administration practices affect the in vitro dissolution of oral formulations of a poorly water-soluble compound, montelukast. Biorelevant age-appropriate dissolution studies of Singulair® (granules and chewable tablets) were conducted with the µDISS profiler™, USP 4 apparatus, USP 2 apparatus, and mini-paddle apparatus. Biorelevant simulating fluids representative of adult and pediatric conditions were used in the dissolution studies. The biorelevant dissolution conditions were appropriately selected (i.e. volumes, transit times, etc.) to mimic the gastrointestinal conditions of each of the subpopulations tested. Partial least squares regression (PLS-R) was performed to understand the impact of in vitro variables on the dissolution of montelukast. Montelukast dissolution was significantly affected by the in vitro hydrodynamics used to perform the dissolution tests (µDISS profiler™: positive effect); choice of simulation of gastric (negative effect) and/or intestinal conditions (positive effect) of the gastrointestinal tract; and simulation of prandial state (fasted state: negative effect, fed state: positive effect). Age-related biorelevant dissolution of Singulair® granules predicted the in vivo effect of the co-administration of the formulation with applesauce and formula in infants. This study demonstrates that age-appropriate biorelevant dissolution testing can be a valuable tool for the assessment of drug performance in the pediatric population.
Collapse
Affiliation(s)
- Mariana Guimarães
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Pascal Somville
- UCB Pharma S.A., Product Development, B-1420, Braine l'Alleud, Belgium
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikoletta Fotaki
- Centre for Therapeutic Innovation and Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
8
|
Guimarães M, Somville P, Vertzoni M, Fotaki N. Investigating the Critical Variables of Azithromycin Oral Absorption Using In Vitro Tests and PBPK Modeling. J Pharm Sci 2021; 110:3874-3888. [PMID: 34530004 DOI: 10.1016/j.xphs.2021.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/23/2022]
Abstract
Azithromycin is an antibiotic listed in the essential list of medicines for adults and pediatrics. Conflicting evidence has been found regarding azithromycin classification according to the Biopharmaceutics classification system (BCS). The purpose of this study was to identify the critical variables that influence the oral absorption of azithromycin in adults and pediatrics. Azithromycin solubility and dissolution studies (oral suspension) were performed in buffers and biorelevant media simulating the fasted and fed gastrointestinal tract. A PBPK model was developed for azithromycin for healthy adult volunteers and pediatrics (Simcyp® v18.2) informed by in vitro solubility and dissolution studies to predict drug performance after administration of azithromycin as an oral suspension. The developed PBPK model predicted azithromycin plasma concentrations-time profiles after administration of an oral suspension to adults and pediatrics. Sensitivity analysis of solubility vs dose suggests that absorption is independent of solubility within the therapeutic dose range in both adults and pediatrics. The developed PBPK model for adults and pediatrics was consistent with the mechanism of permeation through the intestinal membrane (passive and active processes) being the rate-limiting step of azithromycin's absorption. The physiologically based approach proposed was shown to be useful to determine the factors controlling drug absorption in adults and pediatrics.
Collapse
Affiliation(s)
- Mariana Guimarães
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Pascal Somville
- UCB Pharma S.A., Product Development, B-1420 Braine l'Alleud, Belgium
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikoletta Fotaki
- Centre for Therapeutic Innovation and Department of Pharmacy and Pharmacology, University of Bath, Bath, UK.
| |
Collapse
|
9
|
Kofoed-Djursner C, Jamil A, Selen A, Müllertz A, Berthelsen R. Drug solubilization during simulated pediatric gastro-intestinal digestion. Eur J Pharm Sci 2021; 162:105828. [PMID: 33819625 DOI: 10.1016/j.ejps.2021.105828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
To increase the understanding of how drugs behave following oral administration to the pediatric population, the aim of the present study was to investigate the solubilization of fluconazole and ibuprofen during simulated gastro-intestinal (GI) digestion, using an immediate transfer model mimicking pediatric GI digestion. The effects of infant formula and digestion, on the drug solubilization, were studied using simulated fasted and fed state digestion media in the presence and absence of digestive enzymes. Additionally, the effect of digestion media viscosity on the solubilization process was investigated. It was found that the solubilization of fluconazole was unaffected by all tested parameters, as the entire estimated dose equivalent was solubilized in the aqueous phase throughout all digestion studies. In contrast, the solubilization of ibuprofen was affected by all the tested parameters, i.e. in the fasted state, the solubilization of ibuprofen was limited by its solubility in the aqueous phase of the simulated GI digestion media, whereas the solubilization in the fed state was affected by drug partitioning between the lipid and the aqueous phases, and therefore by the digestion of the lipid phase. Adding Nestlé Thicken Up™, containing xanthan gum as a thickening agent, to the digestion medium increased its viscosity, which in turn resulted in a reduced initial digestion rate, increased pH fluctuations, as well as high variability in all drug solubilization data as evident in large standard deviations. Furthermore, the increased digestion medium viscosity decreased the drug recovery from the combined pellet and aqueous phase. The observed viscosity effects might translate into a more variable and lower oral bioavailability.
