1
|
Pino P, Vigani B, Valentino C, Ianev D, Ruggeri M, Boselli C, Cornaglia AI, Grisoli P, Onida B, Bosco F, Sandri G, Rossi S. Sustainable whey proteins-nanostructured zinc oxide-based films for the treatment of chronic wounds: New insights from biopharmaceutical studies. Int J Biol Macromol 2024; 263:130655. [PMID: 38453117 DOI: 10.1016/j.ijbiomac.2024.130655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/22/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Chronic wounds represent silent epidemic affecting a large portion of the world population, especially the elders; in this context, the development of advanced bioactive dressings is imperative to accelerate wound healing process, while contrasting or preventing infections. The aim of the present work was to provide a deep characterization of the functional and biopharmaceutical properties of a sustainable thin and flexible films, composed of whey proteins alone (WPI) and added with nanostructured zinc oxide (WPZ) and intended for the management of chronic wounds. The potential of whey proteins-based films as wound dressings has been confirmed by their wettability, hydration properties, elastic behavior upon hydration, biodegradation propensity and, when added with nanostructured zinc oxide, antibacterial efficacy against both Gram-positive and Gram-negative pathogens, i.e. Staphylococcus aureus and Escherichia coli. In-vitro experiments, performed on normal human dermal fibroblasts, confirmed film cytocompatibility, also revealing the possible role of Zn2+ ions in promoting fibroblast proliferation. Finally, in-vivo studies on rat model confirmed film suitability to act as wound dressing, since able to ensure a regular healing process while providing effective protection from infections. In particular, both films WPI and WPZ are responsible for the formation in the wound bed of a continuous collagen layer similar to that of healthy skin.
Collapse
Affiliation(s)
- Paolo Pino
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Caterina Valentino
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Daiana Ianev
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Cinzia Boselli
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Antonia Icaro Cornaglia
- Department of Public Health Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Pietro Grisoli
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Barbara Onida
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy.
| | - Francesca Bosco
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
2
|
Koshy J, Sangeetha D. Recent progress and treatment strategy of pectin polysaccharide based tissue engineering scaffolds in cancer therapy, wound healing and cartilage regeneration. Int J Biol Macromol 2024; 257:128594. [PMID: 38056744 DOI: 10.1016/j.ijbiomac.2023.128594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/12/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Natural polymers and its mixtures in the form of films, sponges and hydrogels are playing a major role in tissue engineering and regenerative medicine. Hydrogels have been extensively investigated as standalone materials for drug delivery purposes as they enable effective encapsulation and sustained release of drugs. Biopolymers are widely utilised in the fabrication of hydrogels due to their safety, biocompatibility, low toxicity, and regulated breakdown by human enzymes. Among all the biopolymers, polysaccharide-based polymer is well suited to overcome the limitations of traditional wound dressing materials. Pectin is a polysaccharide which can be extracted from different plant sources and is used in various pharmaceutical and biomedical applications including cartilage regeneration. Pectin itself cannot be employed as scaffolds for tissue engineering since it decomposes quickly. This article discusses recent research and developments on pectin polysaccharide, including its types, origins, applications, and potential demands for use in AI-mediated scaffolds. It also covers the materials-design process, strategy for implementation to material selection and fabrication methods for evaluation. Finally, we discuss unmet requirements and current obstacles in the development of optimal materials for wound healing and bone-tissue regeneration, as well as emerging strategies in the field.
Collapse
Affiliation(s)
- Jijo Koshy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - D Sangeetha
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
3
|
Masareddy R, Sandure P, Patil A, Gaude Y, Patil A. In situ gastric floating gel of atazanavir sulphate for sustained release: formulation, optimization and evaluation. Ther Deliv 2023; 14:619-633. [PMID: 38054237 DOI: 10.4155/tde-2023-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Aim: Atazanavir sulphate belongs to BCS class II drug, its oral bioavailability is limited due to its rapid first-pass metabolism and P-gp efflux. Materials & methods: The in situ floating gel using the complexed drug was prepared by ion gelation method and optimized the formulation as per 32 full factorial design. Results: Floating lag time of optimized formulation was found to be 18 s and percentage drug release of 94.18 ± 0.18 % at the end of 16 h. The concentration of gelling polymer affects drug release and a floating lag time and vice versa. Conclusion: In situ floating gel of atazanavir sulphate was found promising to sustain drug release due to an increased gastric residence time, which leads to enhanced potential therapy.
Collapse
Affiliation(s)
- Rajashree Masareddy
- Department of Pharmaceutics, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education & Research, Belagavi, Karnataka, 590010, India
| | - Pradnya Sandure
- Department of Pharmaceutics, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education & Research, Belagavi, Karnataka, 590010, India
| | - Archana Patil
- Department of Pharmaceutics, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education & Research, Belagavi, Karnataka, 590010, India
| | - Yadishma Gaude
- Department of Pharmaceutics, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education & Research, Belagavi, Karnataka, 590010, India
| | - Arpana Patil
- Department of Pharmaceutics, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education & Research, Belagavi, Karnataka, 590010, India
| |
Collapse
|
4
|
Hassan NH, El-Hawary SS, Emam M, Rabeh MA, Tantawy MA, Seif M, Abd-Elal RMA, Bringmann G, Abdelmohsen UR, Selim NM. Pectin Nanoparticle-Loaded Soft Coral Nephthea sp. Extract as In Situ Gel Enhances Chronic Wound Healing: In Vitro, In Vivo, and In Silico Studies. Pharmaceuticals (Basel) 2023; 16:957. [PMID: 37513869 PMCID: PMC10383585 DOI: 10.3390/ph16070957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
This study shed light for the first time on the in vivo diabetic wound healing potential activity of natural marine soft coral polymeric nanoparticle in situ gel using an excision wound model. A Nephthea sp. methanol-methylene chloride extract loaded with pectin nanoparticles (LPNs) was created. For the preparation of in situ gel, ion-gelation techniques, the entrapment efficiency, the particle size, the polydispersity index, the zeta potential, the in-vitro drug release, and a transmission electron microscope were used and the best formula was selected. Using (UPLC-Q/TOF-MS), 27 secondary metabolites responsible for extract biological activity were identified. Isolation and identification of arachidic acid, oleic acid, nervonic acid, and bis-(2-ethylhexyl)-phthalate (DEHP) of Nephthea sp. was firstly reported here using NMR and mass spectral analyses. Moreover, LPN in situ gel has the best effects on regulating the proinflammatory cytokines (NF-κB, TNF-α, IL-6, and IL-1β) that were detected on days 7 and 15. The results were confirmed with an in vitro enzymatic inhibitory effect of the extract against glycogen synthase kinase (GSK-3) and matrix metalloproteinase-1 (MMP-1), with IC50 values of 0.178 ± 0.009 and 0.258 ± 0.011 µg/mL, respectively. The molecular docking study showed a free binding energy of -9.6 kcal/mol for chabrolosteroid E, with the highest binding affinity for the enzyme (GSK-3), while isogosterone B had -7.8 kcal/mol for the enzyme (MMP-1). A pharmacokinetics study for chabrolohydroxybenzoquinone F and isogosterone B was performed, and it predicted the mode of action of wound healing activity.
