1
|
Xu H, Zhang S, Song K, Yang H, Yin J, Huang Y. Droplet-based 3D bioprinting for drug delivery and screening. Adv Drug Deliv Rev 2024; 217:115486. [PMID: 39667692 DOI: 10.1016/j.addr.2024.115486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Recently, the conventional criterion of "one-size-fits-all" is not qualified for each individual patient, requiring precision medicine for enhanced therapeutic effects. Besides, drug screening is a high-cost and time-consuming process which requires innovative approaches to facilitate drug development rate. Benefiting from consistent technical advances in 3D bioprinting techniques, droplet-based 3D bioprinting techniques have been broadly utilized in pharmaceutics due to the noncontact printing mechanism and precise control on the deposition position of droplets. More specifically, cell-free/cell-laden bioinks which are deposited for the fabrication of drug carriers/3D tissue constructs have been broadly utilized for precise drug delivery and high throughput drug screening, respectively. This review summarizes the mechanism of various droplet-based 3D bioprinting techniques and the most up-to-date applications in drug delivery and screening and discusses the potential improvements of droplet-based 3D bioprinting techniques from both technical and material aspects. Through technical innovations, materials development, and the assistance from artificial intelligence, the formation process of drug carriers will be more stable and accurately controlled guaranteeing precise drug delivery. Meanwhile, the shape fidelity and uniformity of the printed tissue models will be significantly improved ensuring drug screening efficiency and efficacy.
Collapse
Affiliation(s)
- Heqi Xu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | - Shaokun Zhang
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | | | - Huayong Yang
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China.
| | - Yong Huang
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
2
|
Sanchez MF, Luciani-Giacobbe LC, Barbieri F, Olivera ME. Defining critical quality attributes and composition parameters for burn wound dressings: Antibiotic-anesthetic films as a model. Heliyon 2024; 10:e39766. [PMID: 39605837 PMCID: PMC11599979 DOI: 10.1016/j.heliyon.2024.e39766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/29/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
The management of wounds primarily revolves around pain relief, effective infection control and the promotion of tissue regeneration to prevent complications like chronic skin wounds. While polymeric bioactive films are innovative alternatives to conventional wound dressings, there exists a dearth of guidance regarding their quality control. This underscores the imperative need to establish precise critical quality attributes, a task undertaken within this study using an antibiotic-anesthetic film as a model. The aim was to establish the influence of critical composition and process parameters and optimize the formula. First, the quality target product profile was defined, and critical quality attributes were identified. Our material selection included ciprofloxacin hydrochloride (an antimicrobial), lidocaine hydrochloride (an anesthetic), as well as excipients, such as sodium alginate, sodium hyaluronate, carbomer and glycerol. The critical components were identified through a risk assessment matrix, and their influence on film composition was determined by experimental verification using Design-Expert® software. A full factorial design was employed to assess the effects of sodium hyaluronate, carbomer and glycerol (as independent variables) on transparency, homogeneity, folding capacity and handling. Following this, an optimized formulation was achieved and subjected to further characterization. These optimized antibiotic-anesthetic films exhibited uniform micro-distribution of components, ensuring dosage uniformity. Both ciprofloxacin hydrochloride and lidocaine hydrochloride displayed sustained release profiles, suggesting potential therapeutic benefits for skin wounds. Furthermore, the resistance and elongation properties were similar to those of human skin. Utilizing a QbD approach, we successfully developed an optimized antibiotic-anesthetic film that adhered to the essential critical quality attributes. This films exhibits potential utility as a wound dressing. The findings presented in this study establish a fundamental framework for delineating the critical quality attributes of dressing films and refining their formulation to optimize wound treatment.
Collapse
Affiliation(s)
| | | | - Fiamma Barbieri
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, USA
| | - María Eugenia Olivera
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, USA
| |
Collapse
|
3
|
Meloni V, Halstenberg L, Mareczek L, Lu J, Liang B, Gottschalk N, Mueller LK. Exploring Orodispersible Films Containing the Proteolysis Targeting Chimera ARV-110 in Hot Melt Extrusion and Solvent Casting Using Polyvinyl Alcohol. Pharmaceutics 2024; 16:1499. [PMID: 39771478 PMCID: PMC11678735 DOI: 10.3390/pharmaceutics16121499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES This project aims to provide valuable insights into the formulation of orodispersible films (ODFs) for the delivery of PROTAC ARV-110. The primary objective of this drug delivery formulation is to enhance the solubility of PROTAC ARV-110, which faces significant challenges due to the low solubility of this active pharmaceutical ingredient, as it belongs to a molecular class that is considered to exceed the "Rule of Five". METHODS We employed the concept of developing a rapidly disintegrating ODF to enhance the solubility of PROTAC ARV-110, utilizing polyvinyl alcohol as the polymer of choice. Given the high thermal stability of ARV-110, the PROTAC was subjected to two primary ODF manufacturing techniques: Hot melt extrusion (HME) and solvent casting. To establish the HME method, pre-screening through vacuum compression molding was performed. The films were characterized based on their disintegration in artificial saliva, drug release in a physiological environment, and mechanical strength. RESULTS All formulations demonstrated enhanced solubility of ARV-110, achieving exceptional results in terms of disintegration times and resistance to applied stress. CONCLUSIONS The findings from the experiments outlined herein establish a solid foundation for the successful production of orodispersible films for the delivery of PROTACs.
Collapse
Affiliation(s)
- Valentina Meloni
- Merck Life Science KGaA, 64293 Darmstadt, Germany; (V.M.); (L.K.M.)
| | | | - Lena Mareczek
- Merck Life Science KGaA, 64293 Darmstadt, Germany; (V.M.); (L.K.M.)
| | - Jankin Lu
- Merck Chemicals (Shanghai) Co., Ltd., Shanghai 201203, China
| | - Bonnie Liang
- Merck Chemicals (Shanghai) Co., Ltd., Shanghai 201203, China
| | | | - Lena K. Mueller
- Merck Life Science KGaA, 64293 Darmstadt, Germany; (V.M.); (L.K.M.)
| |
Collapse
|
4
|
Centkowska K, Szadkowska M, Basztura M, Sznitowska M. Homogeneity and mechanical properties of orodispersible films loaded with pellets. Eur J Pharm Biopharm 2024:114537. [PMID: 39437982 DOI: 10.1016/j.ejpb.2024.114537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Orodispersiblefilms(ODFs) have served as an emerging platform for the delivery of drugs in a convenient way. The production of ODFs with incorporated pellets may still be a challenging process due to problems to obtain proper homogeneity and deteriorating mechanical properties of the films with incorporated relatively big particles in high concentration. The goal of this work was to evaluate the possibility to achieve fast disintegrating ODFs with homogenously incorporated spherical granules without loss of required mechanical properties. Hypromellose films with incorporated placebo pellets (size 200 µm or 100 µm) in a content range of 20-45 % w/w were prepared by a solvent casting method. Planetary mixer (Thinky) was successfully applied for preparation of a homogeneous mass for casting. The suspended spherical solid particles caused dose and size dependent changes in the mechanical properties and disintegration behaviour of ODFs films, but only 100 µm pellets in concentration higher than 40 % reduced significantly the tear resistance. The films with the pellets disintegrated faster and the larger particles reduced the disintegration time by 60 %. Good homogeneity of pellets distribution, expressed as a number of the particles per unit area, was confirmed for films obtained with a gap height 500 or 800 µm.