Collapse
Affiliation(s)
- Caroline Kofoed-Djursner
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | - Ali Jamil
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | - Arzu Selen
- US Food and Drug Administration, Center for Drug Evaluation and Research, Office of Testing and Research, Silver Spring, MD, United States.
| | - Anette Müllertz
- Bioneer: FARMA, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Ragna Berthelsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
10
|
Shawahna R, Zyoud A, Haj-Yahia A, Taya R. Evaluating Solubility of Celecoxib in Age-Appropriate Fasted- and Fed-State Gastric and Intestinal Biorelevant Media Representative of Adult and Pediatric Patients: Implications on Future Pediatric Biopharmaceutical Classification System. AAPS PharmSciTech 2021; 22:84. [PMID: 33649887 DOI: 10.1208/s12249-021-01958-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/08/2021] [Indexed: 12/22/2022] Open
Abstract
Prediction of performance of traditional, reformulated, and novel oral formulations in adults and pediatrics is of great importance. This study was conducted to assess solubility of celecoxib in age-appropriate fasted- and fed-state gastric and intestinal biorelevant media, classify celecoxib into biopharmaceutical classification system (BCS), and assess the effects of age-related developmental changes in the composition and volume of gastrointestinal fluids on the solubility and performance of oral formulations containing celecoxib. Solubility of celecoxib was assessed at 37°C in the pH range specified by the BCS-based criteria in 13 age-appropriate biorelevant media reflective of the gastric and proximal small intestinal environment in both fasted and fed states in adults and different pediatric subpopulations. A validated HPLC-UV method was used to quantify celecoxib. Experimental and computational molecular descriptors and in vivo pharmacokinetic data were used to assign the permeability class of celecoxib. Celecoxib belonged to BCS class 2. The pediatric to adult solubility ratios were outside the 80-125% boundaries in 3 and borderline in 1 biorelevant media. Significant age-related variability could be predicted for oral formulations containing celecoxib intended for pediatric use. Findings of this study indicated that the criteria used in the adult BCS might not be directly applied to pediatric subpopulations.
Collapse
|
11
|
Martir J, Flanagan T, Mann J, Fotaki N. BCS-based biowaivers: Extension to paediatrics. Eur J Pharm Sci 2020; 155:105549. [PMID: 32941998 DOI: 10.1016/j.ejps.2020.105549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/25/2020] [Accepted: 09/11/2020] [Indexed: 12/25/2022]
Abstract
A BCS-based biowaiver allows extrapolation of drug product bioequivalence (when applicable) based on the BCS class of the drug and in vitro dissolution testing. Drug permeability and solubility considerations for adult BCS might not apply directly to paediatric subpopulations and bridging of adult and paediatric formulations should be undertaken with caution. The aims of this study were to: (i.) identify compounds which would change drug solubility classification in the paediatric population, and (ii.) to assess the risk of extending BCS-based biowaiver criteria into paediatric products of these compounds. Amoxicillin, prednisolone, and amlodipine were selected as the model compounds. Dissolution studies of IR formulations of these compounds were conducted with USP II (paddle) and mini-paddle apparatus, in media of three pHs (pH 1.2, 4.5 and 6.8). Three dissolution setups were tested: (1) 'typical' BCS-based biowaiver conditions, (2) "BE" setup derived from BE study protocols (volume: 250 mL), and (3) "paediatric" setup based on representative volume for the paediatric population (50 mL). Results revealed that extension of regulated BCS-based biowaiver criteria for paediatric application is not as simple as scaling down volumes. It was further shown that BCS-based biowaiver criteria should not be applied when there is the risk of change of the drug solubility class, from the adult to paediatric populations. A deeper knowledge of the paediatric gastrointestinal environment is still lacking and would assist in refining the biopharmaceutical tools needed to appropriately evaluate formulation performance across age groups. This would potentially reduce the number of clinical studies required and speed up formulation development.
Collapse
Affiliation(s)
- J Martir
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - T Flanagan
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK; Currently at UCB Pharma, Chemin du Foriest, B - 1420 Braine-l'Alleud, Belgium
| | - J Mann
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - N Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom.