Collapse
Affiliation(s)
- Nevine H Hassan
- Pharmacognosy Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11571, Egypt
| | - Seham S El-Hawary
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt
| | - Mahmoud Emam
- Phytochemistry and Plant Systematics Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Mohamed A Rabeh
- Pharmacognosy Department, College of Pharmacy, King Khalid University, Abha 62514, Saudi Arabia
| | - Mohamed A Tantawy
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo 12622, Egypt
- Stem Cells Lab Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Cairo 12622, Egypt
- Center of Orthopaedics Research, and Translation Science (CORTS), Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, State College, PA 16801, USA
| | - Mohamed Seif
- Toxicology and Food Contaminants Department, Food Industries and Nutrition Research Institute, National Research Centre, Giza 12622, Egypt
| | - Radwa M A Abd-Elal
- Pharmaceutics and Drug Manufacturing Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11571, Egypt
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Usama Ramadan Abdelmohsen
- Pharmacognosy Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Pharmacognosy Department, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt
| | - Nabil M Selim
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt
| |
Collapse
|
5
|
Popov S, Paderin N, Chistiakova E, Ptashkin D, Vityazev F, Markov PA, Erokhin KS. Effect of Chitosan on Rheological, Mechanical, and Adhesive Properties of Pectin-Calcium Gel. Mar Drugs 2023; 21:375. [PMID: 37504906 PMCID: PMC10381555 DOI: 10.3390/md21070375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
In the present study, chitosan was included in the pectin ionotropic gel to improve its mechanical and bioadhesive properties. Pectin-chitosan gels P-Ch0, P-Ch1, P-Ch2, and P-Ch3 of chitosan weight fractions of 0.00, 0.25, 0.50, and 0.75 were prepared and characterized by dynamic rheological tests, penetration tests, and serosal adhesion ex vivo assays. The storage modulus (G') and loss modulus (G″) values, gel hardness, and elasticity of P-Ch1 were significantly higher than those of P-Ch0 gel. However, a further increase in the content of chitosan in the gel significantly reduced these parameters. The inclusion of chitosan into the pectin gel led to a decrease in weight and an increase in hardness during incubation in Hanks' solution at pH 5.0, 7.4, and 8.0. The adhesion of P-Ch1 and P-Ch2 to rat intestinal serosa ex vivo was 1.3 and 1.7 times stronger, whereas that of P-Ch3 was similar to that of a P-Ch0 gel. Pre-incubation in Hanks' solution at pH 5.0 and 7.4 reduced the adhesivity of gels; however, the adhesivity of P-Ch1 and P-Ch2 exceeded that of P-Ch0 and P-Ch3. Thus, serosal adhesion combined with higher mechanical stability in a wide pH range appeared to be advantages of the inclusion of chitosan into pectin gel.
Collapse
Affiliation(s)
- Sergey Popov
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciencesk", 167982 Syktyvkar, Russia
| | - Nikita Paderin
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciencesk", 167982 Syktyvkar, Russia
| | - Elizaveta Chistiakova
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciencesk", 167982 Syktyvkar, Russia
| | - Dmitry Ptashkin
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciencesk", 167982 Syktyvkar, Russia
| | - Fedor Vityazev
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciencesk", 167982 Syktyvkar, Russia
| | - Pavel A Markov
- The Federal State Budgetary Institution "National Medical Research Center of Rehabilitation and Balneologyk", 121099 Moscow, Russia
| | - Kirill S Erokhin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
6
|
Bonferoni MC, Caramella C, Catenacci L, Conti B, Dorati R, Ferrari F, Genta I, Modena T, Perteghella S, Rossi S, Sandri G, Sorrenti M, Torre ML, Tripodo G. Biomaterials for Soft Tissue Repair and Regeneration: A Focus on Italian Research in the Field. Pharmaceutics 2021; 13:pharmaceutics13091341. [PMID: 34575417 PMCID: PMC8471088 DOI: 10.3390/pharmaceutics13091341] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/22/2022] Open
Abstract
Tissue repair and regeneration is an interdisciplinary field focusing on developing bioactive substitutes aimed at restoring pristine functions of damaged, diseased tissues. Biomaterials, intended as those materials compatible with living tissues after in vivo administration, play a pivotal role in this area and they have been successfully studied and developed for several years. Namely, the researches focus on improving bio-inert biomaterials that well integrate in living tissues with no or minimal tissue response, or bioactive materials that influence biological response, stimulating new tissue re-growth. This review aims to gather and introduce, in the context of Italian scientific community, cutting-edge advancements in biomaterial science applied to tissue repair and regeneration. After introducing tissue repair and regeneration, the review focuses on biodegradable and biocompatible biomaterials such as collagen, polysaccharides, silk proteins, polyesters and their derivatives, characterized by the most promising outputs in biomedical science. Attention is pointed out also to those biomaterials exerting peculiar activities, e.g., antibacterial. The regulatory frame applied to pre-clinical and early clinical studies is also outlined by distinguishing between Advanced Therapy Medicinal Products and Medical Devices.
