1
|
Ahmadi F, Saeedi M, Akbari J, Seyedabadi M, Ebrahimnejad P, Morteza-Semnani K, Ghasemi S, Moalem-Banhangi M, Babaei A, Hashemi SMH, Asare-Addo K, Nokhodchi A. Nanohybrid Based on (Mn, Zn) Ferrite Nanoparticles Functionalized With Chitosan and Sodium Alginate for Loading of Curcumin Against Human Breast Cancer Cells. AAPS PharmSciTech 2023; 24:222. [PMID: 37935931 DOI: 10.1208/s12249-023-02683-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023] Open
Abstract
This study reports on the synthesis of Mn1 - xZnxFe2O4 (Mn, Zn ferrite) magnetic nanoparticles (MNPs) as drug delivery carriers for effective therapeutic outcomes. The MNPs were prepared using the coprecipitation method, and their magnetic properties were investigated based on their composition. Among the compositions tested, Mn0.8Zn0.2Fe2O4 MNPs exhibited superparamagnetic properties with a saturation magnetization moment of 34.6 emu/g at room temperature (25°C). To enhance the water solubility of curcumin (Cur), known for its hydrophobic nature, it was successfully loaded onto alginate (Alg)/chitosan (Chit)@Mn0.8Zn0.2Fe2O4 nanoparticles (NPs). The nanocomposite was characterized by field emission scanning electron microscopy (FE-SEM) which revealed a particle size of approximately 20 nm. The crystalline structure of the NPs was analyzed using X-ray diffraction, while Fourier-transform infrared (FTIR), energy-dispersive X-ray, and map analysis techniques were employed for further characterization. In terms of drug release, there was an initial burst release of Cur (around 18%) within the first hour, followed by a slower release (approximately 61%) over the next 36 h. The anti-tumor properties of the Cur-loaded NPs were evaluated using the Methyl Thiazol Tetrazolium (MTT) assay and quantitative real-time polymerase chain reaction. The MTT assay confirmed a higher cytotoxic effect of Cur-loaded Alg/Chit@Mn0.8Zn0.2Fe2O4 NPs on the MCF-7 breast cancer cell line compared to free Cur, highlighting the significance of incorporating Cur into nano-sized carrier systems.
Collapse
Affiliation(s)
- Fatemeh Ahmadi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Saeedi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Jafar Akbari
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Seyedabadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Katayoun Morteza-Semnani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahram Ghasemi
- Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | | | - Amirhossein Babaei
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Ali Nokhodchi
- Pharmaceutical Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK.
- Lupin Pharmaceutical Research Center, Coral Springs, Florida, USA.
| |
Collapse
|
2
|
Nasra S, Shah T, Bhatt M, Chaudhari R, Bhatia D, Kumar A. Reprogramming M1-to-M2 Phenotype to Alleviate Inflammation: Using Liposomal Curcumin as a Tool to Redefine Macrophage Functionality. ACS APPLIED BIO MATERIALS 2023. [PMID: 37379246 DOI: 10.1021/acsabm.3c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
The versatile nature of macrophages and their ability to switch between various activation states plays a pivotal role in both promoting and inhibiting inflammatory processes. In pathological inflammatory conditions, classically activated M1 macrophages are often associated with initiating and maintaining inflammation, while alternatively activated M2 macrophages are linked to the resolution of chronic inflammation. Achieving a favorable equilibrium between M1 and M2 macrophages is crucial for mitigating inflammatory environments in pathological conditions. Polyphenols are known to have strong inherent antioxidative capabilities, and curcumin has been found to reduce macrophage inflammatory reactions. However, its therapeutic efficacy is compromised due to its poor bioavailability. The present study aims to harness the properties of curcumin by loading it in nanoliposomes and enhancing the M1-to-M2 macrophage polarization. A stable liposome formulation was achieved at 122.1 ± 0.08 nm, and a sustained kinetic release of curcumin was observed within 24 h. The nanoliposomes were further characterized using TEM, FTIR, and XRD, and the morphological changes in macrophage cells, RAW264.7, were observed in SEM, indicating a distinct M2-type phenotype after the treatment with liposomal curcumin. ROS may partially control macrophage polarization and be observed to decrease after treatment with liposomal curcumin. The nanoliposomes were able to successfully internalize in the macrophage cells, and an enhanced expression of ARG-1 and CD206 with a decrease in iNOS, CD80, and CD86 levels suggested the polarization of LPS-activated macrophages toward the M2 phenotype. Also, liposomal curcumin treatment dose-dependently inhibited TNF-α, IL-2, IFN-γ, and IL-17A at secretory levels and simultaneously increased the levels of cytokines like IL-4, IL-6, and IL-10.
Collapse
Affiliation(s)
- Simran Nasra
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Tishira Shah
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Mahek Bhatt
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Ramesh Chaudhari
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology, IIT Gandhinagar, Palaj 382355, Gujarat, India
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
3
|
Al-Hetty HRAK, Abdulameer SJ, Alghazali MW, Sheri FS, Saleh MM, Jalil AT. The Role of Ferroptosis in the Pathogenesis of Osteoarthritis. J Membr Biol 2023; 256:223-228. [PMID: 36920529 DOI: 10.1007/s00232-023-00282-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/18/2023] [Indexed: 03/16/2023]
Abstract
Osteoarthritis (OA) is the most common type of arthritis. Its high prevalence, especially in the elderly, and its negative impact on physical function make it a leading cause of disability in the elderly. Joint pain as well joint stiffness are the common classic signs of OA. Chondrocyte death together with loss of articular cartilage integrity are the main pathologic changes in OA. Non-steroidal anti-inflammatory drugs (NSAIDs) and glucocorticoids are commonly used for the management of OA; still, their effectiveness is limited, and no therapeutic strategy is able to fully stop OA progression. Ferroptosis is a kind of cell death, distinct from apoptosis and necroptosis, caused by iron-dependent peroxidation of membrane phospholipids that terminates cell life by disintegrating all plasma membranes. It has been suggested that ferroptosis has a critical role in decreased viability of chondrocytes in OA, and here, we review recent findings regarding the pathologic pathways that lead to chondrocyte ferroptosis, and discuss the possible therapeutic utility of ferroptosis inhibition in OA.
Collapse
Affiliation(s)
| | - Sada Jasim Abdulameer
- Department of Biology, College of Education for Pure Sciences, Wasit University, Kut, Iraq
| | | | - Fatime Satar Sheri
- College of Dentistry, National University of Science and Technology, Dhi Qar, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Ramadi, Iraq.,Department of Medical Laboratory Technology, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Abduladheem Turki Jalil
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hilla, Babylon, Iraq.
| |
Collapse
|
4
|
Xiang AD, Li B, Du YF, Abbaspoor S, Jalil AT, Saleh MM, He HC, Guo F. In Vivo and in Vitro Biocompatibility Studies of Pt Based Nanoparticles: a New Agent for Chemoradiation Therapy. J CLUST SCI 2023. [DOI: 10.1007/s10876-023-02418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
5
|
Shelash Al-Hawary SI, Abdalkareem Jasim S, M Kadhim M, Jaafar Saadoon S, Ahmad I, Romero Parra RM, Hasan Hammoodi S, Abulkassim R, M Hameed N, K Alkhafaje W, Mustafa YF, Javed Ansari M. Curcumin in the treatment of liver cancer: From mechanisms of action to nanoformulations. Phytother Res 2023; 37:1624-1639. [PMID: 36883769 DOI: 10.1002/ptr.7757] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/10/2023] [Accepted: 01/22/2023] [Indexed: 03/09/2023]
Abstract
Liver cancer is the sixth most prevalent cancer and ranks third in cancer-related death, after lung and colorectal cancer. Various natural products have been discovered as alternatives to conventional cancer therapy strategies, including radiotherapy, chemotherapy, and surgery. Curcumin (CUR) with antiinflammatory, antioxidant, and antitumor activities has been associated with therapeutic benefits against various cancers. It can regulate multiple signaling pathways, such as PI3K/Akt, Wnt/β-catenin, JAK/STAT, p53, MAPKs, and NF-ĸB, which are involved in cancer cell proliferation, metastasis, apoptosis, angiogenesis, and autophagy. Due to its rapid metabolism, poor oral bioavailability, and low solubility in water, CUR application in clinical practices is restricted. To overcome these limitations, nanotechnology-based delivery systems have been applied to use CUR nanoformulations with added benefits, such as reducing toxicity, improving cellular uptake, and targeting tumor sites. Besides the anticancer activities of CUR in combating various cancers, especially liver cancer, here we focused on the CUR nanoformulations, such as micelles, liposomes, polymeric, metal, and solid lipid nanoparticles, and others, in the treatment of liver cancer.