| |
Collapse
|
12
|
Bhatt-Mehta V, Hammoud H, Amidon GL. A proposed pediatric biopharmaceutical classification system for medications for chronic diseases in children. Eur J Pharm Sci 2020; 152:105437. [PMID: 32598914 DOI: 10.1016/j.ejps.2020.105437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/15/2020] [Accepted: 06/25/2020] [Indexed: 01/04/2023]
Abstract
Age-appropriate pediatric formulations for oral administration can be challenging to formulate. Development of such formulations is often time consuming, labor-intensive and costly. The Biopharmaceutical Classification System (BCS), developed more than two decades ago, is used to develop suitable oral drug formulations for adult use. In theory, some of the same principles could be applied to formulate pediatric oral liquid dosage forms. However, the present BCS system was developed using adult gastrointestinal physiologic factors. Direct extrapolation of this method to develop pediatric oral dosage forms is inappropriate due to differences in adult and pediatric gastrointestinal physiologic differences during development. To date age-appropriate BCS to guide pediatric oral liquid formulation development has not been developed for various pediatric subpopulations. The objective of this study was to provisionally classify oral liquid formulations of extemporaneously prepared drugs at our institution into an age-appropriate BCS class after elimination of any duplicate listing when matched with the most current World Health Organization's Essential Medicines List for Children available at the time of this study and other published studies that may have reported BCS classification of drugs used as extemporaneous oral liquid formulations in children to treat chronic or rare diseases. A total of 96 orally administered extemporaneously compounded liquid formulations were included in this classification. Dose numbers were calculated using age-appropriate initial gastric volume for neonates, 6-month-old infants, and children up to 6 years of age. Using age-appropriate initial gastric volumes and pediatric and neonatal Lexicomp® age-specific maximal dosing recommendations for calculation of dose numbers, the solubility classes shifted for 62.5% of the drugs studied. A significant number of currently used extemporaneously compounded oral liquid formulations for age groups of children included in this study may not provide formulations with predictable safety and efficacy. Factors used in development of adult BCS cannot be applied directly to pediatric subpopulations.
Collapse
Affiliation(s)
- Varsha Bhatt-Mehta
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA; Department of Pediatrics and Communicable Diseases, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Hannah Hammoud
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Gordon L Amidon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Martir J, Flanagan T, Mann J, Fotaki N. Co-administration of Paediatric Medicines with Food and Drinks in the Context of Their Physicochemical Properties-a Global Perspective on Practices and Recommendations. AAPS JOURNAL 2020; 22:54. [PMID: 32133550 PMCID: PMC7056676 DOI: 10.1208/s12248-020-0432-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/12/2020] [Indexed: 12/16/2022]
Abstract
Medicine co-administration with food or drink vehicles is a common administration practice in paediatrics. The aims of this review were (i) to describe the current recommended strategies for co-administration of paediatric medicines with food and drinks (vehicles); (ii) to compare current administration recommendations from different countries; and (iii) to obtain a global perspective on the rationale behind the choice of recommended vehicle, in the context of the physicochemical properties of the drug and formulation. This study used a defined search strategy on the practices of paediatric medicine co-administration with vehicles, recommended in a commonly used paediatric and neonatal handbook, in addition to the information previously gathered from UK formularies. Logistic regression analysis was performed to further understand the biopharmaceutical basis of the choice of recommended vehicle for medicine co-administration. Differences were identified in the type of vehicles globally recommended for medicine co-administration. Ultimately, a statistical model was developed which provided an understanding on which vehicle is recommended for use with drugs/formulations, with basis on their biopharmaceutical properties. Overall, this review highlights the areas where further information is needed to support standardised procedures and guide the recommendation of age-appropriate and acceptable vehicles for use in the co-administration of paediatric medicines. Unified requirements are needed for harmonisation of the practice of medicine co-administration with vehicles. In vitro and/or in silico tools should be developed to evaluate the potential clinical outcomes of this practice during paediatric drug development.
Collapse
Affiliation(s)
- Joana Martir
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Talia Flanagan
- Pharmaceutical Technology and Development, Astra Zeneca, Macclesfield, UK.,Currently at UCB Pharma, Chemin du Foriest, B - 1420, Braine-l'Alleud, Belgium
| | - James Mann
- Pharmaceutical Technology and Development, Astra Zeneca, Macclesfield, UK
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
14
|
Yellepeddi VK, Joseph A, Nance E. Pharmacokinetics of nanotechnology-based formulations in pediatric populations. Adv Drug Deliv Rev 2019; 151-152:44-55. [PMID: 31494124 DOI: 10.1016/j.addr.2019.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/27/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022]
Abstract
The development of therapeutics for pediatric use has advanced in the last few decades. However, off-label use of adult medications in pediatrics remains a significant clinical problem. Furthermore, the development of therapeutics for pediatrics is challenged by the lack of pharmacokinetic (PK) data in the pediatric population. To promote the development of therapeutics for pediatrics, the United States Pediatric Formulation Initiative recommended the investigation of nanotechnology-based delivery systems. Therefore, in this review, we provided comprehensive information on the PK of nanotechnology-based formulations from preclinical and clinical studies in pediatrics. Specifically, we discuss the relationship between formulation parameters of nanoformulations and PK of the encapsulated drug in the context of pediatrics. We review nanoformulations that include dendrimers, liposomes, polymeric long-acting injectables (LAIs), nanocrystals, inorganic nanoparticles, polymeric micelles, and protein nanoparticles. In addition, we describe the importance and need of PK modeling and simulation approaches used in predicting PK of nanoformulations for pediatric applications.