Collapse
Affiliation(s)
- Katarzyna Centkowska
- Medical University of Gdansk, Department of Pharmaceutical Technology, Hallera Str. 107, 80-416 Gdansk, Poland.
| | - Martyna Szadkowska
- Student Chapter of the International Society of Pharmaceutical Engineering (ISPE), Hallera 107, Gdansk, 80-416, Poland.
| | - Marta Basztura
- Student Chapter of the International Society of Pharmaceutical Engineering (ISPE), Hallera 107, Gdansk, 80-416, Poland.
| | - Małgorzata Sznitowska
- Medical University of Gdansk, Department of Pharmaceutical Technology, Hallera Str. 107, 80-416 Gdansk, Poland.
| |
Collapse
|
5
|
Phang HC, Ng ZQ, Mohamad N, Chew YL, Balaraman A, Kee PE, Mishima K, Goh BH, Ming LC, Liew KB. Comparison of oven drying and freeze drying methods for the production of fast melt films containing quetiapine fumarate. Drug Dev Ind Pharm 2024:1-17. [PMID: 39320267 DOI: 10.1080/03639045.2024.2409168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Quetiapine fumarate (QTP) is commonly prescribed for schizophrenic patient, typically available in tablet or oral suspension form, presenting challenges such as administration difficulties, fear of choking and distaste for its bitter taste. Fast melt films (FMF) offer an alternative dosage form with a simple development process, ease of administration and rapid drug absorption and action onset. OBJECTIVE This study aims to prepare FMF with different formulations using solvent casting methods and to compare the effects of different drying methods, including oven drying and freeze drying, on the properties of the films. METHODS Various formulations were created by manipulating polymer types (starch, hydroxypropyl methylcellulose (HPMC) and guar gum) at different concentrations, along with fixed concentrations of QTP and other excipients. Characterization tests including surface morphology, weight, thickness, pH, tensile strength, elongation length, Young's modulus, folding endurance and disintegration time were conducted. The optimal FMF formulation was identified and further evaluated for moisture and drug content, dissolution behavior, accelerated stability, X-ray diffraction (XRD), and palatability. RESULTS FMF containing 10 mg guar gum/film developed using oven drying emerged as the optimum choice, exhibiting desirable film appearance, ultra-thin thickness (0.453 ± 0.002 mm), appropriate pH for oral intake (pH 5.0), optimal moisture content of 11.810%, rapid disintegration (52.67 ± 1.53 s), high flexibility (folding endurance > 300 times) and lower Young's modulus (1.308 ± 0.214). CONCLUSION Oven drying method has been proven to be favorable for developing FMF containing QTP, meeting all testing criteria and providing an alternative option for QTP prescription.
Collapse
Affiliation(s)
- Hiu Ching Phang
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya,Malaysia
| | - Zhi Qi Ng
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya,Malaysia
| | - Najwa Mohamad
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya,Malaysia
| | - Yik Ling Chew
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Ashok Balaraman
- Research Management Unit, University of Cyberjaya, Cyberjaya, Malaysia
| | - Phei Er Kee
- Biorefinery and Bioprocessing Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taiwan
| | - Kenji Mishima
- Department of Chemical Engineering, Faculty of Engineering, Fukuoka University, Jonan-ku, Japan
- Research Institute of Composite Materials, Fukuoka University, Jonan-ku, Japan
| | - Bey Hing Goh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Kai Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya,Malaysia
| |
Collapse
|
6
|
Elbadawi M, Li H, Ghosh P, Alkahtani ME, Lu B, Basit AW, Gaisford S. Cold Laser Sintering of Medicines: Toward Carbon Neutral Pharmaceutical Printing. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:11155-11166. [PMID: 39091925 PMCID: PMC11289754 DOI: 10.1021/acssuschemeng.4c01439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 08/04/2024]
Abstract
Selective laser sintering (SLS) is an emerging three-dimensional (3D) printing technology that uses a laser to fuse powder particles together, which allows the fabrication of personalized solid dosage forms. It possesses great potential for commercial use. However, a major drawback of SLS is the need to heat the powder bed while printing; this leads to high energy consumption (and hence a large carbon footprint), which may hinder its translation to industry. In this study, the concept of cold laser sintering (CLS) is introduced. In CLS, the aim is to sinter particles without heating the powder bed, where the energy from the laser, alone, is sufficient to fuse adjacent particles. The study demonstrated that a laser power above 1.8 W was sufficient to sinter both KollicoatIR and Eudragit L100-55-based formulations at room temperature. The cold sintering printing process was found to reduce carbon emissions by 99% compared to a commercial SLS printer. The CLS printed formulations possessed characteristics comparable to those made with conventional SLS printing, including a porous microstructure, fast disintegration time, and molecular dispersion of the drug. It was also possible to achieve higher drug loadings than was possible with conventional SLS printing. Increasing the laser power from 1.8 to 3.0 W increased the flexural strength of the printed formulations from 0.6 to 1.6 MPa, concomitantly increasing the disintegration time from 5 to over 300 s. CLS appears to offer a new route to laser-sintered pharmaceuticals that minimizes impact on the environment and is fit for purpose in Industry 5.0.
Collapse
Affiliation(s)
- Moe Elbadawi
- School
of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4DQ, United
Kingdom
| | - Hanxiang Li
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Paromita Ghosh
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Manal E. Alkahtani
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Bingyuan Lu
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Abdul W. Basit
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Simon Gaisford
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| |
Collapse
|
7
|
Cupone IE, Roselli G, Marra F, Riva M, Angeletti S, Dugo L, Spoto S, Fogolari M, Giori AM. Orodispersible Film Based on Maltodextrin: A Convenient and Suitable Method for Iron Supplementation. Pharmaceutics 2023; 15:1575. [PMID: 37376024 DOI: 10.3390/pharmaceutics15061575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Orodispersible film (ODF) is an innovative dosage form used to administer drugs and nutrients, designed to disintegrate or dissolve in the oral cavity without needing water. One of the advantages of ODF is that it is suitable for administration in older people and children who have difficulty swallowing because of psychological or physiological deficiencies. This article describes the development of an ODF based on maltodextrin, which is easy to administer, has a pleasant taste, and is suitable for iron supplementation. An ODF containing 30 mg of iron as pyrophosphate and 400 µg of folic acid (iron ODF) was developed and manufactured on an industrial scale. The kinetic profile for serum iron and folic acid upon consumption of ODF compared with a Sucrosomial® iron capsule (known for its high bioavailability) was evaluated in a crossover clinical trial. The study was conducted in nine healthy women, and the serum iron profile (AUC0-8, Tmax, and Cmax) of both formulations was defined. Results showed that the rate and extent of elemental iron absorption with iron ODF was comparable to that obtained using the Sucrosomial® iron capsule. These data represent the first evidence of iron and folic acid absorption concerning the newly developed ODF. Iron ODF was proven to be a suitable product for oral iron supplementation.