Collapse
Affiliation(s)
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Al-Anbar-Ramadi, Iraq
| | - Mustafa M Kadhim
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, Iraq.,Medical Laboratory Techniques Department, Al-Turath University College, Baghdad, Iraq
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | | | | | - Noora M Hameed
- Anesthesia Techniques, Al-Nisour University College, Baghdad, Iraq
| | - Waleed K Alkhafaje
- Anesthesia Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| |
Collapse
|
6
|
Mohebian Z, Babazadeh M, Zarghami N. In Vitro Efficacy of Curcumin-Loaded Amine-Functionalized Mesoporous Silica Nanoparticles against MCF-7 Breast Cancer Cells. Adv Pharm Bull 2023; 13:317-327. [PMID: 37342377 PMCID: PMC10278223 DOI: 10.34172/apb.2023.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 07/30/2023] Open
Abstract
Purpose: Mesoporous silica nanoparticles (MSNs) have drawn substantial interest as drug nanocarriers for breast cancer therapy. Nevertheless, because of the hydrophilic surfaces, the loading of well-known hydrophobic polyphenol anticancer agent curcumin (Curc) into MSNs is usually very low. Methods: For this purpose, Curc molecules were loaded into amine-functionalized MSNs (MSNs-NH2 -Curc) and characterized using thermal gravimetric analysis (TGA), Fourier-transform infrared (FTIR), field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), Brunauer-Emmett-Teller (BET). MTT assay and confocal microscopy, respectively, were used to determine the cytotoxicity and cellular uptake of the MSNs-NH2 - Curc in the MCF-7 breast cancer cells. Besides, the expression levels of apoptotic genes were evaluated via quantitative polymerase chain reaction (qPCR) and western blot. Results: It was revealed that MSNs-NH2 possessed high values of drug loading efficiency and exhibited slow and sustained drug release compared to bare MSNs. According to the MTT findings, while the MSNs-NH2 -Curc were nontoxic to the human non-tumorigenic MCF-10A cells at low concentrations, it could considerably decrease the viability of MCF-7 breast cancer cells compared to the free Curc in all concentrations after 24, 48 and 72 hours exposure times. A cellular uptake study using confocal fluorescence microscopy confirmed the higher cytotoxicity of MSNs-NH2 -Curc in MCF-7 cells. Further, it was found that the MSNs-NH2 -Curc could drastically affect the mRNA and protein levels of Bax, Bcl-2, caspase 3, caspase 9, and hTERT relative to the free Curc treatment. Conclusion: Taken together, these preliminary results suggest the amine-functionalized MSNs-based drug delivery platform as a promising alternative approach for Curc loading and safe breast cancer treatment.
Collapse
Affiliation(s)
- Zahra Mohebian
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mirzaagha Babazadeh
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| |
Collapse
|
7
|
He X, Zhang C, Amirsaadat S, Jalil AT, Kadhim MM, Abasi M, Pilehvar Y. Curcumin-Loaded Mesenchymal Stem Cell-Derived Exosomes Efficiently Attenuate Proliferation and Inflammatory Response in Rheumatoid Arthritis Fibroblast-Like Synoviocytes. Appl Biochem Biotechnol 2023; 195:51-67. [PMID: 35932371 DOI: 10.1007/s12010-022-04090-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 01/13/2023]
Abstract
This study aimed to evaluate the potential of mesenchymal stem cell-derived exosomes loaded with curcumin (Curc-Exos) as an effective therapeutic strategy for rheumatoid arthritis through modulation of proliferation and inflammatory response in HIG-82 synovial cells. For this purpose, Exos were isolated and characterized with BCA protein assay, DLS, FE-SEM, and TEM. The Curc was embedded by mixing it with Exos in a 1:4 ratio. It was found that the Curc stability has improved after loading on Exos compared to the free Curc. Besides, the in vitro studies using LPS-stimulated HIG-82 synovial cells indicated the efficiency of Curc-Exos in enhancing cytotoxicity and apoptosis compared to the free Curc treatment. It was also revealed that Curc-Exos significantly could reduce the expression levels of anti-apoptotic proteins IAP1 and IAP2 and inflammatory mediators including IL-6, TNF-α, MMP1, and PGE2. This preliminary study confirmed the suitability of Curc-Exos in counteracting the proliferation and inflammatory response of rheumatoid arthritis synovial fibroblasts in vitro.
Collapse
Affiliation(s)
- Xinghong He
- Department of Rehabilitation Medicine, Hezhou Traditional Chinese Medicine Hospital, Hezhou, 542899, China
| | - Chong Zhang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China
| | - Soumaye Amirsaadat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abduladheem Turki Jalil
- Medical Laboratory Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Mustafa M Kadhim
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, Iraq.,Department of Dentistry, Kut University College, Kut, Wasit, Iraq
| | - Mozhgan Abasi
- Immunogenetics Research Center, Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Younes Pilehvar
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
8
|
Vahedian Sadeghi R, Parsania M, Sadeghizadeh M, Haghighat S. Investigation of Curcumin-Loaded OA400 Nanoparticle's Effect on the Expression of E6 and E7 Human Papilloma-Virus Oncogenes and P53 and Rb Factors in HeLa Cell Line. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e130762. [PMID: 36710992 PMCID: PMC9872547 DOI: 10.5812/ijpr-130762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022]
Abstract
Background Curcumin, a compound derived from the root of the Curcuma longa, has been confirmed as an anticancer, chemoprotective, and gene/protein regulatory agent. Nanoformulation of curcumin has been developed to increase its targeting efficiency, solubility, controlled release, and physical and chemical stability. Objectives This study investigated the effect of new nano-type curcumin, oleic acid-derived dendrosome (OA400 nanoparticles), on the expression of E6 and E7 human papillomavirus oncogenes and P53 and Rb factors in the HeLa cell line. After preparing nano-curcumin by mixing OA400 nano-carrier and curcumin, its effect was considered on the human cervical cancer cell line (HeLa cell line RRID: CVCL_003) and normal fibroblast cells. Methods MTT assay and flow cytometry were used to evaluate cell viability and apoptosis. Furthermore, real-time RT-PCR and western blot analyses assessed RNA and protein expression of E6, E7, P53, and Rb. Statistical analyses were performed by GraphPad Prism 7 software. Results The nanoformulation of curcumin could reduce the expression of E6 and E7 oncogenes and increase P53 and Rb tumor suppressors in HeLa cancerous cells at 15 μM concentration; however, it had no significant effect on the viability of normal fibroblast cells. On the other hand, curcumin altered the expression of these genes at a 50-μM concentration. Gene and protein expression analysis indicated the up-regulation of P53 and Rb factors and the down-regulation of E6 and E7 under the influence of nano-curcumin treatment more than curcumin. Conclusions These data indicate the potential of curcumin-loaded OA400 nanoparticles to be considered as a treatment option in cervical cancer investigations.
Collapse
Affiliation(s)
- Rezvaneh Vahedian Sadeghi
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Masoud Parsania
- Department of Microbiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Corresponding Author: Department of Microbiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
9
|
Varnamkhasti TJ, Jafarzadeh M, Sadeghizadeh M, Aghili M. Radiosensitizing effect of dendrosomal nanoformulation of curcumin on cancer cells. Pharmacol Rep 2022; 74:718-735. [PMID: 35819593 DOI: 10.1007/s43440-022-00383-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Curcumin was found to possess numerous pharmacological activities in clinical research, however, its biological effects together with radiation are yet to be addressed. The present study investigated whether the combined treatment of dendrosomal nanoformulation of curcumin (DNC) and gamma radiation can enhance the radiosensitivity of U87MG and MDA-MB-231 cell lines. METHODS U87MG and MDA-MB-231 cell lines were exposed to 2 Gray (Gy) and 10 μM DNC determined by MTT assay, then subjected to clonogenic assay, cell cycle assay, and flow cytometric apoptosis analysis. Acridine Orange/Ethidium Bromide (AO/EB) and 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) stained cells were used to study morphologic changes. The expression evaluation of putative cell cycle genes, i.e., P53, P21, CCND1, and CCNB1 was carried out by RT-qPCR. RESULTS Our findings indicated that the combined treatment with DNC and radiation might cooperatively augment the efficacy of ionizing radiation in the cancer cells and notably decrease the survival and viability of the cells in a time- and concentration-dependent manner. In addition to a synergistic effect deducted by sensitizer enhancement ratio (SER) assessment, co-treatment resulted in greater apoptotic cells than the individual treatments. Further experiments then indicated that DNC could effectively induce G2/M phase cell cycle arrest and apoptosis following irradiation. Conformably, there was a decrement of CCND1 and CCNB1 expression, and an increment of P53, P21 expression. CONCLUSIONS The data implied that DNC as a radiosensitizer can enhance the lethal effect of ionizing radiation on cancer cells which could be a promising adjuvant therapy in clinical treatments.