Collapse
Affiliation(s)
| | | | | | - Bice Conti
- Correspondence: (M.C.B.); (B.C.); (F.F.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
da Fonseca L, Santos GS, Huber SC, Setti TM, Setti T, Lana JF. Human platelet lysate - A potent (and overlooked) orthobiologic. J Clin Orthop Trauma 2021; 21:101534. [PMID: 34386346 PMCID: PMC8339333 DOI: 10.1016/j.jcot.2021.101534] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/25/2021] [Accepted: 07/25/2021] [Indexed: 01/03/2023] Open
Abstract
The knowledge of the essential role of platelets in tissue healing is gradually increasing and as regenerative medicine prompts new solutions, platelet-derived bioproducts have been proposed as a potential tool in this field. In orthopaedics and sports medicine, the use of PRP has been rapidly increasing in popularity as patients seek novel non-surgical approaches to acute and chronic musculoskeletal conditions. The concept of having platelets as a secretory organ other than a mere sponge-like coagulation component opens up new frontiers for the use of the platelet secretome. Platelet lysate is a solution saturated by growth factors, proteins, cytokines, and chemokines involved in crucial healing processes and is administered to treat different diseases such as alopecia, oral mucositis, radicular pain, osteoarthritis, and cartilage and tendon disorders. For this purpose, the abundant presence of growth factors and chemokines stored in platelet granules can be naturally released by different strategies, mostly through lyophilization, thrombin activation or ultrasound baths (ultrasonication). As a result, human platelet lysate can be produced and applied as a pure orthobiologic. This review outlines the current knowledge about human platelet lysate as a powerful adjuvant in the orthobiological use for the treatment of musculoskeletal injuries, without however failing to raise some of its most applicable basic science.
Collapse
Affiliation(s)
- Lucas da Fonseca
- Orthopaedic Department – UNIFESP/EPM, 715 Napoleão de Barros St – Vila Clementino, 04024-002, São Paulo, SP, Brazil
| | - Gabriel Silva Santos
- IOC – Instituto Do Osso e da Cartilagem/the Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue – Cidade Nova I, 13334-170, Indaiatuba, SP, Brazil,Corresponding author. IOC – Instituto do Osso e da Cartilagem/The Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue – 2nd floor, Room #29, Indaiatuba, São Paulo, 13334-170, Brazil. Tel.: +551930174366, +5519989283863.
| | - Stephany Cares Huber
- IOC – Instituto Do Osso e da Cartilagem/the Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue – Cidade Nova I, 13334-170, Indaiatuba, SP, Brazil
| | - Taís Mazzini Setti
- Indolor - Centro Intervencionista de Controle da Dor, 583 Sul Brasil Avenue – Room #406 – Centro, 89814-210, Maravilha, SC, Brazil
| | - Thiago Setti
- Indolor - Centro Intervencionista de Controle da Dor, 583 Sul Brasil Avenue – Room #406 – Centro, 89814-210, Maravilha, SC, Brazil
| | - José Fábio Lana
- IOC – Instituto Do Osso e da Cartilagem/the Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue – Cidade Nova I, 13334-170, Indaiatuba, SP, Brazil
| |
Collapse
|
8
|
Prasathkumar M, Sadhasivam S. Chitosan/Hyaluronic acid/Alginate and an assorted polymers loaded with honey, plant, and marine compounds for progressive wound healing-Know-how. Int J Biol Macromol 2021; 186:656-685. [PMID: 34271047 DOI: 10.1016/j.ijbiomac.2021.07.067] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
Biomaterials are being extensively used in regenerative medicine including tissue engineering applications, as these enhance tissue development, repair, and help in the process of angiogenesis. Wound healing is a crucial biological process of regeneration of ruptured tissue after getting injury to the skin and other soft tissue in humans and animals. Besides, the accumulation of microbial biofilms around the wound surface can increase the risk and physically obstruct the wound healing activity, and may even lead to amputation. Hence, in both acute and chronic wounds, prominent biomaterials are required for wound healing along with antimicrobial agents. This review comprehensively addresses the antimicrobial and wound healing effects of chitosan, chitin, cellulose acetate, hyaluronic acid, pullulan, bacterial cellulose, fibrin, alginate, etc. based wound dressing biomaterials fabricated with natural resources such as honey, plant bioactive compounds, and marine-based polymers. Due to their excellent biocompatibility and biodegradability, bioactive compounds derived from honey, plants, and marine resources are commonly used in biomedical and tissue engineering applications. Different types of polymer-based biomaterials including hydrogel, film, scaffold, nanofiber, and sponge dressings fabricated with bioactive agents including honey, curcumin, tannin, quercetin, andrographolide, gelatin, carrageenan, etc., can exhibit significant wound healing process in, diabetic wounds, diabetic ulcers, and burns, and help in cartilage repair along with good biocompatibility and antimicrobial effects. Among the reviewed biomaterials, carbohydrate polymers such as chitosan-based biomaterials are prominent and widely used for wound healing applications followed by hyaluronic acid and alginate-based biomaterials loaded with honey, plant, and marine compounds. This review first provides an overview of the vast natural resources used to formulate different biomaterials for the treatment of antimicrobial, acute, and chronic wound healing processes.
Collapse
Affiliation(s)
- Murugan Prasathkumar
- Biomaterials and Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, India
| | - Subramaniam Sadhasivam
- Biomaterials and Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, India; Department of Extension and Career Guidance, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
9
|
Viteri R, Zacconi F, Montenegro G, Giordano A. Bioactive compounds in Apis mellifera monofloral honeys. J Food Sci 2021; 86:1552-1582. [PMID: 33864260 DOI: 10.1111/1750-3841.15706] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/12/2021] [Accepted: 02/28/2021] [Indexed: 01/23/2023]
Abstract
Honey is a natural product with a sweet flavor. Honey is made by the honeybee (Apis mellifera L.) from the nectar of flowers or other plant secretions that are collected near the hive. These products are mixed with bee saliva and stored. Several studies have demonstrated that honey exhibits antioxidant, antimicrobial, nematicidal, antifungal, anticancer, and anti-inflammatory activities. These properties are influenced by the plants from which the secretions are harvested, from the naturally occurring compounds present in the nectar. Studies of the properties and applications of honey have distinguished honey from other natural products due to the presence of certain compounds and due its bioactive properties. The focus of this review is to discuss the identified and isolated compounds from monofloral honey produced by A. mellifera, with specific emphasis on antioxidant and antimicrobial properties of honey and its therapeutic health benefits.
