1
|
Paczkowska-Walendowska M, Miklaszewski A, Cielecka-Piontek J. Improving Solubility and Permeability of Hesperidin through Electrospun Orange-Peel-Extract-Loaded Nanofibers. Int J Mol Sci 2023; 24:ijms24097963. [PMID: 37175671 PMCID: PMC10178203 DOI: 10.3390/ijms24097963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Orange peel, which is a rich source of polyphenolic compounds, including hesperidin, is produced as waste in production. Therefore, optimization of the extraction of hesperidin was performed to obtain its highest content. The influence of process parameters such as the kind of extraction mixture, its temperature and the number of repetitions of the cycles on hesperidin content, the total content of phenolic compounds and antioxidant (DPPH scavenging assay) as well as anti-inflammation activities (inhibition of hyaluronidase activity) was checked. Methanol and temperature were key parameters determining the efficiency of extraction in terms of the possibility of extracting compounds with the highest biological activity. The optimal parameters of the orange peel extraction process were 70% of methanol in the extraction mixture, a temperature of 70 °C and 4 cycles per 20 min. The second part of the work focuses on developing electrospinning technology to synthesize nanofibers of polyvinylpyrrolidone (PVP) and hydroxypropyl-β-cyclodextrin (HPβCD) loaded with hesperidin-rich orange peel extract. This is a response to the circumvention of restrictions in the use of hesperidin due to its poor bioavailability resulting from low solubility and permeability. Dissolution studies showed improved hesperidin solubility (over eight-fold), while the PAMPA-GIT assay confirmed significantly better transmucosal penetration (over nine-fold). A DPPH scavenging assay of antioxidant activity as well as inhibition of hyaluronidase to express anti-inflammation activity was established for hesperidin in prepared electrospun nanofibers, especially those based on HPβCD and PVP. Thus, hesperidin-rich orange peel nanofibers may have potential buccal applications to induce improved systemic effects with pro-health biological activity.
Collapse
Affiliation(s)
| | - Andrzej Miklaszewski
- Faculty of Mechanical Engineering and Management, Institute of Materials Science and Engineering, Poznan University of Technology, 60-965 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
2
|
Rashidinejad A, Nieuwkoop M, Singh H, Jameson GB. Assessment of Various Food Proteins as Structural Materials for Delivery of Hydrophobic Polyphenols Using a Novel Co-Precipitation Method. Molecules 2023; 28:molecules28083573. [PMID: 37110808 PMCID: PMC10147046 DOI: 10.3390/molecules28083573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
In this study, sodium caseinate (NaCas), soy protein isolate (SPI), and whey protein isolate (WPI) were used as structural materials for the delivery of rutin, naringenin, curcumin, hesperidin, and catechin. For each polyphenol, the protein solution was brought to alkaline pH, and then the polyphenol and trehalose (as a cryo-protectant) were added. The mixtures were later acidified, and the co-precipitated products were lyophilized. Regardless of the type of protein used, the co-precipitation method exhibited relatively high entrapment efficiency and loading capacity for all five polyphenols. Several structural changes were seen in the scanning electron micrographs of all polyphenol-protein co-precipitates. This included a significant decrease in the crystallinity of the polyphenols, which was confirmed by X-ray diffraction analysis, where amorphous structures of rutin, naringenin, curcumin, hesperidin, and catechin were revealed after the treatment. Both the dispersibility and solubility of the lyophilized powders in water were improved dramatically (in some cases, >10-fold) after the treatment, with further improvements observed in these properties for the powders containing trehalose. Depending on the chemical structure and hydrophobicity of the tested polyphenols, there were differences observed in the degree and extent of the effect of the protein on different properties of the polyphenols. Overall, the findings of this study demonstrated that NaCas, WPI, and SPI can be used for the development of an efficient delivery system for hydrophobic polyphenols, which in turn can be incorporated into various functional foods or used as supplements in the nutraceutical industry.