Collapse
Affiliation(s)
| | | | - Fabio Marra
- Ibsa Farmaceutici Italia, Cassina de' Pecchi, 20051 Milan, Italy
| | | | - Silvia Angeletti
- Operative Research Unit of Clinical Laboratory, University of Rome Campus Bio-Medico, 00128 Rome, Italy
| | - Laura Dugo
- Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Silvia Spoto
- Department of Diagnostic and Therapeutic Medicine, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Marta Fogolari
- Operative Research Unit of Clinical Laboratory, University of Rome Campus Bio-Medico, 00128 Rome, Italy
| | | |
Collapse
|
8
|
Kean EA, Adeleke OA. Orally disintegrating drug carriers for paediatric pharmacotherapy. Eur J Pharm Sci 2023; 182:106377. [PMID: 36634740 DOI: 10.1016/j.ejps.2023.106377] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
Non-compliance, dosing inaccuracy, choking risk, flavour, and instability, are some of the issues associated with paediatric, oral dosage forms - tablets, capsules, solutions, and suspensions. Orally disintegrating drug carriers, a dosage form with growing interest, are thought to overcome several of the challenges associated with these conventional formulations by rapidly disintegrating within the buccal cavity without the need for water. This review serves as an up-to-date report on the various types of orodispersible delivery systems, currently being developed or commercialized, by detailing their characteristics, manufacturing processes, and applications in the paediatric population. Mentioned are orodispersible tablets, films, wafers and lyophilisates, mini-tablets, capsules, granules, electrospun fibers and webs. Also highlighted are the choice of excipients, quality control requirements, and expected pharmacokinetics of orally disintegrating drug carriers concerning the paediatric population. Overall, orodispersible formulations, particularly tablets, films, and lyophilisates/wafers, have shown to be a valuable addition to medication administration in minors, thus the execution of more targeted research and development activities is expected to lead to enhanced paediatric care and outcomes.
Collapse
Affiliation(s)
- Emma A Kean
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Oluwatoyin A Adeleke
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
9
|
Orodispersible films — Pharmaceutical development for improved performance: A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
10
|
Cornilă A, Iurian S, Tomuță I, Porfire A. Orally Dispersible Dosage Forms for Paediatric Use: Current Knowledge and Development of Nanostructure-Based Formulations. Pharmaceutics 2022; 14:pharmaceutics14081621. [PMID: 36015247 PMCID: PMC9414456 DOI: 10.3390/pharmaceutics14081621] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 02/01/2023] Open
Abstract
The paediatric population has always suffered from a lack of medicines tailored to their needs, especially in terms of accurate dosage, stability and acceptability. Orodispersible dosage forms have gone through a resurrection as an alternative to liquid formulations or fractioned solid formulations, although they are still subject to several inconveniences, among which the unpleasant taste and the low oral bioavailability of the API are the most significant hurdles in the way of achieving an optimal drug product. Nanostructures can address these inconveniences through their size and variety, owing to the plethora of materials that can be used in their manufacturing. Through the formation and functionalisation of nanostructures, followed by their inclusion in orodispersible dosage forms, safe, stable and acceptable medicines intended for paediatric use can be developed.
Collapse
|
11
|
Gupta MS, Gowda DV, Kumar TP, Rosenholm JM. A Comprehensive Review of Patented Technologies to Fabricate Orodispersible Films: Proof of Patent Analysis (2000–2020). Pharmaceutics 2022; 14:pharmaceutics14040820. [PMID: 35456654 PMCID: PMC9031760 DOI: 10.3390/pharmaceutics14040820] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 12/04/2022] Open
Abstract
Orodispersible films (ODFs)are ultra-thin, stamp-sized, rapidly disintegrating, and attractive oral drug delivery dosage forms best suited for the pediatric and geriatric patient populations. They can be fabricated by different techniques, but the most popular, simple, and industrially applicable technique is the solvent casting method (SCM). In addition, they can also be fabricated by extrusion, printing, electrospinning, and by a combination of these technologies (e.g., SCM + printing). The present review is aimed to provide a comprehensive overview of patented technologies of the last two decades to fabricate ODFs. Through this review, we present evidence to adamantly confirm that SCM is the most popular method while electrospinning is the most recent and upcoming method to fabricate ODFs. We also speculate around the more patent-protected technologies especially in the domain of printing (two or three-dimensional), extrusion (ram or hot-melt extrusion), and electrospinning, or a combination of the methods thereof.
Collapse
Affiliation(s)
- Maram Suresh Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570015, India; (D.V.G.); (T.P.K.)
- Correspondence: ; Tel.: +91-99-4549-0571
| | - Devegowda Vishakante Gowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570015, India; (D.V.G.); (T.P.K.)
| | - Tegginamath Pramod Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570015, India; (D.V.G.); (T.P.K.)
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, ÅboAkademi University, 20520 Turku, Finland;
| |
Collapse
|
12
|
Morath B, Sauer S, Zaradzki M, Wagner A. TEMPORARY REMOVAL: Orodispersible films – Recent developments and new applications in drug delivery and therapy. Biochem Pharmacol 2022; 200:115036. [DOI: 10.1016/j.bcp.2022.115036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/27/2022]
|
13
|
Effects of Various Drying Times on the Properties of 3D Printed Orodispersible Films. Pharmaceutics 2022; 14:pharmaceutics14020250. [PMID: 35213983 PMCID: PMC8878870 DOI: 10.3390/pharmaceutics14020250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/06/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
Orodispersible films are an innovative dosage form. Their main advantages are the application comfort and the possibility of personalization. This work aimed to evaluate the influence of different drying times on the properties of orodispersible films of various thicknesses, prepared in two different semisolid extrusion 3D printing setups. In the first experiment, drying times were dependent on the overall print time of each batch. In the second setup, the drying time was set equal according to the longest one. The evaluated parameters were films’ weight uniformity, thickness, moisture content, surface pH, disintegration time, hardness, and tensile strength. Upon statistical comparison, significant differences in the moisture content were found, subsequently affecting the disintegration time. Moreover, statistically significant differences in films’ mechanical properties (hardness, tensile strength) were also described, proving that moisture content simultaneously affects film plasticity and related properties. In conclusion, a mutual comparison of the manufactured orodispersible films showed that the drying time affects their physical and mechanical properties. The in-process drying setup was proved to be sufficient while allowing quicker manufacturing.