Collapse
Affiliation(s)
- Rafael Viteri
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Santiago, Chile
| | - Flavia Zacconi
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Santiago, Chile.,Instituto de Ingeniería Biológica y Médica, Escuelas de Ingeniería, Medicina y Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Santiago, Chile
| | - Gloria Montenegro
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Santiago, Chile
| | - Ady Giordano
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Santiago, Chile
| |
Collapse
|
10
|
Blanquer A, Musilkova J, Filova E, Taborska J, Brynda E, Riedel T, Klapstova A, Jencova V, Mullerova J, Kostakova EK, Prochazkova R, Bacakova L. The Effect of a Polyester Nanofibrous Membrane with a Fibrin-Platelet Lysate Coating on Keratinocytes and Endothelial Cells in a Co-Culture System. NANOMATERIALS 2021; 11:nano11020457. [PMID: 33670150 PMCID: PMC7916860 DOI: 10.3390/nano11020457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 01/18/2023]
Abstract
Chronic wounds affect millions of patients worldwide, and it is estimated that this number will increase steadily in the future due to population ageing. The research of new therapeutic approaches to wound healing includes the development of nanofibrous meshes and the use of platelet lysate (PL) to stimulate skin regeneration. This study considers a combination of a degradable electrospun nanofibrous blend of poly(L-lactide-co-ε-caprolactone) and poly(ε-caprolactone) (PLCL/PCL) membranes (NF) and fibrin loaded with various concentrations of PL aimed at the development of bioactive skin wound healing dressings. The cytocompatibility of the NF membranes, as well as the effect of PL, was evaluated in both monocultures and co-cultures of human keratinocytes and human endothelial cells. We determined that the keratinocytes were able to adhere on all the membranes, and their increased proliferation and differentiation was observed on the membranes that contained fibrin with at least 50% of PL (Fbg + PL) after 14 days. With respect to the co-culture experiments, the membranes with fibrin with 20% of PL were observed to enhance the metabolic activity of endothelial cells and their migration, and the proliferation and differentiation of keratinocytes. The results suggest that the newly developed NF combined with fibrin and PL, described in the study, provides a promising dressing for chronic wound healing purposes.
Collapse
Affiliation(s)
- Andreu Blanquer
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (J.M.); (E.F.); (L.B.)
- Correspondence: ; Tel.: +420-29-644-3741
| | - Jana Musilkova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (J.M.); (E.F.); (L.B.)
| | - Elena Filova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (J.M.); (E.F.); (L.B.)
| | - Johanka Taborska
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic; (J.T.); (E.B.); (T.R.)
| | - Eduard Brynda
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic; (J.T.); (E.B.); (T.R.)
| | - Tomas Riedel
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic; (J.T.); (E.B.); (T.R.)
| | - Andrea Klapstova
- Faculty of Textile Engineering, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec 1, Czech Republic;
| | - Vera Jencova
- Faculty of Science, Humanities and Education, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec 1, Czech Republic; (V.J.); (J.M.); (E.K.K.)
| | - Jana Mullerova
- Faculty of Science, Humanities and Education, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec 1, Czech Republic; (V.J.); (J.M.); (E.K.K.)
- Institute of Nanomaterials, Advanced Technologies and Innovation, Bendlova 1409/7, 460 01 Liberec 1, Czech Republic
| | - Eva Kuzelova Kostakova
- Faculty of Science, Humanities and Education, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec 1, Czech Republic; (V.J.); (J.M.); (E.K.K.)
| | - Renata Prochazkova
- Faculty of Health, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec 1, Czech Republic;
- Regional Hospital Liberec, Husova 357/28, 460 01 Liberec 1, Czech Republic
| | - Lucie Bacakova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (J.M.); (E.F.); (L.B.)
| |
Collapse
|
11
|
Zhang Y, Zhuang D, Zhang Y, Lu H, Zhang H, Li T, Bi L. Super Activated Platelet Lysate, a Novel Autologous Platelet Lysate, Regulates the Expression of Inflammasome and Cytokine in the Experimental Periodontitis in Rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5535-5543. [PMID: 33364749 PMCID: PMC7751324 DOI: 10.2147/dddt.s289753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/07/2020] [Indexed: 12/30/2022]
Abstract
Purpose The aim of the present study was to evaluate the expression of inflammasome and cytokine on experimental periodontitis with super activated platelet lysate (SPL) in rats. Methods Periodontitis was induced by submerging cotton ligatures on the right side of the maxillary second molar in 36 Wistar rats. The rats were divided into 3 groups randomly: the rats received no treatment (control group); local injection with sterile saline (ligature+saline group) and local injection with SPL (ligature+SPL group). After treatments, the alveolar bone level and inflammation of periodontal tissue were evaluated by micro-computed tomography (micro-CT) scanning and histological examination, respectively. The expression of inflammasome and cytokine was evaluated by real-time quantitative polymerase chain reaction (RT-qPCR) assay. Results Compared with the control group, the bone loss significantly increased by 0.9 mm in the ligature+saline group and 0.4 mm in the ligature+SPL group (P < 0.001). 0.5 mm reduction in the bone loss was founded in the ligature+SPL group compared with the ligature+saline group (P < 0.001). The gene expression of CCL2, CXCL2, IL-6, IL-18, IL-1α, IL-1β, CXCL10, CXCL16, CCL5 was significantly reduced in the ligature+SPL group compared with the ligature+saline group (P < 0.05). Compared with the ligature+saline group, the expression for inflammasome NLRP3, AIM2, CASP1 was both downregulated in the ligature+SPL group (P < 0.05). Conclusion Our present study demonstrated local injection of SPL regulated the expression of inflammasome and cytokine and had a visible effect of relieving inflammation in the experimental periodontitis in rats.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin 150001, People's Republic of China
| | - Deshu Zhuang
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin 150001, People's Republic of China.,Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver BC V6T 1Z3, Canada
| | - Yi Zhang
- National and Local Joint Stem Cell Research & Engineering Center for Aging Diseases, Tian Qing Stem Cell Co., Ltd., Harbin 150028, People's Republic of China
| | - Huiying Lu
- National and Local Joint Stem Cell Research & Engineering Center for Aging Diseases, Tian Qing Stem Cell Co., Ltd., Harbin 150028, People's Republic of China
| | - Haijiao Zhang
- National and Local Joint Stem Cell Research & Engineering Center for Aging Diseases, Tian Qing Stem Cell Co., Ltd., Harbin 150028, People's Republic of China
| | - Tingting Li
- National and Local Joint Stem Cell Research & Engineering Center for Aging Diseases, Tian Qing Stem Cell Co., Ltd., Harbin 150028, People's Republic of China
| | - Liangjia Bi
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin 150001, People's Republic of China
| |
Collapse
|
12
|
Kupnik K, Primožič M, Kokol V, Leitgeb M. Nanocellulose in Drug Delivery and Antimicrobially Active Materials. Polymers (Basel) 2020; 12:E2825. [PMID: 33261198 PMCID: PMC7760654 DOI: 10.3390/polym12122825] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/22/2022] Open
Abstract
In recent years, nanocellulose (NC) has also attracted a great deal of attention in drug delivery systems due to its unique physical properties, specific surface area, low risk of cytotoxicity, and excellent biological properties. This review is focused on nanocellulose based systems acting as carriers to be used in drug or antimicrobial delivery by providing different but controlled and sustained release of drugs or antimicrobial agents, respectively, thus showing potential for different routes of applications and administration. Microorganisms are increasingly resistant to antibiotics, and because, generally, the used metal or metal oxide nanoparticles at some concentration have toxic effects, more research has focused on finding biocompatible antimicrobial agents that have been obtained from natural sources. Our review contains the latest research from the last five years that tested nanocellulose-based materials in the field of drug delivery and antimicrobial activity.