Collapse
Affiliation(s)
- Ali Rashidinejad
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Matthijs Nieuwkoop
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Geoffrey B Jameson
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- School of Natural Sciences, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
3
|
de Oliveira RS, Funk NL, dos Santos J, de Oliveira TV, de Oliveira EG, Petzhold CL, Costa TMH, Benvenutti EV, Deon M, Beck RCR. Bioadhesive 3D-Printed Skin Drug Delivery Polymeric Films: From the Drug Loading in Mesoporous Silica to the Manufacturing Process. Pharmaceutics 2022; 15:pharmaceutics15010020. [PMID: 36678649 PMCID: PMC9861290 DOI: 10.3390/pharmaceutics15010020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/30/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The alliance between 3D printing and nanomaterials brings versatile properties to pharmaceuticals, but few studies have explored this approach in the development of skin delivery formulations. In this study, clobetasol propionate (CP) was loaded (about 25% w/w) in mesoporous silica nanomaterial (MSN) to formulate novel bioadhesive and hydrophilic skin delivery films composed of pectin (5% w/v) and carboxymethylcellulose (5% w/v) by 3D printing. As a hydrophobic model drug, CP was encapsulated in MSN at a 3:1 (w/w) ratio, resulting in a decrease of CP crystallinity and an increase of its dissolution efficiency after 72 h (65.70 ± 6.52%) as compared to CP dispersion (40.79 ± 4.75%), explained by its partial change to an amorphous form. The CP-loaded MSN was incorporated in an innovative hydrophilic 3D-printable ink composed of carboxymethylcellulose and pectin (1:1, w/w), which showed high tensile strength (3.613 ± 0.38 N, a homogenous drug dose (0.48 ± 0.032 mg/g per film) and complete CP release after 10 h. Moreover, the presence of pectin in the ink increased the skin adhesion of the films (work of adhesion of 782 ± 105 mN·mm). Therefore, the alliance between MSN and the novel printable ink composed of carboxymethylcellulose and pectin represents a new platform for the production of 3D-printed bioadhesive films, opening a new era in the development of skin delivery systems.
Collapse
Affiliation(s)
- Rafaela Santos de Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-900, Brazil
- Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Nadine Lysyk Funk
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-900, Brazil
- Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Juliana dos Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-900, Brazil
- Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Thayse Viana de Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-900, Brazil
- Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Edilene Gadelha de Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-900, Brazil
| | - Cesar Liberato Petzhold
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90650-001, Brazil
| | - Tania Maria Haas Costa
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90650-001, Brazil
| | | | - Monique Deon
- Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Ruy Carlos Ruver Beck
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-900, Brazil
- Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
- Correspondence: ; Tel.: +55-51-3308-5951
| |
Collapse
|
4
|
Amorphous Solid Dispersion of Hesperidin with Polymer Excipients for Enhanced Apparent Solubility as a More Effective Approach to the Treatment of Civilization Diseases. Int J Mol Sci 2022; 23:ijms232315198. [PMID: 36499518 PMCID: PMC9740072 DOI: 10.3390/ijms232315198] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
The present study reports amorphous solid dispersions (ASDs) of hesperidin (Hes) prepared by ball milling to improve its solubility and apparent solubility over the unmodified compound. The carriers were Soluplus® (Sol), alginate sodium (SA), and hydroxypropylmethylcellulose (HPMC). XRPD analysis confirmed full amorphization of all binary systems in 1:5 w/w ratio. One glass transition (Tg) observed in DSC thermograms of hesperidin:Soluplus® (Hes:Sol) and hesperidin:HPMC (Hes:HPMC) 1:5 w/w systems confirmed complete miscibility. The mathematical model (Gordon-Taylor equation) indicates that the obtained amorphous systems are characterized by weak interactions. The FT-IR results confirmed that hydrogen bonds are responsible for stabilizing the amorphous state of Hes. Stability studies indicate that the strength of these bonds is insufficient to maintain the amorphous state of Hes under stress conditions (25 °C and 60 °C 76.4% RH). HPLC analysis suggested that the absence of degradation products indicates safe hesperidin delivery systems. The solubility and apparent solubility were increased in all media (water, phosphate buffer pH 6.8 and HCl (0.1 N)) compared to the pure compound. Our study showed that all obtained ASDs are promising systems for Hes delivery, wherein Hes:Sol 1:5 w/w has the best solubility (about 300-fold in each media) and apparent solubility (about 70% in phosphate buffer pH 6.8 and 63% in HCl).