Collapse
|
14
|
Lourenço CAM, Garcia VA, Borges JG, Yoshida CMP, Vanin FM, Carvalho RA. A novel phenolic compounds delivery system: Oral films with extract from camu‐camu industrial residue. J Appl Polym Sci 2022. [DOI: 10.1002/app.52092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Carla Alves Monaco Lourenço
- Department of Food Engineering, Faculty of Animal Science and Food Engineering University of São Paulo Pirassununga São Paulo Brazil
| | - Vitor Augusto Garcia
- Department of Food Engineering, Faculty of Animal Science and Food Engineering University of São Paulo Pirassununga São Paulo Brazil
| | - Josiane Gonçalves Borges
- Department of Food Engineering, Faculty of Animal Science and Food Engineering University of São Paulo Pirassununga São Paulo Brazil
| | - Cristiana Maria Pedroso Yoshida
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, UNIFESP Federal University of Sao Paulo Diadema São Paulo Brazil
| | - Fernanda Maria Vanin
- Department of Food Engineering, Faculty of Animal Science and Food Engineering University of São Paulo Pirassununga São Paulo Brazil
| | - Rosemary Aparecida Carvalho
- Department of Food Engineering, Faculty of Animal Science and Food Engineering University of São Paulo Pirassununga São Paulo Brazil
| |
Collapse
|
15
|
Abouhussein DMN, Nabarawi MAE, Shalaby SH, El-Bary AA. Development and optimization of cosolvent-based blended Sertraline orodispersible films - A step to personalized medicine. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
16
|
Orally disintegrating films: The effects of water content on disintegration and mechanical properties. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Gupta MS, Kumar TP, Gowda DV, Rosenholm JM. Orodispersible films: Conception to quality by design. Adv Drug Deliv Rev 2021; 178:113983. [PMID: 34547323 DOI: 10.1016/j.addr.2021.113983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/03/2021] [Accepted: 09/14/2021] [Indexed: 01/09/2023]
Abstract
Orodispersible films (ODFs) are ultra-thin, stamp-sized, elegant, portable and patient-centric pharmaceutical dosage forms that do not need water to be ingested. They are particularly useful for paediatric and geriatric patient populations with special needs such as dysphagia, Parkinson's disease, and oral cancer. Accordingly, they hold tremendous potential in gaining patient compliance, convenience and pharmacotherapy. In the present review, conception and evolution of ODFs as a product and its technology are discussed. The review continues by providing overview about the potential of ODFs as carriers for delivering drugs, herbal extracts, probiotics and vaccines. Besides, strategies employed in drug cargo loading, taste masking of bitter drugs and enhancing drug stability are discussed. Finally, the review concludes by providing a brief overview about quality by design (QbD) principles in development of ODFs.
Collapse
Affiliation(s)
- Maram Suresh Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570 015, Karnataka, India.
| | - Tegginamath Pramod Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570 015, Karnataka, India
| | - Devegowda Vishkante Gowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570 015, Karnataka, India
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| |
Collapse
|
18
|
Eleftheriadis GK, Genina N, Boetker J, Rantanen J. Modular design principle based on compartmental drug delivery systems. Adv Drug Deliv Rev 2021; 178:113921. [PMID: 34390776 DOI: 10.1016/j.addr.2021.113921] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/21/2021] [Accepted: 08/09/2021] [Indexed: 12/28/2022]
Abstract
The current manufacturing solutions for oral solid dosage forms are fundamentally based on technologies from the 19th century. This approach is well suited for mass production of one-size-fits-all products; however, it does not allow for a straight-forward personalization and mass customization of the pharmaceutical end-product. In order to provide better therapies to the patients, a need for innovative manufacturing concepts and product design principles has been rising. Additive manufacturing opens up a possibility for compartmentalization of drug products, including design of spatially separated multidrug and functional excipient compartments. This compartmentalized solution can be further expanded to modular design thinking. Modular design is referring to combination of building blocks containing a given amount of drug compound(s) and related functional excipients into a larger final product. Implementation of modular design principles is paving the way for implementing the emerging personalization potential within health sciences by designing compartmental and reactive product structures that can be manufactured based on the individual needs of each patient. This review will introduce the existing compartmentalized product design principles and discuss the integration of these into edible electronics allowing for innovative control of drug release.
Collapse
Affiliation(s)
| | - Natalja Genina
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Johan Boetker
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Jukka Rantanen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
19
|
Karavasili C, Eleftheriadis GK, Gioumouxouzis C, Andriotis EG, Fatouros DG. Mucosal drug delivery and 3D printing technologies: A focus on special patient populations. Adv Drug Deliv Rev 2021; 176:113858. [PMID: 34237405 DOI: 10.1016/j.addr.2021.113858] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/07/2021] [Accepted: 07/01/2021] [Indexed: 02/08/2023]
Abstract
In the last decade, additive manufacturing (AM) technologies have revolutionized how healthcare provision is envisioned. The rapid evolution of these technologies has already created a momentum in the effort to address unmet personalized needs in large patient groups, especially those belonging to sensitive subgroup populations (e.g., paediatric, geriatric, visually impaired). At the same time, AM technologies have become a salient ally to overcome defined health challenges in drug formulation development by addressing not only the requirement of personalized therapy, but also problems related to lowering non-specific drug distribution and the risk of adverse reactions, enhancing drug absorption and bioavailability, as well as ease of administration and patient compliance. To this end, mucoadhesive drug delivery systems fabricated with the support of AM technologies provide competitive advantages over conventional dosage forms, aiming to entice innovation in drug formulation with special focus on sensitive patient populations.
Collapse
|
20
|
Khalid GM, Musazzi UM, Selmin F, Franzè S, Minghetti P, Cilurzo F. Extemporaneous printing of diclofenac orodispersible films for pediatrics. Drug Dev Ind Pharm 2021; 47:636-644. [PMID: 33826438 DOI: 10.1080/03639045.2021.1908335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The possible application of a hot-melt ram extrusion printing to the preparation of diclofenac orodispersible films (ODF) made of maltodextrin was studied focusing the attention on the effects of taste-masking agents (i.e. namely mint, licorice-mint, and sucralose) and an opacifier (titanium dioxide [TiO2]). SIGNIFICANCE This is a proof-of-concept of the feasibility to print ODF loaded with a thermosensitive drug substance by hot-melt technologies. METHODS Diclofenac sodium (DNa) ODF made of maltodextrin (dextrose equivalent (DE) = 6 ) plasticized with glycerol were prepared by hot-melt extrusion printing. ODF were characterized for disintegration time, drug content, and solid state, in vitro dissolution in deionized water and simulated salivary fluid at pH 5.7, tensile, and adhesive properties. Moreover, the stability of ODF was assessed in accelerated conditions over six months. RESULTS After the preparation, no variation in drug solid state was evident and the formation of impurity A of DNa was detected, even if it remained below the Pharmacopoeia (Ph. Eur.) limits (< 0.2%). Only the addition of DNa significantly improved the ODF tensile properties: the tensile strength increased from 0.17 ± 0.03 MPa (placebo ODF) to 2.21 ± 0.54 MPa (p ≤ 0.03). All ODF disintegrated in about 1 min, and the t80% was lower than 3 min. TiO2 reduced the static and dynamic peel forces (p ≤ 0.006) favoring the ODF detachment from the primary packaging material. During the accelerated stability study, ODF were easy to handle without fracture; the drug content, impurity A, and dissolution profiles remained superimposable. CONCLUSION Hot-melt printing can be suitable to prepare palatable ODF loaded with bitter thermosensitive drugs.