Collapse
|
15
|
Classification of WHO Essential Oral Medicines for Children Applying a Provisional Pediatric Biopharmaceutics Classification System. Pharmaceutics 2019; 11:pharmaceutics11110567. [PMID: 31683740 PMCID: PMC6920833 DOI: 10.3390/pharmaceutics11110567] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 12/23/2022] Open
Abstract
The objective was using the Essential Medicines List for children by the World Health Organization (WHO) to create a pediatric biopharmaceutics classification system (pBCS) of the oral drugs included in the Essential Medicines List by the World Health Organization and to compare our results with the BCS for adults (aBCS). Several methods to estimate the oral drug dose in different pediatric groups were used to calculate dose number (Do) and solubility (high/low). The estimation of the gastrointestinal water volume was adapted to each pediatric group. Provisional permeability classification was done by comparison of each drug lipophilicity versus metoprolol as the model drug of high permeability. As a result, 24.5% of the included drugs moved from the favorable to unfavorable class (i.e., from high to low solubility). Observed changes point out potential differences in product performance in pediatrics compared to adults, due to changes in the limiting factors for absorption. BCS Class Changes 1 to 2 or 3 to 4 are indicative of drugs that could be more sensitive to the choice of appropriate excipient in the development process. Validating a pBCS for each age group would provide a valuable tool to apply in specific pediatric formulation design by reducing time and costs and avoiding unnecessary pediatric experiments restricted due to ethical reasons. Additionally, pBCS could minimize the associated risks to the use of adult medicines or pharmaceutical compound formulations.
Collapse
|
16
|
Illamola SM, Birnbaum AK, Sherwin CM. Generic drug products in paediatrics: Where are the data? Br J Clin Pharmacol 2019; 85:1871-1873. [PMID: 31281980 DOI: 10.1111/bcp.14036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/19/2019] [Accepted: 06/12/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Sílvia M Illamola
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Angela K Birnbaum
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Catherine M Sherwin
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA.,Department of Pediatrics, Wright State University Boonshoft School of Medicine, Dayton, OH, USA.,Dayton Children's Hospital, Dayton, OH, USA
| |
Collapse
|
17
|
Del Moral Sanchez JM, Gonzalez-Alvarez I, Cerda-Revert A, Gonzalez-Alvarez M, Navarro-Ruiz A, Amidon GL, Bermejo M. Biopharmaceutical optimization in neglected diseases for paediatric patients by applying the provisional paediatric biopharmaceutical classification system. Br J Clin Pharmacol 2018; 84:2231-2241. [PMID: 29846973 DOI: 10.1111/bcp.13650] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/09/2018] [Accepted: 05/20/2018] [Indexed: 01/13/2023] Open
Abstract
AIMS Unavailability and lack of appropriate, effective and safe formulations are common problems in paediatric therapeutics. Key factors such as swallowing abilities, organoleptic preferences and dosage requirements determine the need for optimization of formulations. The provisional Biopharmaceutics Classification System (BCS) can be used in paediatric formulation design as a risk analysis and optimization tool. The objective of this study was to classify six neglected tropical disease drugs following a provisional paediatric BCS (pBCS) classification adapted to three paediatric subpopulations (neonates, infants and children). METHODS Albendazole, benznidazole, ivermectin, nifurtimox, praziquantel and proguanil were selected from the 5th edition of the Model List of Essential Medicines for Children from the World Health Organization. Paediatric drug solubility classification was based on dose number calculation. Provisional permeability classification was based on log P comparison versus metoprolol log P value, assuming passive diffusion absorption mechanisms and no changes in passive membrane permeability between paediatric patients and adults. pBCS classes were estimated for each drug, according to different doses and volumes adapted for each age stage and were compared to the adult classification. RESULTS All six drugs were classified into provisional pBCS in the three paediatric subpopulations. Three drugs maintained the same classification as for adults, ivermectin and benznidazole changed solubility class from low to high in neonates and proguanil changed from low to high solubility in all age stages. CONCLUSION Provisional pBCS classification of these six drugs shows potential changes in the limiting factors in oral absorption in paediatrics, depending on age stage, compared to the adult population. This valuable information will aid the optimization of paediatric dosing and formulations and can identify bioinequivalence risks when comparing different formulations and paediatric populations.