Collapse
Affiliation(s)
- Tahereh Jalali Varnamkhasti
- Department of Molecular Genetics, School of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| | - Meisam Jafarzadeh
- Department of Molecular Genetics, School of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, School of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran.
| | - Mahdi Aghili
- Radiation Oncology Research Center, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, P.O. Box 13145-158, Tehran, Iran.
| |
Collapse
|
10
|
Haseli S, Pourmadadi M, Samadi A, Yazdian F, Abdouss M, Rashedi H, Navaei-Nigjeh M. A novel pH-responsive nanoniosomal emulsion for sustained release of curcumin from a chitosan-based nanocarrier: emphasis on the concurrent improvement of loading, sustained release, and apoptosis induction. Biotechnol Prog 2022; 38:e3280. [PMID: 35678755 DOI: 10.1002/btpr.3280] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 11/11/2022]
Abstract
Curcumin application as an anti-cancer drug is faced with several impediments. This study has developed a platform that facilitates the sustained release of curcumin, improves loading efficiency, and anti-cancer activity. Montmorillonite (MMT) nanoparticles were added to chitosan (CS)-agarose (Aga) hydrogel and then loaded with curcumin (Cur) to prepare a curcumin-loaded nanocomposite hydrogel. The loading capacity increased from 63% to 76% by adding MMT nanoparticles to a chitosan-agarose hydrogel. Loading the fabricated nanocomposite in the nanoniosomal emulsion resulted in sustained release of curcumin under acidic conditions. Release kinetics analysis showed diffusion and erosion are the dominant release mechanisms, indicating non-fickian (or anomalous) transport based on the Korsmeyer-Peppas model. FTIR spectra confirmed that all nanocomposite components were present in the fabricated nanocomposite. Besides, XRD results corroborated the amorphous structure of the prepared nanocomposite. Zeta potential results corroborated the stability of the fabricated nanocarrier. Cytotoxicity of the prepared CS-Aga-MMT-Cur on MCF-7 cells was comparable to that of curcumin-treated cells (p <0.001). Moreover, the percentage of apoptotic cells increased due to the enhanced release profile resulting from the addition of MMT to the hydrogel and the incorporation of the fabricated nanocomposite into the nanoniosomal emulsion. To recapitulate, the current delivery platform improved loading, sustained release, and curcumin anti-cancer effect. Hence, this platform could be a potential candidate to mitigate cancer therapy restrictions with curcumin. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shabnam Haseli
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Amirmasoud Samadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Hamid Rashedi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mona Navaei-Nigjeh
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
11
|
Khazei K, Jamali M, Sarhadi S, Dadashpour M, Shokrollahzade S, Zarghami N. Transcriptome profiling of curcumin-treated T47D human breast cancer cells by a system-based approach. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Kayyal M, Bolhassani A, Noormohammadi Z, Sadeghizadeh M. Immunological responses and anti-tumor effects of HPV16/18 L1-L2-E7 multiepitope fusion construct along with curcumin and nanocurcumin in C57BL/6 mouse model. Life Sci 2021; 285:119945. [PMID: 34516991 DOI: 10.1016/j.lfs.2021.119945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/27/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023]
Abstract
AIMS Human papillomavirus (HPV) L1, L2 and E7 proteins were used as target antigens for development of preventive and therapeutic vaccines. Moreover, linkage of antigens to heat shock proteins (HSPs) could enhance the potency of vaccines. Curcumin and nanocurcumin compounds were suggested as the chemopreventive and chemotherapeutic agents against cancer. In this study, two multiepitope DNA and peptide-based vaccine constructs (L1-L2-E7 and HSP70-L1-L2-E7) were used along with curcumin and nanocurcumin to evaluate immune responses, and protective/therapeutic effects in tumor mouse model. MAIN METHODS At first, the multiepitope L1-L2-E7 and HSP70-L1-L2-E7 fusion genes were subcloned in eukaryotic and prokaryotic expression vectors. The recombinant multiepitope peptides were generated in E. coli strain. Then, the cytotoxic effects of curcumin and nanocurcumin were evaluated on HEK-293 T non-cancerous and C3 cancerous cells. Finally, mice vaccination was performed using different regimens. Curcumin and nanocurcumin compounds were administered alone or along with different vaccine constructs. KEY FINDINGS Our data indicated that the use of nanocurcumin along with the multiepitope HSP70-L1-L2-E7 vaccine construct could completely protect mice against HPV-related C3 tumor cells, and eradicate tumors in a therapeutic test. Furthermore, nanocurcumin showed higher protection than curcumin alone. Generally, curcumin and nanocurcumin compounds could reduce tumor growth synergistically with the multiepitope vaccine constructs, but they did not influence the immune responses in different regimens. SIGNIFICANCE These data demonstrated that the designed multiepitope vaccine constructs along with curcumin and nanocurcumin can be used as a promising method for HPV vaccine development.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/pharmacology
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Capsid Proteins/administration & dosage
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Cloning, Molecular
- Curcumin/administration & dosage
- Curcumin/pharmacology
- Cytokines/metabolism
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Escherichia coli
- Female
- Genetic Vectors
- HEK293 Cells
- HSP70 Heat-Shock Proteins/administration & dosage
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/immunology
- Humans
- Mice, Inbred C57BL
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/therapy
- Oncogene Proteins, Viral/administration & dosage
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/immunology
- Papillomavirus E7 Proteins/administration & dosage
- Papillomavirus E7 Proteins/genetics
- Papillomavirus E7 Proteins/immunology
- Papillomavirus Vaccines/administration & dosage
- Papillomavirus Vaccines/genetics
- Papillomavirus Vaccines/immunology
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Uterine Cervical Neoplasms/immunology
- Uterine Cervical Neoplasms/therapy
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Mice
Collapse
Affiliation(s)
- Matin Kayyal
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| | - Zahra Noormohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University of Tehran, Tehran, Iran
| |
Collapse
|
13
|
Xu L, Li W, Sadeghi-Soureh S, Amirsaadat S, Pourpirali R, Alijani S. Dual drug release mechanisms through mesoporous silica nanoparticle/electrospun nanofiber for enhanced anticancer efficiency of curcumin. J Biomed Mater Res A 2021; 110:316-330. [PMID: 34378328 DOI: 10.1002/jbm.a.37288] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
Electrospun nanofibers (NFs)-based drug delivery approaches are of particular interest as a hopeful implantable nanoplatform for localized cancer therapy and treating tissue defect after resection, allowing the on-site drug delivery with minimal side effect to healthy cells. To maintain therapeutic concentrations of anticancer molecules for a relatively long time through a combination of burst and sustained drug release mechanisms, a hybrid of polycaprolactone and gelatin (PCL/GEL) was used for co-encapsulation of free curcumin (CUR) and CUR-loaded mesoporous silica nanoparticles (CUR@MSNs) via electrospinning, resulting in a novel drug-loaded nanofibrous scaffold, CUR/CUR@MSNs-NFs. The as-prepared MSNs and composite NFs were characterized via TGA, FTIR, FE-SEM, TEM, and BET. In vitro release profile of CUR from CUR/CUR@MSNs-NFs was examined, and the in vitro antitumor efficacy against MDA-MB-231 breast cancer cells was also evaluated through MTT, scratch assay, DAPI staining, and real-time PCR. The results disclosed that the smooth, bead-free, and randomly oriented CUR/CUR@MSNs-NFs displayed a combination of initial rapid discharge and sustained release for CUR, which led to higher cytotoxicity, lower migration as well as a more pronounced effect on apoptosis induction than CUR-NFs and CUR@MSNs-NFs. The present study illustrated that the dual drug release mechanisms through MSN/NF-mediated drug delivery systems might have a highly hopeful application as a localized implantable scaffold for potential postoperative breast cancer therapy.
Collapse
Affiliation(s)
- Liguo Xu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Wei Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | | | - Soumaye Amirsaadat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Pourpirali
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Alijani
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Morshedi K, Borran S, Ebrahimi MS, Masoud Khooy MJ, Seyedi ZS, Amiri A, Abbasi-Kolli M, Fallah M, Khan H, Sahebkar A, Mirzaei H. Therapeutic effect of curcumin in gastrointestinal cancers: A comprehensive review. Phytother Res 2021; 35:4834-4897. [PMID: 34173992 DOI: 10.1002/ptr.7119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/18/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Gastrointestinal (GI) cancers with a high global prevalence are a leading cause of morbidity and mortality. Accordingly, there is a great need to develop efficient therapeutic approaches. Curcumin, a naturally occurring agent, is a promising compound with documented safety and anticancer activities. Recent studies have demonstrated the activity of curcumin in the prevention and treatment of different cancers. According to systematic studies on curcumin use in various diseases, it can be particularly effective in GI cancers because of its high bioavailability in the gastrointestinal tract. Nevertheless, the clinical applications of curcumin are largely limited because of its low solubility and low chemical stability in water. These limitations may be addressed by the use of relevant analogues or novel delivery systems. Herein, we summarize the pharmacological effects of curcumin against GI cancers. Moreover, we highlight the application of curcumin's analogues and novel delivery systems in the treatment of GI cancers.
Collapse
Affiliation(s)
- Korosh Morshedi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sarina Borran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Zeynab Sadat Seyedi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Fallah
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
15
|
Shamekhi S, Abdolalizadeh J, Ostadrahimi A, Mohammadi SA, Barzegari A, Lotfi H, Bonabi E, Zarghami N. Apoptotic Effect of Saccharomyces cerevisiae on Human Colon Cancer SW480 Cells by Regulation of Akt/NF-ĸB Signaling Pathway. Probiotics Antimicrob Proteins 2021; 12:311-319. [PMID: 30788662 DOI: 10.1007/s12602-019-09528-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drug resistance is one of the major problems, which causes recurrence of cancers. Therefore, complementary treatments are needed to improve the impacts of chemotherapy agents. The effect of probiotics as cancer-preventing agents through involvement in the activation of apoptotic pathways has been established. The present study sought to investigate how the heat-killed form of Saccharomyces cerevisiae (as a probiotic) could affect the Akt/NF-kB-induced apoptosis in colon cancer cells, the SW480 cell line. The cytotoxic effects of heat-killed yeast (HKY) and 5-fluorouracil (5-FU, as a positive control drug) were assayed using the MTT method. Morphological changes followed by apoptosis were examined using DAPI staining. The transcription and translation level of apoptosis genes were explored with qRT-PCR and western blotting. The data were analyzed using GraphPad Prism V6.0 Software. The results showed that HKY could induce apoptosis in colon cancer cell line through downregulation of p-Akt1, Rel A, Bcl-XL, pro-caspase 3, and pro-caspase 9 expressions, and upregulation of BAX, cleaved caspase-3, and cleaved caspase-9. Besides, Akt protein expression was not affected. It is noticeable that HKY had a better modulating effect on BAX expression compared with 5-FU. It was able to modulate Akt/NF-kB signaling pathway followed by the apoptotic cascade.
