1
|
Zewail M. Leflunomide nanocarriers: a new prospect of therapeutic applications. J Microencapsul 2024:1-24. [PMID: 39320955 DOI: 10.1080/02652048.2024.2407373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Leflunomide (LEF) is a well-known disease-modifying anti-rheumatic agent (DMARDs) that was approved in 1998 for rheumatoid arthritis (RA) management. It is enzymatically converted into active metabolite teriflunomide (TER) inside the body. LEF and TER possess several pharmacological effects in a variety of diseases including multiple sclerosis, cancer, viral infections and neurobehavioral brain disorders. Despite the aforementioned pharmacological effects exploring these effects in nanomedicine applications has been focused mainly on RA and cancer treatment. This review summarises the main pharmacological, and pharmacokinetic effects of LEF along with highlighting the applications of nanoencapsulation of LEF and its metabolite in different diseases.
Collapse
Affiliation(s)
- Mariam Zewail
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
2
|
Zhang Y, Tian J. Strategies, Challenges, and Prospects of Nanoparticles in Gynecological Malignancies. ACS OMEGA 2024; 9:37459-37504. [PMID: 39281920 PMCID: PMC11391544 DOI: 10.1021/acsomega.4c04573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/18/2024]
Abstract
Gynecologic cancers are a significant health issue for women globally. Early detection and successful treatment of these tumors are crucial for the survival of female patients. Conventional therapies are often ineffective and harsh, particularly in advanced stages, necessitating the exploration of new therapy options. Nanotechnology offers a novel approach to biomedicine. A novel biosensor utilizing bionanotechnology can be employed for early tumor identification and therapy due to the distinctive physical and chemical characteristics of nanoparticles. Nanoparticles have been rapidly applied in the field of gynecologic malignancies, leading to significant advancements in recent years. This study highlights the significance of nanoparticles in treating gynecological cancers. It focuses on using nanoparticles for precise diagnosis and continuous monitoring of the disease, innovative imaging, and analytic methods, as well as multifunctional drug delivery systems and targeted therapies. This review examines several nanocarrier systems, such as dendrimers, liposomes, nanocapsules, and nanomicelles, for gynecological malignancies. The review also examines the enhanced therapeutic potential and targeted delivery of ligand-functionalized nanoformulations for gynecological cancers compared to nonfunctionalized anoformulations. In conclusion, the text also discusses the constraints and future exploration prospects of nanoparticles in chemotherapeutics. Nanotechnology will offer precise methods for diagnosing and treating gynecological cancers.
Collapse
Affiliation(s)
- Yingfeng Zhang
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jing Tian
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| |
Collapse
|
3
|
Gupta N, Gupta G, Razdan K, Albekairi NA, Alshammari A, Singh D. Development of nanoemulgel of 5-Fluorouracil for skin melanoma using glycyrrhizin as a penetration enhancer. Saudi Pharm J 2024; 32:101999. [PMID: 38454919 PMCID: PMC10918269 DOI: 10.1016/j.jsps.2024.101999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024] Open
Abstract
The purpose of this study was to enhance the topical delivery of 5-Fluorouracil (5-FU), a cancer treatment, by developing a nanoemulgel formulation. Glycyrrhizin (GLY), a natural penetration enhancer has been investigated to exhibit synergistic effects with 5-FU in inhibiting melanoma cell proliferation and inducing apoptosis, Hence, GLY, along with suitable lipids was utilized to create an optimized nanoemulsion (NE) based gel. Solubility studies and ternary phase diagram revealed isopropyl myristate (IPM), Span 80, Tween 80 as Smix and Transcutol P as co-surfactant. IPM demonstrates excellent solubilizing properties facilitates higher drug loading, ensuring efficient delivery to the target site.,The optimized formulation consisting of 40 % IPM, 30 % of mixture of Tween80: Span80 (Smix) and 15 % Transcutol P provides with a nanometric size of 64.1 ± 5.13 nm and drug loading of 97.3 ± 5.83 %. The optimized formulation observed with no creaming and breakeing of NE and found thermodynamically stable during different stress conditions (temperatures of 4.0 °C and 45.0 °C) and physical thawing (-21.0 ± 0.50 °C to 20.0 ± 0.50 °C). The NE was then transformed into a nanoemulgel (NEG) using 1.5 % w/w Carbopol base and 0.1 % w/w glycyrrhizin. The ex vivo permeability studies showed significant enhancements in drug permeability with the GLY-based 5-FU-NEG formulation compared to pure 5-FU gel in excised pig skin upto1440 min in PBS 7.4 as receptor media. The IC50 values for Plain 5-FU gel, 5-FU-NEG, and GLY-based 5-FU-NEG were found to be 20 µg/mL, 1.1 µg/mL, and 0.1 µg/mL, respectively in B16F10 cell lines. The percentage intracellular uptake of GLY-5-FU-NEG and 5-FU-NEG was found to be 44.3 % and 53.6 %, respectively. GLY-based 5-FU-NEG formulation showed alterations in cell cycle distribution, in compared to 5-FU-NE gel. The overall findings suggest that the GLY-based 5-FU-NEG holds promise for improving anti-melanoma activity.
Collapse
Affiliation(s)
- Nimish Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - G.D. Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Karan Razdan
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
- University Institute of Pharma Sciences, Chandigarh University, Gharuan (140413), Mohali, India
| |
Collapse
|
4
|
Patil AS, Chougale SS, Kokatanr U, Hulyalkar S, Hiremath RD, Japti V, Masareddy R. Formulation and evaluation of itraconazole-loaded nanoemulgel for efficient topical delivery to treat fungal infections. Ther Deliv 2024; 15:165-179. [PMID: 38282577 DOI: 10.4155/tde-2023-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
Aim: The clinical application of conventional oral dosage form of itraconazole is limited due to its poor bioavailability. The aim of the study was to develop nanoemulgel of Itraconazole for topical delivery. Method: Nanoemulsions were prepared, optimized and further incorporated into a gel and evaluated for homogeneity, pH, viscosity, spreadability, in vitro drug release and skin irritation studies. Results: Cumulative drug release from nanoemulsions was within the range of 37.24 to 47.63% at 10 h. Drug release % for all the nanoemulgel formulations at10 h was 32.39, 39.75 and 45.9% respectively. Nanoemulgel was non-irritant as demonstrated by skin irritation studies in animals. Conclusion: Itraconazole nanoemulgels were proved to be potential for effective topical delivery of drug with enhanced bioavailability.
Collapse
Affiliation(s)
- Archana S Patil
- Department of Pharmaceutics, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education & Research, Belagavi, 590010, Karnataka, India
| | - Samradni S Chougale
- Department of Pharmaceutics, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education & Research, Belagavi, 590010, Karnataka, India
| | - Umashri Kokatanr
- Department of Pharmaceutics, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education & Research, Belagavi, 590010, Karnataka, India
| | - Sujay Hulyalkar
- Department of Pharmaceutics, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education & Research, Belagavi, 590010, Karnataka, India
| | - Ravindra D Hiremath
- KDCA's Institute of Pharmacy (Government Aided Institute) Airport Road, Ujalaiwadi, Kolhapur, 416004, Maharashtra, India
| | - Veerkumar Japti
- Department of Quality Assurance, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education & Research, Belagavi, 590010, Karnataka, India
| | - Rajashree Masareddy
- Department of Pharmaceutics, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education & Research, Belagavi, 590010, Karnataka, India
| |
Collapse
|
5
|
Sghier K, Mur M, Veiga F, Paiva-Santos AC, Pires PC. Novel Therapeutic Hybrid Systems Using Hydrogels and Nanotechnology: A Focus on Nanoemulgels for the Treatment of Skin Diseases. Gels 2024; 10:45. [PMID: 38247768 PMCID: PMC10815052 DOI: 10.3390/gels10010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Topical and transdermal drug delivery are advantageous administration routes, especially when treating diseases and conditions with a skin etiology. Nevertheless, conventional dosage forms often lead to low therapeutic efficacy, safety issues, and patient noncompliance. To tackle these issues, novel topical and transdermal platforms involving nanotechnology have been developed. This review focuses on the latest advances regarding the development of nanoemulgels for skin application, encapsulating a wide variety of molecules, including already marketed drugs (miconazole, ketoconazole, fusidic acid, imiquimod, meloxicam), repurposed marketed drugs (atorvastatin, omeprazole, leflunomide), natural-derived compounds (eucalyptol, naringenin, thymoquinone, curcumin, chrysin, brucine, capsaicin), and other synthetic molecules (ebselen, tocotrienols, retinyl palmitate), for wound healing, skin and skin appendage infections, skin inflammatory diseases, skin cancer, neuropathy, or anti-aging purposes. Developed formulations revealed adequate droplet size, PDI, viscosity, spreadability, pH, stability, drug release, and drug permeation and/or retention capacity, having more advantageous characteristics than current marketed formulations. In vitro and/or in vivo studies established the safety and efficacy of the developed formulations, confirming their therapeutic potential, and making them promising platforms for the replacement of current therapies, or as possible adjuvant treatments, which might someday effectively reach the market to help fight highly incident skin or systemic diseases and conditions.