Collapse
Affiliation(s)
- Garba M Khalid
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Umberto M Musazzi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Francesca Selmin
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Silvia Franzè
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Paola Minghetti
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Francesco Cilurzo
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
21
|
Kiefer O, Fischer B, Breitkreutz J. Fundamental Investigations into Metoprolol Tartrate Deposition on Orodispersible Films by Inkjet Printing for Individualised Drug Dosing. Pharmaceutics 2021; 13:pharmaceutics13020247. [PMID: 33578818 PMCID: PMC7916552 DOI: 10.3390/pharmaceutics13020247] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022] Open
Abstract
Individualised medicine is continuously gaining attention in pharmaceutical research. New concepts and manufacturing technologies are required to realise this therapeutic approach. Off-label drugs used in paediatrics, such as metoprolol tartrate (MPT), are potential candidates for innovations in this context. Orodispersible films (ODFs) have been shown as an accepted alternative dosage form during the last years and inkjet printing is traded as seminal technology of precise deposition of active pharmaceutical ingredients (APIs). The objective of this study was to combine both technologies by developing imprinted ODFs based on hypromellose with therapeutically reasonable MPT single doses of 0.35 to 3.5 mg for paediatric use. After preselection, suitable ink compositions were analysed by confocal Raman microscopy regarding MPT distribution within the imprinted ODFs. Adjusted print settings, speed, print direction and angle, characterised the final ODF surface structure. The present investigations show that uniform dosages with acceptance values between 1 and 6 can be achieved. Nevertheless, changes in calibrated printed quantity due to nozzle aging have a significant effect on the final applied dose. At the lowest investigated quantity, the RSD was ±28% and at the highest, ±9%. This has to be considered for implementation of inkjet printing as a pharmaceutical production tool in the future.
Collapse
Affiliation(s)
- Olga Kiefer
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (B.F.); (J.B.)
- Correspondence:
| | - Björn Fischer
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (B.F.); (J.B.)
- FISCHER GmbH, Raman Spectroscopic Services, 40667 Meerbusch, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (B.F.); (J.B.)
| |
Collapse
|
22
|
Sjöholm E, Mathiyalagan R, Rajan Prakash D, Lindfors L, Wang Q, Wang X, Ojala S, Sandler N. 3D-Printed Veterinary Dosage Forms-A Comparative Study of Three Semi-Solid Extrusion 3D Printers. Pharmaceutics 2020; 12:E1239. [PMID: 33352700 PMCID: PMC7767139 DOI: 10.3390/pharmaceutics12121239] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 01/06/2023] Open
Abstract
Currently, the number of approved veterinary medicines are limited, and human medications are used off-label. These approved human medications are of too high potencies for a cat or a small dog breed. Therefore, there is a dire demand for smaller doses of veterinary medicines. This study aims to investigate the use of three semi-solid extrusion 3D printers in a pharmacy or animal clinic setting for the extemporaneous manufacturing of prednisolone containing orodispersible films for veterinary use. Orodispersible films with adequate content uniformity and acceptance values as defined by the European Pharmacopoeia were produced with one of the studied printers, namely the Allevi 2 bioprinter. Smooth and flexible films with high mechanical strength, neutral pH, and low moisture content were produced with a high correlation between the prepared design and the obtained drug amount, indicating that the Allevi 2 printer could successfully be used to extemporaneously manufacture personalized doses for animals at the point-of-care.
Collapse
Affiliation(s)
- Erica Sjöholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland; (R.M.); (D.R.P.); (L.L.); (X.W.); (N.S.)
| | - Rathna Mathiyalagan
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland; (R.M.); (D.R.P.); (L.L.); (X.W.); (N.S.)
| | - Dhayakumar Rajan Prakash
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland; (R.M.); (D.R.P.); (L.L.); (X.W.); (N.S.)
| | - Lisa Lindfors
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland; (R.M.); (D.R.P.); (L.L.); (X.W.); (N.S.)
| | - Qingbo Wang
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Piispankatu 8, 20500 Turku, Finland;
| | - Xiaoju Wang
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland; (R.M.); (D.R.P.); (L.L.); (X.W.); (N.S.)
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Piispankatu 8, 20500 Turku, Finland;
| | - Samuli Ojala
- Oulun Keskus Apteekki, Isokatu 45, 90100 Oulu, Finland;
| | - Niklas Sandler
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland; (R.M.); (D.R.P.); (L.L.); (X.W.); (N.S.)
- Nanoform Finland Oyj, Viikinkaari 4, 00790 Helsinki, Finland
| |
Collapse
|
23
|
Cetindag E, Pentangelo J, Arrieta Cespedes T, Davé RN. Effect of solvents and cellulosic polymers on quality attributes of films loaded with a poorly water-soluble drug. Carbohydr Polym 2020; 250:117012. [PMID: 33049873 PMCID: PMC7575819 DOI: 10.1016/j.carbpol.2020.117012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 11/20/2022]
Abstract
The combined effect of solvent, cellulosic polymer, and a poorly water-soluble drug, fenofibrate (FNB) on solution-cast pharmaceutical film quality attributes, e.g., morphology, drug recrystallization, content uniformity, mechanical properties, dissolution rate and supersaturation level, was investigated. Film morphology, content uniformity, and mechanical properties were impacted by the extent of FNB recrystallization which was strongly affected by FNB solubility in the solvent as compared to the polymer type, hydroxypropyl methylcellulose or hydroxypropyl cellulose. FNB recrystallization affected drug dissolution rates and supersaturation under non-sink conditions. Specifically, the area under the curve linearly correlated with recrystallization. After one-year storage, FNB recrystallization reached very high levels even for the films with no initial recrystallization, suggesting low initial crystallinity does not guarantee stability. Thus, uncontrolled recrystallization and poor time-stability would be unavoidable for solution-cast films. Overall, both the polymer and the solvent strongly impact drug recrystallization, film structure, mechanical properties, dissolution rate, and supersaturation.
Collapse
Affiliation(s)
- Eylul Cetindag
- Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA.
| | - John Pentangelo
- Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA.
| | - Thierry Arrieta Cespedes
- Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA.
| | - Rajesh N Davé
- Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA.
| |
Collapse
|
24
|
Gupta MS, Kumar TP, Gowda DV. Orodispersible Thin Film: A new patient-centered innovation. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101843] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Limpongsa E, Jaipakdee N. Physical modification of Thai rice starch and its application as orodispersible film former. Carbohydr Polym 2020; 239:116206. [DOI: 10.1016/j.carbpol.2020.116206] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022]
|
26
|
Acceptability of an orodispersible film compared to syrup in neonates and infants: A randomized controlled trial. Eur J Pharm Biopharm 2020; 151:239-245. [DOI: 10.1016/j.ejpb.2020.03.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/20/2020] [Accepted: 03/12/2020] [Indexed: 11/24/2022]
|
27
|
Electrospun Orodispersible Films of Isoniazid for Pediatric Tuberculosis Treatment. Pharmaceutics 2020; 12:pharmaceutics12050470. [PMID: 32455717 PMCID: PMC7284807 DOI: 10.3390/pharmaceutics12050470] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
Child-appropriate dosage forms are critical in promoting adherence and effective pharmacotherapy in pediatric patients, especially those undergoing long-term treatment in low-resource settings. The present study aimed to develop orodispersible films (ODFs) for isoniazid administration to children exposed to tuberculosis. The ODFs were produced from the aqueous solutions of natural and semi-synthetic polymer blends using electrospinning. The spinning solutions and the resulting fibers were physicochemically characterized, and the disintegration time and isoniazid release from the ODFs were assessed in simulated salivary fluid. The ODFs comprised of nanofibers with adequate thermal stability and possible drug amorphization. Film disintegration occurred instantly upon contact with simulated salivary fluid within less than 15 s, and isoniazid release from the ODFs in the same medium followed after the disintegration profiles, achieving rapid and total drug release within less than 60 s. The ease of administration and favorable drug loading and release properties of the ODFs may provide a dosage form able to facilitate proper adherence to treatment within the pediatric patient population.