Collapse
Affiliation(s)
- Kaja Kupnik
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (K.K.); (M.P.)
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
| | - Mateja Primožič
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (K.K.); (M.P.)
| | - Vanja Kokol
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
| | - Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (K.K.); (M.P.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia
| |
Collapse
|
13
|
Vigani B, Rossi S, Sandri G, Bonferoni MC, Caramella CM, Ferrari F. Recent Advances in the Development of In Situ Gelling Drug Delivery Systems for Non-Parenteral Administration Routes. Pharmaceutics 2020; 12:pharmaceutics12090859. [PMID: 32927595 PMCID: PMC7559482 DOI: 10.3390/pharmaceutics12090859] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/25/2020] [Accepted: 09/02/2020] [Indexed: 12/27/2022] Open
Abstract
In situ gelling drug delivery systems have gained enormous attention over the last decade. They are in a sol-state before administration, and they are capable of forming gels in response to different endogenous stimuli, such as temperature increase, pH change and the presence of ions. Such systems can be administered through different routes, to achieve local or systemic drug delivery and can also be successfully used as vehicles for drug-loaded nano- and microparticles. Natural, synthetic and/or semi-synthetic polymers with in situ gelling behavior can be used alone, or in combination, for the preparation of such systems; the association with mucoadhesive polymers is highly desirable in order to further prolong the residence time at the site of action/absorption. In situ gelling systems include also solid polymeric formulations, generally obtained by freeze-drying, which, after contact with biological fluids, undergo a fast hydration with the formation of a gel able to release the drug loaded in a controlled manner. This review provides an overview of the in situ gelling drug delivery systems developed in the last 10 years for non-parenteral administration routes, such as ocular, nasal, buccal, gastrointestinal, vaginal and intravesical ones, with a special focus on formulation composition, polymer gelation mechanism and in vitro release studies.
Collapse
|
14
|
Glycyrrhetinic Acid Liposomes and Hyalurosomes on Spanish Broom, Flax, and Hemp Dressings to Heal Skin Wounds. Molecules 2020; 25:molecules25112558. [PMID: 32486398 PMCID: PMC7321348 DOI: 10.3390/molecules25112558] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
The focus of this work was to prepare Spanish Broom, flax, and hemp dressings impregnated with glycyrrhetinic acid (GA) liposomes or hyalurosomes to promote the healing process and protect the skin wounds. Vesicles were prepared by the film hydration method and characterized in terms of size, particle size distribution, ζ potential, encapsulation efficiency, in vitro release, and biocompatibility on 3T3 fibroblasts. Loaded liposomes and hyalurosomes showed nanometric size (355 ± 19 nm and 424 ± 32 nm, respectively), good size distribution (lower than 0.3), and appropriate encapsulation efficiency (58.62 ± 3.25% and 59.22 ± 8.18%, respectively). Hyalurosomes showed good stability during the storage period, which can be correlated to the negative ζ potential, and allowed a fast and complete release of GA. Preliminary biological studies revealed that both kinds of loaded vesicles were not cytotoxic and that hyalurosomes could exert a slight stimulating effect on fibroblast proliferation. Finally, in vitro release studies from the different dressings impregnated with the loaded vesicles demonstrated that a high amount of GA could be reached at the wound site after 60 min from application. In conclusion, the results suggested that the developed dressings, especially those impregnated with hyalurosomes, can be efficiently used to promote the healing process.
Collapse
|
15
|
Soubhagya AS, Moorthi A, Prabaharan M. Preparation and characterization of chitosan/pectin/ZnO porous films for wound healing. Int J Biol Macromol 2020; 157:135-145. [PMID: 32339591 DOI: 10.1016/j.ijbiomac.2020.04.156] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/09/2020] [Accepted: 04/19/2020] [Indexed: 01/29/2023]
Abstract
Three-dimensional (3D) porous films based on chitosan/pectin/ZnO nanoparticles (NPs) were prepared for wound healing by the freeze-drying method. The chemical nature, composition and morphology of these films were revealed by FTIR, XRD, EDX, SEM and BET analysis. SEM micrographs showed a decrease in the pore size and porosity of chitosan/pectin/ZnO films when increasing the content of ZnO NPs. The developed films presented the swelling degree and water retention ability in the range of 189-465 and 230-390%, respectively. Moreover, they showed an improved compression strength and controlled degradation in the lysozyme-containing medium in comparison with control. MTT assay demonstrated the biocompatibility of chitosan/pectin/ZnO films against the primary human dermal fibroblast cells (HFCs). Among the developed chitosan/pectin/ZnO films, CPZnO-2 films presented the increased rate of cell proliferation and migration. Also, they exhibited antimicrobial activity against the gram-positive and gram-negative bacteria and fungi. These results suggested that chitosan/pectin/ZnO films could be safe, convenient and effective for wound healing.