Collapse
Affiliation(s)
- Kamil Sghier
- Faculty of Pharmacy, Masaryk University, Palackého tř. 1946, Brno-Královo Pole, 612 00 Brno, Czech Republic
| | - Maja Mur
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva c. 7, 1000 Ljubljana, Slovenia
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia C. Pires
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
6
|
Alam M, Mishra A, Yadav KS, Pradhan D, Kar B, Ghosh G, Rath G, Rai VK. Development and Evaluation of Dutasteride Nanoemulgel for the Topical Delivery against Androgenic Alopecia. Pharm Nanotechnol 2024; 12:459-470. [PMID: 38173065 DOI: 10.2174/0122117385269151231031161411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/23/2023] [Accepted: 10/11/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Dutasteride is approximately three times more potent than finasteride in treating alopecia. For reducing systemic exposure to dihydrotestosterone (DHT), researchers have shown special interest in developing topical formulations for treating androgenic alopecia. Dutasteride emulsification may lead to good skin penetration and improved availability in different lipophilic skin environments. OBJECTIVES This study aimed to encapsulate the drug into the lipidic carrier system for better local availability in the scalp skin, develop and evaluate nanoemulgel of dutasteride to ensure efficient topical administration, and perform the in-vivo activity of the developed gel for improved efficacy against alopecia. METHODS Dutasteride-loaded nanoemulsion was prepared by a high-speed homogenizer, followed by thickening of the dispersion using Carbopol 934. Skin permeation and accumulation were investigated in the excised skin of male Swiss albino mice. The nanoemulgel was characterized based on pH, stress stability, viscosity, and hardness. RESULTS The optimized dutasteride-loaded nanoemulsion had a size of 252.33 ± 8.59 nm, PDI of 0.205 ± 0.60, and drug content of 98.65 ± 1.78%. Stress stability was performed was well observed in nanoemulsion formulation. Nanoemulgel evaluation results were as follows: pH 5-6 was desirable for topical application, hardness was 43 gm, and spreadability was 79 gm with in vitro release of nanoemulgel at 91.98% and permeation study at 13.67%. CONCLUSION The in vivo studies demonstrated the growth of newer hair follicles and increased hair diameter and length in dutasteride-loaded nanoemulgel-treated alopecia animals compared to the marketed sample and testosterone-treated group. Provided with the same and long-term storage stability, the developed formulation is supposed to offer a good option for the topical administration of dutasteride in treating androgenic alopecia.
Collapse
Affiliation(s)
- Mahboob Alam
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Ajit Mishra
- School of Pharmaceutical Science, Sikhsa 'O' Anusandhan University, Bhubaneswar, Odisha, 751003, India
| | - Kuldeep Singh Yadav
- Dilip Kishore Mehrotra Institute of Pharmacy, Sitapur, 261001, Uttar Pradesh, India
| | - Deepak Pradhan
- School of Pharmaceutical Science, Sikhsa 'O' Anusandhan University, Bhubaneswar, Odisha, 751003, India
| | - Biswakanth Kar
- School of Pharmaceutical Science, Sikhsa 'O' Anusandhan University, Bhubaneswar, Odisha, 751003, India
| | - Goutam Ghosh
- School of Pharmaceutical Science, Sikhsa 'O' Anusandhan University, Bhubaneswar, Odisha, 751003, India
| | - Goutam Rath
- School of Pharmaceutical Science, Sikhsa 'O' Anusandhan University, Bhubaneswar, Odisha, 751003, India
| | - Vineet Kumar Rai
- School of Pharmaceutical Science, Sikhsa 'O' Anusandhan University, Bhubaneswar, Odisha, 751003, India
| |
Collapse
|
7
|
Eid AM, Natsheh H, Issa L, Zoabi M, Amer M, Mahamid E, Mousa A. Capsicum annuum Oleoresin Nanoemulgel - Design Characterization and In vitro Investigation of Anticancer and Antimicrobial Activities. Curr Pharm Des 2024; 30:151-160. [PMID: 38532324 DOI: 10.2174/0113816128283684231220062019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/21/2023] [Indexed: 03/28/2024]
Abstract
BACKGROUND The use of naturally occurring bioactive materials is getting great attention owing to their safety and environmental properties. Oily compounds, known as oleoresins, are expected to provide an important source for the natural products industry aiming to develop novel treatments for skin conditions. In this work, Capsicum annuum oleoresin nanoemulgel formulations have been prepared and investigated for their antibacterial and anticancer properties. METHODOLOGY Several C. annuum oleoresin nanoemulgel formulations were prepared by incorporating a Carbopol 940 gel in a self-nanoemulsifying nanoemulsion consisting of C. annuum, tween 80, and span 80. The systems were characterized for particle size, polydispersity index (PDI), zeta potential, and rheology. The in vitro antimicrobial and cytotoxic activities of the optimum formulation were evaluated. RESULTS The selected formulation is composed of 40% tween, 10% span 80, and 40% C. annuum oleoresin. This formulation produced a stable nanoemulsion with a narrow PDI value of 0.179 ± 0.08 and a droplet size of 104.0 ± 2.6 nm. Results of the in vitro antimicrobial studies indicated high potency of the systems against methicillin-resistant Staphylococcus aureus (MRSA) (zone of inhibition of 29 ± 1.9 mm), E. coli (33 ± 0.9 mm), K. pneumonia (30 ± 1.4 mm), and C. albicans (21 ± 1.5 mm), as compared to the reference antibiotic, ampicillin (18 ± 1.4 mm against K. pneumonia), and antifungal agent, fluconazole (12 ± 0.1 mm against C. albicans). Furthermore, cytotoxicity results, expressed as IC50 values, revealed that the oleoresin and its nanoemulgel had the best effects against the HepG2 cell line (IC50 value of 79.43 μg/mL for the nanoemulgel) and MCF7 (IC50 value of 57.54 μg/mL), and the most potent effect was found against 3T3 (IC50 value of 45.7 μg/m- L). On the other side, the system did not substantially exhibit activity against By-61 and Hela. CONCLUSION C. annuum oleoresin and its nanoemulgel can be considered valuable sources for the discovery of new antibacterial, antifungal, and anticancer compounds in the pharmaceutical industry, especially due to their potent activity against various cancer cell lines as well as bacterial and fungal strains.
Collapse
Affiliation(s)
- Ahmad M Eid
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Hiba Natsheh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Linda Issa
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Majdulin Zoabi
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Monia Amer
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Effat Mahamid
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Ahmed Mousa
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
8
|
Myburgh J, Liebenberg W, Willers C, Dube A, Gerber M. Investigation and Evaluation of the Transdermal Delivery of Ibuprofen in Various Characterized Nano-Drug Delivery Systems. Pharmaceutics 2023; 15:2413. [PMID: 37896173 PMCID: PMC10610253 DOI: 10.3390/pharmaceutics15102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
The aim was to assess the suitability of three nano-based transdermal drug delivery systems containing ibuprofen: a nano-emulsion, a nano-emulgel, and a colloidal suspension with ibuprofen-loaded nanoparticles. Understanding the transdermal delivery of ibuprofen using nano-based drug delivery systems can lead to more effective pain relief and improved patient compliance. Characterization tests assessed the suitability of the developed drug delivery systems. Membrane release and skin diffusion studies, along with tape stripping, were performed to determine drug release and skin permeation of ibuprofen. In vitro cytotoxicity studies on HaCaT cells were conducted using MTT and neutral red assays to evaluate the safety of the developed drug delivery systems. Characterization studies confirmed stable drug delivery systems with ideal properties for transdermal delivery. Membrane release studies demonstrated the successful release of ibuprofen. In vitro skin diffusion experiments and tape stripping, detecting ibuprofen in the receptor phase, stratum corneum-epidermis, and epidermis-dermis, indicating successful transdermal and topical delivery. The in vitro cytotoxicity studies observed only minor cytotoxic effects on HaCaT cells, indicating the safety of the developed drug delivery systems. The investigation demonstrated promising results for the transdermal delivery of ibuprofen using the developed drug delivery systems, which contributes to valuable insights that may lead to improved pain management strategies.
Collapse
Affiliation(s)
- Jeanri Myburgh
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2531, South Africa; (J.M.); (W.L.); (C.W.)
| | - Wilna Liebenberg
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2531, South Africa; (J.M.); (W.L.); (C.W.)
| | - Clarissa Willers
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2531, South Africa; (J.M.); (W.L.); (C.W.)
| | - Admire Dube
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town 7535, South Africa;
| | - Minja Gerber
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2531, South Africa; (J.M.); (W.L.); (C.W.)
| |
Collapse
|
9
|
Alhelal HM, Mehta S, Kadian V, Kakkar V, Tanwar H, Rao R, Aldhubiab B, Sreeharsha N, Shinu P, Nair AB. Solid Lipid Nanoparticles Embedded Hydrogels as a Promising Carrier for Retarding Irritation of Leflunomide. Gels 2023; 9:576. [PMID: 37504455 PMCID: PMC10379097 DOI: 10.3390/gels9070576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
Leflunomide (LEF), a disease-modifying anti-rheumatic drug, has been widely explored for its anti-inflammatory potential in skin disorders such as psoriasis and melanoma. However, its poor stability and skin irritation pose challenges for topical delivery. To surmount these issues, LEF-loaded solid lipid nanoparticles (SLNs) integrated with hydrogels have been developed in the present investigation. SLNs developed by microemulsion techniques were found ellipsoidal with 273.1 nm particle size and -0.15 mV zeta potential. Entrapment and total drug content of LEF-SLNs were obtained as 65.25 ± 0.95% and 93.12 ± 1.72%, respectively. FTIR and XRD validated the successful fabrication of LEF-SLNs. The higher stability of LEF-SLNs (p < 0.001) compared to pure drug solution was observed in photostability studies. Additionally, in vitro anti-inflammatory activity of LEF-SLNs showed good potential in comparison to pure drugs. Further, prepared LEF-SLNs loaded hydrogel showed ideal rheology, texture, occlusion, and spreadability for topical drug delivery. In vitro release from LEF-SLN hydrogel was found to follow the Korsmeyer-Peppas model. To assess the skin safety of fabricated lipidic formulation, irritation potential was performed employing the HET-CAM technique. In conclusion, the findings of this investigation demonstrated that LEF-SLN hydrogel is capable of enhancing the photostability of the entrapped drug while reducing its skin irritation with improved topical delivery characteristics.