Collapse
|
5
|
Wdowiak K, Walkowiak J, Pietrzak R, Bazan-Woźniak A, Cielecka-Piontek J. Bioavailability of Hesperidin and Its Aglycone Hesperetin—Compounds Found in Citrus Fruits as a Parameter Conditioning the Pro-Health Potential (Neuroprotective and Antidiabetic Activity)—Mini-Review. Nutrients 2022; 14:nu14132647. [PMID: 35807828 PMCID: PMC9268531 DOI: 10.3390/nu14132647] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/19/2022] Open
Abstract
Hesperidin and hesperetin are polyphenols that can be found predominantly in citrus fruits. They possess a variety of pharmacological properties such as neuroprotective and antidiabetic activity. However, the bioavailability of these compounds is limited due to low solubility and restricts their use as pro-healthy agents. This paper described the limitations resulting from the low bioavailability of the presented compounds and gathered the methods aiming at its improvement. Moreover, this work reviewed studies providing pieces of evidence for neuroprotective and antidiabetic properties of hesperidin and hesperetin as well as providing a detailed look into the significance of reported modes of action in chronic diseases. On account of a well-documented pro-healthy activity, it is important to look for ways to overcome the problem of poor bioavailability.
Collapse
Affiliation(s)
- Kamil Wdowiak
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland;
| | - Robert Pietrzak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (R.P.); (A.B.-W.)
| | - Aleksandra Bazan-Woźniak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (R.P.); (A.B.-W.)
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
- Correspondence:
| |
Collapse
|
6
|
Yadav V, Sarker A, Yadav A, Miftah AO, Bilal M, Iqbal HMN. Integrated biorefinery approach to valorize citrus waste: A sustainable solution for resource recovery and environmental management. CHEMOSPHERE 2022; 293:133459. [PMID: 34995629 DOI: 10.1016/j.chemosphere.2021.133459] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/02/2021] [Accepted: 12/26/2021] [Indexed: 02/07/2023]
Abstract
Citrus fruits are extensively cultivated, consumed and major processed horticulture crops around the globe. High processing and consumption generate huge quantities of solid organic wastes. Citrus waste represents approximately 40-50% of total fruit weight, which consists of rag (membranes and cores), pulp, seeds, and peel (albedo and flavedo), which are a potential source of value-added products including essential oils, carotenoids, pectin, dietary fibers, and polyphenols biofuel, etc. However, waste produced is discarded as waste in the environment, which causes a serious threat due to the presence of bioactive compounds. Recent research strategies on the integrated biorefinery approach explore various ways to utilize the waste obtained from the citrus wastes for their subsequent recovery of value-added products. Moreover, the citrus waste can be turned into various bio-products, viz., enzymes, biofuels, and biopolymers using the integrated biorefinery approach, which can optimize the development of green waste for sustainability and economic benefits. Given the sustainable solution for resource recovery and environmental management, the article reviews the latest advances in the novel valorization approach and valuation of the existing state-of-the-art green technologies for citrus waste utilization to bring a sustainable solution for increasing demand for food, fuel, and energy security. To achieve the zero-waste approach and industrial viability, more efforts should be given to scale-up green recovery techniques along with diverse product profiling.
Collapse
Affiliation(s)
- Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Aniruddha Sarker
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Soil Science, EXIM Bank Agricultural University Bangladesh (EBAUB), Chapainawabganj, Bangladesh.
| | - Ashish Yadav
- Central Institute for Subtropical Horticulture, Lucknow, 226101, India.
| | - Amilin Oktarajifa Miftah
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
7
|
Baumgartner A, Planinšek O. Application of commercially available mesoporous silica for drug dissolution enhancement in oral drug delivery. Eur J Pharm Sci 2021; 167:106015. [PMID: 34547382 DOI: 10.1016/j.ejps.2021.106015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022]
Abstract
Due to the high number of poorly water-soluble active pharmaceutical ingredients, oral drug delivery development has become challenging. One of the strategies to enhance drug solubility and to achieve high oral bioavailability is to formulate such compounds into amorphous solid dispersions. In recent years, porous materials have been investigated as possible carriers into which a drug can be adsorbed, such as mesoporous silica, in particular. Unlike the ordered mesoporous network of silica, non-ordered silica already has a "generally regarded as safe" status, and is already used as an excipient in pharmaceutical and cosmetic products. Thus, it is reasonable to expect that products that contain solid dispersions with non-ordered carriers will reach the market sooner and more easily than those with ordered mesoporous carriers. The emphasis of this review is therefore on non-ordered commercially available mesoporous silica and the progress that has been made in development of the use of these materials for improved dissolution rates in oral drug delivery. First, a thorough categorisation of the drug loading methods is presented, followed by discussion on the most important characteristics of solid dispersions (i.e., physical state, stability, drug release). Finally, manufacturability and production of a final solid dosage form are considered.