Collapse
Affiliation(s)
- Jose Manuel Del Moral Sanchez
- Institute of Molecular and Cellular Biology of Miguel Hernandez University, Avda de la Universidad s/n, 03202, Elche (Alicante), Spain.,Department of Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University, San Juan de Alicante, 03550, Alicante, Spain
| | - Isabel Gonzalez-Alvarez
- Department of Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University, San Juan de Alicante, 03550, Alicante, Spain
| | - Aaron Cerda-Revert
- Department of Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University, San Juan de Alicante, 03550, Alicante, Spain
| | - Marta Gonzalez-Alvarez
- Department of Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University, San Juan de Alicante, 03550, Alicante, Spain
| | - Andres Navarro-Ruiz
- Pharmacy Service, General University Hospital of Elche, 03202, Elche (Alicante), Spain
| | - Gordon L Amidon
- University of Michigan College of Pharmacy, 428 Church Street, Ann Arbor, MI, 48109-1065, USA
| | - Marival Bermejo
- Department of Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University, San Juan de Alicante, 03550, Alicante, Spain
| |
Collapse
|
18
|
Guimarães M, Statelova M, Holm R, Reppas C, Symilllides M, Vertzoni M, Fotaki N. Biopharmaceutical considerations in paediatrics with a view to the evaluation of orally administered drug products - a PEARRL review. ACTA ACUST UNITED AC 2018; 71:603-642. [PMID: 29971768 DOI: 10.1111/jphp.12955] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/28/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVES In this review, the current biopharmaceutical approaches for evaluation of oral formulation performance in paediatrics are discussed. KEY FINDINGS The paediatric gastrointestinal (GI) tract undergoes numerous morphological and physiological changes throughout its development and growth. Some physiological parameters are yet to be investigated, limiting the use of the existing in vitro biopharmaceutical tools to predict the in vivo performance of paediatric formulations. Meals and frequencies of their administration evolve during childhood and affect oral drug absorption. Furthermore, the establishment of a paediatric Biopharmaceutics Classification System (pBCS), based on the adult Biopharmaceutics Classification System (BCS), requires criteria adjustments. The usefulness of computational simulation and modeling for extrapolation of adult data to paediatrics has been confirmed as a tool for predicting drug formulation performance. Despite the great number of successful physiologically based pharmacokinetic models to simulate drug disposition, the simulation of drug absorption from the GI tract is a complicating issue in paediatric populations. SUMMARY The biopharmaceutics tools for investigation of oral drug absorption in paediatrics need further development, refinement and validation. A combination of in vitro and in silico methods could compensate for the uncertainties accompanying each method on its own.
Collapse
Affiliation(s)
- Mariana Guimarães
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Marina Statelova
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - René Holm
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Beerse, Belgium
| | - Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Moira Symilllides
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| |
Collapse
|
19
|
Johnson T, Bonner J, Tucker G, Turner D, Jamei M. Development and applications of a physiologically-based model of paediatric oral drug absorption. Eur J Pharm Sci 2018; 115:57-67. [DOI: 10.1016/j.ejps.2018.01.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/18/2017] [Accepted: 01/03/2018] [Indexed: 11/30/2022]
|
20
|
Nicolas JM, Bouzom F, Hugues C, Ungell AL. Oral drug absorption in pediatrics: the intestinal wall, its developmental changes and current tools for predictions. Biopharm Drug Dispos 2017; 38:209-230. [PMID: 27976409 PMCID: PMC5516238 DOI: 10.1002/bdd.2052] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 11/21/2016] [Accepted: 11/30/2016] [Indexed: 12/14/2022]
Abstract
The dissolution, intestinal absorption and presystemic metabolism of a drug depend on its physicochemical characteristics but also on numerous physiological (e.g. gastrointestinal pH, volume, transit time, morphology) and biochemical factors (e.g. luminal enzymes and flora, intestinal wall enzymes and transporters). Over the past decade, evidence has accumulated indicating that these factors may differ in children and adults resulting in age-related changes in drug exposure and drug response. Thus, drug dosage may require adjustment for the pediatric population to ensure the desired therapeutic outcome and to avoid side-effects. Although tremendous progress has been made in understanding the effects of age on intestinal physiology and function, significant knowledge gaps remain. Studying and predicting pharmacokinetics in pediatric patients remains challenging due to ethical concerns associated with clinical trials in this vulnerable population, and because of the paucity of predictive in vitro and in vivo animal assays. This review details the current knowledge related to developmental changes determining intestinal drug absorption and pre-systemic metabolism. Supporting experimental approaches as well as physiologically based pharmacokinetic modeling are also discussed together with their limitations and challenges. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jean-Marie Nicolas
- Non-Clinical Development Department, UCB Biopharma sprl, Braine-l'Alleud, Belgium
| | - François Bouzom
- Non-Clinical Development Department, UCB Biopharma sprl, Braine-l'Alleud, Belgium
| | - Chanteux Hugues
- Non-Clinical Development Department, UCB Biopharma sprl, Braine-l'Alleud, Belgium
| | - Anna-Lena Ungell
- Non-Clinical Development Department, UCB Biopharma sprl, Braine-l'Alleud, Belgium
| |
Collapse
|
21
|
Van Riet-Nales DA, Kozarewicz P, Aylward B, de Vries R, Egberts TCG, Rademaker CMA, Schobben AFAM. Paediatric Drug Development and Formulation Design-a European Perspective. AAPS PharmSciTech 2017; 18:241-249. [PMID: 27270905 DOI: 10.1208/s12249-016-0558-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022] Open
Abstract
The availability of licensed paediatric drugs is lagging behind those for adults, and there is a lack of safe formulations in suitable doses that children are able and willing to take. As a consequence, children are commonly treated with off-label or unlicensed drugs. As off-label and unlicensed drug use are associated with a greater risk for harm than on-label drug use, a range of global initiatives have been developed to realize "better" medicines for children. This review describes the challenges and achievements of the European Union to realize this goal, with a focus on paediatric drug development and formulation design. In 2007, a European Paediatric Regulation was installed enforcing companies to consider children in the early development of drugs with a new drug substance, for a new indication or with a new route of administration. The Regulation, e.g. requires companies to develop a paediatric investigation plan discussing the proposed clinical trials in children of different ages and the formulations for future marketing. Since 2013, the pharmaceutical design of any newly marketed paediatric drug should comply with the "Guideline on the Pharmaceutical Development of Medicines for Paediatric Use." Companies should, e.g. justify the route of administration, dosage form, formulation characteristics, safety of excipients, dosing frequency, container closure system, administration device, patient acceptability and user information. In this review, the guideline's key aspects are discussed with a focus on novel formulations such as mini-tablets and orodispersible films, excipients with a potential risk for harm such as azo dyes and adequate user instructions.
