1
|
Jia Y, Yang D, Wang W, Hu K, Yan M, Zhang L, Gao L, Lu Y. Recent advances in pharmaceutical cocrystals of theophylline. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:53. [PMID: 39276287 PMCID: PMC11401818 DOI: 10.1007/s13659-024-00470-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/04/2024] [Indexed: 09/16/2024]
Abstract
Currently, cocrystallization is a promising strategy for tailoring the physicochemical properties of active pharmaceutical ingredients. Theophylline, an alkaloid and the most primary metabolite of caffeine, is a readily available compound found in tea and coffee. It functions primarily as a bronchodilator and respiratory stimulant, making it a mainstay treatment for lung diseases like asthma. Theophylline's additional potential benefits, including anti-inflammatory and anticancer properties, and its possible role in neurological disorders, have garnered significant research interest. Cocrystal formation presents a viable approach to improve the physicochemical properties of theophylline and potentially mitigate its toxic effects. This review comprehensively explores several successful studies that utilized cocrystallization to favorably alter the physicochemical properties of theophylline or its CCF. Notably, cocrystals can not only enhance the solubility and bioavailability of theophylline but also exhibit synergistic effects with other APIs. The review further delves into the hydrogen bonding sites within the theophylline structure and the hydrogen bonding networks observed in cocrystal structures.
Collapse
Affiliation(s)
- Yanxiao Jia
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Dezhi Yang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Wenwen Wang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Kun Hu
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Min Yan
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, 830000, People's Republic of China
| | - Li Zhang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, People's Republic of China.
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, 830000, People's Republic of China.
| | - Li Gao
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, 830000, People's Republic of China.
| | - Yang Lu
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, People's Republic of China.
| |
Collapse
|
2
|
Mishra M, Agrawal S, Bahadur P, Tiwari S. Effect of stoichiometry upon the characteristics of quercetin-arginine cocrystals formulated through solution crystallization. Drug Dev Ind Pharm 2024; 50:163-172. [PMID: 38226968 DOI: 10.1080/03639045.2024.2306281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/11/2024] [Indexed: 01/17/2024]
Abstract
OBJECTIVE The aim of this study is to demonstrate the effect of stoichiometry upon characteristics of quercetin-arginine (QCT-Arg) cocrystals. SIGNIFICANCE Quercetin (QCT) is a most abundant flavonoid in vegetables and fruits and has been widely used as an antioxidant. However, its oral bioavailability remains low due to poor aqueous solubility. We illustrate that QCT-Arg cocrystals formulated through an optimized stoichiometry can be a useful approach for its solubilization. METHOD Cocrystals were prepared using solvent evaporation method. Characterizations were performed through microscopic, spectroscopic, and thermal techniques. The stoichiometry was confirmed from the binary phase diagram which was prepared using thermograms derived from differential scanning calorimetric experiments. RESULT Cocrystal formation was accompanied by the conversion of isotropic phase into anisotropic one. Thread-like cocrystals were formed, regardless of QCT-Arg stoichiometry and solvent's polarity. Spectral analyses suggested that cocrystal structure was held together by hydrogen bonding between QCT and Arg. We ruled out the existence of eutectic mixture based on the observation of two eutectic points in the binary phase diagram. CONCLUSION Morphology of cocrystals remained unaffected by the solvent type, stoichiometry and the presence of surfactant. We noticed that the cocrystals could improve the aqueous solubility of QCT.