Collapse
Affiliation(s)
- Ana Baumgartner
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana 1000, Slovenia
| | - Odon Planinšek
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana 1000, Slovenia.
| |
Collapse
|
8
|
Teng H, Zheng Y, Cao H, Huang Q, Xiao J, Chen L. Enhancement of bioavailability and bioactivity of diet-derived flavonoids by application of nanotechnology: a review. Crit Rev Food Sci Nutr 2021; 63:378-393. [PMID: 34278842 DOI: 10.1080/10408398.2021.1947772] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Flavonoids, which are a class of polyphenols widely existing in food and medicine, have enormous pharmacological effects. The functional properties of flavonoids are mainly distributed to their anti-oxidative, anticancer, and anti-inflammatoryeffects, etc. However, flavonoids' low bioavailability limits their clinical application, which is closely related to their intestinal absorption and metabolism. In addition, because of the short residence time of oral bioactive molecules in the stomach, low permeability and low solubility in the gastrointestinal tract, flavonoids are easy to be decomposed by the external environment and gastrointestinal tract after digestion. To tackle these obstacles, technological approaches like microencapsulation have been developed and applied for the formulation of flavonoid-enriched food products. In the light of these scientific advances, the objective of this review is to establish the structural requirements of flavonoids for appreciable anticancer, anti-inflammatory, and antioxidant effects, and elucidate a comprehensive mechanism that can explain their activity. Furthermore, the novelty in application of nanotechnology for the safe delivery of flavonoids in food matrices is discussed. After a literature on the flavonoids and their health attributes, the encapsulation methods and the coating materials are presented.
Collapse
Affiliation(s)
- Hui Teng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Yimei Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Hui Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Qun Huang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China.,Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
9
|
Chalikwar SS, Surana SJ, Goyal SN, Chaturvedi KK, Dangre PV. Solid self-microemulsifying nutraceutical delivery system for hesperidin using quality by design: assessment of biopharmaceutical attributes and shelf-life. J Microencapsul 2020; 38:61-79. [PMID: 33245007 DOI: 10.1080/02652048.2020.1851788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AIM The present study endeavours to develop a solid self-microemulsifying nutraceutical drug delivery system for hesperidin (HES) using quality by design (QbD) to improve its biopharmaceutical attributes. METHODS A 32 full factorial design was employed to study the influence of factors on selected responses. Risk assessment was performed by portraying Ishikawa fishbone diagram and failure mode effect analysis (FMEA). The in vivo antidiabetic study was carried on induced diabetic rats. RESULTS The optimised liquid SMEDDS-HES (OF) formulation showed emulsification time (Y 1) = 102.5 ± 2.52 s, globule size (Y 2) = 225.2 ± 3.40 nm, polydispersity index (Y 3) = 0.294 ± 0.62, and zeta potential (Y 4) = -25.4 ± 1.74 mV, respectively. The solid SMEDDS-HES (SOF-7) formulation was characterised by FTIR, PXRD, DSC, and SEM. The shelf life of SOF-7 was found to be 32.88 months. The heamatological and histopathological data of diabetic rats showed prominent antidiabetic activity. CONCLUSIONS The optimised formulation showed improved dissolution, desired stability, and promising antidiabetic activity.