Collapse
Affiliation(s)
- Hawra Mohammed Alhelal
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Sidharth Mehta
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Varsha Kadian
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Vandita Kakkar
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Himanshi Tanwar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Rekha Rao
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
10
|
Gadhave D, Gupta A, Khot S, Tagalpallewar A, Kokare C. Nose-to-brain delivery of paliperidone palmitate poloxamer-guar gum nanogel: Formulation, optimization and pharmacological studies in rats. ANNALES PHARMACEUTIQUES FRANÇAISES 2023; 81:315-333. [PMID: 36037930 DOI: 10.1016/j.pharma.2022.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/01/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022]
Abstract
Oral delivery of paliperidone palmitate (PPD), a potent antipsychotic agent, has been reported with a potential risk of very serious drug-induced adverse events such as tachycardia, hyperprolactinemia, sexual dysfunction, and neutropenia. Alternatively, the potential of nasal delivery has also been explored to treat CNS complications by delivering the medicines directly to the brain bypassing the blood-brain barrier. Hence, the objectives of current work were to formulate, design, optimize, and investigate the therapeutic potency of PPD-loaded intranasal in-situ gel (PPGISG) in the treatment of schizophrenia. PPD-nanoemulsion (PNE) was fabricated using water titration technique, was further optimized via Box-Behnken design. Furthermore, the optimized PNE was evaluated for parameters such as globule size, polydispersity index, zeta potential, and % entrapment efficiency were found to be 21.44±1.58nm, 0.268±0.02, -25.56±1.6mV, and 99.89±0.25%, respectively. PNE was further converted to PPGISG utilizing two polymers, poloxamer, and guar gum. Simultaneously, ex-vivo permeation for PNE, PPGISG, and PPD-suspension was found to be 211.40±4.8, 297.89±3.9 and 98.66±1.6μg/cm2, respectively. While PPGISG nanoparticles showed 1.58 and 5.65-folds more Jss than PNE and PPD-suspension. Behavioral studies confirmed that no extrapyramidal symptoms were observed in experimental animals post intranasal administration. Finally, the outcomes of the in-vivo hemato-compatibility study proved that intranasal formulation did not cause any alteration in leukocytes, RBCs, and neutrophils count. Therefore, intranasal delivery of PPGISG can be considered a novel tool for the safe delivery of PPD in schizophrenic patients.
Collapse
Affiliation(s)
- D Gadhave
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India; Department of Pharmaceutics, Dattakala Shikshan Sanstha's, Dattakala College of Pharmacy (Affiliated to Savitribai Phule Pune University), Swami Chincholi, Daund, Pune, 413130, Maharashtra, India.
| | - A Gupta
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India
| | - S Khot
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India
| | - A Tagalpallewar
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India; School of Pharmacy, Department of Pharmaceutics, MIT World Peace University, Pune, 411038, Maharashtra, India
| | - C Kokare
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India
| |
Collapse
|
11
|
Donthi MR, Munnangi SR, Krishna KV, Saha RN, Singhvi G, Dubey SK. Nanoemulgel: A Novel Nano Carrier as a Tool for Topical Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15010164. [PMID: 36678794 PMCID: PMC9863395 DOI: 10.3390/pharmaceutics15010164] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Nano-emulgel is an emerging drug delivery system intended to enhance the therapeutic profile of lipophilic drugs. Lipophilic formulations have a variety of limitations, which includes poor solubility, unpredictable absorption, and low oral bioavailability. Nano-emulgel, an amalgamated preparation of different systems aims to deal with these limitations. The novel system prepared by the incorporation of nano-emulsion into gel improves stability and enables drug delivery for both immediate and controlled release. The focus on nano-emulgel has also increased due to its ability to achieve targeted delivery, ease of application, absence of gastrointestinal degradation or the first pass metabolism, and safety profile. This review focuses on the formulation components of nano-emulgel for topical drug delivery, pharmacokinetics and safety profiles.
Collapse
Affiliation(s)
- Mahipal Reddy Donthi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
| | - Siva Ram Munnangi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA
| | - Kowthavarapu Venkata Krishna
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA
| | - Ranendra Narayan Saha
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
- R&D Healthcare Division Emami Ltd., 13, BT Road, Kolkata 700056, India
- Correspondence: ; Tel.: +91-8239703734
| |
Collapse
|
12
|
Zhang Y, Gao Z, Chao S, Lu W, Zhang P. Transdermal delivery of inflammatory factors regulated drugs for rheumatoid arthritis. Drug Deliv 2022; 29:1934-1950. [PMID: 35757855 PMCID: PMC9246099 DOI: 10.1080/10717544.2022.2089295] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Rheumatoid arthritis is a chronic autoimmune disease, with the features of recurrent chronic inflammation of synovial tissue, destruction of cartilage, and bone erosion, which further affects joints tissue, organs, and systems, and eventually leads to irreversible joint deformities and body dysfunction. Therapeutic drugs for rheumatoid arthritis mainly reduce inflammation through regulating inflammatory factors. Transdermal administration is gradually being applied to the treatment of rheumatoid arthritis, which can allow the drug to overcome the skin stratum corneum barrier, reduce gastrointestinal side effects, and avoid the first-pass effect, thus improving bioavailability and relieving inflammation. This paper reviewed the latest research progress of transdermal drug delivery in the treatment of rheumatoid arthritis, and discussed in detail the dosage forms such as gel (microemulsion gel, nanoemulsion gel, nanomicelle gel, sanaplastic nano-vesiclegel, ethosomal gel, transfersomal gel, nanoparticles gel), patch, drug microneedles, nanostructured lipid carrier, transfersomes, lyotropic liquid crystal, and drug loaded electrospinning nanofibers, which provide inspiration for the rich dosage forms of transdermal drug delivery systems for rheumatoid arthritis.
Collapse
Affiliation(s)
- Yanyan Zhang
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Zhaoju Gao
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Shushu Chao
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Wenjuan Lu
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Pingping Zhang
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| |
Collapse
|
13
|
Gupta N, Gupta GD, Singh D. Localized topical drug delivery systems for skin cancer: Current approaches and future prospects. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1006628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Topical drug delivery presents a novel substitute to the conventional drug-distribution routes of oral delivery and injection. Apart from the simplicity and non-invasiveness, the skin also serves as a “reservoir” that sustains administration over a period of days. Nanocarriers provide new potential for the treatment of skin disease. The skin’s barrier function offers a considerable obstacle for the potential nanocarriers to infiltrate into the tissue. However, the barrier is partially weakened in case of damage or inflammation, as in the case of skin cancer. Nanoparticles may promote the penetration of the skin. Extensive research has been done into producing nanoparticles for topical distribution; nevertheless, relatively little progress has been achieved in transferring them to the clinic for treating skin malignancies. The prior art features the critical concepts of skin malignancies and techniques in current clinical care. The present review gives a complete viewpoint of the numerous nanoparticle technologies studied for the topical treatment of skin malignancies and outlines the hurdles that hamper its advancement from the bench to the bedside. The review also intends to give knowledge of the routes that control nanoparticle penetration into the skin and their interactions inside the tissue.
Collapse
|
14
|
Zhou H, Tian J, Sun H, Fu J, Lin N, Yuan D, Zhou L, Xia M, Sun L. Systematic Identification of Genomic Markers for Guiding Iron Oxide Nanoparticles in Cervical Cancer Based on Translational Bioinformatics. Int J Nanomedicine 2022; 17:2823-2841. [PMID: 35791307 PMCID: PMC9250777 DOI: 10.2147/ijn.s361483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Magnetic iron oxide nanoparticle (MNP) drug delivery system is a novel promising therapeutic option for cancer treatment. Material issues such as fabrication and functionalized modification have been investigated; however, pharmacologic mechanisms of bare MNPs inside cancer cells remain obscure. This study aimed to explore a systems pharmacology approach to understand the reaction of the whole cell to MNPs and suggest drug selection in MNP delivery systems to exert synergetic or additive anti-cancer effects. Methods HeLa and SiHa cell lines were used to estimate the properties of bare MNPs in cervical cancer through 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) and enzyme activity assays and cellular fluorescence imaging. A systems pharmacology approach was utilized by combining bioinformatics data mining with clinical data analysis and without a predefined hypothesis. Key genes of the MNP onco-pharmacologic mechanism in cervical cancer were identified and further validated through transcriptome analysis with quantitative reverse transcription PCR (qRT-PCR). Results Low cytotoxic activity and cell internalization of MNP in HeLa and SiHa cells were observed. Lysosomal function was found to be impaired after MNP treatment. Protein tyrosine kinase 2 beta (PTK2B), liprin-alpha-4 (PPFIA4), mothers against decapentaplegic homolog 7 (SMAD7), and interleukin (IL) 1B were identified as key genes relevant for MNP pharmacology, clinical features, somatic mutation, and immune infiltration. The four key genes also exhibited significant correlations with the lysosome gene set. The qRT-PCR results showed significant alterations in the expression of the four key genes after MNP treatment in HeLa and SiHa cells. Conclusion Our research suggests that treatment of bare MNPs in HeLa and SiHa cells induced significant expression changes in PTK2B, PPFIA4, SMAD7, and IL1B, which play crucial roles in cervical cancer development and progression. Interactions of the key genes with specific anti-cancer drugs must be considered in the rational design of MNP drug delivery systems.