Collapse
Affiliation(s)
- Mahima Mishra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, India
| | - Shivanshu Agrawal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, India
| | - Pratap Bahadur
- Chemistry Department, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, India
| |
Collapse
|
3
|
Shao S, Bonner D, Twamley B, Singh A, Healy AM. One Step In Situ Co-Crystallization of Dapsone and Polyethylene Glycols during Fluidized Bed Granulation. Pharmaceutics 2023; 15:2330. [PMID: 37765298 PMCID: PMC10535358 DOI: 10.3390/pharmaceutics15092330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Several studies have demonstrated the feasibility of in situ co-crystallization in different pharmaceutical processes such as spray drying, hot melt extrusion, and fluidized bed granulation (FBG) to produce co-crystal-in-excipient formulations. However, no previous studies have examined such a one step in situ co-crystallization process for co-crystal formulations where the coformer is a polymer. In the current study, we explored the use of FBG to produce co-crystal granules of dapsone (DAP) and different molecular weight polyethylene glycols (PEGs). Solvent evaporation (SE) was proven to generate DAP-PEGs co-crystals at a particular weight ratio of 55:45 w/w between DAP and PEG, which was subsequently used in FBG, using microcrystalline cellulose and hydroxypropyl methyl cellulose as filler excipient and binder, respectively. FBG could generate co-crystals with higher purity than SE. Granules containing DAP-PEG 400 co-crystal could be prepared without any additional binder. DAP-PEG co-crystal granules produced by FBG demonstrated superior pharmaceutical properties, including flow properties and tableting properties, compared to DAP and DAP-PEG co-crystals prepared by SE. Overall, in situ co-crystallization via FBG can effectively produce API-polymer co-crystals and enhance the pharmaceutical properties.
Collapse
Affiliation(s)
- Shizhe Shao
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland; (S.S.); (D.B.)
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - David Bonner
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland; (S.S.); (D.B.)
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, D02 PN40 Dublin, Ireland;
| | | | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland; (S.S.); (D.B.)
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
4
|
Alam Q, Ganeshpurkar A, Singh SK, Krishnamurthy S. Novel Gastroprotective and Thermostable Cocrystal of Dimethyl Fumarate: Its Preparation, Characterization, and In Vitro and In Vivo Evaluation. ACS OMEGA 2023; 8:26218-26230. [PMID: 37521634 PMCID: PMC10372935 DOI: 10.1021/acsomega.3c02463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023]
Abstract
Crystallization has revolutionized the field of solid-state formulations by modulating the physiochemical and release profile of active pharmaceutical ingredients (APIs). Dimethyl fumarate (DF), an FDA-approved first-line drug for relapsing-remitting multiple sclerosis, has a sublimation problem, leading to loss of the drug during its processing. To tackle this problem, DF cocrystal has been prepared by using solvent evaporation technique using nicotinamide as a coformer, which has been chosen based on in silico predictions and their ability to participate in hydrogen bonding. Fourier transform infrared (FT-IR), powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and sublimation analysis have characterized the cocrystal and its thermostability. Comparative analysis of the release profile has been done by the dissolution and pharmacokinetic study of DF and its cocrystal. Formulated cocrystal is noncytotoxic, antioxidant and inhibits interleukin-6 and tissue necrosis factor-α in peripheral blood mononuclear cells induced by lipopolysaccharide. We have obtained a thermostable cocrystal of DF with a similar physicochemical and release profile to that of DF. The formulated cocrystal also provides a gastroprotective effect which helps counterbalance the adverse effects of DF by reducing lipid peroxidation and total nitrite levels.
Collapse
Affiliation(s)
- Qadir Alam
- Neurotherapeutics
Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi221005, U.P., India
| | - Ankit Ganeshpurkar
- Pharmaceutical
Chemistry Laboratory, Department of Pharmaceutical Engineering &
Technology, Indian Institute of Technology
(Banaras Hindu University), Varanasi 221005, U.P., India
| | - Sushil Kumar Singh
- Pharmaceutical
Chemistry Laboratory, Department of Pharmaceutical Engineering &
Technology, Indian Institute of Technology
(Banaras Hindu University), Varanasi 221005, U.P., India
| | - Sairam Krishnamurthy
- Neurotherapeutics
Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi221005, U.P., India
| |
Collapse
|
5
|
Haku R, Takatori K, Suzuki N, Ono M, Titapiwatanakun V, Fukami T. Exploration and characterization of a novel cocrystal hydrate consisting of captopril, an amino acid-derived drug. CrystEngComm 2023. [DOI: 10.1039/d3ce00181d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
We found a novel cocrystal consisting of captopril, which is an amino acid-derived drug having a thiol group, and l-proline by using nano-spot-screening with LF-Raman. This cocrystal hydrate showed high hygroscopicity resulted from changes in intermolecular interactions.