Collapse
Affiliation(s)
- Shailesh S Chalikwar
- Department of Pharmaceutical Quality Assurance, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Sanjay J Surana
- Department of Pharmacognosy, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Sameer N Goyal
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India.,Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, India
| | - Kaushalendra K Chaturvedi
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Pankaj V Dangre
- Department of Pharmaceutical Quality Assurance, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| |
Collapse
|
10
|
Kadota K, Ibe T, Sugawara Y, Takano H, Yusof YA, Uchiyama H, Tozuka Y, Yamanaka S. Water-assisted synthesis of mesoporous calcium carbonate with a controlled specific surface area and its potential to ferulic acid release. RSC Adv 2020; 10:28019-28025. [PMID: 35519125 PMCID: PMC9055691 DOI: 10.1039/d0ra05542e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/08/2020] [Indexed: 11/21/2022] Open
Abstract
A carbonation process to control the specific surface area of mesoporous calcium carbonate and the dissolution profile of ferulic acid on mesoporous carbonate particles are presented. The effects of water content on the physicochemical properties, specific surface area, pore size, crystallinity, and morphology are evaluated. Mesoporous calcium carbonate particles are synthesised with well-controlled specific surface areas of 38.8 to 234 m2 g−1. Each of the submicron-size secondary particles consists of a primary particle of nano-size. During secondary particle formation, primary particle growth is curbed in the case with less water content. By contrast, growth is promoted via dissolution and recrystallisation in the presence of water. The release rates of ferulic acid are gradually enhanced with increasing specific surface area of the mesoporous calcium carbonate, that reflects crystallinity of ferulic acid. A carbonation process to control the specific surface area of mesoporous calcium carbonate and the dissolution profile of ferulic acid on mesoporous carbonate particles are presented.![]()
Collapse
Affiliation(s)
- Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Osaka University of Pharmaceutical Sciences 4-20-1 Nasahara Takatsuki Osaka 569-1094 Japan
| | - Toi Ibe
- Division of Applied Sciences, Muroran Institute of Technology Mizumoto-cho 27-1 Muroran 050-8585 Japan
| | - Yuto Sugawara
- Division of Applied Sciences, Muroran Institute of Technology Mizumoto-cho 27-1 Muroran 050-8585 Japan
| | - Hitomi Takano
- Division of Applied Sciences, Muroran Institute of Technology Mizumoto-cho 27-1 Muroran 050-8585 Japan
| | - Yus Aniza Yusof
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia 43400 Serdang Selangor Malaysia.,Laboratory of Halal Services, Halal Products Research Institute, Universiti Putra Malaysia 43400 Serdang Selangor Malaysia
| | - Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology, Osaka University of Pharmaceutical Sciences 4-20-1 Nasahara Takatsuki Osaka 569-1094 Japan
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology, Osaka University of Pharmaceutical Sciences 4-20-1 Nasahara Takatsuki Osaka 569-1094 Japan
| | - Shinya Yamanaka
- Division of Applied Sciences, Muroran Institute of Technology Mizumoto-cho 27-1 Muroran 050-8585 Japan
| |
Collapse
|
11
|
Ornik J, Knoth D, Koch M, Keck CM. Terahertz-spectroscopy for non-destructive determination of crystallinity of L-tartaric acid in smartFilms® and tablets made from paper. Int J Pharm 2020; 581:119253. [PMID: 32217156 DOI: 10.1016/j.ijpharm.2020.119253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/21/2020] [Accepted: 03/21/2020] [Indexed: 01/18/2023]
Abstract
Newly developed active pharmaceutical ingredients (API) often experience low solubility in aqueous media and thus possess poor oral bioavailability. The SmartFilm®-technology is a novel approach to overcome poor solubility. The technique uses commercial paper in which API can be loaded in amorphous state, thus increasing dissolution rate dc/dt and solubility cs when compared to bulk material. However, the preservation of the amorphous state is a prerequisite for an efficient use of the smartFilm-technology and thus the crystalline state needs to be inspected during storage. Preferably, this should be done non-destructively. Traditional techniques, such as x-ray diffraction (XRD) or differential scanning calorimetry (DSC), do not allow for non-destructive crystallinity investigations, whereas Terahertz (THz) spectroscopy is a non-destructive technique, that is sensitive to the crystalline state of many molecular crystals. Therefore, the potential of THz-spectroscopy for crystallinity state inspection of API in smartFilms and tablets made from smartFilms was investigated in this study. The THz results obtained were compared to results obtained from XRD and DSC measurements. Whereas DSC measurements failed to reliably detect crystalline API in the smartFilms, XRD and THz-spectroscopy showed similar results and revealed that it was possible to prepare smartFilms loaded with >23% (w/w) amorphous API. Results indicate the great potential of THz spectroscopy for the non-destructive determination of the crystalline state of APIs in smartFilms and/or tablets made from paper.