Collapse
Affiliation(s)
- Sara Shamekhi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Abdolalizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Abolghasem Mohammadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Abolfazl Barzegari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esat Bonabi
- Department of Medical Microbiology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - Nosratollah Zarghami
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Li X, Sun C, Chen J, Ma JF, Pan YH. ERK-CREB pathway is involved in HSPB8-mediated glioma cell growth and metastatic properties. Exp Mol Pathol 2021:104653. [PMID: 34043982 DOI: 10.1016/j.yexmp.2021.104653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/14/2021] [Accepted: 05/21/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate the mechanism of HSPB8 (heat shock protein beta-8) in the growth and metastatic properties of glioma cells. METHODS HSPB8 expression in glioma tissue and cell was detected via Western blotting. Then, glioma U87 and U251 cell lines were divided into Mock group, Control siRNA group, HSPB8 siRNA-1 group and HSPB8 siRNA-2 group. Cell proliferation was detected using MTT assay, while its invasion, migration and apoptosis were determined by Transwell, wound-healing and flow cytometry, respectively. The expression of HSPB8 and ERK-CREB pathway-related molecules were also measured by Western blotting. Xenograft models were constructed on nude mice, and accordingly, the growth curve of subcutaneous xenograft was prepared. RESULTS In glioma tissues, HSPB8 expression was upregulated with the increasing grade of glioma. Besides, glioma cells in the HSPB8 siRNA-1 group and HSPB8 siRNA-2 group manifested the significant enhancement in apoptotic rates and reductions in its proliferation, migration and invasion compared to those in the Mock group, meanwhile, the expression of HSPB8, p-ERK1/2/ERK1/2 and p-CREB/CREB were downregulated. On the other hand, the tumor growth in the nude mice of Ad-HSPB8 shRNA-1 group and Ad-HSPB8 shRNA-2 group was retarded significantly, with an acute decrease in the tumor weight. CONCLUSION Silencing HSPB8 can inhibit the malignant features, while facilitate the apoptosis of glioma cells, with inactivation of ERK-CREB pathway.
Collapse
Affiliation(s)
- Xia Li
- Center for Diagnosis and Treatment of Neuro-oncology Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Cui Sun
- Center for Diagnosis and Treatment of Neuro-oncology Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Jing Chen
- Center for Diagnosis and Treatment of Neuro-oncology Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Ji-Fen Ma
- Center for Diagnosis and Treatment of Neuro-oncology Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yi-Heng Pan
- Center for Diagnosis and Treatment of Neuro-oncology Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China.
| |
Collapse
|
17
|
Ebrahimi M, Babaei E, Neri F, Feizi MAH. Anti-proliferative and apoptotic effect of gemini curcumin in p53-wild type and p53-mutant colorectal cancer cell lines. Int J Pharm 2021; 601:120592. [PMID: 33857585 DOI: 10.1016/j.ijpharm.2021.120592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/25/2021] [Accepted: 04/07/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Despite recent advances in therapy, colorectal cancer remains a leading cause of death in affected people. Curcumin is the main bioactive compound of turmeric that has been demonstrated as an effective agent against cancer. However, its poor stability and bioavailability limit therapeutic application. We previously showed that delivery of curcumin by using gemini surfactant nanoparticles called gemini curcumin (Gemini-Cur) could improve its solubility, uptake and toxic effect on breast and ovarian cancer cells. Here, we aimed to investigate the anticancer activity of Gemini-Cur in both p53-mutant and p53-wild type colorectal cancer cells. The toxicity of Gemini-Cur on HT-29 and HCT116 was studied through MTT, uptake kinetics, fluorescence microscopy, annexin V/FITC, and cell cycle assays. Also, real-time PCR and western blotting were performed to evaluate the expression of p53, p21, BAX, BCL-2, and NOXA genes. Our data showed that Gemini-Cur not only enters cells quite rapidly compared to free curcumin crystals, but also suppresses HT-29 and HCT-116 cells proliferation in a time- and dose-dependent manner (p < 0.001). The IC50 values as well as apoptosis assays showed that p53-wild type cells are sensitive to Gemini-Cur. Flow cytometry also revealed that the number of apoptotic cells is dramatically increased in HCT-116 cells earlier than HT-29 cells (p < 0.0001). Gemini-Cur upregulated apoptotic genes including p53 (in both mutant and wild-type forms), p21, NOXA and BAX while decreased anti-apoptotic BCL-2 in mRNA and protein level (p < 0.0001). As a hallmark of apoptosis, the expression ratio of BAX/BCL-2 was significantly increased in all treated cells. Taken together, our findings demonstrated that Gemini-Cur suppresses the proliferation of cancer cells via induction of apoptosis and could be considered as novel nano-formulated phytochemical for cancer targeting.
Collapse
Affiliation(s)
- Masoumeh Ebrahimi
- Department of Animal Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Esmaeil Babaei
- Department of Animal Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran; Institute of Environment, University of Tabriz, Tabriz, Iran.
| | - Francesco Neri
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | | |
Collapse
|
18
|
Hemlata, Gupta S, Tejavath KK. ROS-Mediated Apoptosis Induced by BSA Nanospheres Encapsulated with Fruit Extract of Cucumis prophetarum in Various Human Cancer Cell Lines. ACS OMEGA 2021; 6:10383-10395. [PMID: 34056191 PMCID: PMC8153748 DOI: 10.1021/acsomega.1c00755] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/25/2021] [Indexed: 05/14/2023]
Abstract
In recent decades, biodegradable polymeric nanoparticles have been used as a nanocarrier for the delivery of anticancer drugs. In the present study, we synthesize bovine serum albumin (BSA) nanospheres and evaluate their ability to incorporate a plant extract with anticancer activity. The plant extract used was the methanol fruit extract of Cucumis prophetarum, which is a medicinal herb. The fruit-extract-encapsulated BSA nanospheres (Cp-BSA nanospheres) were prepared using a desolvation method at various pH values of 5, 7, and 9. The nanosphere formulations were characterized using various techniques such as dynamic light scattering (DLS), ζ-potential, Fourier transform infrared spectroscopy (FTIR), and field-effect scanning electron microscopy (FESEM). The results show that the Cp-BSA nanospheres prepared at pH 7 were spherical with a uniform particle size, low polydispersity index (PDI), ζ-potential, and high entrapment efficiency (82.3%) and showed sustained release of fruit extract from Cp-BSA nanospheres in phosphate-buffered saline (PBS), pH 5. The anticancer activity was evaluated on A549, HepG2, MCF-7 cancer cell lines and HEK 293 normal cell lines. In vitro, antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, intracellular reactive oxygen species (ROS) production, and mitochondrial membrane potential were estimated. An in vitro cellular uptake study was performed using fluorescein isothiocyanate (FITC) dye at a different time of incubation, and DNA fragmentation was observed in a dose-dependent manner. The gene expression level of Bax and the suppression level of Bcl-2 were observed upon the treatment of Cp-BSA nanospheres. Thus, the Cp-BSA nanospheres triggered ROS-dependent mitochondrial apoptosis in different human cancer cell lines when compared to the noncancerous cell lines and could be used as a potential candidate for anticancer agents.
Collapse
Affiliation(s)
- Hemlata
- Department of Biochemistry,
School of Life Sciences, Central University
of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Shruti Gupta
- Department of Biochemistry,
School of Life Sciences, Central University
of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Kiran Kumar Tejavath
- Department of Biochemistry,
School of Life Sciences, Central University
of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| |
Collapse
|
19
|
Mohebian Z, Babazadeh M, Zarghami N, Mousazadeh H. Anticancer efficiency of curcumin-loaded mesoporous silica nanoparticles/nanofiber composites for potential postsurgical breast cancer treatment. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102170] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Metformin and Silibinin co-loaded PLGA-PEG nanoparticles for effective combination therapy against human breast cancer cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102107] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Adlravan E, Sepideh jalilzadeh-Razin, Nejati K, Karimi MA, Mousazadeh H, Abbasi A, Dadashpour M. Potential activity of free and PLGA/PEG nanoencapsulated nasturtium officinale extract in inducing cytotoxicity and apoptosis in human lung carcinoma A549 cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102256] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Rahman M, Almalki WH, Alrobaian M, Iqbal J, Alghamdi S, Alharbi KS, Alruwaili NK, Hafeez A, Shaharyar A, Singh T, Waris M, Kumar V, Beg S. Nanocarriers-loaded with natural actives as newer therapeutic interventions for treatment of hepatocellular carcinoma. Expert Opin Drug Deliv 2021; 18:489-513. [PMID: 33225771 DOI: 10.1080/17425247.2021.1854223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Cancer has always been a menace for the society. Hepatocellular carcinoma (HCC) is one of the most lethal and 3rdlargest causes of deaths around the world.Area covered: The emergence of natural actives is considered as the greatest boon for fighting cancer. The natural actives take precedence over the traditional chemotherapeutic drugs in terms of their multi-target, multi-level and coordinated effects in the treatment of HCC. Literature reports have indicated the tremendous potential of bioactive natural products in inhibiting the HCC via molecular drug targeting, augmented bioavailability, and the ability for both passive or active targeting and stimulus-responsive drug release characteristics. This review provides a newer treatment approaches involved in the mechanism of action of different natural actives used for the HCC treatment via different molecular pathways. Besides, the promising advantage of natural bioactive-loaded nanocarriers in HCC treatment has also been also presented in this review. Expert opinion: The remarkable outcomes have been observed with therapeutic efficacy of the nanocarriers of natural actives in the treatment of HCC.Furthermore, it requires a thorough assessment of the safety and efficacy evaluation of the nanocarriers for the delivery of targeted natural active ingredients in HCC.].