Collapse
Affiliation(s)
- Ryotaro Haku
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Kazuhiko Takatori
- Department of Synthetic Organic Chemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Naoto Suzuki
- Laboratory of Pharmaceutics, School of Pharmacy, Nihon University, 7-7-7 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan
| | - Makoto Ono
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Varin Titapiwatanakun
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Toshiro Fukami
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|
6
|
Varun N, Dutta A, Ghoroi C. Influence of surface interaction between drug and excipient in binary mixture for dry powder inhaler applications. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Crystal Structure, Solubility, and Pharmacokinetic Study on a Hesperetin Cocrystal with Piperine as Coformer. Pharmaceutics 2022; 14:pharmaceutics14010094. [PMID: 35056990 PMCID: PMC8778681 DOI: 10.3390/pharmaceutics14010094] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023] Open
Abstract
Hesperetin (HES) is a key biological active ingredient in citrus peels, and is one of the natural flavonoids that attract the attention of researchers due to its numerous therapeutic bioactivities that have been identified in vitro. As a bioenhancer, piperine (PIP) can effectively improve the absorption of insoluble drugs in vivo. In the present study, a cocrystal of HES and PIP was successfully obtained through solution crystallization. The single-crystal structure was illustrated and comprehensive characterization of the cocrystal was conducted. The cocrystal was formed by two drug molecules at a molar ratio of 1:1, which contained O–H–O hydrogen bonds between the carbonyl and ether oxygen of PIP and the phenolic hydroxyl group of HES. In addition, a solubility experiment was performed on powder cocrystal in simulated gastrointestinal fluid, and the result revealed that the cocrystal improves the dissolution behavior of HES compared with that of the pure substance. Furthermore, HES’s bioavailability in the cocrystal was six times higher than that of pristine drugs. These results may provide an efficient oral formulation for HES.
Collapse
|
8
|
Stanton SA, Du JJ, Lai F, Stanton G, Hawkins BA, Ong JA, Groundwater PW, Platts JA, Hibbs DE. Understanding Hygroscopicity of Theophylline via a Novel Cocrystal Polymorph: A Charge Density Study. J Phys Chem A 2021; 125:9736-9756. [PMID: 34731566 DOI: 10.1021/acs.jpca.0c09536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The charge density distribution in a novel cocrystal (1) complex of 1,3-dimethylxanthine (theophylline) and propanedioic acid (malonic acid) has been determined. The molecules crystallize in the triclinic, centrosymmetric space group P1̅, with four independent molecules (Z = 4) in the asymmetric unit (two molecules each of theophylline and malonic acid). Theophylline has a notably high hygroscopic nature, and numerous cocrystals have shown a significant improvement in stability to humidity. A charge density study of the novel polymorph has identified interesting theoretical results correlating the stability enhancement of theophylline via cocrystallization. Topological analysis of the electron density highlighted key differences (up to 17.8) in Laplacian (∇2ρ) between the experimental (EXP) and single-point (SP) models, mainly around intermolecular-bonded carbonyls. Further investigation via molecular electrostatic potential maps reaffirmed that the charge redistribution enhanced intramolecular hydrogen bonding, predominantly for N(2') and N(2) (61.2 and 61.8 kJ mol-1, respectively). An overall weaker lattice energy of the triclinic form (-126.1 kJ mol-1) compared to that of the monoclinic form (-133.8 kJ mol-1) suggests a lower energy threshold to overcome to initiate dissociation. Future work via physical testing of the novel cocrystal in both dissolution and solubility will further solidify the correlation between theoretical and experimental results.