Collapse
Affiliation(s)
- Haohan Zhou
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China.,Department of Orthopaedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, 200000, People's Republic of China
| | - Jiayi Tian
- First Hospital, Jilin University, Changchun, 130021, People's Republic of China
| | - Hongyu Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Jiaying Fu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Nan Lin
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Danni Yuan
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Li Zhou
- First Hospital, Jilin University, Changchun, 130021, People's Republic of China
| | - Meihui Xia
- First Hospital, Jilin University, Changchun, 130021, People's Republic of China
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| |
Collapse
|
15
|
Kumbhar P, Kole K, Yadav T, Bhavar A, Waghmare P, Bhokare R, Manjappa A, Jha NK, Chellappan DK, Shinde S, Singh SK, Dua K, Salawi A, Disouza J, Patravale V. Drug repurposing: An emerging strategy in alleviating skin cancer. Eur J Pharmacol 2022; 926:175031. [PMID: 35580707 DOI: 10.1016/j.ejphar.2022.175031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
Abstract
Skin cancer is one of the most common forms of cancer. Several million people are estimated to have affected with this condition worldwide. Skin cancer generally includes melanoma and non-melanoma with the former being the most dangerous. Chemotherapy has been one of the key therapeutic strategies employed in the treatment of skin cancer, especially in advanced stages of the disease. It could be also used as an adjuvant with other treatment modalities depending on the type of skin cancer. However, there are several shortfalls associated with the use of chemotherapy such as non-selectivity, tumour resistance, life-threatening toxicities, and the exorbitant cost of medicines. Furthermore, new drug discovery is a lengthy and costly process with minimal likelihood of success. Thus, drug repurposing (DR) has emerged as a new avenue where the drug approved formerly for the treatment of one disease can be used for the treatment of another disease like cancer. This approach is greatly beneficial over the de novo approach in terms of time and cost. Moreover, there is minimal risk of failure of repurposed therapeutics in clinical trials. There are a considerable number of studies that have reported on drugs repurposed for the treatment of skin cancer. Thus, the present manuscript offers a comprehensive overview of drugs that have been investigated as repurposing candidates for the efficient treatment of skin cancers mainly melanoma and its oncogenic subtypes, and non-melanoma. The prospects of repurposing phytochemicals against skin cancer are also discussed. Furthermore, repurposed drug delivery via topical route and repurposed drugs in clinical trials are briefed. Based on the findings from the reported studies discussed in this manuscript, drug repurposing emerges to be a promising approach and thus is expected to offer efficient treatment at a reasonable cost in devitalizing skin cancer.
Collapse
Affiliation(s)
- Popat Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Kapil Kole
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Tejashree Yadav
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Ashwini Bhavar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Pramod Waghmare
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Rajdeep Bhokare
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Arehalli Manjappa
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, Uttar Pradesh, India; Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sunita Shinde
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, India
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
16
|
Ahmad MZ, Ahmad J, Alasmary MY, Akhter S, Aslam M, Pathak K, Jamil P, Abdullah M. Nanoemulgel as an approach to improve the biopharmaceutical performance of lipophilic drugs: Contemporary research and application. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Adenosine Conjugated Docetaxel Nanoparticles—Proof of Concept Studies for Non-Small Cell Lung Cancer. Pharmaceuticals (Basel) 2022; 15:ph15050544. [PMID: 35631370 PMCID: PMC9144510 DOI: 10.3390/ph15050544] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
Non-small cell lung cancer, a molecularly diverse disease, is the most prevalent cause of cancer mortality globally. Increasing understanding of the clinicopathology of the disease and mechanisms of tumor progression has facilitated early detection and multimodal care. Despite the advancements, survival rates are extremely low due to non-targeted therapeutics and correspondingly increased risk of metastasis. At some phases of cancer, patients need to face the ghost of chemotherapy. It is a difficult decision near the end of life. Such treatments have the capability to prolong survival or reduce symptoms, but can cause serious adverse effects, affecting quality of life of the patient. It is evident that many patients do not die from burden of the disease alone, but they die due to the toxic effect of treatment. Thus, increasing the efficacy is one aspect and decreasing the toxicity is another critical aspect of cancer formulation design. Through our current research, we tried to uncover both mentioned potentials of the formulation. Therefore, we designed actively targeted nanoparticles for improved therapeutics considering the overexpression of adenosine (ADN) receptors on non-small cell lung cancer (NSCLC) cells. Docetaxel (DTX), an essential therapeutic as part of combination therapy or as monotherapy for the treatment of NSCLC, was encapsulated in biodegradable poly(lactic-co-glycolic acid) nanoparticles. ADN was conjugated on the surface of nanoparticles using EDC-NHS chemistry. The particles were characterized in vitro for physicochemical properties, cellular uptake, and biocompatibility. The size and zeta potential of DTX nanoparticles (DPLGA) were found to be 138.4 ± 5.45 nm and −16.7 ± 2.3 mV which were found to change after ADN conjugation. The size was increased to 158.2 ± 6.3 nm, whereas zeta potential was decreased to −11.7 ± 1.4 mV for ADN-conjugated DTX nanoparticles (ADN-DPLGA) indicative of surface conjugation. As observed from transmission electron microscopy (TEM), the nanoparticles were spherical and showed no significant change in encapsulation efficiency even after surface conjugation. Careful and systematic optimization leads to ADN-conjugated PLGA nanoparticles having distinctive characteristic features such as particle size, surface potential, encapsulation efficacy, etc., that may play crucial roles in the fate of nanoparticles (NPs). Consequently, higher cellular uptake in the A549 lung cancer cell line was exhibited by ADN-DPLGA compared to DPLGA, illustrating the role of ADN receptors (ARs) in facilitating the uptake of NPs. Further in vivo pharmacokinetics and tissue distribution experiments revealed prolonged circulation in plasma and significantly higher lung tissue distribution than in other organs, dictating the targeting potential of the developed formulation over naïve drug and unconjugated formulations. Further, in vivo acute toxicity was examined using multiple parameters for non-toxic attributes of the developed formulation compared to other non-targeted organs. Further, it also supports the selection of biocompatible polymers in the formulation. The current study presents a proof-of-concept for a multipronged formulation technology strategy that might be used to maximize anticancer therapeutic responses in the lungs in the treatment of NSCLC. An improved therapeutic and safety profile would help achieve maximum efficacy at a reduced dose that would eventually help reduce the toxicity.
Collapse
|
18
|
Topical Nanoemulgel for the Treatment of Skin Cancer: Proof-of-Technology. Pharmaceutics 2021; 13:pharmaceutics13060902. [PMID: 34207014 PMCID: PMC8234434 DOI: 10.3390/pharmaceutics13060902] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 12/18/2022] Open
Abstract
The present study is a mechanistic validation of ‘proof-of-technology’ for the effective topical delivery of chrysin nanoemulgel for localized, efficient treatment of melanoma-affected skin. Background: Currently available treatments for skin cancer are inefficient due to systemic side effects and poor transcutaneous permeation, thereby presenting a formidable challenge for the development of novel nanocarriers. Methods: We opted for a novel approach and formulated a nanocomplex system composed of hydrophobic chrysin dissolved in a lipid mix, which was further nanoemulsified in Pluronic® F-127 gel to enhance physicochemical and biopharmaceutic characteristics. Chrysin, a flavone extracted from passion flowers, exhibits potential anti-cancer activities; however, it has limited applicability due to its poor solubility. Pseudo-ternary phase diagrams were constructed to identify the best self-nanoemulsifying region by varying the compositions of oil, Caproyl® 90 surfactant, Tween® 80, and co-solvent Transcutol® HP. Chrysin-loaded nanoemulsifying compositions were characterized for various physicochemical properties. Results: This thermodynamically stable, self-emulsifying drug delivery system showed a mean droplet size of 156.9 nm, polydispersity index of 0.26, and viscosity of 9100 cps after dispersion in gel. Mechanical characterization using Texture Analyzer exhibited that the gel had a hardness of 487 g and adhesiveness of 500 g. Ex vivo permeation through rat abdominal skin revealed significant improvement in percutaneous absorption measured as flux, the apparent permeability coefficient, the steady-state diffusion coefficient, and drug deposition. In vitro cytotoxicity on A375 and SK-MEL-2 cell lines showed a significantly improved therapeutic effect, thus ensuring reduction in dose. The safety of the product was established through biocompatibility testing on the L929 cell line. Conclusion: Aqueous, gel-based, topical, nanoemulsified chrysin is a promising technology approach for effective localized transcutaneous delivery that will help reduce the frequency and overall dose usage and ultimately improve the therapeutic index.
Collapse
|
19
|
|
20
|
Kulawik-Pióro A, Miastkowska M. Polymeric Gels and Their Application in the Treatment of Psoriasis Vulgaris: A Review. Int J Mol Sci 2021; 22:ijms22105124. [PMID: 34066105 PMCID: PMC8151792 DOI: 10.3390/ijms22105124] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023] Open
Abstract
Psoriasis is a chronic skin disease, and it is especially characterized by the occurrence of red, itchy, and scaly eruptions on the skin. The quality of life of patients with psoriasis is decreased because this disease remains incurable, despite the rapid progress of therapeutic methods and the introduction of many innovative antipsoriatic drugs. Moreover, many patients with psoriasis are dissatisfied with their current treatment methods and the form with which the drug is applied. The patients complain about skin irritation, clothing stains, unpleasant smell, or excessive viscosity of the preparation. The causes of these issues should be linked with little effectiveness of the therapy caused by low permeation of the drug into the skin, as well as patients’ disobeying doctors’ recommendations, e.g., concerning regular application of the preparation. Both of these factors are closely related to the physicochemical form of the preparation and its rheological and mechanical properties. To improve the quality of patients’ lives, it is important to gain knowledge about the specific form of the drug and its effect on the safety and efficacy of a therapy as well as the patients’ comfort during application. Therefore, we present a literature review and a detailed analysis of the composition, rheological properties, and mechanical properties of polymeric gels as an alternative to viscous and greasy ointments. We discuss the following polymeric gels: hydrogels, oleogels, emulgels, and bigels. In our opinion, they have many characteristics (i.e., safety, effectiveness, desired durability, acceptance by patients), which can contribute to the development of an effective and, at the same time comfortable, method of local treatment of psoriasis for patients.