Collapse
Affiliation(s)
- Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-qura University, Saudi Arabia
| | - Majed Alrobaian
- Department of Pharmaceutics & and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Jawed Iqbal
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, Jamia Nagar, New Delhi-110025
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Khalid S Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Adil Shaharyar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Tanuja Singh
- Department of Botany, T.P.S College, Patna, Bihar, India
| | - Mohammad Waris
- Department of Botany, T.P.S College, Patna, Bihar, India
| | - Vikas Kumar
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Nanomedicine Research Lab, Jamia Hamdard, New Delhi, India
| |
Collapse
|
23
|
Kianamiri S, Dinari A, Sadeghizadeh M, Rezaei M, Daraei B, Bahsoun NEH, Nomani A. Mitochondria-Targeted Polyamidoamine Dendrimer-Curcumin Construct for Hepatocellular Cancer Treatment. Mol Pharm 2020; 17:4483-4498. [PMID: 33205974 DOI: 10.1021/acs.molpharmaceut.0c00566] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondrial malfunction plays a crucial role in cancer development and progression. Cancer cells show a substantially higher mitochondrial activity and greater mitochondrial transmembrane potential than normal cells. This concept can be exploited for targeting cytotoxic drugs to the mitochondria of cancer cells using mitochondrial-targeting compounds. In this study, a polyamidoamine dendrimer-based mitochondrial delivery system was prepared for curcumin using triphenylphosphonium ligands to improve the anticancer efficacy of the drug in vitro and in vivo. For the in vitro evaluations, various methods, such as viability assay, confocal microscopy, flow cytometry, reactive oxygen species (ROS), and real-time polymerase chain reaction analyses, were applied. Our findings showed that the targeted-dendrimeric curcumin (TDC) could successfully deliver and colocalize the drug to the mitochondria of the cancer cells, and selectively induce a potent apoptosis and cell cycle arrest at G2/M. Moreover, at a low curcumin dose of less than 25 μM, TDC significantly reduced adenosine triphosphate and glutathione, and increased the ROS level of the isolated rat hepatocyte mitochondria. The in vivo studies on the Hepa1-6 tumor-bearing mice also indicated a significant tumor suppression effect and the highest median survival days (Kaplan-Meier survival estimation and log-rank test) after treatment with the TDC construct compared to the free curcumin and untargeted construct. Besides its targeted nature and safety, the expected improved solubility and stability represent the prepared targeted-dendrimeric construct as an up-and-coming candidate for cancer treatment. The results of this study emphasize the promising route of mitochondrial targeting as a practical approach for cancer therapy, which can be achieved by optimizing the delivery method.
Collapse
Affiliation(s)
- Shahla Kianamiri
- Department of Nano-Biotechnology, School of Biological Science, Tarbiat Modares University, Tehran 14115-175, Iran
| | - Ali Dinari
- Department of Nano-Biotechnology, School of Biological Science, Tarbiat Modares University, Tehran 14115-175, Iran
| | - Majid Sadeghizadeh
- Department of Nano-Biotechnology, School of Biological Science, Tarbiat Modares University, Tehran 14115-175, Iran.,Department of Genetics, School of Biological Sciences, Tarbiat Modares University, Tehran 14115-175, Iran
| | - Mohsen Rezaei
- Department of Toxicology, School of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran
| | - Bahram Daraei
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 14155-6153, Iran
| | - Noor El-Huda Bahsoun
- Department of Chemical Engineering, University of Waterloo, Waterloo ON N2L 3G1, Canada
| | - Alireza Nomani
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| |
Collapse
|
24
|
Hanafy NA, Leporatti S, El-Kemary M. Mucoadhesive curcumin crosslinked carboxy methyl cellulose might increase inhibitory efficiency for liver cancer treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111119. [DOI: 10.1016/j.msec.2020.111119] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/27/2020] [Accepted: 05/23/2020] [Indexed: 01/18/2023]
|
25
|
Khalaj-Kondori M, Ahmadi-Sani K, Hosseinzadeh A, Abtin M. Dendrosome-encapsulated beta-Boswellic acid boosts expression of the memory-related genes in the B65 cell line. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Augmented anticancer activity of curcumin loaded fungal chitosan nanoparticles. Int J Biol Macromol 2020; 155:861-867. [DOI: 10.1016/j.ijbiomac.2019.11.207] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 01/09/2023]
|
27
|
Mortazavi Farsani SS, Sadeghizadeh M, Gholampour MA, Safari Z, Najafi F. Nanocurcumin as a novel stimulator of megakaryopoiesis that ameliorates chemotherapy-induced thrombocytopenia in mice. Life Sci 2020; 256:117840. [PMID: 32450173 DOI: 10.1016/j.lfs.2020.117840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 01/06/2023]
Abstract
AIMS Platelet production improvement can resolve concerns about the limitations of external platelet supply and platelet transfusion in thrombocytopenia patients. To this end, scientists encourage to induce the generation of megakaryocyte and platelet. Curcumin is a safe ingredient of turmeric that affects various cellular pathways. The effect of this component on platelet production has not been yet reported. MAIN METHODS Our in vitro experiments include the investigation of the effects of nanocurcumin on megakaryocytes production from K562 cells and hematopoietic stem cells via megakaryocyte markers expression, DNA content, ROS, and morphologic analysis, and CFC assay. The regulatory functions of MAPKs pathways were also determined. In the in vivo study tissue distribution of nanocurcumin was determined and two treatment schedules were used to evaluate the capability of nanocurcumin to prevent the occurrence of Busulfan-induced thrombocytopenia in the mouse model. KEY FINDING In vitro evidences demonstrated that nanocurcumin can induce MK production from K562 cells and hematopoietic stem cells. Inhibition of ERK1/2 and JNK pathways arrested this activity. In vivo experiments showed the uptake of nanocurcumin by tissues in mice. Administration of nanocurcumin could preserve bone marrow integrity and increase of the number of circulating platelets in the Busulfan-treated mice models. SIGNIFICANCE Our results have demonstrated that nanocurcumin administration can be useful for the improvement of megakaryocytes and platelet generation in vitro. This component may be exerting these beneficial effects on megakaryopoiesis by modulating ERK1/2 and JNK pathways. As well as nanocurcumin has the potential to prevent thrombocytopenia in chemotherapy threated mice.
Collapse
Affiliation(s)
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mohammad Ali Gholampour
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zohreh Safari
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| |
Collapse
|
28
|
Recent advances in novel drug delivery systems and approaches for management of breast cancer: A comprehensive review. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Khan FA, Lammari N, Muhammad Siar AS, Alkhater KM, Asiri S, Akhtar S, Almansour I, Alamoudi W, Haroun W, Louaer W, Meniai AH, Elaissari A. Quantum dots encapsulated with curcumin inhibit the growth of colon cancer, breast cancer and bacterial cells. Nanomedicine (Lond) 2020; 15:969-980. [PMID: 32223518 DOI: 10.2217/nnm-2019-0429] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: To synthesize and examine the impact of free Eudragit® RS 100 nanoparticles (LN01), Quantum dots curcumin-loaded Eudragit RS 100 nanoparticles (LN04), and un-encapsulated curcumin nanoparticles (LN06) on cancerous and bacterial cells. Materials & methods: The LN01, LN04, LN06 were synthesized and characterized by Fourier transform infrared, ζ potential, UV-Vis spectroscopy, transmission electron microscopy and scanning electron microscopy and their biological activities were evaluated. Results: LN04 profoundly inhibited the growth of colon (HCT-116) cancerous cells (10.64% cell viability) and breast cancer (MCF-7) cells (10.32% cell viability) with compared to LN01 and LN06. Normal cells (HEK-293) did not show any inhibition after treatments. In addition, LN04 show better inhibitory action on bacterial growth compared with LN01 and LN06. Conclusion: We suggest that LN04 selectively target cancerous and bacterial cells and therefore possess potential anticancer and antibacterial capabilities.