Collapse
Affiliation(s)
- Stephen A Stanton
- Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathan J Du
- Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Felcia Lai
- Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Gyte Stanton
- Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Bryson A Hawkins
- Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jennifer A Ong
- Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Paul W Groundwater
- Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - James A Platts
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K
| | - David E Hibbs
- Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
9
|
Guo M, Sun X, Chen J, Cai T. Pharmaceutical cocrystals: A review of preparations, physicochemical properties and applications. Acta Pharm Sin B 2021; 11:2537-2564. [PMID: 34522597 PMCID: PMC8424375 DOI: 10.1016/j.apsb.2021.03.030] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/22/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022] Open
Abstract
Pharmaceutical cocrystals are multicomponent systems in which at least one component is an active pharmaceutical ingredient and the others are pharmaceutically acceptable ingredients. Cocrystallization of a drug substance with a coformer is a promising and emerging approach to improve the performance of pharmaceuticals, such as solubility, dissolution profile, pharmacokinetics and stability. This review article presents a comprehensive overview of pharmaceutical cocrystals, including preparation methods, physicochemical properties, and applications. Furthermore, some examples of drug cocrystals are highlighted to illustrate the effect of crystal structures on the various aspects of active pharmaceutical ingredients, such as physical stability, chemical stability, mechanical properties, optical properties, bioavailability, sustained release and therapeutic effect. This review will provide guidance for more efficient design and manufacture of pharmaceutical cocrystals with desired physicochemical properties and applications.
Collapse
|
10
|
Ross SA, Hurt AP, Antonijevic M, Bouropoulos N, Ward A, Basford P, McAllister M, Douroumis D. Continuous Manufacture and Scale-Up of Theophylline-Nicotinamide Cocrystals. Pharmaceutics 2021; 13:419. [PMID: 33804705 PMCID: PMC8004052 DOI: 10.3390/pharmaceutics13030419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/02/2022] Open
Abstract
The aim of the study was the manufacturing and scale-up of theophylline-nicotinamide (THL-NIC) pharmaceutical cocrystals processed by hot-melt extrusion (HME). The barrel temperature profile, feed rate and screw speed were found to be the critical processing parameters with a residence time of approximately 47 s for the scaled-up batches. Physicochemical characterization using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction of bulk and extruded materials revealed the formation of high purity cocrystals (98.6%). The quality of THL-NIC remained unchanged under accelerated stability conditions.
Collapse
Affiliation(s)
- Steven A. Ross
- Faculty of Engineering and Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, UK; (S.A.R.); (A.P.H.); (M.A.)
| | - Andrew P. Hurt
- Faculty of Engineering and Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, UK; (S.A.R.); (A.P.H.); (M.A.)
| | - Milan Antonijevic
- Faculty of Engineering and Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, UK; (S.A.R.); (A.P.H.); (M.A.)
| | - Nicolaos Bouropoulos
- Department of Materials Science, University of Patras, Rio, 26504 Patras, Greece;
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature, Chemical Processes, 26504 Patras, Greece
| | - Adam Ward
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, West Yorkshire HD1 3DH, UK;
| | - Pat Basford
- Pfizer Global Research & Development, Ramsgate Road, Sandwich CT13 9NJ, UK; (P.B.); (M.M.)
| | - Mark McAllister
- Pfizer Global Research & Development, Ramsgate Road, Sandwich CT13 9NJ, UK; (P.B.); (M.M.)
| | - Dennis Douroumis
- Faculty of Engineering and Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, UK; (S.A.R.); (A.P.H.); (M.A.)
| |
Collapse
|
11
|
Srinivasan P, Almutairi M, Dumpa N, Sarabu S, Bandari S, Zhang F, Ashour E, Repka MA. Theophylline-nicotinamide pharmaceutical co-crystals generated using hot melt extrusion technology: Impact of polymeric carriers on processability. J Drug Deliv Sci Technol 2020; 61. [PMID: 33717231 DOI: 10.1016/j.jddst.2020.102128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The objective of the current study was to develop theophylline (TPH) nicotinamide (NAM) pharmaceutical co-crystals using the hot melt extrusion (HME) technology and evaluate the processability of the co-crystals using different polymeric carriers. A physical mixture of 1:1 M ratio of TPH and NAM was employed to prepare the co-crystals. Hydroxypropylmethylcellulose acetate succinate, polyethylene oxide, and Kollidon® VA-64 (5% w/w) were investigated as polymeric carriers for the HME process. Solid-state characterization using differential scanning calorimetry showed two endothermal peaks, one at 126.4 °C indicating eutectic formation and another at 174 °C indicating the melting point of the co-crystal for all formulations, except the Kollidon® VA-64 extrudates, which showed a single peak at 174 °C. Fourier-transform infrared spectroscopy and powder X-ray diffraction studies revealed the formation of co-crystals. The feasibility to formulate the extrudates into solid dosage forms was assessed by formulating a tablet blend. The three-month stability studies showed no degradation at the accelerated stability conditions of 40 (±2) ° C and 75 (±5) % RH. Finally, the results demonstrated that the presence of mixing zones in screw configuration and extrusion temperature are critical processing parameters that influence co-crystal formation.