Collapse
Affiliation(s)
| | - Małgorzata Miastkowska
- Correspondence: (A.K.-P.); (M.M.); Tel.: +48-1-2628-2740 (A.K.-P.); +48-1-2628-3072 (M.M.)
| |
Collapse
|
21
|
Nanaki SG, Andrianidou S, Barmpalexis P, Christodoulou E, Bikiaris DN. Leflunomide Loaded Chitosan Nanoparticles for the Preparation of Aliphatic Polyester Based Skin Patches. Polymers (Basel) 2021; 13:polym13101539. [PMID: 34064952 PMCID: PMC8151527 DOI: 10.3390/polym13101539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
In the present study, the preparation of controlled-released leflunomide (LFD)-loaded skin patches was evaluated, utilizing the combination of chitosan (CS) nanoparticles (NPs) incorporated into suitable poly(l-lactic acid) (PLLA) or poly(lactic-co-glycolic acid) (PLGA) polyester matrices. Initially, LFD-loaded CS NPs of ~600 nm and a smooth surface were prepared, while strong inter-molecular interactions between the drug and the CS were unraveled. In the following step, the prepared LFD-loaded CS NPs were incorporated into PLLA or PLGA, and thin-film patches were prepared via spin-coating. Analysis of the prepared films showed that the incorporation of the drug-loaded CS NPs resulted in a significant increase in the drug’s release rate and extent as compared to neat LFD-loaded polyester patches (i.e., prepared without the use of CS NPs). In-depth analysis of the prepared formulations showed that the amorphization of the drug within the matrix and the increased wetting properties of the prepared CS NPs were responsible for the improved thin-film patch characteristics.
Collapse
Affiliation(s)
- Stavroula G. Nanaki
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.G.N.); (S.A.); (E.C.)
| | - Sophia Andrianidou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.G.N.); (S.A.); (E.C.)
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Evi Christodoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.G.N.); (S.A.); (E.C.)
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.G.N.); (S.A.); (E.C.)
- Correspondence: ; Tel.: +30-2310-997812
| |
Collapse
|
22
|
Mehanna MM, Mneimneh AT. Formulation and Applications of Lipid-Based Nanovehicles: Spotlight on Self-emulsifying Systems. Adv Pharm Bull 2021; 11:56-67. [PMID: 33747852 PMCID: PMC7961215 DOI: 10.34172/apb.2021.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/31/2020] [Accepted: 04/19/2020] [Indexed: 12/31/2022] Open
Abstract
The drug delivery investigation field is continuously widened and adapted to overcome many factors such as poor drug solubility, absorption, rapid metabolism, the variability of drug plasma levels, cellular efflux and many others. Due to resemblance to body constituents and their biocompatibility, lipids offer a promising scheme for poorly water-soluble and lipophilic drugs. Various nanoparticles including vesicular systems, lipid particulate systems, and emulsion systems provide some unique benefits as pharmaceutical carriers in drug and biomolecules delivery systems. Nowadays synthesis is directed toward simple, costless techniques, therefore, self-emulsifying systems have gained superiority over the other carriers. Self nano-emulsifying systems composed of oil, surfactant, and co-surfactant emulsified upon contact with an aqueous medium, has been widely exploited. This review attempts to provide a comprehensive interpretation of different types of lipid-based carriers emphasizing on the self-nanoemulsifying system, why it is gaining interest, formulation, composition, and applications.
Collapse
Affiliation(s)
- Mohammed M Mehanna
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Amina Tarek Mneimneh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| |
Collapse
|
23
|
Bashir M, Ahmad J, Asif M, Khan SUD, Irfan M, Y Ibrahim A, Asghar S, Khan IU, Iqbal MS, Haseeb A, Khalid SH, As Abourehab M. Nanoemulgel, an Innovative Carrier for Diflunisal Topical Delivery with Profound Anti-Inflammatory Effect: in vitro and in vivo Evaluation. Int J Nanomedicine 2021; 16:1457-1472. [PMID: 33654396 PMCID: PMC7910103 DOI: 10.2147/ijn.s294653] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/28/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose Rheumatoid arthritis is an autoimmune disorder that directly affects joints. However, other body organs including heart, eyes, skin, blood vessels and lungs may also be affected. The purpose of this study was to design and evaluate a nanoemulgel formulation of diflunisal (DIF) and solubility enhanced diflunisal (DIF-IC) for enhanced topical anti-inflammatory activity. Methodology Nanoemulsion formulations of both DIF and DIF-IC were prepared and incorporated in three different gelling agents, namely carboxymethylcellulose sodium (CMC-Na), sodium alginate (Na-ALG) and xanthan gum (XG). All the formulations were evaluated in term of particle size, pH, conductivity, viscosity, zeta potential and in vitro drug release. The formulation 2 (NE2) of both DIF and DIF-IC which expressed optimum release and satisfactory physicochemical properties was incorporated with gelling agents to produce final nanoemulgel formulations. The optimized nanoemulgel formulation was subjected to three different in vivo anti-inflammatory models including carrageenan-induced paw edema model, histamine-induced paw edema model and formalin-induced paw edema model. Results DIF-IC-loaded nanoemulgel formulations yielded significantly enhanced in vitro skin permeation than DIF-loaded nanoemulgel. The nanoemulgel formulation of DIF-IC formulated with XG produced improved in vivo anti-inflammatory activity. Conclusion It was recommended that DIF-IC-based nanoemulgel formulation prepared with XG could be a better option for effective topical treatment of inflammatory conditions.
Collapse
Affiliation(s)
- Mehreen Bashir
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Junaid Ahmad
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Asif
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Asim Y Ibrahim
- Faculty of Pharmacy, Omdurman Islamic University, Omdurman, Sudan
| | - Sajid Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Abdul Haseeb
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Syed Haroon Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Mohammed As Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
24
|
Ilić D, Cvetković M, Tasić-Kostov M. Alkyl polyglucoside-based emulsions as vehicles for topical spironolactone: A textural analysis. ACTA FACULTATIS MEDICAE NAISSENSIS 2021. [DOI: 10.5937/afmnai38-28745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Acne vulgaris is a chronic dermatological disease that affects the pilosebaceous unit; androgens play an important role in its pathogenesis. Acne therapy can be either systemic or topical, usual in the treatment of mild and moderate forms of acne. Spironolactone (SP) is an anti-androgen drug with potential to reduce the sebum secretion; in order to avoid systemic side effects, it could be used topically in acne treatment. Nowadays, more and more attention is being paid to the textural profile of dermopharmaceutical emulsions, which is normally influenced by their colloidal structure; texture analysis is performed in order to predict behavior of the emulsion systems in real-time conditions during manufacturing and application; the latter is closely related to ensuring patients' compliance and the positive outcome of the therapy. We formulated emulsions stabilized with different natural alkyl polyglucoside (APG) emulsifiers (Cetearyl glucoside and cetearyl alcohol and Arachidyl glucoside and arachidyl behenyl alcohol) as vehicles for 5% topical SP. Parameters obtained by texture analysis were firmness and cohesiveness. The study showed that SP affected the texture of APG-based emulsion; different APG-based emulsions showed satisfying textural characteristics per se after incorporation of 5% SP, which could imply their satisfying applicative characteristics on the skin with acne. APGs could be used as stabilizers of emulsion vehicles for topical SP. Dermoemulsion with Arachidyl glucoside and arachidyl behenyl alcohol, more lypophillic emulsifier, is a more acceptable carrier for 5% SP due to a better textural profile.
Collapse
|
25
|
Ramanunny AK, Wadhwa S, Singh SK, Sharma DS, Khursheed R, Awasthi A. Treatment Strategies Against Psoriasis: Principle, Perspectives and Practices. Curr Drug Deliv 2020; 17:52-73. [PMID: 31752655 DOI: 10.2174/1567201816666191120120551] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/19/2019] [Accepted: 10/15/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Psoriasis is a genetically predisposed autoimmune disease mediated by cytokines released by the activated immune cells. It manifests inflammatory, scaly red or white silvery flaky skin which may be a fluid-filled lesion with soreness and itchiness. The prevalence rate of psoriasis is increasing day by day. Despite having such a high prevalence rate, the treatment of psoriasis is still limited. Hence, there is a need to rethink the various treatment strategies available in the allopathic as well as in the alternative systems of medicine. METHODS Various bibliographic databases of previously published peer-reviewed research papers were explored and systematic data culminated in terms of various treatment strategies used for the management of psoriasis. The prime focus is given towards modern as well as alternative systems of medicine such as phototherapy, a combination of phototherapy with pharmacotherapy such as Ayurveda, Yoga and naturopathy, Unani, Siddha, and Homeopathy to treat psoriasis. RESULTS A comprehensive review of 161 papers, including both research and review articles, was carried out to make the article readily understandable. The pathogenesis including inflammatory mediators and type of psoriasis is discussed before the treatment strategies to understand the pathophysiology of the disease. The uniqueness, procedure, advantages, and limitations of conventional, advanced, and traditional systems of medicine to treat psoriasis are discussed in detail. Emphasis has also been given towards marine sources such as fish oil, marine sponges, and algae. CONCLUSION Although there are many modern and alternative treatment strategies available to treat psoriasis, none of them have been proven to provide complete relief to patients. Moreover, they are associated with certain side effects. In order to overcome them, novel drug delivery systems have been utilized and found effective; however, their stability and safety become the major impediments towards their successful positioning. Traditional and alternative treatment strategies have found to be safe and effective but their use is localized to certain areas. In a nutshell, to achieve successful treatment of psoriasis, there is a need to focus on the development of stable and non-toxic novel drug delivery systems or the promotion of traditional systems to treat psoriasis.