Collapse
|
22
|
Salunke S, Liu F, Batchelor H, Walsh J, Turner R, Ju TR, Tuleu C. European Paediatric Formulation Initiative (EuPFI)-Formulating Ideas for Better Medicines for Children. AAPS PharmSciTech 2017; 18:257-262. [PMID: 27422653 DOI: 10.1208/s12249-016-0584-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/23/2016] [Indexed: 11/30/2022] Open
Abstract
The European Paediatric Formulation Initiative (EuPFI), founded in 2007, aims to promote and facilitate the preparation of better and safe medicines for children through linking research and information dissemination. It brings together the capabilities of the industry, academics, hospitals, and regulators within a common platform in order to scope the solid understanding of the major issues, which will underpin the progress towards the future of paediatric medicines we want.The EuPFI was formed in parallel to the adoption of regulations within the EU and USA and has served as a community that drives research and dissemination through publications and the organisation of annual conferences. The membership and reach of this group have grown since its inception in 2007 and continue to develop and evolve to meet the continuing needs and ambitions of research into and development of age appropriate medicines. Five diverse workstreams (age-appropriate medicines, Biopharmaceutics, Administration Devices, Excipients and Taste Assessment & Taste Masking (TATM)) direct specific workpackages on behalf of the EuPFI. Furthermore, EuPFI interacts with multiple diverse professional groups across the globe to ensure efficient working in the area of paediatric medicines. Strong commitment and active involvement of all EuPFI stakeholders have proved to be vital to effectively address knowledge gaps related to paediatric medicines, discuss potential areas for further research and identify issues that need more attention and analysis in the future.
Collapse
|
23
|
Elder DP, Holm R, Kuentz M. Medicines for Pediatric Patients-Biopharmaceutical, Developmental, and Regulatory Considerations. J Pharm Sci 2016; 106:950-960. [PMID: 28041968 DOI: 10.1016/j.xphs.2016.12.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 11/24/2016] [Accepted: 12/14/2016] [Indexed: 01/19/2023]
Abstract
This commentary reflects current developments in pediatric medicine. The underpinning legislation in both Europe and the United States has led to the initiation of an increased number of clinical trials in the pediatric population, but there are still a number of outstanding issues within this field. These include the differences in the physiology between adults and the very heterogeneous nature of pediatric patients. There is an ongoing scientific debate on the applicability of a Pediatric Biopharmaceutical Classification System to define when waivers for bioequivalence studies can be supported by in vitro dissolution. However, a challenge is that in vitro models should adequately mimic the physiology of different pediatric age-groups and dose definition is another critical aspect. There is a tendency for off-label use of established adult medicines, resulting in increased adverse events and decreased efficacy in the target population. Recent advances in physiologically based pharmacokinetic modelling may be used to provide valuable input into these discussions, but there are currently still many knowledge gaps. It is encouraging that there is a global recognition of these deficiencies and substantial funding in the field of basic research is being provided, for example, within Europe the Innovative Medicines Initiative consortium.