Collapse
|
28
|
Salama AH, Elmotasem H, Salama AAA. Nanotechnology based blended chitosan-pectin hybrid for safe and efficient consolidative antiemetic and neuro-protective effect of meclizine hydrochloride in chemotherapy induced emesis. Int J Pharm 2020; 584:119411. [PMID: 32423876 DOI: 10.1016/j.ijpharm.2020.119411] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/23/2022]
Abstract
The aim of this study was to formulate an easily-administered, safe and effective dosage form loaded with meclizine for treatment of chemotherapy-induced nausea and vomiting (CINV) through the buccal route. CINV comprises bothersome side effects accompanying cytotoxic drugs administration in cancer patients. Meclizine was loaded in chitosan-pectin nanoparticles which were further incorporated within a buccal film. Different formulations were prepared based on a 21.31 full factorial study using Design Expert®8. The optimum formulation possessed favorable characters regarding its particle size (129 nm), entrapment efficiency (90%) and release profile. Moreover, its permeation efficiency through sheep buccal mucosa was assessed via Franz cell diffusion and confocal laser microscopy methods. Enhanced permeation was achieved compared with the free drug form. In-vivo performance was assessed using cyclophosphamide induced emesis. The proposed formulation exerted significant relief of the measured responses (reduced body weight and motor coordination, elevated emesis, anorexia, proinflammatory mediators and neurotransmitters that were also associated with scattered degenerated neurons and glial cells). The developed formulation ameliorated all behavioral, biochemical and histopathological changes induced by cyclophosphamide. The obtained data were promising suggesting that our bioadhesive formulation can offer an auspicious medication for treating distressing symptoms associated with chemotherapy for cancer patients.
Collapse
Affiliation(s)
- Alaa H Salama
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt.
| | - Heba Elmotasem
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Abeer A A Salama
- Pharmacology Department, Medical Research Division, National Research Centre, Dokki, Cairo 12622, Egypt
| |
Collapse
|
29
|
Drašković M, Turković E, Vasiljević I, Trifković K, Cvijić S, Vasiljević D, Parojčić J. Comprehensive evaluation of formulation factors affecting critical quality attributes of casted orally disintegrating films. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Yan TT, Lv ZF, Tian P, Lin MM, Lin W, Huang SY, Chen YZ. Semi-solid extrusion 3D printing ODFs: an individual drug delivery system for small scale pharmacy. Drug Dev Ind Pharm 2020; 46:531-538. [DOI: 10.1080/03639045.2020.1734018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ting-Ting Yan
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhu-Fen Lv
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, China
| | - Pan Tian
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, China
| | - Min-Mei Lin
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wei Lin
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, China
| | - Si-Yu Huang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yan-Zhong Chen
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
31
|
Centkowska K, Ławrecka E, Sznitowska M. Technology of Orodispersible Polymer Films with Micronized Loratadine-Influence of Different Drug Loadings on Film Properties. Pharmaceutics 2020; 12:pharmaceutics12030250. [PMID: 32164345 PMCID: PMC7150835 DOI: 10.3390/pharmaceutics12030250] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 01/19/2023] Open
Abstract
The production of orodispersible films (ODFs) with suspended insoluble drug substances is still a challenge, mainly due to the difficulty associated with achieving a proper homogeneity and mechanical properties of the films. Hypromellose (HPMC) and a mixture of polyvinyl alcohol (AP) and povidone (PVP) were compared in terms of their suitability for ODFs incorporating suspended micronized loratadine (LO) in a concentration range of 10%–40%. In a planetary mixer (Thinky), a uniform dispersion of LO in an aqueous viscous casting solution was obtained. The suspended LO particles caused dose-dependent changes in the viscosity of the casting mass and affected the mechanical quality of ODFs. Drug concentrations higher than 30% reduced the film flexibility and tear resistance, depending on the polymer type. LO films with a thickness of 100 µm disintegrated within 60-100 s, with no significant influence of the LO content in the range 10%–30%. HPMC films, regardless of the drug concentration, met the pharmacopoeial requirements regarding the uniformity of the drug content. AP/PVP films were too elastic, and the drug content uniformity was not achieved. The conclusion is that, using an HPMC matrix, it is possible to obtain a high load of a poorly water-soluble drug (30% of dry film mass corresponds to a dose of 5 mg per 1.5 cm2) in ODFs characterized by proper physical characteristics.
Collapse
|
32
|
Development of an Orodispersible Film Containing Stabilized Influenza Vaccine. Pharmaceutics 2020; 12:pharmaceutics12030245. [PMID: 32182676 PMCID: PMC7150837 DOI: 10.3390/pharmaceutics12030245] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/29/2022] Open
Abstract
Most influenza vaccines are administered via injection, which is considered as user-unfriendly. Vaccination via oral cavity using an orodispersible film (ODF) might be a promising alternative. To maintain the antigenicity of the vaccine during preparation and subsequent storage of these ODFs, sugars such as trehalose and pullulan can be employed as stabilizing excipients for the antigens. In this study, first, β-galactosidase was used as a model antigen. Solutions containing β-galactosidase and sugar (trehalose or trehalose/pullulan blends) were pipetted onto plain ODFs and then either air- or vacuum-dried. Subsequently, sugar ratios yielding the highest β-galactosidase stability were used to prepare ODFs containing H5N1 whole inactivated influenza virus vaccine (WIV). The stability of the H5N1 hemagglutinin was assessed by measuring its hemagglutination activity. Overall, various compositions of trehalose and pullulan successfully stabilized β-galactosidase and WIV in ODFs. WIV incorporated in ODFs showed excellent stability even at challenging storage conditions (60 °C/0% relative humidity or 30 °C/56% relative humidity) for 4 weeks. Except for sugars, the polymeric component of ODFs, i.e., hypromellose, possibly improved stability of WIV as well. In conclusion, ODFs may be suitable for delivering of WIV to the oral cavity and can possibly serve as an alternative for injections.