Collapse
Affiliation(s)
- Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Narimane Lammari
- University of Lyon, University Claude Bernard Lyon-1, CNRS, LAGEP-UMR 5007, Lyon, F-69622, France.,Environmental Process Engineering Laboratory, University of Constantine 3, Salah Boubnider, Constantine, 25000, Algeria
| | - Adeeb Shezad Muhammad Siar
- Department of Clinical Pharmacy, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Khulood Mohammed Alkhater
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Sarah Asiri
- Department of Biophysics, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Sultan Akhtar
- Department of Biophysics, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Iman Almansour
- Department of Epidemic Diseases Research, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Widyan Alamoudi
- Department of Neuroscience, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Woroud Haroun
- Department of Stem Cell Biology, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Wahida Louaer
- Environmental Process Engineering Laboratory, University of Constantine 3, Salah Boubnider, Constantine, 25000, Algeria
| | - Abdeslam Hassen Meniai
- Environmental Process Engineering Laboratory, University of Constantine 3, Salah Boubnider, Constantine, 25000, Algeria
| | - Abdelhamid Elaissari
- University of Lyon, University Claude Bernard Lyon-1, CNRS, LAGEP-UMR 5007, Lyon, F-69622, France
| |
Collapse
|
30
|
Golonko A, Lewandowska H, Świsłocka R, Jasińska U, Priebe W, Lewandowski W. Curcumin as tyrosine kinase inhibitor in cancer treatment. Eur J Med Chem 2019; 181:111512. [DOI: 10.1016/j.ejmech.2019.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022]
|
31
|
Javan N, Khadem Ansari MH, Dadashpour M, Khojastehfard M, Bastami M, Rahmati-Yamchi M, Zarghami N. Synergistic Antiproliferative Effects of Co-nanoencapsulated Curcumin and Chrysin on MDA-MB-231 Breast Cancer Cells Through Upregulating miR-132 and miR-502c. Nutr Cancer 2019; 71:1201-1213. [PMID: 30955355 DOI: 10.1080/01635581.2019.1599968] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, we explored whether co-nanoencapsulated Curcumin (Cur) and Chrysin (Chr), natural herbal compounds with antitumor activities, regulate miR-132 and miR-502c and their downstream targets, leading to the synergistic growth inhibition in MDA-MB-231 breast cancer cells. For this purpose, Cur and Chr were co-encapsulated into PLGA-PEG nanoparticles (NPs) and characterized through DLS, FTIR and FE-SEM. MTT assay and cell cycle arrest analysis revealed that CurChr-loaded NPs had a considerable synergistic cytotoxicity against MDA-MB-231 cells with more cell accumulation in G2/M phase compared to the other groups. In addition, highest percentage of cell apoptosis was acquired in cells treated with CurChr-loaded NPs according to apoptosis analysis. Real-time PCR findings revealed that co-encapsulated form of Cur and Chr than free combination could further upregulate miR-132 and miR-502c expression (P < 0.001). Also, the strong reduction was detected in the protein levels of HN1 and P65 at the cells co-nanodelivered with Cur and Chr. These findings demonstrated that the co-nanodelivery of Cur and Chr through targeting miR-132 and miR-205c might be a novel strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Naser Javan
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences , Urmia , Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences , Tabriz , Iran
| | | | - Mehdi Dadashpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mehran Khojastehfard
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammad Rahmati-Yamchi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Nosratollah Zarghami
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences , Tabriz , Iran.,Hematology and Oncology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
32
|
Faramarzi L, Dadashpour M, Sadeghzadeh H, Mahdavi M, Zarghami N. Enhanced anti-proliferative and pro-apoptotic effects of metformin encapsulated PLGA-PEG nanoparticles on SKOV3 human ovarian carcinoma cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:737-746. [DOI: 10.1080/21691401.2019.1573737] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Leila Faramarzi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Sadeghzadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Mahdavi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Shahabi A, Naghili B, Ansarin K, Zarghami N. The relationship between microRNAs and Rab family GTPases in human cancers. J Cell Physiol 2019; 234:12341-12352. [PMID: 30609026 DOI: 10.1002/jcp.28038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022]
Abstract
microRNAs (miRNAs), as a group of noncoding RNAs, posttranscriptionally control gene expression by binding to 3'-untranslated region (3'-UTR). Ras-associated binding (Rab) proteins function as molecular switches for regulating vesicular transport, which mainly have oncogenic roles in cancer development and preventing the efficacy of chemotherapies. Increased evidence supported that miRNAs/Rabs interaction have been determined as potential therapeutics for cancer therapy. Nevertheless, instability and cross-targeting of miRNAs are main limitations of using miRNA-based therapeutic. The mutual interplay between Rabs and miRNAs has been poorly understood. In the present review, we focused on the essence and activity of these molecules in cancer pathogenesis. Also, numerous hindrances and potential methods in the expansion of miRNA as an anticancer therapeutics are mentioned.
Collapse
Affiliation(s)
- Arman Shahabi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khalil Ansarin
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
34
|
Mu J, Wang X, Dong L, Sun P. Curcumin derivative L6H4 inhibits proliferation and invasion of gastric cancer cell line BGC-823. J Cell Biochem 2018; 120:1011-1017. [PMID: 30242876 DOI: 10.1002/jcb.27542] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022]
Abstract
Curcumin and its chalcone derivatives have well-known, explicit biological antitumor properties, such as instance antiproliferative and apoptotic effects via multiple molecular targets. In this study, we investigated the anticancer activity of curcumin derivative L6H4 (curcumin L6H4) on gastric cancer cells. Inhibitory effects of curcumin L6H4 on gastric cancer cells (BGC-823) were studied by the diphenyltetrazolium (MTT) assay, and cell apoptosis was detected by Annexin-V/propidium iodide (PI) staining and then analyzed by flow cytometry. A mouse xenotransplant gastric tumor model was established to detect the role of curcumin L6H4 in vivo. The apoptosis-related proteins p53, p21, Bax, and Bcl-2 in BGC-823 cells and mouse xenotransplant models treated with curcumin L6H4 were determined by Western blot analysis. Curcumin L6H4 can significantly inhibit the proliferation and induce the apoptosis of BGC-823 cells, thus enhancing the expression levels of p53, p21, Bax, and Bcl-2 noticeably in vivo and in vitro. Meanwhile, curcumin L6H4 can remarkably suppress the growth of tumor cells in animal models. These results suggest that curcumin derivative L6H4 has potent of antitumor properties in vitro or in vivo.
Collapse
Affiliation(s)
- Jianfeng Mu
- Department of Gastrointestinal and Anal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xiaodong Wang
- Department of Digestive Endoscopy, The Second Hospital of Jilin Unersity, Changchun, China
| | - Lihua Dong
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| | - Pengda Sun
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
35
|
Firouzi-Amandi A, Dadashpour M, Nouri M, Zarghami N, Serati-Nouri H, Jafari-Gharabaghlou D, Karzar BH, Mellatyar H, Aghebati-Maleki L, Babaloo Z, Pilehvar-Soltanahmadi Y. Chrysin-nanoencapsulated PLGA-PEG for macrophage repolarization: Possible application in tissue regeneration. Biomed Pharmacother 2018; 105:773-780. [DOI: 10.1016/j.biopha.2018.06.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/09/2018] [Accepted: 06/09/2018] [Indexed: 12/25/2022] Open
|
36
|
Tang P, Sun Q, Yang H, Tang B, Pu H, Li H. Honokiol nanoparticles based on epigallocatechin gallate functionalized chitin to enhance therapeutic effects against liver cancer. Int J Pharm 2018; 545:74-83. [DOI: 10.1016/j.ijpharm.2018.04.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 04/09/2018] [Accepted: 04/27/2018] [Indexed: 12/17/2022]
|
37
|
Differential effects of natural Curcumin and chemically modified curcumin on inflammation and bone resorption in model of experimental periodontitis. Arch Oral Biol 2018; 91:42-50. [DOI: 10.1016/j.archoralbio.2018.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/09/2018] [Accepted: 04/08/2018] [Indexed: 12/16/2022]
|
38
|
Dendrosomal nanocurcumin and exogenous p53 can act synergistically to elicit anticancer effects on breast cancer cells. Gene 2018; 670:55-62. [PMID: 29753810 DOI: 10.1016/j.gene.2018.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 05/01/2018] [Accepted: 05/08/2018] [Indexed: 01/07/2023]
Abstract
Triple-negative breast cancer (TNBC) constitutes an important histological subtype of breast cancer with a highly metastatic phenotype. The aim of the current study was to investigate the possible synergism between dendrosomal nanocurcumin (DNC) and exogenously delivered p53 in producing anticancer effects on a TNBC cell line. MTT assay was exploited to determine the viability of MDA-MB-231 cells against DNC and measure the impact of p53 overexpresssion on DNC-related cytotoxicity. Annexin-V/PI staining followed by flow cytometry and wound healing assay were used to evaluate the effects of DNC and exogenous p53, alone and in combination, on apoptosis induction and migratory capacity of MDA-MB-231 cells, respectively. Also, quantitative real-time PCR was applied to analyze the transcript levels of EMT- and metastasis-associated genes. Cell viability measurements demonstrated that DNC suppresses the proliferation of MDA-MB-231 cells in a time- and dose-dependent mode and exogenous p53 elevates the sensitivity of cells to DNC-mediated cytotoxic effects. Apoptosis and wound healing assays indicated that combination treatment with DNC and exogenous p53 leads to significantly increased apoptosis and decreased migration of breast cancer cells, compared with single treatment. The results of gene expression analysis highlighted the high potency of combination strategy to significantly reduce the expression of ZEB1 and BMI1 transcript levels. Altogether, our findings reveal that DNC and exogenous p53 act in a synergistic manner to elicit anticancer effects on MDA-MB-231 breast cancer cells. Therefore, our combination approach might be considered as a promising strategy for the development of new therapeutic modalities against breast cancer.