Collapse
Affiliation(s)
- A S Soubhagya
- Department of Chemistry, Hindustan Institute of Technology and Science, Padur, Chennai 603 103, India
| | - A Moorthi
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Chennai 603 103, India
| | - M Prabaharan
- Department of Chemistry, Hindustan Institute of Technology and Science, Padur, Chennai 603 103, India.
| |
Collapse
|
16
|
Biocompatible Gels of Chitosan-Buriti Oil for Potential Wound Healing Applications. MATERIALS 2020; 13:ma13081977. [PMID: 32340366 PMCID: PMC7215912 DOI: 10.3390/ma13081977] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022]
Abstract
The buriti oil (Mauritia flexuosa L.) can be associated with polymeric matrices for biomedical applications. This study aimed to evaluate the effect of chitosan gel (CG) associated with buriti oil (CGB) as a healing agent. The fatty acids and volatile compounds composition of buriti oil were performed and the composite gels were characterized using FTIR and thermal analysis. Biological tests including antimicrobial, antioxidant, anti-inflammatory and healing effects were also investigated. Buriti oil is composed of oleic and palmitic acids, and the main volatile compounds were identified. The buriti oil did not show antimicrobial activity, on the other hand, the composite gel (chitosan and oil) proved to be efficient against Staphylococcus aureus and Klebsiella pneumonia at the 10 mg/mL. Similar behavior was observed for antioxidant activity, determined by the β-carotene bleaching assay, composite gels presenting higher activity and buriti oil showed anti-inflammatory activity, which may be related to the inhibition of the release of free radicals. Regarding wound healing performed using in vivo testing, the composite gel (CGB) was found to promote faster and complete wound retraction. The results indicated that the gel chitosan–buriti oil has a set of properties that improve its antibacterial, antioxidant and healing action, suggesting that this material can be used to treat skin lesions.
Collapse
|
17
|
Platelet-inspired therapeutics: current status, limitations, clinical implications, and future potential. Drug Deliv Transl Res 2020; 11:24-48. [PMID: 32323161 DOI: 10.1007/s13346-020-00751-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent research has been successful in demonstrating the importance of the addition of platelets to the field of cell-mediated therapeutics, by making use of different platelet forms to design modalities able to positively impact a wide range of diseases. A key obstacle hindering the success of conventional therapeutic interventions is their inability to produce targeted treatment, resulting in a number of systemic side effects and a longer duration for the onset of action to occur. An additional challenge facing current popular therapeutic interventions is biocompatibility of the system, resulting in the decline of patient compliance to treatment. In an attempt to address these challenges, the past few decades have been witness to the discovery and innovation of precision therapy, in order to achieve targeted treatment for an array of conditions, thereby superseding alternative mechanisms of treatment. Platelet-mediated therapeutics, as well as employing platelets as drug delivery vehicles, are key components in advancing precision therapy within research and in clinical settings. This novel approach is designed with the objective that the platelets retain their original structure and functions within the body, thereby mitigating biocompatibility challenges. In this article, we review the current significant impact that the addition of platelet-inspired systems has made on the field of therapeutics; explore certain limitations of each system, together with ideas on how to overcome them; and discuss the clinical implications and future potential of platelet-inspired therapeutics. Graphical abstract.
Collapse
|
18
|
New Spanish Broom dressings based on Vitamin E and Lactobacillus plantarum for superficial skin wounds. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
19
|
Bonferoni MC, Rossi S, Sandri G, Caramella C, Del Fante C, Perotti C, Miele D, Vigani B, Ferrari F. Bioactive Medications for the Delivery of Platelet Derivatives to Skin Wounds. Curr Drug Deliv 2019; 16:472-483. [PMID: 30894109 PMCID: PMC6637103 DOI: 10.2174/1381612825666190320154406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/24/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
Abstract
Chronic wounds are the result of alterations in the complex series of events of physiological wound healing. In particular, the prolonged inflammation results in increased protease activity, in the deg-radation of extracellular matrix (ECM) and of growth factors (GFs). The relevance of platelet GFs in maintaining and restoring the complex equilibrium of different moments in wound healing is well recog-nized. Moreover, the observed decrease of their levels in chronic wounds suggested a possible therapeutic role of the external application to the wounds. It has been also pointed out that tissue regeneration can be more efficiently obtained by the synergic use of different GFs. Platelet derivatives such as platelet-rich plasma (PRP) and platelet lysate (PL) are able to release GFs in a balanced pool. Their therapeutic use in regenerative medicine and wound healing has been therefore more and more frequently proposed in clini-cal trials and in the literature. The development of a suitable formulation able to control the GFs release rate, to protect the GFs, and to assure their prolonged contact with the wound site, is of paramount im-portance for the therapeutic success. The present review considers some formulation approaches for PRP and PL application to wounds
Collapse
Affiliation(s)
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Carla Caramella
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Claudia Del Fante
- Immunohaematology and Transfusion Service and Cell Therapy Unit of Fondazione IRCCS, S. Matteo, 27100 Pavia, Italy
| | - Cesare Perotti
- Immunohaematology and Transfusion Service and Cell Therapy Unit of Fondazione IRCCS, S. Matteo, 27100 Pavia, Italy
| | - Dalila Miele
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
20
|
An In Situ Gelling System for the Local Treatment of Inflammatory Bowel Disease (IBD). The Loading of Maqui ( Aristotelia Chilensis) Berry Extract as an Antioxidant and Anti-Inflammatory Agent. Pharmaceutics 2019; 11:pharmaceutics11110611. [PMID: 31739619 PMCID: PMC6920942 DOI: 10.3390/pharmaceutics11110611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 12/28/2022] Open
Abstract
The aim of the present work was the development of an innovative in situ gelling system, to be applied on the mucosa of the distal colon via rectal route. The system consisted of three polymers having different functions: gellan (GG), able to jellify in presence of ions; methylcellulose (MC), a thermosensitive polymer with a gelation temperature close to 50 °C; and hydroxypropylcellulose (HPC), a mucoadhesive polymer. The three polymers were able to act synergistically, increasing the permanence of the vehicle on the mucosa and forming a protective gel layer. A DoE approach, "simplex centroid mixture design," was used to identify the optimal quantitative composition of the vehicle. The response variables considered were: vehicle viscosity at room temperature; increase in vehicle viscosity on increasing temperature (from room to physiological value) and upon dilution with simulated colonic fluid (SCF); and viscoelastic behavior, thixotropic area, and mucoadhesion properties of the gel formed at 37 °C upon dilution in SCF. The optimized vehicle was loaded with maqui berry extract (MBE), known for its antioxidant and anti-inflammatory properties. MBE loading (0.5% w/w) into the vehicle improved rheological and mucoadhesive properties of the formulation. Both MBE and the optimized vehicle were not cytotoxic towards human fibroblasts and Caco-2 cells. Moreover, the optimized vehicle did not affect MBE antioxidant properties.