Collapse
Affiliation(s)
- Priyanka Srinivasan
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Mashan Almutairi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Nagireddy Dumpa
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Sandeep Sarabu
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Feng Zhang
- College of Pharmacy, The University of Texas at Austin, TX, 78712, USA
| | - Eman Ashour
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA.,Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
12
|
Garbacz P, Wesolowski M. Benzodiazepines co-crystals screening using FTIR and Raman spectroscopy supported by differential scanning calorimetry. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 234:118242. [PMID: 32179462 DOI: 10.1016/j.saa.2020.118242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/29/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Co-crystals, which are defined as "solids that are crystalline materials composed of two or more molecules in the same crystal lattice" have recently been the focus of increased interest in the pharmaceutical industry since co-crystallization can improve unfavorable physicochemical properties of active pharmaceutical ingredients. Thus, the quest for new co-crystal screening methods has become an issue of importance. The aim of this work was, therefore, to show to what extent expanded methodology based on FTIR and Raman spectroscopy supported by the DSC method can be used as a reliable tool to screen co-crystallization. Because co-crystals of benzodiazepines had not yet been obtained, a set of 72 binary mixtures composed of eight 1,4-benzodiazepine derivatives and nine coformers were used as model substances. Potential co-crystals were prepared in solid-state by liquid-assisted grinding procedure. The characteristic FTIR and Raman bands which reflect hydrogen bond formation between benzodiazepine and coformer were used as proof of co-crystal creation. DSC was used as a supporting tool to reflect the phase transitions which occur during co-crystallization. As a result of the study, four potential co-crystals can be selected: lorazepam with nicotinamide, chlordiazepoxide with p-aminobenzoic and saccharin, and estazolam with fumaric acid. The detailed spectral and thermal characteristics of these systems are presented in this work. Thus, the proposed methodology of co-crystal screening based on FTIR and Raman data supported by the DSC examination of phase transitions facilitates the screening and detection of benzodiazepine co-crystal prepared by short time components ground with a slight additional volume of solvent.
Collapse
Affiliation(s)
- Patrycja Garbacz
- Department of Analytical Chemistry, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdansk, Poland
| | - Marek Wesolowski
- Department of Analytical Chemistry, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdansk, Poland.
| |
Collapse
|
13
|
Rodrigues M, Lopes J, Guedes A, Sarraguça J, Sarraguça M. Considerations on high-throughput cocrystals screening by ultrasound assisted cocrystallization and vibrational spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117876. [PMID: 31818645 DOI: 10.1016/j.saa.2019.117876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/08/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
For industrial production of cocrystals, screening phase is essential, helping to become the process faster, more effective and efficient, reducing the quantity of reactants used and associated costs. High-throughput screening (HTS) methods can analyze a wide range of compounds simultaneously. As an answer to industrial necessity of more efficient screening methods, different methods must be developed and optimized. Vibrational spectroscopic techniques are fast, non-destructive and non-invasive, do not need pre-treatment of the samples and allow obtaining qualitative and quantitative information. They are useful in cocrystal analysis, once they detect weak interaction as hydrogen bonding, the basis of cocrystal formation. Therefore, its application in the analysis of cocrystal screening methods, together with multivariate analysis, should be studied in detail. For this end, a HTS procedure of hydrochlorothiazide (HTZ) cocrystals is performed using a 96-well plate and ultrasound-assisted cocrystallization. Six coformers were tested considering ratios of HTZ:coformer of 1:1 and 1:2. The cocrystallization products were analyzed by mid infrared spectroscopy and Raman microspectroscopy. Nicotinamide and p-aminobenzoic acid formed cocrystals with HTZ. The systems with arginine showed that the coformer suffered amorphization; however, no proof of the solid state of HTZ was obtained. The results were not conclusive for the system with citric acid. Additionally, in the nicotinamide and citric acid systems, the physical mixture of the plate also reacted without the present of solvent. Overall, the use of mid infrared spectroscopy and multivariate data analysis provided important information on cocrystal formation, purity, and correct ratio assessment.