Collapse
|
33
|
Liu J, Guan J, Wan X, Shang R, Shi X, Fang L, Liu C. The Improved Cargo Loading and Physical Stability of Ibuprofen Orodispersible Film: Molecular Mechanism of Ion-Pair Complexes on Drug-Polymer Miscibility. J Pharm Sci 2020; 109:1356-1364. [DOI: 10.1016/j.xphs.2019.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
|
34
|
Visser JC, Wibier L, Kiefer O, Orlu M, Breitkreutz J, Woerdenbag HJ, Taxis K. A Pediatrics Utilization Study in The Netherlands to Identify Active Pharmaceutical Ingredients Suitable for Inkjet Printing on Orodispersible Films. Pharmaceutics 2020; 12:pharmaceutics12020164. [PMID: 32079184 PMCID: PMC7076503 DOI: 10.3390/pharmaceutics12020164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 01/13/2023] Open
Abstract
Background: The use of medication in pediatrics, children aged 0–5 years, was explored so as to identify active pharmaceutical ingredients (APIs) suitable for inkjet printing on a plain orodispersible film (ODF) formulation in a pharmacy. Methods: The database IADB.nl, containing pharmacy dispensing data from community pharmacies in the Netherlands, was used to explore medication use in the age group of 0–5 years old, based on the Anatomical Therapeutic Chemical classification code (ATC code). Subsequently, a stepwise approach with four exclusion steps was used to identify the drug candidates for ODF formulation development. Results: there were 612 Active Pharmaceutical Ingredients (APIs) that were dispensed to the target group, mostly antibiotics. Of the APIs, 221 were not registered for pediatrics, but were used off-label. After the exclusion steps, 34 APIs were examined regarding their suitability for inkjet printing. Almost all of the APIs were sparingly water soluble to practically insoluble. Conclusion: Pharmaceutical inkjet printing is a suitable new technique for ODF manufacturing for pediatric application, however the maximal printed dose as found in the literature remained low. From the selected candidates, only montelukast shows a sufficiently high water-solubility to prepare a water-based solution. To achieve higher drug loads per ODF is ambitious, but is theoretically possible by printing multiple layers, using highly water-soluble APIs or highly loaded suspensions.
Collapse
Affiliation(s)
- J. Carolina Visser
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (L.W.); (H.J.W.)
- Correspondence: ; Tel.: +31-50-3633282; Fax: +31-50-3632500
| | - Lisa Wibier
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (L.W.); (H.J.W.)
- Department of PharmacoTherapy, Epidemiology and Economics, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| | - Olga Kiefer
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (O.K.); (J.B.)
| | - Mine Orlu
- School of Pharmacy, University College London, London WC1N 1AX, UK;
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (O.K.); (J.B.)
| | - Herman J. Woerdenbag
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (L.W.); (H.J.W.)
| | - Katja Taxis
- Department of PharmacoTherapy, Epidemiology and Economics, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| |
Collapse
|
35
|
Visser JC, Wibier L, Mekhaeil M, Woerdenbag HJ, Taxis K. Orodispersible films as a personalized dosage form for nursing home residents, an exploratory study. Int J Clin Pharm 2020; 42:436-444. [PMID: 32052239 PMCID: PMC7192866 DOI: 10.1007/s11096-020-00990-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 02/06/2020] [Indexed: 01/12/2023]
Abstract
Background A frequent problem in ageing patients, and thus in nursing home residents, is dysphagia, affecting the ability to swallow solid dosage forms. A promising and personalized drug delivery system for this patient group is the orodispersible film. Orodispersible films could be prepared extemporaneously in a (hospital) pharmacy setting or in specialty compounding community pharmacies using the solvent casting method. Little has been done to systematically investigate which medications should be chosen for orodispersible film formulation development. Objective In this study, the medication use of nursing home residents was examined to identify medications that are suitable for orodispersible film formulation development. Setting Nursing homes of three Northern provinces of Netherlands. Method Medication intake data from 427 nursing home residents from nine nursing homes from the three northern provinces of the Netherlands were used to identify candidates for orodispersible film formulation development. A stepwise approach, with exclusion steps, was used. Selection criteria included systemic use with a maximum amount of 100 mg per dose unit, no commercially available suitable dosage forms for administration in dysphagia, indication for diseases associated with dysphagia. Furthermore, the characteristics of the active pharmaceutical ingredient needed for the orodispersible film formulation development, such as water solubility and taste, were reviewed. Main outcome measure Active pharmaceutical ingredients suitable for orodispersible film formulation development. Results The nursing home residents used three hundred forty one different medications. Of those, 34 active pharmaceutical ingredients from six therapeutic groups were considered as candidates for orodispersible film formulation development. Most of these active pharmaceutical ingredients have a bitter taste and poor water solubility, which is a challenge for orodispersible film production. Conclusions The most suitable active pharmaceutical ingredient candidates for manufacturing of orodispersible films for the ageing patient population may be the combination of levodopa and carbidopa used to treat the symptoms of Parkinson’s disease, and baclofen used to treat spasticity.
Collapse
Affiliation(s)
- J Carolina Visser
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| | - Lisa Wibier
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Department of PharmacoTherapy, Epidemiology and Economics, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Marina Mekhaeil
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Department of PharmacoTherapy, Epidemiology and Economics, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Herman J Woerdenbag
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Katja Taxis
- Department of PharmacoTherapy, Epidemiology and Economics, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
36
|
Musazzi UM, Khalid GM, Selmin F, Minghetti P, Cilurzo F. Trends in the production methods of orodispersible films. Int J Pharm 2020; 576:118963. [DOI: 10.1016/j.ijpharm.2019.118963] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022]
|
37
|
Elbl J, Gajdziok J, Kolarczyk J. 3D printing of multilayered orodispersible films with in-process drying. Int J Pharm 2019; 575:118883. [PMID: 31811925 DOI: 10.1016/j.ijpharm.2019.118883] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 11/24/2022]
Abstract
The aim of this study was to prepare benzydamine hydrochloride loaded orodispersible films using modified semisolid extrusion 3D printing method. An innovative approach was developed where thin layer of drug loaded dispersion is printed and dried before printing of subsequent layers. Layer-by-layer drying as the in process step improves mechanical properties of films, uniformity of drug content and allows faster preparation of films in compounding settings due to shortening of drying time. Orodispersible films consisted of film forming maltodextrin, sorbitol as a plasticizer and hydroxyethylcellulose as a thickening agent. The height of the digital model showed excellent correlation with the disintegration time, weight, thickness and mechanical properties of prepared films. Drug content, predefined by volume of digital model and concentration of drug in print dispersion, showed excellent uniformity. The modified printing method shows great promise in a compounding production of personalized film dosage forms, and brings in possibilities such as one step preparation of films with compartmented drugs and incorporation of taste masking or release control layers.
Collapse
Affiliation(s)
- Jan Elbl
- Department of Pharmaceutics, Faculty of Pharmacy, Veterinary and Pharmaceutical University Brno, Palackého tr. 1946/1, 612 42 Brno, Czech Republic
| | - Jan Gajdziok
- Department of Pharmaceutics, Faculty of Pharmacy, Veterinary and Pharmaceutical University Brno, Palackého tr. 1946/1, 612 42 Brno, Czech Republic.