Collapse
Affiliation(s)
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Deep Shikha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| |
Collapse
|
26
|
Gadhave D, Rasal N, Sonawane R, Sekar M, Kokare C. Nose-to-brain delivery of teriflunomide-loaded lipid-based carbopol-gellan gum nanogel for glioma: Pharmacological and in vitro cytotoxicity studies. Int J Biol Macromol 2020; 167:906-920. [PMID: 33186648 DOI: 10.1016/j.ijbiomac.2020.11.047] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/26/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022]
Abstract
The research work was intended to formulate teriflunomide (TFM) loaded nano lipid-based (TNLC) carbopol-gellan gum in situ gel (TNLCGHG) and to investigate its therapeutic efficacy against glioma, a brain and spine tumor. Nanoformulation was developed using gellan gum and carbopol 974P as gelling and mucoadhesive agents, respectively, Glyceryl di-behenate and Glyceryl mono-linoleate blend as lipids, and Gelucire 44/14: water blend as surfactant system. Globule size, PDI, zeta potential, encapsulation efficiency, mucoadhesive strength, and nasal permeation were found to be 117.80 nm, 0.56, -21.86 mV, 81.16%, 4.80 g, and 904 μg/cm2, respectively. Anticancer efficacy of TFM-loaded nano lipid-based carbopol-gellan gum in situ gel (TNLCGHG) was determined in human U-87MG glioma cell line. IC50 was found 7.0 μg/mL for TNLCGHG, 4.8 μg/mL for pure TFM, and 78.5 μg/mL for TNLC, which approve the superiority of surfactant along with gellan gum as permeation enhancer. Brain Cmax for technetium (99mTC) labeled intranasal (i.n.) 99mTC-TNLCGHG was found 2-folds higher than 99mTC-TNLC (i.n.) and 99mTC-TNLC intravenous (i.v.) because the TNLCGHG formulation contains surfactant with natural gelling polymers, which promisingly improved drug permeability. Finally, this research revealed encouraging outcomes and successfully developed intranasal TNLCGHG nanoformulation as a novel tool for safe delivery of TFM in glioma patients.
Collapse
Affiliation(s)
- Dnyandev Gadhave
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (affiliated to Savitribai Phule Pune University), Narhe, Pune 411 041, India.
| | - Nishant Rasal
- Department of Chemistry, Baburaoji Gholap College (affiliated to Savitribai Phule Pune University), Sangvi, Pune 411027, Maharashtra, India
| | - Rahul Sonawane
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (affiliated to Savitribai Phule Pune University), Narhe, Pune 411 041, India
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh-30450, Perak, Malaysia
| | - Chandrakant Kokare
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (affiliated to Savitribai Phule Pune University), Narhe, Pune 411 041, India
| |
Collapse
|
27
|
Lewińska A, Domżał-Kędzia M, Jaromin A, Łukaszewicz M. Nanoemulsion Stabilized by Safe Surfactin from Bacillus Subtilis as a Multifunctional, Custom-Designed Smart Delivery System. Pharmaceutics 2020; 12:E953. [PMID: 33050380 PMCID: PMC7601209 DOI: 10.3390/pharmaceutics12100953] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 12/24/2022] Open
Abstract
The developing field of bio-nanotechnology aims to advance colloidal research via the introduction of multifunctional nanoparticles to augment the dermal effectiveness of active substances. Self-emulsifying drug delivery systems (SEDDS)-isotropic mixtures of oils, surfactants, solvents and co-solvents or surfactants-are attracting interest in the cosmeceutical field. As part of this study, SEDDS systems containing vitamin C or vitamin E and curcumin were developed, whereby the bioavailability of the active compounds increased by enhancing their permeability to deeper layers of the skin. A composition consisting of 50% surfactin from Bacillus subtilis, 30% Transcutol and 20% oil phase was designed to encapsulate the active substances, i.e., vitamin C or vitamin E and curcumin, contained in the oil phase. The developed carriers were characterized by average particle sizes of 69-183 nm. The formulations with the vitamins were found to be physically and chemically stable for 6 months. Transdermal tests were carried out, showing that the carriers enable the transport of active substances deep into the skin, stopping at the dermis border. The formulations with vitamin C and vitamin E reduced the discoloration, the vascular lesions, and the depth of the wrinkles on the tested skin, which can be useful in cosmetics in the treatment of problem skin, including capillary and sensitive skin.
Collapse
Affiliation(s)
- Agnieszka Lewińska
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Marta Domżał-Kędzia
- Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland;
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland;
| | - Marcin Łukaszewicz
- Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland;
| |
Collapse
|
28
|
Ramanunny AK, Wadhwa S, Thakur D, Singh SK, Kumar R. Treatment Modalities of Psoriasis: A Focus on Requisite for Topical Nanocarrier. Endocr Metab Immune Disord Drug Targets 2020; 21:418-433. [PMID: 32496998 DOI: 10.2174/1871530320666200604162258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Psoriasis is an autoimmune skin disease involving cascading release of cytokines activated by the innate and acquired immune system. The increasing prevalence rate of psoriasis demands for more appropriate therapy. The existing chemical moiety is promising for better therapeutic outcome, but the selection of a proper channel for administration has to be reviewed. Hence there is a need to select the most appropriate dosage form and route of administration for improving the curative rate of psoriasis. RESULTS A total of 108 systematic reviews of research and review articles were conducted to make the manuscript comprehensible. The role of inflammatory mediators in the pathogenesis of the disease is discussed for a better understanding of the selection of pharmacotherapy. The older and newer therapeutic moiety with its mode of administration for psoriasis treatment has been discussed. With a comparative review on topical and oral administration of first-line drugs such as methotrexate (MTX), cyclosporine (CsA), and betamethasone, its benefits-liabilities in the selected routes were accounted for. Emphasis has also been paid on advanced nanocarriers for dermatologic applications. CONCLUSION For a better therapeutic outcome, proper selection of drug moiety with its appropriate administration is the major requisite. With the advent of nanotechnology, the development of nanocarrier for dermatologic application has been successfully demonstrated in positioning the systemically administrated drug into topical targeted delivery. In a nutshell, to achieve successful treatment strategies towards psoriasis, there is a need to focus on the development of stable, non-toxic nanocarrier for topical delivery. Inclusion of the existing orally administered drug moiety into nanocarriers for topical delivery is proposed in order to enhance therapeutics payload with reduced side effects which serves as a better treatment approach for relief of the psoriasis condition.
Collapse
Affiliation(s)
- Arya K Ramanunny
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Divya Thakur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
29
|
Anand K, Ray S, Rahman M, Shaharyar A, Bhowmik R, Bera R, Karmakar S. Nano-emulgel: Emerging as a Smarter Topical Lipidic Emulsion-based Nanocarrier for Skin Healthcare Applications. ACTA ACUST UNITED AC 2020; 14:16-35. [PMID: 31333141 DOI: 10.2174/1574891x14666190717111531] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND In recent decades, enormous efforts for different drug discovery processes have led to a number of drug molecules available today to overcome different challenges of the health care system. Unfortunately, more than half of these drugs are listed in either BCS (biopharmaceutical classification system) class II/ IV or both are eliminated from the development pipeline due to their limited clinical use. A nanotechnological approach bears much hope and lipoidal fabrication is found to be suitable for the delivery of such drugs. Nanoemulsion based gel i.e. nanoemulgel out of different nanolipoidal formulations has been found to be a suitable approach to successful drug delivery through topical routes. In past few years many herbal and synthetic active pharmaceutical ingredients (APIs) has been patented as nano sized emulsified gel for various therapeutic activities. METHODS Nanoemulgel is basically an emulsion-based topical gel formulation, where nanosized emulsion globules can be prepared with the help of high energy or low energy methods and further converted into nanoemulgel by adding a suitable gelling agent. Nanoemulgel fabrication enlists various kinds of polymeric materials, surfactants and fatty substances of natural, synthetic and semi-synthetic nature with a globule size range from 5 to 500 nm. RESULTS Nanoemulgel can be applicable to various acute and chronic diseases through topical routes. CONCLUSION Nanoemulgel preparations of many recently approved drugs are being used successfully in different areas of health care and have re-defined the significance of topical route of delivery as compared to other routes. However, along with various improvements in the current state of the delivery system, the safety factor needs to be taken into account by toxicological studies of the materials used in such formulations.
Collapse
Affiliation(s)
- Kumar Anand
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| | - Subhabrata Ray
- Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, West 713206 Bengal, India
| | - Mahfoozur Rahman
- Shalom Institute of Health and Allied sciences, Allahabad 211007, India
| | - Adil Shaharyar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| | - Rudranil Bhowmik
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| | - Rammohan Bera
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| |
Collapse
|
30
|
|
31
|
Hasani M, Sani NA, Khodabakhshi B, Arabi MS, Mohammadi S, Yazdani Y. Encapsulation of Leflunomide (LFD) in a novel niosomal formulation facilitated its delivery to THP-1 monocytic cells and enhanced Aryl hydrocarbon receptor (AhR) nuclear translocation and activation. Daru 2019; 27:635-644. [PMID: 31432467 PMCID: PMC6895356 DOI: 10.1007/s40199-019-00293-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 07/28/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Leflunomide (LFD) is an Aryl hydrocarbon receptor (AhR) agonist and immunomodulatory drug with several side effects. Niosomes are novel drug delivery systems used to reduce the unfavorable effects of drugs by enhancing their bioavailability, controlling their release and targeting specific sites. OBJECTIVES Here, we prepared niosomal formulations of LFD, evaluated their properties and delivered to THP-1 monocytic cells to study the activation and nuclear translocation of AhR. METHODS Four types of non-ionic surfactants were utilized to formulate niosomes by thin film hydration (TFH) method. Entrapment efficiency (EE %) of niosomes were quantified and dynamic light scattering (DLS) was performed. Transmission electron microscopy (TEM) was used to identify the morphology of LFD niosomes. Dialysis method was used to measure LFD release rate. MTS assay was adopted to examine the viability of the cells upon each treatment. The nuclear transfer of AhR was investigated by Immunocytochemistry (ICC). The mRNA expression of IL1β and CYP1A1 were evaluated using quantitative RT-PCR. RESULTS Span 60: cholesterol (1:1) showed the highest EE% (70.00 ± 6.24), largest particles (419.00 ± 4.16 nm) and the best uniformity with the lowest PDI (0.291 ± 0.007). TEM micrographs of Span 60 (1:1) nanoparticles showed conventional spherical vesicles with internal aqueous spaces. The release rate of LFD from Span 60 (1:1) vesicles was slower. Although the viability of LFD niosome-treated THP-1 cells was decreased, they were associated with lower cytotoxic effects compared with the free LFD counterparts. Both free and niosomal LFD treatments intensified the nuclear translocation of AhR. The mRNA expression of CYP1A1 was overexpressed while IL1β was downregulated in both free and niosomal LFD treated combinations. CONCLUSION LFD encapsulation in Span 60: cholesterol (1:1) niosomal formulation could be introduced as a suitable vehicle of transferring LFD to THP-1 cells, with minimal cytotoxic effects, enhancing the AhR nuclear translocation and activation and inducing immunomodulatory properties. Graphical abstract The Graphical abstract; it demonstrates the workflow of the study and summary of results in brief.