Collapse
|
21
|
Zamani M, Yaghoubi Y, Movassaghpour A, Shakouri K, Mehdizadeh A, Pishgahi A, Yousefi M. Novel therapeutic approaches in utilizing platelet lysate in regenerative medicine: Are we ready for clinical use? J Cell Physiol 2019; 234:17172-17186. [PMID: 30912141 DOI: 10.1002/jcp.28496] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022]
Abstract
Hemoderivative materials are used to treat different diseases. These derivatives include platelet-rich plasma, serum, platelet gel, and platelet lysate (PL). Among them, PL contains more growth factors than the others and its production is inexpensive and easy. PL is one of the proper sources of platelet release factors. It is used in cells growth and proliferation and is a good alternative to fetal bovine serum. In recent years, the clinical use of PL has gained more appeal by scientists. PL is a solution saturated by growth factors, proteins, cytokines, and chemokines and is administered to treat different diseases such as wound healing, bone regeneration, alopecia, oral mucositis, radicular pain, osteoarthritis, and ocular diseases. In addition, it can be used in cell culture for cell therapy and tissue transplantation purposes. Platelet-derived growth factor, fibroblast growth factor, insulin-like growth factor, transforming growth factor β, and vascular endothelial growth factor are key PL growth factors playing a major role in cell proliferation, wound healing, and angiogenesis. In this paper, we scrutinized recent advances in using PL and PL-derived growth factors to treat diseases and in regenerative medicine, and the ability to replace PL with other hemoderivative materials.
Collapse
Affiliation(s)
- Majid Zamani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yoda Yaghoubi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Movassaghpour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Hematology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kazem Shakouri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Pishgahi
- Department of Hematology, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Abstract
Honey-rich composition in biologically active compounds makes honey a food products highly appreciated due to the nutritional and healthy properties. Food-manufacturing is very prone to different types of adulterations and fraudulent labelling making it urgent to establish accurate, fast and cost-effective analytical techniques for honey assessment. In addition to the classical techniques (e.g., physicochemical analysis, microscopy, chromatography, immunoassay, DNA metabarcoding, spectroscopy), electrochemical based-sensor devices have arisen as reliable and green techniques for food analysis including honey evaluation, allowing in-situ and on-line assessment, being a user-friendly procedure not requiring high technical expertise. In this work, the use of electronic tongues, also known as taste sensor devices, for honey authenticity and assessment is reviewed. Also, the versatility of electronic tongues to qualitative (e.g., botanical and/or geographical origin assessment as well as detection of adulteration) and quantitative (e.g., assessment of adulterants levels, determination of flavonoids levels or antibiotics and insecticides residues, flavonoids) honey analysis is shown. The review is mainly focused on the research outputs reported during the last decade aiming to demonstrate the potentialities of potentiometric and voltammetric multi-sensor devices, pointing out their main advantages and present and future challenges for becoming a practical quality analytical tool at industrial and commercial levels.
Collapse
|
23
|
Rossi S, Mori M, Vigani B, Bonferoni MC, Sandri G, Riva F, Caramella C, Ferrari F. A novel dressing for the combined delivery of platelet lysate and vancomycin hydrochloride to chronic skin ulcers: Hyaluronic acid particles in alginate matrices. Eur J Pharm Sci 2018; 118:87-95. [PMID: 29574078 DOI: 10.1016/j.ejps.2018.03.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/26/2018] [Accepted: 03/20/2018] [Indexed: 11/19/2022]
Abstract
The aim of the present work was to develop a medication allowing for the combined delivery of platelet lysate (PL) and an anti-infective model drug, vancomycin hydrochloride (VCM), to chronic skin ulcers. A simple method was set up for the preparation of hyaluronic acid (HA) core-shell particles, loaded with PL and coated with calcium alginate, embedded in a VCM containing alginate matrix. Two different CaCl2 concentrations were investigated to allow for HA/PL core-shell particle formation. The resulting dressings were characterized for mechanical and hydration properties and tested in vitro (on fibroblasts) and ex-vivo (on skin biopsies) for biological activity. They were found of sufficient mechanical strength to withstand packaging and handling stress and able to absorb a high amount of wound exudate and to form a protective gel on the lesion area. The CaCl2 concentration used for shell formation did not affect VCM release from the alginate matrix, but strongly modified the release of PGFAB (chosen as representative of growth factors present in PL) from HA particles. In vitro and ex vivo tests provided sufficient proof of concept of the ability of dressings to improve skin ulcers healing.
Collapse
Affiliation(s)
- S Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - M Mori
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - B Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - M C Bonferoni
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - G Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - F Riva
- Department of Public Health, Experimental and Forensic Medicine, Histology and Embryology Unit, University of Pavia 10, 27100 Pavia, Italy
| | - C Caramella
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - F Ferrari
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
24
|
Association of Alpha Tocopherol and Ag Sulfadiazine Chitosan Oleate Nanocarriers in Bioactive Dressings Supporting Platelet Lysate Application to Skin Wounds. Mar Drugs 2018; 16:md16020056. [PMID: 29425164 PMCID: PMC5852484 DOI: 10.3390/md16020056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 12/25/2022] Open
Abstract
Chitosan oleate was previously proposed to encapsulate in nanocarriers some poorly soluble molecules aimed to wound therapy, such as the anti-infective silver sulfadiazine, and the antioxidant α tocopherol. Because nanocarriers need a suitable formulation to be administered to wounds, in the present paper, these previously developed nanocarriers were loaded into freeze dried dressings based on chitosan glutamate. These were proposed as bioactive dressings aimed to support the application to wounds of platelet lysate, a hemoderivative rich in growth factors. The dressings were characterized for hydration capacity, morphological aspect, and rheological and mechanical behavior. Although chitosan oleate nanocarriers clearly decreased the mechanical properties of dressings, these remained compatible with handling and application to wounds. Preliminary studies in vitro on fibroblast cell cultures demonstrated good compatibility of platelet lysate with nanocarriers and bioactive dressings. An in vivo study on a murine wound model showed an accelerating wound healing effect for the bioactive dressing and its suitability as support of the platelet lysate application to wounds.