Collapse
Affiliation(s)
- Jan Ornik
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032 Marburg, Germany
| | - Daniel Knoth
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Martin Koch
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032 Marburg, Germany
| | - Cornelia M Keck
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| |
Collapse
|
12
|
Jin N, Lin J, Yang C, Wu C, He J, Chen Z, Yang Q, Chen J, Zheng G, Lv L, Liang H, Chen J, Ruan Z. Enhanced penetration and anti-psoriatic efficacy of curcumin by improved smartPearls technology with the addition of glycyrrhizic acid. Int J Pharm 2020; 578:119101. [DOI: 10.1016/j.ijpharm.2020.119101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/16/2020] [Accepted: 01/28/2020] [Indexed: 12/23/2022]
|
13
|
Cianchino VA, Favier LS, Ortega CA, Peralta C, Cifuente DA. Formulation development and evaluation of Silybum marianum tablets. RODRIGUÉSIA 2020. [DOI: 10.1590/2175-7860202071044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract In popular medicine Silybum marianum is used as a hepatoprotective agent. Silymarin is the major constituent. The present work deals with the formulation and evaluation of S. marianum tablets from ethanolic extract by direct compression. The ethanolic extract was obtained from seeds by soxhlet extraction. Two pharmaceutical formulations were prepared using fluid extract as an active principle, and Aeroperl® 300 Pharma as a carrier. In order to improve flow ability and compressibility, co-processed excipients MicroceLac® 100 and FlowLac® 90 were employed. Pre-compression and post-compression parameters were evaluated according to USP 34-NF 29. Besides, silymarin was determined by NMR spectral data. Both formulations showed excellent rheological properties and the best biopharmaceutical parameters were observed in F2 (S. marianum ethanolic extract, aeroperl® 300 Pharma, flowLac® 90, glycolate starch and magnesium stearate) in terms of the friability (0.82 %) and the disintegration time (8.05 min).
Collapse
|
14
|
Wang Z, Ye BN, Zhang YT, Xie JX, Li WS, Zhang HT, Liu Y, Feng NP. Exploring the Potential of Mesoporous Silica as a Carrier for Puerarin: Characterization, Physical Stability, and In Vivo Pharmacokinetics. AAPS PharmSciTech 2019; 20:289. [PMID: 31414349 DOI: 10.1208/s12249-019-1502-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to evaluate the use of a novel porous silica carrier, AEROPERL® 300 Pharma (AP), to improve the in vitro release and oral bioavailability of puerarin (PUE) in solid dispersions (SDs). PUE-AP SD formulations with different ratios of drug to silica (RDS) were prepared by the solvent method. The scanning electron microscopy (SEM) results indicated that the dispersion of PUE improved as the concentration of AP was increased. The differential scanning calorimetry (DSC) and X-ray diffraction (XRD) results revealed that PUE mostly existed in an amorphous state in the SDs. The rate of drug dissolution from the SDs was significantly higher than that from the PUE powder (p < 0.05). The in vitro drug release percentage from the PUE-AP SDs increased as the RDS was reduced. The oral bioavailability of PUE from the SDs improved when using AP, as indicated by AUC(0-∞), which was 2.05 and 2.01 times greater than that of the PUE (API) and PVP K30 SDs, respectively (p < 0.05). The drug content, in vitro release profiles, and the amorphous state of PUE in the PUE-AP SDs showed no significant changes after being stored at room temperature for 6 months or under accelerated conditions (40 ± 2°C, 75 ± 5% relative humidity) for 3 months. AP has a high pore volume, large specific surface area, excellent flowability, and hydrophilic properties, making it capable of improving the dissolution and bioavailability of poorly water-soluble drugs.