Collapse
Affiliation(s)
- Mahsa Hasani
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Neda Abbaspour Sani
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Behnaz Khodabakhshi
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehdi Sheikh Arabi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Saeed Mohammadi
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Stem Cell Research Center, Golestan University of Medical Sciences, Po.Box: 4934174611, Gorgan, Iran
| | - Yaghoub Yazdani
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
- Stem Cell Research Center, Golestan University of Medical Sciences, Po.Box: 4934174611, Gorgan, Iran.
| |
Collapse
|
32
|
Singhvi G, Patil S, Girdhar V, Dubey SK. Nanocarriers for Topical Drug Delivery: Approaches and Advancements. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/2210681208666180320122534] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background:Delivery of drugs through the skin has been an attractive as well as a challenging area for research. Topical drug delivery has provided enormous advantages over the systemic route for various drugs and one of the important amongst them is reduced toxicity due to a minimum or zero exposure to non-target organs.Methods:Various nanocarrier loaded topical preparations including organogels, emulgels, niosomal gel, lyotropic liquid crystal based gels, etc have been investigated for their topical application. Nanocarriers loaded topical preparation have been proven for improved permeation through the cutaneous barrier and delivering the drug at the target site. The objective of this review is to study the recent updates regarding newer topical gel formulations and highlighting their current potential and future scope of the same.Results:The present work has summarized different studies related to nanotechnology derived topical gel formulations and also enlisted few drugs which have been successfully formulated as novel topical gels. Advancement in nanocarriers loaded topical preparations have also been reviewed with their permeation and efficacy compared to conventional formulations.Conclusion:The present review will provide an overview of nanotechnology based topical preparation to the readers and will create curiosity for further development.
Collapse
Affiliation(s)
- Gautam Singhvi
- Department of Pharmacy, Industrial Research Laboratory, Birla Institute of Technology and Science, Pilani, Rajasthan, Pin: 333 031, India
| | - Shalini Patil
- Department of Pharmacy, Industrial Research Laboratory, Birla Institute of Technology and Science, Pilani, Rajasthan, Pin: 333 031, India
| | - Vishal Girdhar
- Department of Pharmacy, Industrial Research Laboratory, Birla Institute of Technology and Science, Pilani, Rajasthan, Pin: 333 031, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Industrial Research Laboratory, Birla Institute of Technology and Science, Pilani, Rajasthan, Pin: 333 031, India
| |
Collapse
|
33
|
Ravikumar P, Tatke P. Advances in encapsulated dermal formulations in chemoprevention of melanoma: An overview. J Cosmet Dermatol 2019; 18:1606-1612. [PMID: 31436386 DOI: 10.1111/jocd.13105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND The three forms of skin cancer are cutaneous malignant melanoma, basal cell carcinoma, and squamous cell carcinoma. Melanoma skin cancer is an aggressive type and one of the most chemotherapy-resistant malignancies. Conventional topical products are beset with limitations, leading to lower efficacy. There is a growing need to develop topical formulations encapsulated in polymeric and lipid nanoparticles, nanoemulsions, dendrimers, and liposomes exhibiting enhanced skin penetration and longer skin retention leading to better efficacy. OBJECTIVE The objective of this article is the screening of reported novel drug encapsulated delivery systems effective topically in melanoma chemoprevention. AIM The scope of this work is to provide an overview pertaining to the development and evaluation of three exemplary drug delivery systems (DDS), namely vesicular, particulate, and specialized emulsions. METHODS Topical drug delivery approaches targeting skin cancer have been reviewed and discussed. The focal point of the article is presentation of insights from published studies. RESULTS This review focuses on the novel delivery systems in chemoprevention of melanoma with discussion highlighting on advances in topical delivery. CONCLUSION Literature indicates that drug-loaded encapsulated topical formulations when compared with conventional dosage forms for skin cancer treatment exhibit greater efficacy and provide benefits like extended drug release, protection of the active ingredient against degradation, and lower skin irritation. Incorporation of phytoconstituents in newer delivery systems will be the way forward for improved topical chemoprevention strategy in melanoma. This has raised hope in making dermal therapy more useful and acceptable.
Collapse
Affiliation(s)
- Padmini Ravikumar
- Department of Pharmaceutics, SVKM's Dr Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India.,Department of Pharmaceutical Chemistry, C.U. Shah College of Pharmacy, SNDT Women's University, Mumbai, India
| | - Pratima Tatke
- Department of Pharmaceutical Chemistry, C.U. Shah College of Pharmacy, SNDT Women's University, Mumbai, India
| |
Collapse
|
34
|
Tasić-Kostov M, Arsić I, Pavlović D, Stojanović S, Najman S, Naumović S, Tadić V. Towards a modern approach to traditional use: in vitro and in vivo evaluation of Alchemilla vulgaris L. gel wound healing potential. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111789. [PMID: 30904703 DOI: 10.1016/j.jep.2019.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 01/16/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alchemilla vulgaris is an important remedy in European folk medicine, known for its astringent and anti-inflammatory properties; it is traditionally used to heal gynecological and gastrointestinal diseases. Despite its folkloric use in wound healing, there is a lack of scientific data to support this therapeutic application. AIM OF THE STUDY To analyze the wound healing potential of different solvent A. vulgaris extracts per se and after incorporation into hydrogels as topical vehicles, using two complementary methods - in vitro wound healing assay with L929 fibroblasts and in vivo assessment of skin barrier repair potential. Besides scientific justification of the traditional usage, we aimed to ephasize the importance of a proper vehicle for herbal extracts. The wound healing activity has been connected to the chemical profile of the investigated extracts, their antioxidative properties, but also to pH of the investigated gels and their mechanical characteristics. MATERIALS AND METHODS Antioxidant activity of investigated extracts was estimated using both 2,2-diphenyl-1-picrylhydrazyl and β-carotene/linoleic acid models. Chemical profile was achieved applying spectrophotometric and HPLC methods. In vitro scratch assay with L929 fibroblasts, and in vivo study of skin barrier repair potential of hydrogels with A. vulgaris extracts on human skin employing biophysical measurements, were performed in order to confirm the wound healing potential of A. vulgaris. Texture analysis of the gels was performed alongside the pH measurements. RESULTS All tested extracts and gels accelerated the wound healing process while the effect of ethanolic extract on migration of fibroblasts was the most pronounced. The highest extent of wound closure was also observed for the ethanolic extract. The most favorable effect on in vitro wound healing was observed for gel with propyleneglycolic extract. Results of in vivo study were in line with in vitro findings. Healing potential may be attributed to phenolic compounds found in A. vulgaris extracts, low pH of the gels, and the satisfying antioxidant activity of the extracts. Parameters obtained by textural analysis indicated satisfying mechanical properties of the gels, relevant to topical application. CONCLUSION Our study offers pharmacological evidence on the folkloric use of A. vulgaris in wound treatment, particularly after incorporation into hydrogel, and underlines an importance of a proper vehicle for incorporation of herbal extracts intended for topical treatment.
Collapse
Affiliation(s)
- Marija Tasić-Kostov
- Department of Pharmacy, University of Niš -Faculty of Medicine, Niš, Serbia.
| | - Ivana Arsić
- Department of Pharmacy, University of Niš -Faculty of Medicine, Niš, Serbia
| | - Dragana Pavlović
- Department of Pharmacy, University of Niš -Faculty of Medicine, Niš, Serbia
| | - Sanja Stojanović
- Department of Biology and Human Genetics and Department for Cell and Tissue Engineering, University of Niš - Faculty of Medicine, Niš, Serbia
| | - Stevo Najman
- Department of Biology and Human Genetics and Department for Cell and Tissue Engineering, University of Niš - Faculty of Medicine, Niš, Serbia
| | - Sonja Naumović
- Department of Pharmacy, University of Niš -Faculty of Medicine, Niš, Serbia
| | - Vanja Tadić
- Institute for Medicinal Plant Research "Dr Josif Pančić", Department of Pharmaceutical Research and Development, Tadeuša Košćuška 1, 11 000, Belgrade, Serbia
| |
Collapse
|
35
|
Gadhave DG, Kokare CR. Nanostructured lipid carriers engineered for intranasal delivery of teriflunomide in multiple sclerosis: optimization and in vivo studies. Drug Dev Ind Pharm 2019; 45:839-851. [PMID: 30702966 DOI: 10.1080/03639045.2019.1576724] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is one of the most severe autoimmune disorder of the central nervous system (CNS). OBJECTIVE The present research work was aimed to formulate and investigate teriflunomide (TFM)-loaded intranasal (i.n.) nanostructured lipid carriers (NLC) for the treatment of multiple sclerosis (MS). METHODS The TFM-loaded NLC (TFM-NLC) nanoparticles were prepared by melt emulsification ultrasonication method using biodegradable and biocompatible polymers. The Box-Behnken statistical design was applied to optimize the formulation. The optimized NLC formulation was subjected to evaluate for particle size, entrapment efficiency (%), in vitro and ex vivo permeation. The safety and efficacy of optimized formulations were demonstrated using pharmacodynamic, subacute toxicity and hepatotoxicity data. RESULTS Experimental data demonstrated that optimized NLC formulation (F17) showed significant size (99.82 ± 1.36 nm), zeta potential (-22.29 ± 1.8 mV) and % entrapment efficiency (83.39 ± 1.24%). Alternatively, ex vivo permeation of TFM mucoadhesive NLC (TFM-MNLC) and TFM-NLC was observed 830 ± 7.6 and 651 ± 9.8 µg/cm2, respectively. Whereas, TFM-MNLC shows around 2.0-folds more Jss than the TFM-NLC. Finally, TFM-MNLC (i.n.) formulation produced the rapid remyelination in cuprizone-treated animals and decreases the number of entries in open compartment of EPM when compared with negative control and TFM-NLC (oral) animals. Simultaneously, the nanoformulation did not reflect any gross changes in hepatic biomarkers and subacute toxicity when compared with control. CONCLUSIONS Hence it can be inferred that the nose-to-brain delivery of TFM-MNLC can be considered as effective and safe delivery for brain disorders.