Collapse
|
25
|
Carvacrol/clay hybrids loaded into in situ gelling films. Int J Pharm 2017; 531:676-688. [DOI: 10.1016/j.ijpharm.2017.06.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/05/2017] [Accepted: 06/10/2017] [Indexed: 01/27/2023]
|
26
|
Pectins functionalized biomaterials; a new viable approach for biomedical applications: A review. Int J Biol Macromol 2017; 101:254-272. [DOI: 10.1016/j.ijbiomac.2017.03.029] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 12/31/2022]
|
27
|
François S, Eder V, Belmokhtar K, Machet MC, Douay L, Gorin NC, Benderitter M, Chapel A. Synergistic effect of human Bone Morphogenic Protein-2 and Mesenchymal Stromal Cells on chronic wounds through hypoxia-inducible factor-1 α induction. Sci Rep 2017; 7:4272. [PMID: 28655873 PMCID: PMC5487365 DOI: 10.1038/s41598-017-04496-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/16/2017] [Indexed: 12/24/2022] Open
Abstract
Chronic skin ulcers and burns require advanced treatments. Mesenchymal Stromal Cells (MSCs) are effective in treating these pathologies. Bone Morphogenic Protein-2 (BMP-2) is known to enhance angiogenesis. We investigated whether recombinant human hBMP-2 potentiates the effect of MSCs on wound healing. Severe ulceration was induced in rats by irradiation and treated by co-infusion of MSCs with hBMP-2 into the ulcerated area which accelerated wound healing. Potentiation of the effect of MSCs by hBMP-2 on endothelial repair improved skin healing. HBMP-2 and MSCs synergistically, in a supra additive or enhanced manner, renewed tissue structures, resulting in normalization of the epidermis, hair follicles, sebaceous glands, collagen fibre density, and blood vessels. Co-localization of MSCs with CD31 + cells suggests recruitment of endothelial cells at the site of injection. HBMP-2 and MSCs enhanced angiogenesis and induced micro-vessel formation in the dermis where hair follicles were regenerated. HBMP-2 acts by causing hypoxia-inducible factor-1 α (HIF-1α) expression which impacts endothelial tube formation and skin repair. This effect is abolished by siRNA. These results propose that new strategies adding cytokines to MSCs should be evaluated for treating radiation-induced dermatitis, burns, and chronic ulcers in humans.
Collapse
Affiliation(s)
- Sabine François
- Laboratory of Research on Irradiated Healthy Tissue Regeneration (LR2I), Institute for Radiological Protection and Nuclear Safety (IRSN), F-92260, Fontenay-aux-Roses, France.,Proliferation and Differentiation of Stem Cells, Centre de Recherche Saint-Antoine (CRSA), UMR_S938, Faculté de médecine Pierre et Marie Curie, France Institut National de la Santé et de la Recherche Médicale (INSERM) U938, 27 rue de Chaligny, 75012, Paris, Paris, France
| | - Véronique Eder
- Laboratory of Research on Irradiated Healthy Tissue Regeneration (LR2I), Institute for Radiological Protection and Nuclear Safety (IRSN), F-92260, Fontenay-aux-Roses, France.,LAB.P.ART.-EA3852 Faculty of Medicine, University of Tours, 2 bis boulevard Tonnellé, 37000, Tours, France
| | - Karim Belmokhtar
- LAB.P.ART.-EA3852 Faculty of Medicine, University of Tours, 2 bis boulevard Tonnellé, 37000, Tours, France
| | - Marie-Christine Machet
- LAB.P.ART.-EA3852 Faculty of Medicine, University of Tours, 2 bis boulevard Tonnellé, 37000, Tours, France
| | - Luc Douay
- Proliferation and Differentiation of Stem Cells, Centre de Recherche Saint-Antoine (CRSA), UMR_S938, Faculté de médecine Pierre et Marie Curie, France Institut National de la Santé et de la Recherche Médicale (INSERM) U938, 27 rue de Chaligny, 75012, Paris, Paris, France
| | - Norbert-Claude Gorin
- Proliferation and Differentiation of Stem Cells, Centre de Recherche Saint-Antoine (CRSA), UMR_S938, Faculté de médecine Pierre et Marie Curie, France Institut National de la Santé et de la Recherche Médicale (INSERM) U938, 27 rue de Chaligny, 75012, Paris, Paris, France
| | - Marc Benderitter
- Laboratory of Research on Irradiated Healthy Tissue Regeneration (LR2I), Institute for Radiological Protection and Nuclear Safety (IRSN), F-92260, Fontenay-aux-Roses, France
| | - Alain Chapel
- Laboratory of Research on Irradiated Healthy Tissue Regeneration (LR2I), Institute for Radiological Protection and Nuclear Safety (IRSN), F-92260, Fontenay-aux-Roses, France. .,Proliferation and Differentiation of Stem Cells, Centre de Recherche Saint-Antoine (CRSA), UMR_S938, Faculté de médecine Pierre et Marie Curie, France Institut National de la Santé et de la Recherche Médicale (INSERM) U938, 27 rue de Chaligny, 75012, Paris, Paris, France.
| |
Collapse
|
28
|
Metabolic and microbial responses to the complexation of manuka honey with α-cyclodextrin after simulated gastrointestinal digestion and fermentation. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.01.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
29
|
Tenci M, Rossi S, Bonferoni MC, Sandri G, Mentori I, Boselli C, Cornaglia AI, Daglia M, Marchese A, Caramella C, Ferrari F. Application of DoE approach in the development of mini-capsules, based on biopolymers and manuka honey polar fraction, as powder formulation for the treatment of skin ulcers. Int J Pharm 2017; 516:266-277. [DOI: 10.1016/j.ijpharm.2016.10.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/17/2016] [Accepted: 10/22/2016] [Indexed: 10/20/2022]
|