Collapse
|
15
|
Cypriano DZ, da Silva LL, Tasic L. High value-added products from the orange juice industry waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 79:71-78. [PMID: 30343803 DOI: 10.1016/j.wasman.2018.07.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 05/26/2023]
Abstract
An underutilized residue called Citrus Pulp of Floater (CPF), which causes problems during the industrial process of manufacturing of orange juice, was explored for the production of high value-added products. Mixed, first (1G) and second generation (2G) ethanol, a clean and renewable biofuel, was obtained after an enzyme cocktail isolated from the Xanthomonas axonopodis pv. citri (Xac) was applied in hydrolysis of this biomass. Then, mono- and co-culture fermentations were performed using the yeast Saccharomyces cerevisiae and two Candida strains (Candida parapsilosis IFM 48375 and NRRL Y-12969), where the last two were isolated from the orange bagasse in natura. After the enzymatic hydrolysis step, sugars obtained were converted to ethanol achieving a yield of almost 100% after co-fermentation. Hesperidin, a flavonoid widely used for its antimicrobial and/or antioxidant activities, was also extracted from CPF by liquid-solid extraction and precipitation, with the yield of 1.2% and 92.6% pure. Finally, nanocellulose was produced through processes such as extraction, bleaching and nanonization with the yield of 1.4% and over 98% of purity. These products - ethanol, hesperidin and nanocellulose were obtained from three independent processes: (1) after an enzyme-based hydrolysis of CPF, liquid part was used for ethanol production, and solid was preserved; (2) hesperidin was isolated from a dry CPF, and solid residue was preserved; and (3) nanocellulose was obtained from the solid residues after processes cited in 1 and 2.
Collapse
Affiliation(s)
- Daniela Z Cypriano
- Chemical Biology Laboratory, Institute of Chemistry, Organic Chemistry Department, State University of Campinas, P.O. Box 6154, Campinas, SP 13083-970, Brazil
| | - Lucimara Lopes da Silva
- Chemical Biology Laboratory, Institute of Chemistry, Organic Chemistry Department, State University of Campinas, P.O. Box 6154, Campinas, SP 13083-970, Brazil; Bioprocess Engineering and Biotechnology Course, Federal Technological University of Paraná - UTFPR, Estrada para Boa Esperança, Km 04, Dois Vizinhos, PR 85660-000, Brazil.
| | - Ljubica Tasic
- Chemical Biology Laboratory, Institute of Chemistry, Organic Chemistry Department, State University of Campinas, P.O. Box 6154, Campinas, SP 13083-970, Brazil.
| |
Collapse
|
16
|
Ditzinger F, Price DJ, Ilie AR, Köhl NJ, Jankovic S, Tsakiridou G, Aleandri S, Kalantzi L, Holm R, Nair A, Saal C, Griffin B, Kuentz M. Lipophilicity and hydrophobicity considerations in bio-enabling oral formulations approaches – a PEARRL review. J Pharm Pharmacol 2018; 71:464-482. [DOI: 10.1111/jphp.12984] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/27/2018] [Indexed: 11/30/2022]
Abstract
Abstract
Objectives
This review highlights aspects of drug hydrophobicity and lipophilicity as determinants of different oral formulation approaches with specific focus on enabling formulation technologies. An overview is provided on appropriate formulation selection by focussing on the physicochemical properties of the drug.
Key findings
Crystal lattice energy and the octanol–water partitioning behaviour of a poorly soluble drug are conventionally viewed as characteristics of hydrophobicity and lipophilicity, which matter particularly for any dissolution process during manufacturing and regarding drug release in the gastrointestinal tract. Different oral formulation strategies are discussed in the present review, including lipid-based delivery, amorphous solid dispersions, mesoporous silica, nanosuspensions and cyclodextrin formulations.
Summary
Current literature suggests that selection of formulation approaches in pharmaceutics is still highly dependent on the availability of technological expertise in a company or research group. Encouraging is that, recent advancements point to more structured and scientifically based development approaches. More research is still needed to better link physicochemical drug properties to pharmaceutical formulation design.