Collapse
Affiliation(s)
- Dnyandev G Gadhave
- a Department of Pharmaceutics , STES's Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University) , Narhe, Pune , India
| | - Chandrakant R Kokare
- a Department of Pharmaceutics , STES's Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University) , Narhe, Pune , India
| |
Collapse
|
36
|
Gadhave DG, Tagalpallewar AA, Kokare CR. Agranulocytosis-Protective Olanzapine-Loaded Nanostructured Lipid Carriers Engineered for CNS Delivery: Optimization and Hematological Toxicity Studies. AAPS PharmSciTech 2019; 20:22. [PMID: 30604305 DOI: 10.1208/s12249-018-1213-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022] Open
Abstract
Potential risk of agranulocytosis is one of the drug-induced adverse effects of the second-generation antipsychotic agents. The present investigation aimed to formulate and investigate olanzapine (OLZ)-loaded nanostructured lipid carriers (OLZ-NLCs) via intranasal (i.n.) route. The NLC was prepared by melt emulsification method and optimized by Box-Behnken design. Mucoadhesive NLC was prepared by using 0.4% Carbopol 974P (OLZ-MNLC (C)) and the combination of 17% poloxamer 407 and 0.3% of HPMC K4M (OLZ-MNLC (P+H)). The particle size, zeta potential, and entrapment efficiency were found to be 88.95 nm ± 1.7 nm, - 22.62 mV ± 1.9 mV, and 88.94% ± 3.9%, respectively. Ex vivo permeation of OLZ-NLC, OLZ-MNLC (P+H), and OLZ-MNLC (C) was found to be 545.12 μg/cm2 ± 12.8 μg/cm2, 940.02 μg/cm2 ± 15.5 μg/cm2, and 820.10 μg/cm2 ± 11.3 μg/cm2, respectively, whereas the OLZ-MNLC (P+H) formulation showed rapid drug permeation than the OLZ-NLC and OLZ-MNLC (C) formulations. The OLZ-MNLC (P+H) formulation was shown to have 13.57- and 27.64-fold more Jss than the OLZ-MNLC (C) and OLZ-NLC formulations. The OLZ nanoformulations showed sustained release of up to 8 h. Finally, the brain Cmax of technetium-99m (99mTc)-OLZ-MNLC (i.n.) and 99mTc-OLZ-NLC (i.v.) was found to be 936 ng and 235 ng, respectively, whereas the Cmax of i.n. administration was increased 3.98-fold more than the Cmax of i.v. administration. The in vivo hematological study of OLZ-MNLC (P+H) confirmed that the i.n. formulation did not reflect any variation in leukocyte, RBC and platelet counts. Hence, it can be concluded that the nose-to-brain delivery of OLZ-MNLC (P+H) can be considered as an effective and safe delivery for CNS disorders.
Collapse
|
37
|
Agafonov M, Volkova T, Kumeev R, Chibunova E, Terekhova I. Impact of pluronic F127 on aqueous solubility and membrane permeability of antirheumatic compounds of different structure and polarity. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Choudhury H, Gorain B, Pandey M, Chatterjee LA, Sengupta P, Das A, Molugulu N, Kesharwani P. Recent Update on Nanoemulgel as Topical Drug Delivery System. J Pharm Sci 2017; 106:1736-1751. [DOI: 10.1016/j.xphs.2017.03.042] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/11/2017] [Accepted: 03/30/2017] [Indexed: 12/22/2022]
|
39
|
Potential and future scope of nanoemulgel formulation for topical delivery of lipophilic drugs. Int J Pharm 2017; 526:353-365. [PMID: 28461261 DOI: 10.1016/j.ijpharm.2017.04.068] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 11/21/2022]
Abstract
The Nanoemulgel drug delivery system is a formulation related intervention to improve the systemic delivery and therapeutic profile of lipophilic drugs. Nanoemulgel is an amalgamated formulation of two different systems in which nanoemulsion containing drug is incorporated into a gel base. The fusion of the two systems makes this formulation advantageous in several ways. Lipophilic drugs can be easily incorporated and the skin permeability of the incorporated drugs can be enhanced in several folds due to the finely distributed droplets of nanoemulsion phase. As a result, the pharmacokinetic and pharmacodynamic profiles of the lipophilic drugs are improved significantly. An increasing trend in topical nanoemulgel use in recent years has been noticed because of the better acceptability of the preparation to the patients due to their noninvasive delivery, avoidance of gastrointestinal side effects, easier applicability and good therapeutic and safety profile. Despite of having few limitations, nanoemulgel formulation can be considered as a potential and promising candidates for topical delivery of lipophilic drugs in the future. The aim of this review is to evaluate and report the current potential and future scope of nanoemulgel formulation for becoming an effective delivery system for poorly water soluble drugs. In this review, we have summarized and discussed the outcome of different studies on permeability, pharmacokinetic, pharmacodynamic and safety profile of the drugs delivered topically through nanoemulgel. Rationality of use along with the major challenges to overcome for nanoemulgel formulation has been discussed.
Collapse
|
40
|
Rambharose S, Kalhapure RS, Govender T. Nanoemulgel using a bicephalous heterolipid as a novel approach to enhance transdermal permeation of tenofovir. Colloids Surf B Biointerfaces 2017; 154:221-227. [PMID: 28343120 DOI: 10.1016/j.colsurfb.2017.03.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/21/2017] [Accepted: 03/17/2017] [Indexed: 11/30/2022]
Abstract
Improvements in permeation enhancement strategies, such as nanoemulsions (NEs) and nanoemulgels (NEGs), have led to a renewed interest in transdermal drug delivery (TDD). This study aimed to investigate the potential of LLA1E, a novel dendritic permeation enhancer, as an oily phase in the development of a NEG for the TDD of tenofovir (TNF). TNF loaded NEs (TNEs) were prepared and analysed for mean globule diameter (MGD), polydispersity index (PDI), zeta potential (ZP) and morphology. NEGs of the TNEs (TNEGs) were prepared and evaluated for ex vivo transdermal permeation efficacy. The skin integrity before and after the experiments was assessed using histology and transepithelial electrical resistance (TEER). TNEs had a MGD of 129.06±3.35nm, a PDI of 0.192±0.038 and a ZP of 20.9±2.02mV, with an incorporation efficiency of 91.94±0.84%. There was no significant change is these properties after incorporating the TNEs into the hydrogel, as MGD, PDI and ZP of TNEGs were found to be 136.13±5.21nm, 0.182±0.020 and -20.9±2.08mV respectively. Ex vivo permeation studies showed that the TNEG significantly enhanced the TNF permeation by 39.65-fold, with a cumulative amount of 1866.54±108.62μgcm-2. Histological and TEER assessments showed no permanent effects on the skin by TNEG, indicating that this novel TNEG nanosystem has the potential to translate into clinical trials as treatment alternatives for HIV/AIDs patients.
Collapse
Affiliation(s)
- Sanjeev Rambharose
- Department of Pharmaceutical Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Rahul S Kalhapure
- Department of Pharmaceutical Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa.
| | - Thirumala Govender
- Department of Pharmaceutical Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa.
| |
Collapse
|
41
|
Risk management and statistical multivariate analysis approach for design and optimization of satranidazole nanoparticles. Eur J Pharm Sci 2016; 96:273-283. [PMID: 27693296 DOI: 10.1016/j.ejps.2016.09.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/26/2016] [Accepted: 09/26/2016] [Indexed: 02/07/2023]
Abstract
Rapidly evolving technical and regulatory landscapes of the pharmaceutical product development necessitates risk management with application of multivariate analysis using Process Analytical Technology (PAT) and Quality by Design (QbD). Poorly soluble, high dose drug, Satranidazole was optimally nanoprecipitated (SAT-NP) employing principles of Formulation by Design (FbD). The potential risk factors influencing the critical quality attributes (CQA) of SAT-NP were identified using Ishikawa diagram. Plackett-Burman screening design was adopted to screen the eight critical formulation and process parameters influencing the mean particle size, zeta potential and dissolution efficiency at 30min in pH7.4 dissolution medium. Pareto charts (individual and cumulative) revealed three most critical factors influencing CQA of SAT-NP viz. aqueous stabilizer (Polyvinyl alcohol), release modifier (Eudragit® S 100) and volume of aqueous phase. The levels of these three critical formulation attributes were optimized by FbD within established design space to minimize mean particle size, poly dispersity index, and maximize encapsulation efficiency of SAT-NP. Lenth's and Bayesian analysis along with mathematical modeling of results allowed identification and quantification of critical formulation attributes significantly active on the selected CQAs. The optimized SAT-NP exhibited mean particle size; 216nm, polydispersity index; 0.250, zeta potential; -3.75mV and encapsulation efficiency; 78.3%. The product was lyophilized using mannitol to form readily redispersible powder. X-ray diffraction analysis confirmed the conversion of crystalline SAT to amorphous form. In vitro release of SAT-NP in gradually pH changing media showed <20% release in pH1.2 and pH6.8 in 5h, while, complete release (>95%) in pH7.4 in next 3h, indicative of burst release after a lag time. This investigation demonstrated effective application of risk management and QbD tools in developing site-specific release SAT-NP by nanoprecipitation.
Collapse
|