Collapse
Affiliation(s)
- Marisa Rodrigues
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - João Lopes
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Alexandra Guedes
- Departamento de Geociências, Ambiente e Ordenamento do Território da Faculdade de Ciências da Universidade do Porto e Instituto de Ciências da Terra, Porto, Portugal
| | - Jorge Sarraguça
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Mafalda Sarraguça
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
14
|
Gajda M, Nartowski KP, Pluta J, Karolewicz B. Tuning the cocrystal yield in matrix-assisted cocrystallisation via hot melt extrusion: A case of theophylline-nicotinamide cocrystal. Int J Pharm 2019; 569:118579. [DOI: 10.1016/j.ijpharm.2019.118579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022]
|
15
|
Huang S, Xue Q, Xu J, Ruan S, Cai T. Simultaneously Improving the Physicochemical Properties, Dissolution Performance, and Bioavailability of Apigenin and Daidzein by Co-Crystallization With Theophylline. J Pharm Sci 2019; 108:2982-2993. [DOI: 10.1016/j.xphs.2019.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 11/15/2022]
|
16
|
Pessoa AS, Aguiar GPS, Vladimir Oliveira J, Bortoluzzi AJ, Paulino A, Lanza M. Precipitation of resveratrol-isoniazid and resveratrol-nicotinamide cocrystals by gas antisolvent. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Nejati L, Kalantari F, Bavarsad N, Saremnejad F, Moghaddam PT, Akhgari A. Investigation of using pectin and chitosan as natural excipients in pellet formulation. Int J Biol Macromol 2018; 120:1208-1215. [DOI: 10.1016/j.ijbiomac.2018.08.129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/09/2018] [Accepted: 08/25/2018] [Indexed: 01/14/2023]
|
18
|
Garbacz P, Wesolowski M. DSC, FTIR and Raman Spectroscopy Coupled with Multivariate Analysis in a Study of Co-Crystals of Pharmaceutical Interest. Molecules 2018; 23:E2136. [PMID: 30149571 PMCID: PMC6225128 DOI: 10.3390/molecules23092136] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/19/2018] [Accepted: 08/22/2018] [Indexed: 11/16/2022] Open
Abstract
Co-crystals have garnered increasing interest in recent years as a beneficial approach to improving the solubility of poorly water soluble active pharmaceutical ingredients (APIs). However, their preparation is a challenge that requires a simple approach towards co-crystal detection. The objective of this work was, therefore, to verify to what extent a multivariate statistical approach such as principal component analysis (PCA) and cluster analysis (CA) can be used as a supporting tool for detecting co-crystal formation. As model samples, physical mixtures and co-crystals of indomethacin with saccharin and furosemide with p-aminobenzoic acid were prepared at API/co-former molar ratios 1:1, 2:1 and 1:2. Data acquired from DSC curves and FTIR and Raman spectroscopies were used for CA and PCA calculations. The results obtained revealed that the application of physical mixtures as reference samples allows a deeper insight into co-crystallization than is possible with the use of API and co-former or API and co-former with physical mixtures. Thus, multivariate matrix for PCA and CA calculations consisting of physical mixtures and potential co-crystals could be considered as the most profitable and reliable way to reflect changes in samples after co-crystallization. Moreover, complementary interpretation of results obtained using DSC, FTIR and Raman techniques is most beneficial.