Collapse
|
39
|
Cheng Y, Zhao P, Wu S, Yang T, Chen Y, Zhang X, He C, Zheng C, Li K, Ma X, Xiang G. Cisplatin and curcumin co-loaded nano-liposomes for the treatment of hepatocellular carcinoma. Int J Pharm 2018; 545:261-273. [PMID: 29730175 DOI: 10.1016/j.ijpharm.2018.05.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/24/2018] [Accepted: 05/01/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) continues to be a leading cause of cancer related death in the world. Conventional chemotherapeutic agents such as cisplatin (CDDP) have an unsatisfactory efficacy on HCC due to the poor response, severe toxicity and drug resistance. Curcumin (CUR) could improve the chemosensitivity of HCC to chemotherapy drugs by regulating a variety of signaling pathways. Herein, we describe a combination strategy using co-loaded liposomes to effectively deliver and release CDDP and curcumin (CUR) to HCC for overcoming the unsatisfactory clinical outcome of CDDP monotherapy. In the study, CDDP and CUR co-loaded liposomes (CDDP/CUR-Lip) were prepared by a reverse microemulsion and film dispersion method and their average particle size 294.6 ± 14.8 nm with uniform size distribution. In vitro study showed that the nano sized CDDP/CUR-Lip could synchronously release both CDDP and CUR to achieve the synergistic effect against HCC cells based on the optimal ratio (1:8) of both drugs. Compared with free drug or encapsulated mono-drug therapy, CDDP/CUR-Lip demonstrated the higher anti-tumor activity in vitro against HepG2 cells with the IC50 of 0.62 μM. In addition, CDDP/CUR-Lip also increased intracellular ROS level during the HCC cells treatment. Furthermore, compared with single drug formulation, CDDP/CUR-Lip showed the elongated retention time (t1/2 = 2.38 h) and improved antitumor effect in both mouse hepatoma H22 and human HCC HepG2 xenograft models with reduced side effects. In conclusion, CDDP/CUR-Lip provide an attractive and potential strategy to attain synergistic effect of CDDP and CUR for the treatment of HCC.
Collapse
Affiliation(s)
- Yao Cheng
- Pharmacy School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Pengxuan Zhao
- Pharmacy School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shuangping Wu
- Pharmacy School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Tan Yang
- Pharmacy School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yan Chen
- Pharmacy School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaojuan Zhang
- Pharmacy School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chuanchuan He
- Pharmacy School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chao Zheng
- Pharmacy School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Kelin Li
- Pharmacy School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiang Ma
- Pharmacy School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Guangya Xiang
- Pharmacy School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
40
|
Doello K, Ortiz R, Alvarez PJ, Melguizo C, Cabeza L, Prados J. Latest in Vitro and in Vivo Assay, Clinical Trials and Patents in Cancer Treatment using Curcumin: A Literature Review. Nutr Cancer 2018; 70:569-578. [DOI: 10.1080/01635581.2018.1464347] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kevin Doello
- Medical Oncology Service, Virgen de las Nieves Hospital, Granada, Spain
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Raúl Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Department of Health Science, University of Jaén, Jaén, Spain
| | - Pablo J. Alvarez
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, Granada, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, Granada, Spain
| | - José Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, Granada, Spain
| |
Collapse
|
41
|
Rasouli S, Zarghami N. Synergistic Growth Inhibitory Effects of Chrysin and Metformin Combination on Breast Cancer Cells through hTERT and Cyclin D1 Suppression. Asian Pac J Cancer Prev 2018; 19:977-982. [PMID: 29693804 PMCID: PMC6031784 DOI: 10.22034/apjcp.2018.19.4.977] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Objective: To explore the possibility of a novel chemopreventive strategy for improving breast cancer treatment, the anticancer effects of a combination two natural compounds, Chrysin and Metformin, against T47D breast cancer cells were investigated. Materials and Methods: After treatment of T47D cells with Metformin, Chrysin and the two drugs in combination, toxicity to cancer cells was evaluated by MTT assay. Real time PCR was then used to determine the expression levels of hTERT and cyclin D1 genes. Results: The MTT test findings showed that the combination of metformin and chrysin had high synergistic effects in killing cancer cells. In addition PCR demonstrated a significant decrease in cyclin D1 and hTERT gene expression in the T47D breast cancer cell line. Conclusion: The conmbination of metformin and chrysin suppressing hTERT and cyclin D1 gene expression might offer an appropriate approach for breast cancer therapy.
Collapse
Affiliation(s)
- Sara Rasouli
- Department of Genetics, Faculty of Sciences, Islamic Azad University, Tabriz Branch,Tabriz, Iran.
| | | |
Collapse
|
42
|
Farajzadeh R, Zarghami N, Serati-Nouri H, Momeni-Javid Z, Farajzadeh T, Jalilzadeh-Tabrizi S, Sadeghi-Soureh S, Naseri N, Pilehvar-Soltanahmadi Y. Macrophage repolarization using CD44-targeting hyaluronic acid–polylactide nanoparticles containing curcumin. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:2013-2021. [DOI: 10.1080/21691401.2017.1408116] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Raana Farajzadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Hamed Serati-Nouri
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Momeni-Javid
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Taher Farajzadeh
- Department of Microbiology, Zanjan Basic Sciences and Medicine Branch, Islamic Azad University, Zanjan, Iran
| | - Sepideh Jalilzadeh-Tabrizi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Shima Sadeghi-Soureh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Neda Naseri
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Iran
| | - Younes Pilehvar-Soltanahmadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
43
|
Lotfi-Attari J, Pilehvar-Soltanahmadi Y, Dadashpour M, Alipour S, Farajzadeh R, Javidfar S, Zarghami N. Co-Delivery of Curcumin and Chrysin by Polymeric Nanoparticles Inhibit Synergistically Growth and hTERT Gene Expression in Human Colorectal Cancer Cells. Nutr Cancer 2017; 69:1290-1299. [PMID: 29083232 DOI: 10.1080/01635581.2017.1367932] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Nanoparticle (NP)-based combinational chemotherapy has been proposed as a potent approach for improving intracellular drug concentrations and attaining synergistic effects in colorectal cancer therapy. Here, two well-known herbal substances, Curcumin (Cur) and Chrysin (Chr), were co-encapsulated in PEGylated PLGA NPs and investigated their synergistic inhibitory effect against Caco-2 cancer cells. Characterization of nanoformulated drugs was determined using DLS, FTIR, TEM, and SEM. Drug release study was performed using dialysis method. MTT and real-time PCR assays were applied to evaluate the cytotoxic effects of free and nano-encapsulated drugs on expression level of hTERT in Caco-2 cells. The results showed that free drugs and nano-formulations exhibited a dose-dependent cytotoxicity against Caco-2 cells and especially, Cur-Chr-PLGA/PEG NPs had more synergistic antiproliferative effect and significantly arrested the growth of cancer cells than the other groups (P < 0.05). Real-time PCR results revealed that Cur, Chr, and combination of Cur-Chr in free and encapsulated forms inhibited hTERT gene expression. Also, it was found that Cur-Chr-PLGA/PEG NPs than free combination forms could further decline hTERT expression in all concentration (P < 0.05). In summary, our study represents the first report of nano-combinational application of the natural herbal substances with a one-step fabricated codelivery system for effective colorectal cancer combinational chemotherapy.
Collapse
Affiliation(s)
- Javid Lotfi-Attari
- a Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Younes Pilehvar-Soltanahmadi
- a Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mehdi Dadashpour
- a Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Shahriar Alipour
- b Department of Molecular Medicine, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Raana Farajzadeh
- a Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Shahrzad Javidfar
- a Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Nosratollah Zarghami
- a Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Molecular Medicine, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
44
|
Naseri N, Ajorlou E, Asghari F, Pilehvar-Soltanahmadi Y. An update on nanoparticle-based contrast agents in medical imaging. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1111-1121. [PMID: 28933183 DOI: 10.1080/21691401.2017.1379014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Despite the great value of current exogenous contrast agents for providing main diagnostic information, they still have certain drawbacks such as short blood half life, nonspecific biodistribution, fast clearance, slight renal toxicity and poor contrast in fat patients. Nanoparticles (NPs) are used as novel contrast agents that represent a promising strategy for the non invasive diagnosis. As a platform, nanoparticulates are compatible for developing targeted contrast agents. Advances in nanotechnology will provide enhanced sensitivity and specificity for tumor imaging enabling earlier detection of metastases. This article focuses on fundamental issue such as biological interactions, clearance routes, coating of NPs and presents a wide discussion about most recent category of NPs that are used as contrast agents and thebenefits/concerns issues associated with their use in clinical procedures.