Collapse
Affiliation(s)
- David P Elder
- GlaxoSmithKline, Park Road, Ware, Hertfordshire SG12 0DP, UK
| | - René Holm
- Drug Product Development, Jansen Research & Development, Johnson & Johnson, Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Martin Kuentz
- University of Applied Sciences and Arts Northwestern Switzerland, Institute of Pharmaceutical Technology, Muttenz CH-4132, Switzerland.
| |
Collapse
|
24
|
Bhatt-Mehta V, MacArthur RB, Löbenberg R, Cies JJ, Cernak I, Parrish RH. Development of an algorithm to identify mass production candidate molecules to develop children’s oral medicines: a North American perspective. AAPS OPEN 2016. [DOI: 10.1186/s41120-016-0009-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
25
|
Batchelor H, Ernest T, Flanagan T, Klein S, Turner R, Fotaki N, Storey D. Towards the development of a paediatric biopharmaceutics classification system: Results of a survey of experts. Int J Pharm 2016; 511:1151-7. [PMID: 27349792 DOI: 10.1016/j.ijpharm.2016.06.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 11/29/2022]
Abstract
The aim of this research survey was to understand current global thinking around the need for and development of a paediatric biopharmaceutics classification system (pBCS) to be used for the development of paediatric medicines and regulatory purposes (e.g. Biowaivers). A literature review highlighted the paucity of data in this area and therefore a survey was developed to better understand this topic to identify areas of common thinking and highlight future research needs. Global experts in paediatric biopharmaceutics were identified from existing networks and public forums. An online survey was developed and circulated broadly to maximise participation. Sixty individuals (including academics, health care professionals, pharmaceutical industry scientists and regulators) completed the survey, bringing together their views on the need for a pBCS. The results highlighted that the area of greatest concern was the definition of BCS II and IV drugs within this population and additional research is required to generate evidence to underpin this issue. In questions relating to permeability and dissolution consensus was generally reached within the expert population suggesting that little additional research is required to define suitable criteria. More than 90% of those experts who participated agreed that a pBCS would be useful for paediatric populations with a greater need identified for the younger populations (newborn and infants compared to adolescents). The results presented will facilitate further discussion and research into the evidence to underpin a relevant pBCS. These results highlight the need for additional evidence and guidance in this area.
Collapse
Affiliation(s)
- Hannah Batchelor
- School of Pharmacy, Institute of Clinical Sciences, Robert Aitken Building, University of Birmingham, Edgbaston, B15 2TT, UK.
| | - Terry Ernest
- GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, UK
| | - Talia Flanagan
- Pharmaceutical Development, AstraZeneca R&D, Macclesfield, UK
| | - Sandra Klein
- Department of Pharmacy, Ernst Moritz Arndt University, Greifswald, Germany
| | | | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | | | | |
Collapse
|
26
|
Shawahna R. Pediatric Biopharmaceutical Classification System: Using Age-Appropriate Initial Gastric Volume. AAPS J 2016; 18:728-36. [PMID: 26935428 PMCID: PMC5256604 DOI: 10.1208/s12248-016-9885-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/01/2016] [Indexed: 01/22/2023] Open
Abstract
Development of optimized pediatric formulations for oral administration can be challenging, time consuming, and financially intensive process. Since its inception, the biopharmaceutical classification system (BCS) has facilitated the development of oral drug formulations destined for adults. At least theoretically, the BCS principles are applied also to pediatrics. A comprehensive age-appropriate BCS has not been fully developed. The objective of this work was to provisionally classify oral drugs listed on the latest World Health Organization's Essential Medicines List for Children into an age-appropriate BCS. A total of 38 orally administered drugs were included in this classification. Dose numbers were calculated using age-appropriate initial gastric volume for neonates, 6-month-old infants, and children aging 1 year through adulthood. Using age-appropriate initial gastric volume and British National Formulary age-specific dosing recommendations in the calculation of dose numbers, the solubility classes shifted from low to high in pediatric subpopulations of 12 years and older for amoxicillin, 5 years, 12 years and older for cephalexin, 9 years and older for chloramphenicol, 3-4 years, 9-11 and 15 years and older for diazepam, 18 years and older (adult) for doxycycline and erythromycin, 8 years and older for phenobarbital, 10 years and older for prednisolone, and 15 years and older for trimethoprim. Pediatric biopharmaceutics are not fully understood where several knowledge gaps have been recently emphasized. The current biowaiver criteria are not suitable for safe application in all pediatric populations.
Collapse
Affiliation(s)
- Ramzi Shawahna
- Department of Physiology, Pharmacology and Toxicology, Faculty of Medicine & Health Sciences, An-Najah National University, New Campus, Building: 19, Office: 1340, P.O. Box 7, Nablus, Palestine.