Collapse
Affiliation(s)
- Felix Ditzinger
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Daniel J Price
- Analytics Healthcare, Merck KGaA, Darmstadt, Germany
- Goethe University, Frankfurt, Germany
| | - Alexandra-Roxana Ilie
- School of Pharmacy, University College Cork, Cork, Ireland
- Drug Product Development, Janssen Research and Development, Johnson and Johnson, Beerse, Belgium
| | - Niklas J Köhl
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Sandra Jankovic
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Georgia Tsakiridou
- Product Design & Evaluation, Pharmathen SA, Athens, Greece
- Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Simone Aleandri
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Lida Kalantzi
- Product Design & Evaluation, Pharmathen SA, Athens, Greece
| | - René Holm
- Drug Product Development, Janssen Research and Development, Johnson and Johnson, Beerse, Belgium
| | - Anita Nair
- Analytics Healthcare, Merck KGaA, Darmstadt, Germany
| | | | | | - Martin Kuentz
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| |
Collapse
|
17
|
Riikonen J, Xu W, Lehto VP. Mesoporous systems for poorly soluble drugs – recent trends. Int J Pharm 2018; 536:178-186. [DOI: 10.1016/j.ijpharm.2017.11.054] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 11/28/2022]
|
18
|
Edueng K, Mahlin D, Bergström CAS. The Need for Restructuring the Disordered Science of Amorphous Drug Formulations. Pharm Res 2017; 34:1754-1772. [PMID: 28523384 PMCID: PMC5533858 DOI: 10.1007/s11095-017-2174-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/01/2017] [Indexed: 11/25/2022]
Abstract
The alarming numbers of poorly soluble discovery compounds have centered the efforts towards finding strategies to improve the solubility. One of the attractive approaches to enhance solubility is via amorphization despite the stability issue associated with it. Although the number of amorphous-based research reports has increased tremendously after year 2000, little is known on the current research practice in designing amorphous formulation and how it has changed after the concept of solid dispersion was first introduced decades ago. In this review we try to answer the following questions: What model compounds and excipients have been used in amorphous-based research? How were these two components selected and prepared? What methods have been used to assess the performance of amorphous formulation? What methodology have evolved and/or been standardized since amorphous-based formulation was first introduced and to what extent have we embraced on new methods? Is the extent of research mirrored in the number of marketed amorphous drug products? We have summarized the history and evolution of amorphous formulation and discuss the current status of amorphous formulation-related research practice. We also explore the potential uses of old experimental methods and how they can be used in tandem with computational tools in designing amorphous formulation more efficiently than the traditional trial-and-error approach.
Collapse
Affiliation(s)
- Khadijah Edueng
- Department of Pharmacy, Uppsala University, Uppsala Biomedical Centre, P.O. Box 580, SE-75123, Uppsala, Sweden
- Kulliyyah of Pharmacy,, International Islamic University Malaysia, Jalan Istana, 25200, Bandar Indera Mahkota, Pahang, Malaysia
| | - Denny Mahlin
- Department of Pharmacy, Uppsala University, Uppsala Biomedical Centre, P.O. Box 580, SE-75123, Uppsala, Sweden
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala University, Uppsala Biomedical Centre, P.O. Box 580, SE-75123, Uppsala, Sweden.
| |
Collapse
|
19
|
Perini JF, Silvestre WP, Agostini F, Toss D, Pauletti GF. Fractioning of orange (Citrus sinensis L.) essential oil using vacuum fractional distillation. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1290108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- J. F. Perini
- Course of Chemical Engineering, Center of Exact Sciences and Technologies, University of Caxias do Sul (UCS), Caxias do Sul, RS, Brazil
| | - W. P. Silvestre
- Course of Chemical Engineering, Center of Exact Sciences and Technologies, University of Caxias do Sul (UCS), Caxias do Sul, RS, Brazil
- Course of Agronomy, Center of Health and Biological Sciences, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - F. Agostini
- Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - D. Toss
- Course of Chemical Engineering, Center of Exact Sciences and Technologies, University of Caxias do Sul (UCS), Caxias do Sul, RS, Brazil
| | - G. F. Pauletti
- Course of Agronomy, Center of Health and Biological Sciences, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| |
Collapse
|
20
|
Zhou M, Shen L, Lin X, Hong Y, Feng Y. Design and pharmaceutical applications of porous particles. RSC Adv 2017. [DOI: 10.1039/c7ra06829h] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Porous particles have been developed as a novel carrier to improve drug delivery, dissolution, tableting, and so on, which can be prepared by many methods.
Collapse
Affiliation(s)
- Miaomiao Zhou
- College of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education
| | - Lan Shen
- College of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Xiao Lin
- College of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Yanlong Hong
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| |
Collapse
|