Collapse
Affiliation(s)
- Patrycja Garbacz
- Department of Analytical Chemistry, Medical University of Gdansk, Gen. J. Hallera 107, 80416 Gdansk, Poland.
| | - Marek Wesolowski
- Department of Analytical Chemistry, Medical University of Gdansk, Gen. J. Hallera 107, 80416 Gdansk, Poland.
| |
Collapse
|
19
|
Statistical optimization for production of mefenamic acid–nicotinamide cocrystals using gas anti-solvent (GAS) process. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Li X, Qi M, Yu Q, Ma X. Accelerated Cocrystallization of Cytosine and Succinic Acid Through Compaction+Grinding. CRYSTAL RESEARCH AND TECHNOLOGY 2018. [DOI: 10.1002/crat.201700118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaorui Li
- School of Chemical Engineering Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 People's Republic of China
| | - Min Qi
- School of Chemical Engineering Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 People's Republic of China
| | - Qiushuo Yu
- School of Chemical Engineering Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 People's Republic of China
- Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy China
- Shaanxi Research Center of Engineering Technology for Clean Coal Conversion China
| | - Xiaoxun Ma
- School of Chemical Engineering Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 People's Republic of China
- Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy China
- Shaanxi Research Center of Engineering Technology for Clean Coal Conversion China
| |
Collapse
|
21
|
Tan D, Loots L, Friščić T. Towards medicinal mechanochemistry: evolution of milling from pharmaceutical solid form screening to the synthesis of active pharmaceutical ingredients (APIs). Chem Commun (Camb) 2018; 52:7760-81. [PMID: 27185190 DOI: 10.1039/c6cc02015a] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This overview highlights the emergent area of mechanochemical reactions for making active pharmaceutical ingredients (APIs), and covers the latest advances in the recently established area of mechanochemical screening and synthesis of pharmaceutical solid forms, specifically polymorphs, cocrystals, salts and salt cocrystals. We also provide an overview of the most recent developments in pharmaceutical uses of mechanochemistry, including real-time reaction monitoring, techniques for polymorph control and approaches for continuous manufacture using twin screw extrusion, and more. Most importantly, we show how the overlap of previously unrelated areas of mechanochemical screening for API solid forms, organic synthesis by milling, and mechanochemical screening for molecular recognition, enables the emergence of a new research discipline in which different aspects of pharmaceutical and medicinal chemistry are addressed through mechanochemistry rather than through conventional solution-based routes. The emergence of such medicinal mechanochemistry is likely to have a strong impact on future pharmaceutical and medicinal chemistry, as it offers not only access to materials and reactivity that are sometimes difficult or even impossible to access from solution, but can also provide a general answer to the demands of the pharmaceutical industry for cleaner, safer and efficient synthetic solutions.
Collapse
Affiliation(s)
- Davin Tan
- Department of Chemistry, McGill University, 801 Sherbrooke St. W, H3A 0B8 Montreal, Canada.
| | - Leigh Loots
- Department of Chemistry, McGill University, 801 Sherbrooke St. W, H3A 0B8 Montreal, Canada.
| | - Tomislav Friščić
- Department of Chemistry, McGill University, 801 Sherbrooke St. W, H3A 0B8 Montreal, Canada.
| |
Collapse
|
22
|
|
23
|
Liu M, Hong C, Yao Y, Shen H, Ji G, Li G, Xie Y. Development of a pharmaceutical cocrystal with solution crystallization technology: Preparation, characterization, and evaluation of myricetin-proline cocrystals. Eur J Pharm Biopharm 2016; 107:151-9. [PMID: 27395394 DOI: 10.1016/j.ejpb.2016.07.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/03/2016] [Accepted: 07/05/2016] [Indexed: 11/24/2022]
Abstract
Myricetin shows low oral bioavailability (<10%) in rats due to poor aqueous solubility, although it has demonstrated various pharmacological activities such as those related to anticancer, anti-diabetes, and hepatic protection. To overcome this issue, in this study, pharmaceutical cocrystals were designed to efficiently deliver myricetin by oral administration. A 1:2 stoichiometric cocrystal of myricetin with proline was prepared successfully by solution crystallization based on the ternary phase diagram (TPD) principle, and it is presented as a new sphericity-like crystalline phase characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM). The formation of myricetin-proline cocrystals was a spontaneous and exothermic process, probably due to the supramolecular interactions between themselves, which were determined by Fourier transform-infrared spectroscopy (FT-IR). Consequently, the dissolution efficiency of myricetin from cocrystals was increased 7.69-fold compared with that of coarse myricetin, and the oral bioavailability of myricetin cocrystals in rats was enhanced by approximately 3.03 times compared with that of pure myricetin. The present study provides useful information for the potential application of cocrystal technology for water-insoluble drugs, especially flavonoid compounds.