Collapse
Affiliation(s)
- Neda Naseri
- a Department of Medical Nanotechnology , School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences , Tehran , Iran
| | - Elham Ajorlou
- b Department of Medical Nanotechnology , Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Fatemeh Asghari
- a Department of Medical Nanotechnology , School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences , Tehran , Iran
| | - Younes Pilehvar-Soltanahmadi
- c Stem Cell Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,d Stem Cell and Regenerative Medicine Institute , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
45
|
Dadashpour M, Pilehvar-Soltanahmadi Y, Zarghami N, Firouzi-Amandi A, Pourhassan-Moghaddam M, Nouri M. Emerging Importance of Phytochemicals in Regulation of Stem Cells Fate via Signaling Pathways. Phytother Res 2017; 31:1651-1668. [DOI: 10.1002/ptr.5908] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/01/2017] [Accepted: 08/10/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Student Research Committee; Tabriz University of Medical Sciences; Tabriz Iran
| | - Younes Pilehvar-Soltanahmadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | | | - Mohammad Pourhassan-Moghaddam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| | - Mohammad Nouri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Stem Cell and Regenerative Medicine Institute; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
46
|
Nejati-Koshki K, Pilehvar-Soltanahmadi Y, Alizadeh E, Ebrahimi-Kalan A, Mortazavi Y, Zarghami N. Development of Emu oil-loaded PCL/collagen bioactive nanofibers for proliferation and stemness preservation of human adipose-derived stem cells: possible application in regenerative medicine. Drug Dev Ind Pharm 2017; 43:1978-1988. [PMID: 28718680 DOI: 10.1080/03639045.2017.1357731] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adipose tissue-derived stem cells (ASCs) are promising candidate in stem cell therapies, and maintaining their stemness potential is vital to achieve effective treatment. Natural-based scaffolds have been recently attracted increasing attention in nanomedicine and drug delivery. In the present study, a polymeric nanofibrous scaffold was developed based on the polycaprolactone/Collagen (PCL/Coll) containing Emu oil as a bioactive material to induce the proliferation of ASCs, while simultaneously preserving the stemness property of those cells. Fabrication of the electrospun Emu oil-loaded PCL/Coll nanofibers was confirmed by using FE-SEM, FTIR, and tensile test. ASCs were seeded on two types of nanofibers (PCL/Coll and Emu oil-loaded PCL/Coll) and their proliferation, cell cycle progression, and stemness gene expressions were evaluated using MTT, propidium iodide staining, and qPCR during 14 days, respectively. The results indicated that ASCs displayed improved adhesion capacity with the higher rates of bioactivity and proliferation on the Emu oil-loaded nanofibers than the other groups. The proliferation capacity of ASCs on Emu oil-loaded PCL/Coll nanofibers was further confirmed by the cell cycle progression analysis. It was also found that Emu oil-loaded nanofibers significantly up-regulated the expression of stemness markers including sox-2, nanog, oct4, klf4, and c-Myc. The results demonstrated that the nanofibers containing Emu oil can reinforce the cell adhesion and enhance ASCs proliferation while preserving their stemness; therefore, using scaffolds containing natural products may have a great potential to enhance the in vitro expansion capacity of ASCs in the field of stem cell therapy and regenerative medicine.
Collapse
Affiliation(s)
- Kazem Nejati-Koshki
- a Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine , Zanjan University of Medical Sciences , Zanjan , Iran
| | | | - Effat Alizadeh
- c Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Abbas Ebrahimi-Kalan
- d Neurosciences Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Yousef Mortazavi
- a Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine , Zanjan University of Medical Sciences , Zanjan , Iran.,e Cancer Gene Therapy Research Center , Zanjan University of Medical Sciences , Zanjan , Iran
| | - Nosratollah Zarghami
- b Stem Cell Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,c Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran.,f National Institute for Medical Research Development , Tehran , Iran
| |
Collapse
|
47
|
Combination treatment with dendrosomal nanocurcumin and doxorubicin improves anticancer effects on breast cancer cells through modulating CXCR4/NF-κB/Smo regulatory network. Mol Biol Rep 2017; 44:341-351. [PMID: 28752270 DOI: 10.1007/s11033-017-4115-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/23/2017] [Indexed: 02/04/2023]
Abstract
Despite advantageous antitumor properties of doxorubicin, the considerable cytotoxicity of this chemotherapeutic agent has made it necessary to develop combination treatment strategies. The aim of the current study was to investigate the possible synergism between dendrosomal nanocurcumin (DNC) and doxorubicin in eliciting anticancer effects on MDA-MB-231 metastatic breast cancer cells. The expression levels of CXCL12/CXCR4 axis and Hedgehog pathway genes were evaluated in patient-derived breast carcinoma tissues by qRT-PCR. MTT assay, Annexin V-FITC staining followed by flowcytomety and wound healing assay were used to measure the effects caused by DNC and doxorubicin, alone and in combination, on the viability, apoptosis induction, and migration of MDA-MB-231 cells, respectively. Also, qRT-PCR was exploited to analyze the expression of Smo, NF-κB and CXCR4 in cancer cells. Our results revealed that combination treatment with DNC and doxorubicin leads to significantly decreased viability, increased apoptosis, and reduced migration of breast cancer cells compared with using each drug alone. Also, combination treatment is more efficient that single treatment in reducing the expression levels of NF-κB and Smo transcripts. Our findings provide convincing support for the notion that DNC could synergistically enhance the anticancer effects of doxorubicin on metastatic breast cancer cells by improving its anti-proliferative, pro-apoptotic, and anti-migratory activities. This may be mediated, in part, by downregulating CXCR4, NF-κB, and Smo genes. Overall, the findings of the current study suggest that DNC might be used as a synergistic agent for enhancing therapeutic efficiency and reducing toxic effects of doxorubicin on breast cancer cells.
Collapse
|
48
|
Dadashpour M, Pilehvar-Soltanahmadi Y, Mohammadi SA, Zarghami N, Pourhassan-Moghaddam M, Alizadeh E, Jafar Maleki M, Firouzi-Amandi A, Nouri M. Watercress-based electrospun nanofibrous scaffolds enhance proliferation and stemness preservation of human adipose-derived stem cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:819-830. [DOI: 10.1080/21691401.2017.1345925] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Pilehvar-Soltanahmadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Pourhassan-Moghaddam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Jafar Maleki
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akram Firouzi-Amandi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
49
|
Liu F, Gao S, Yang Y, Zhao X, Fan Y, Ma W, Yang D, Yang A, Yu Y. Curcumin induced autophagy anticancer effects on human lung adenocarcinoma cell line A549. Oncol Lett 2017; 14:2775-2782. [PMID: 28928819 PMCID: PMC5588543 DOI: 10.3892/ol.2017.6565] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/28/2017] [Indexed: 02/06/2023] Open
Abstract
To investigate the anticancer effects of curcumin-induced autophagy and its effects on the human lung adenocarcinoma A549 cell line, inverted phase contrast microscopy was used to observe alterations to the cytomorphology of cells. An MTT assay was used to measure cell viability. Autophagy was detected using acridine orange (AO) staining and 3-methyladenine (3-MA) was used as an autophagy-specific inhibitor. Dose- and time-dependent A549 cell viability inhibition was observed following curcumin treatment. A dose-dependent increase in the red fluorescent structures in A549 cells was identified following curcumin treatment for 48 h through AO staining. In addition, the activation of autophagy was determined through changes in the number of autophagic vesicles (AVs; fluorescent particles) infected with monodansylcadaverine (MDC). The fluorescence intensity and density of AVs in the curcumin-treated groups were higher at 48 h compared with the control group. Finally, the MTT assay demonstrated that the survival rates of the curcumin-treated cells were increased when pretreated with 3-MA for 3 h, indicating that the inhibitory effect of curcumin on A549 cells is reduced following the inhibition of autophagy. Furthermore, AO and MDC staining confirmed that 3-MA does inhibit the induction of autophagy. Thus, it was hypothesized that the induction of autophagy is partially involved in the reduction of cell viability observed following curcumin treatment. The anticancer effects of curcumin on A549 cells can be reduced using autophagy inhibitors. This suggests a possible cancer therapeutic application of curcumin through the activation of autophagy. These findings have improved the understanding of the mechanism underlying the anticancer property of curcumin.
Collapse
Affiliation(s)
- Furong Liu
- Department of Public Health, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Song Gao
- Department of Public Health, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yuxuan Yang
- Department of Public Health, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaodan Zhao
- Department of Public Health, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yameng Fan
- Department of Public Health, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wenxia Ma
- Department of Public Health, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Danrong Yang
- Department of Public Health, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Aimin Yang
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yan Yu
- Department of Public Health, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
50
|
Farajzadeh R, Pilehvar-Soltanahmadi Y, Dadashpour M, Javidfar S, Lotfi-Attari J, Sadeghzadeh H, Shafiei-Irannejad V, Zarghami N. Nano-encapsulated metformin-curcumin in PLGA/PEG inhibits synergistically growth and hTERT gene expression in human breast cancer cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:917-925. [PMID: 28678551 DOI: 10.1080/21691401.2017.1347879] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The study was aimed at investigating the synergistic inhibitory effect of unique combinational regimen of nanocapsulated Metformin (Met) and Curcumin (Cur) against T47D breast cancer cells. For this purpose, Met and Cur were co-encapsulated in PEGylated PLGA nanoparticles (NPs) and evaluated for their therapeutic efficacy. The morphology and dynamic light scattering (DLS) analyses were carried out to optimize the nanoformulations. Drug release study was performed using dialysis method and then the cytotoxic and inhibitory effect of individual and combined drugs on expression level of hTERT in T47D breast cell line were evaluated using MTT assay and qPCR, respectively. The results showed that free drugs and formulations exhibited a dose-dependent cytotoxicity against T47D cells and especially, Met-Cur-PLGA/PEG NPs had more synergistic antiproliferative effect and significantly arrested the growth of cancer cells than the other groups (p < .05). Real-time PCR results revealed that Cur, Met and combination of Met-Cur in free and encapsulated forms inhibited hTERT gene expression. It was found that Met-Cur-PLGA/PEG NPs in relative to free combination could further decline hTERT expression in all concentration (p < .05). Taken together, our study demonstrated that Met-Cur-PLGA/PEG NPs based combinational therapy holds promising potential towards the treatment of breast cancer.
Collapse
Affiliation(s)
- Raana Farajzadeh
- a Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Younes Pilehvar-Soltanahmadi
- b Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mehdi Dadashpour
- b Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Shahrzad Javidfar
- a Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Javid Lotfi-Attari
- a Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Hadi Sadeghzadeh
- b Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Vahid Shafiei-Irannejad
- a Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Nosratollah Zarghami
- a Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|