- An-Najah BioSciences Unit, Center for Poison Control, Chemical and Biological Analyses, An-Najah National University, Nablus, Palestine.
| |
Collapse
|
27
|
Bhatt-Mehta V, MacArthur RB, Löbenberg R, Cies JJ, Cernak I, Parrish RH. An Algorithm to Identify Compounded Non-Sterile Products that Can Be Formulated on a Commercial Scale or Imported to Promote Safer Medication Use in Children. PHARMACY 2015; 3:284-294. [PMID: 28975916 PMCID: PMC5597107 DOI: 10.3390/pharmacy3040284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/31/2015] [Accepted: 11/05/2015] [Indexed: 01/16/2023] Open
Abstract
The lack of commercially-available pediatric drug products and dosage forms is well-known. A group of clinicians and scientists with a common interest in pediatric drug development and medicines-use systems developed a practical framework for identifying a list of active pharmaceutical ingredients (APIs) with the greatest market potential for development to use in pediatric patients. Reliable and reproducible evidence-based drug formulations designed for use in pediatric patients are needed vitally, otherwise safe and consistent clinical practices and outcomes assessments will continue to be difficult to ascertain. Identification of a prioritized list of candidate APIs for oral formulation using the described algorithm provides a broader integrated clinical, scientific, regulatory, and market basis to allow for more reliable dosage forms and safer, effective medicines use in children of all ages. Group members derived a list of candidate API molecules by factoring in a number of pharmacotherapeutic, scientific, manufacturing, and regulatory variables into the selection algorithm that were absent in other rubrics. These additions will assist in identifying and categorizing prime API candidates suitable for oral formulation development. Moreover, the developed algorithm aids in prioritizing useful APIs with finished oral liquid dosage forms available from other countries with direct importation opportunities to North America and beyond.
Collapse
Affiliation(s)
- Varsha Bhatt-Mehta
- Department of Clinical, Social and Administrative Sciences, College of Pharmacy and Department of Pediatrics, Medical School, University of Michigan, Ann Arbor, MI, 48109, USA
- Med4Kids Research Collaborative, Ltd., Edmonton, AB, T6M 2J9, Canada; E-Mails: ; ;
| | - Robert B. MacArthur
- Clinical Development, Pharmaceutics International, Inc., Hunt Valley, MD, 21031, USA; E-Mail:
| | - Raimar Löbenberg
- Pharmaceutical Sciences Division, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton, AB, T6G 2R3, Canada; E-Mail:
- Drug Discovery and Innovation Centre, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Jeffrey J. Cies
- Med4Kids Research Collaborative, Ltd., Edmonton, AB, T6M 2J9, Canada; E-Mails: ; ;
- Drexel University College of Medicine, Philadelphia, PA, 19129, USA
- St. Christopher’s Hospital for Children, Philadelphia, PA, 19140, USA
| | - Ibolja Cernak
- Med4Kids Research Collaborative, Ltd., Edmonton, AB, T6M 2J9, Canada; E-Mails: ; ;
- Military and Veterans’ Clinical Rehabilitation Research, University of Alberta, Edmonton, AB, T6G 2G4, Canada
| | - Richard H. Parrish
- Med4Kids Research Collaborative, Ltd., Edmonton, AB, T6M 2J9, Canada; E-Mails: ; ;
| |
Collapse
|
28
|
Charoo NA, Cristofoletti R, Dressman JB. Risk assessment for extending the Biopharmaceutics Classification System-based biowaiver of immediate release dosage forms of fluconazole in adults to the paediatric population. J Pharm Pharmacol 2015; 67:1156-69. [PMID: 25828546 DOI: 10.1111/jphp.12411] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/01/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The paediatric population undergoes developmental changes in gastric pH, gastric emptying, intestinal transit time, membrane permeability, protein binding, body water, distribution and metabolism. It is widely recognised that changes in these parameters may result in an alteration of the plasma profile and thus in key bioequivalence parameters such as Cmax (maximum plasma concentration of drug) and area under the plasma concentration vs time profile curve. The aim of this work is to assess the risk of extending the biowaiver for immediate release dosage formulations of fluconazole from the adult to the paediatric population. METHODS AND KEY FINDINGS Fluconazole exhibits good solubility and very rapid dissolution characteristics in various pH media. The absorption of fluconazole in children is known to be complete (over 90%) and not impaired by elevated pH, which is prevalent during the early days of life. Dose numbers calculated using body surface area are less than 1. Therefore, the risk to drug absorption due to differences in gastric pH, gastric emptying, intestinal transit, membrane permeability and metabolising enzymes between adults and children is considered low. CONCLUSIONS Thus, it can be safely concluded that fluconazole meets highly soluble and highly permeable criteria in the paediatric population and can be allocated to class 1 of the Biopharmaceutics Classification System (BCS) for this population as well as in adults. Additionally, fluconazole has an excellent safety profile in children, similar to that in adults. The BCS-based biowaiver claimed in adults can be safely extended to the paediatric population provided that the requirements in excipient selection and dissolution profile comparison using BCS-based dissolution conditions as stated in the biowaiver monograph for fluconazole immediate release dosage forms in adults are fulfilled.
Collapse
Affiliation(s)
- Naseem A Charoo
- Department of Research and Development, AlFalah Life Sciences Pvt Ltd, Budgam, India.,Emirates Pharma, Dubai, United Arab Emirates
| | - Rodrigo Cristofoletti
- Division of Therapeutic Equivalence, Brazilian Health Surveillance Agency (ANVISA), Brasilia, Brazil.,Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| | - Jennifer B Dressman
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|