Collapse
Affiliation(s)
- Mingyu Liu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chao Hong
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yashu Yao
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongyi Shen
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guang Ji
- Institute of Digestive Diseases, Long Hua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guowen Li
- Pharmacy Department, Shanghai TCM-integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| | - Yan Xie
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Digestive Diseases, Long Hua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
24
|
Sarceviča I, Kons A, Orola L. Isoniazid cocrystallisation with dicarboxylic acids: vapochemical, mechanochemical and thermal methods. CrystEngComm 2016. [DOI: 10.1039/c5ce01774b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A systematic study on mechanochemical, thermal and vapochemical cocrystallisation demonstrates the effect of compound properties on the outcome of the reaction.
Collapse
Affiliation(s)
- I. Sarceviča
- Department of Chemistry
- University of Latvia
- Riga, Latvia
| | - A. Kons
- Department of Chemistry
- University of Latvia
- Riga, Latvia
| | - L. Orola
- Department of Chemistry
- University of Latvia
- Riga, Latvia
| |
Collapse
|
25
|
Sarraguça MC, Paisana M, Pinto J, Lopes JA. Real-time monitoring of cocrystallization processes by solvent evaporation: A near infrared study. Eur J Pharm Sci 2015; 90:76-84. [PMID: 26711229 DOI: 10.1016/j.ejps.2015.12.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 11/20/2022]
Affiliation(s)
- Mafalda C Sarraguça
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Maria Paisana
- Research Institute for Medicines (iMed.Lisboa), Departamento de Farmácia Galénica e Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - João Pinto
- Research Institute for Medicines (iMed.Lisboa), Departamento de Farmácia Galénica e Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - João A Lopes
- Research Institute for Medicines (iMed.Lisboa), Departamento de Farmácia Galénica e Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
26
|
Xu K, Xiong X, Guo L, Wang L, Li S, Tang P, Yan J, Wu D, Li H. An Investigation into the Polymorphism and Crystallization of Levetiracetam and the Stability of its Solid Form. J Pharm Sci 2015; 104:4123-4131. [PMID: 26331706 DOI: 10.1002/jps.24628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/21/2015] [Accepted: 08/11/2015] [Indexed: 12/11/2022]
Abstract
Levetiracetam (LEV) crystals were prepared using different solvents at different temperatures. The LEV crystals were systematically characterized by X-ray powder diffraction (XRPD) and morphological analysis. The results indicated that many kinds of crystal habits exist in a solid form of LEV. To investigate the effects of LEV concentration, crystallization temperature, and crystallization type on crystallization and solid phase transformation of LEV, multiple methods were performed for LEV aqueous solution to determine if a new solid form exists in solid-state LEV. However, XRPD data demonstrate that the LEV solid forms possess same spatial arrangements that are similar to the original solid form. This result indicates that the LEV concentration, crystallization temperature, and crystallization type in aqueous solution have no influence on the crystallization and solid phase transformation of LEV. Moreover, crystallization by sublimation, melt cooling, and quench cooling, as well as mechanical effect, did not result in the formation of new LEV solid state. During melt cooling, the transformation of solid form LEV is a direct process from melting amorphous phase to the original LEV crystal phase, and the conversion rate is very quick. In addition, stability investigation manifested that LEV solid state is very stable under various conditions.
Collapse
Affiliation(s)
- Kailin Xu
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xinnuo Xiong
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Liuqi Guo
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Lili Wang
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shanshan Li
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Peixiao Tang
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jin Yan
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Di Wu
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Hui Li
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|