| | - Jan Kolarczyk
- Department of Pharmaceutics, Faculty of Pharmacy, Veterinary and Pharmaceutical University Brno, Palackého tr. 1946/1, 612 42 Brno, Czech Republic
| |
Collapse
|
38
|
Özcan Bülbül E, Mesut B, Cevher E, Öztaş E, Özsoy Y. Product transfer from lab-scale to pilot-scale of quetiapine fumarate orodispersible films using quality by design approach. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
39
|
El-Bary AA, Al Sharabi I, Haza'a BS. Effect of casting solvent, film-forming agent and solubilizer on orodispersible films of a polymorphic poorly soluble drug: anin vitro/in silicostudy. Drug Dev Ind Pharm 2019; 45:1751-1769. [DOI: 10.1080/03639045.2019.1656733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ahmed Abd El-Bary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ibrahim Al Sharabi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Balqees Saeed Haza'a
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
40
|
Tian Y, Orlu M, Woerdenbag HJ, Scarpa M, Kiefer O, Kottke D, Sjöholm E, Öblom H, Sandler N, Hinrichs WLJ, Frijlink HW, Breitkreutz J, Visser JC. Oromucosal films: from patient centricity to production by printing techniques. Expert Opin Drug Deliv 2019; 16:981-993. [DOI: 10.1080/17425247.2019.1652595] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yu Tian
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, AV, The Netherlands
| | - Mine Orlu
- School of Pharmacy, University College London, London, Bloomsbury, UK
| | - Herman J. Woerdenbag
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, AV, The Netherlands
| | | | - Olga Kiefer
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dina Kottke
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Erica Sjöholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, FI, Finland
| | - Heidi Öblom
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, FI, Finland
| | - Niklas Sandler
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, FI, Finland
| | - Wouter L. J. Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, AV, The Netherlands
| | - Henderik W. Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, AV, The Netherlands
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - J. Carolina Visser
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, AV, The Netherlands
| |
Collapse
|
41
|
Towards Printed Pediatric Medicines in Hospital Pharmacies: Comparison of 2D and 3D-Printed Orodispersible Warfarin Films with Conventional Oral Powders in Unit Dose Sachets. Pharmaceutics 2019; 11:pharmaceutics11070334. [PMID: 31337146 PMCID: PMC6680667 DOI: 10.3390/pharmaceutics11070334] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 01/29/2023] Open
Abstract
To date, the lack of age-appropriate medicines for many indications results in dose manipulation of commercially available dosage forms, commonly resulting in inaccurate doses. Various printing technologies have recently been explored in the pharmaceutical field due to the flexible and precise nature of the techniques. The aim of this study was, therefore, to compare the currently used method to produce patient-tailored warfarin doses at HUS Pharmacy in Finland with two innovative printing techniques. Dosage forms of various strengths (0.1, 0.5, 1, and 2 mg) were prepared utilizing semisolid extrusion 3D printing, inkjet printing and the established compounding procedure for oral powders in unit dose sachets (OPSs). Orodispersible films (ODFs) drug-loaded with warfarin were prepared by means of printing using hydroxypropylcellulose as a film-forming agent. The OPSs consisted of commercially available warfarin tablets and lactose monohydrate as a filler. The ODFs resulted in thin and flexible films showing acceptable ODF properties. Moreover, the printed ODFs displayed improved drug content compared to the established OPSs. All dosage forms were found to be stable over the one-month stability study and suitable for administration through a naso-gastric tube, thus, enabling administration to all possible patient groups in a hospital ward. This work demonstrates the potential of utilizing printing technologies for the production of on-demand patient-specific doses and further discusses the advantages and limitations of each method.
Collapse
|
42
|
How to assess orodispersible film quality? A review of applied methods and their modifications. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2019; 69:155-176. [PMID: 31259725 DOI: 10.2478/acph-2019-0018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/16/2018] [Indexed: 01/19/2023]
Abstract
In recent years, there has been a tendency toward creating innovative, easy to use and patient-friendly drug delivery systems suitable for every consumer profile, which would ensure safety, stability and acceptability of a drug. One of the relatively novel and promising approaches is the manufacture of orodispersible films (ODFs), which is an upcoming area of interest in drug delivery. They are defined as polymer thin films that disintegrate in the oral cavity within seconds, without drinking water or chewing, and eliminate the risk of choking. Gaining special usefulness in therapies of children and the elderly, ODFs seem to fill the gap in the range of preparations available for these groups of patients. As no detailed monography of ODFs including testing methods and uniform requirements has been presented in any of the pharmacopoeias to date, the aim of this article is to give an overview of the applied testing methods, their modifications and innovative approaches related to ODF quality assessment.
Collapse
|
43
|
Model-based description of disintegration time and dissolution rate of nanoparticle-loaded orodispersible films. Eur J Pharm Sci 2019; 132:18-26. [DOI: 10.1016/j.ejps.2019.02.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/28/2019] [Accepted: 02/18/2019] [Indexed: 11/21/2022]
|
44
|
Niese S, Breitkreutz J, Quodbach J. Development of a dosing device for individualized dosing of orodispersible warfarin films. Int J Pharm 2019; 561:314-323. [DOI: 10.1016/j.ijpharm.2019.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 10/27/2022]
|
45
|
Oromucosal drug delivery: Trends in in-vitro biopharmaceutical assessment of new chemical entities and formulations. Eur J Pharm Sci 2019; 128:112-117. [DOI: 10.1016/j.ejps.2018.11.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/14/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023]
|
46
|
Shahzad Y, Maqbool M, Hussain T, Yousaf AM, Khan IU, Mahmood T, Jamshaid M. Natural and semisynthetic polymers blended orodispersible films of citalopram. Nat Prod Res 2019; 34:16-25. [DOI: 10.1080/14786419.2018.1552698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yasser Shahzad
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Maimoona Maqbool
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Talib Hussain
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Abid Mehmood Yousaf
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Tariq Mahmood
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | | |
Collapse
|
47
|
Niese S, Quodbach J. Formulation development of a continuously manufactured orodispersible film containing warfarin sodium for individualized dosing. Eur J Pharm Biopharm 2019; 136:93-101. [PMID: 30660692 DOI: 10.1016/j.ejpb.2019.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/14/2018] [Accepted: 01/13/2019] [Indexed: 01/17/2023]
Abstract
Continuously manufactured orodispersible films (ODFs) offer a promising approach for individualized therapy with an easy to administer solid dosage form. The aim of this study was to develop a long ODF containing warfarin sodium to enable safe and more flexible dosing. Formulation development was conducted systematically for the continuous film coating process. A continuously working pilot-scale coating bench was used for film manufacturing and the viscosities of the polymer solutions were investigated to obtain processible formulations. The investigation of the mechanical properties of the long film was an integral part of the study, because the handling of the long film during flexible dosing differs distinctly from the handling of a single dosed ODF. The secant modulus and the yield stress were evaluated as parameters with high information value about the deformation behavior of the ODF. A long warfarin ODF was successfully produced using the pilot-scale coating bench equipped with an optical probe for in-line film thickness measurement. It was feasible to use the principle of a tape dispenser for flexible and, therefore, individualized dosing as proof of concept. Combining the long ODF with a dosing device allows individualized therapy with warfarin for all age groups manageable by the patient himself.
Collapse
Affiliation(s)
- Svenja Niese
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Julian Quodbach
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
48
|
Orodispersible films based on blends of trehalose and pullulan for protein delivery. Eur J Pharm Biopharm 2018; 133:104-111. [DOI: 10.1016/j.ejpb.2018.09.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/10/2018] [Accepted: 09/22/2018] [Indexed: 11/23/2022]
|
49
|
Comparative study on disintegration methods for oral film preparations. Eur J Pharm Biopharm 2018; 132:50-61. [DOI: 10.1016/j.ejpb.2018.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 01/13/2023]
|
50
|
Personalized orodispersible films by hot melt ram extrusion 3D printing. Int J Pharm 2018; 551:52-59. [DOI: 10.1016/j.ijpharm.2018.09.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
|