1
|
Rotter A, Varamogianni-Mamatsi D, Zvonar Pobirk A, Gosenca Matjaž M, Cueto M, Díaz-Marrero AR, Jónsdóttir R, Sveinsdóttir K, Catalá TS, Romano G, Aslanbay Guler B, Atak E, Berden Zrimec M, Bosch D, Deniz I, Gaudêncio SP, Grigalionyte-Bembič E, Klun K, Zidar L, Coll Rius A, Baebler Š, Lukić Bilela L, Rinkevich B, Mandalakis M. Marine cosmetics and the blue bioeconomy: From sourcing to success stories. iScience 2024; 27:111339. [PMID: 39650733 PMCID: PMC11625311 DOI: 10.1016/j.isci.2024.111339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024] Open
Abstract
As the global population continues to grow, so does the demand for longer, healthier lives and environmentally responsible choices. Consumers are increasingly drawn to naturally sourced products with proven health and wellbeing benefits. The marine environment presents a promising yet underexplored resource for the cosmetics industry, offering bioactive compounds with the potential for safe and biocompatible ingredients. This manuscript provides a comprehensive overview of the potential of marine organisms for cosmetics production, highlighting marine-derived compounds and their applications in skin/hair/oral-care products, cosmeceuticals and more. It also lays down critical safety considerations and addresses the methodologies for sourcing marine compounds, including harvesting, the biorefinery concept, use of systems biology for enhanced product development, and the relevant regulatory landscape. The review is enriched by three case studies: design of macroalgal skincare products in Iceland, establishment of a microalgal cosmetics spin-off in Italy, and the utilization of marine proteins for cosmeceutical applications.
Collapse
Affiliation(s)
- Ana Rotter
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Despoina Varamogianni-Mamatsi
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | - Alenka Zvonar Pobirk
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Mirjam Gosenca Matjaž
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Tenerife, Spain
| | - Ana R. Díaz-Marrero
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Tenerife, Spain
| | - Rósa Jónsdóttir
- Matis ohf., Icelandic Food and Biotech R&D, Vinlandsleid 12, 113 Reykjavík, Iceland
| | - Kolbrún Sveinsdóttir
- Matis ohf., Icelandic Food and Biotech R&D, Vinlandsleid 12, 113 Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland
| | - Teresa S. Catalá
- Global Society Institute, Wälderhaus, am Inselpark 19, 21109 Hamburg, Germany
- Organization for Science, Education and Global Society GmbH, am Inselpark 19, 21109 Hamburg, Germany
| | - Giovanna Romano
- Stazione Zoologica Anton Dohrn - Ecosustainable Marine Biotechnology Department, via Acton 55, 80133 Naples, Italy
| | - Bahar Aslanbay Guler
- Faculty of Engineering Department of Bioengineering, Ege University, Izmir 35100, Turkey
| | - Eylem Atak
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | | | - Daniel Bosch
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Irem Deniz
- Faculty of Engineering Department of Bioengineering, Manisa Celal Bayar University, Manisa 45119, Turkey
| | - Susana P. Gaudêncio
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, Blue Biotechnology and Biomedicine Lab, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | | | - Katja Klun
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Luen Zidar
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Anna Coll Rius
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71 000 Sarajevo, Bosnia and Herzegovina
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, Haifa 3102201, Israel
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| |
Collapse
|
2
|
Rhee S, Xia C, Chandra A, Hamon M, Lee G, Yang C, Guo Z, Sun B. Full-Thickness Perfused Skin-on-a-Chip with In Vivo-Like Drug Response for Drug and Cosmetics Testing. Bioengineering (Basel) 2024; 11:1055. [PMID: 39593715 PMCID: PMC11591533 DOI: 10.3390/bioengineering11111055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
In this study, we present a novel 3D perfused skin-on-a-chip model fabricated using micro-precision 3D printing, which offers a streamlined and reproducible approach for incorporating perfusion. Perfused skin models are well-regarded for their advantages, such as improved nutrient supply, enhanced barrier function, and prolonged tissue viability. However, current models often require complex setups, such as self-assembled endothelial cells or sacrificial rods, which are prone to variability and time-consuming. Our model uses projection micro-stereolithography 3D printing to create precise microcapillary-like channels using a biocompatible resin, overcoming the drug-absorbing properties of PDMS. A customized chip holder allows for the simultaneous culture of six perfused chips, enabling high-throughput testing. The engineered skin-on-a-chip features distinct dermis and epidermis layers, confirmed via H&E staining and immunostaining. To evaluate drug screening capabilities, inflammation was induced using TNF-α and treated with dexamethasone, with cytokine levels compared to 2D cultures and human skin biopsies. Our 3D model exhibited drug response trends similar to human skin, while showing reduced cytotoxicity over time compared to biopsies. This perfused skin-on-a-chip provides a reliable, physiologically relevant alternative for drug and cosmetics screening, simplifying perfusion setup while preserving key benefits.
Collapse
Affiliation(s)
- Stephen Rhee
- BMF Biotechnology, Inc., San Diego, CA 92121, USA
| | - Chunguang Xia
- BMF Biotechnology, Inc., San Diego, CA 92121, USA
- BMF Nano Material Technology Co., Ltd., Shenzhen 518100, China; (C.Y.)
| | | | - Morgan Hamon
- BMF Biotechnology, Inc., San Diego, CA 92121, USA
| | - Geonhui Lee
- BMF Biotechnology, Inc., San Diego, CA 92121, USA
| | - Chen Yang
- BMF Nano Material Technology Co., Ltd., Shenzhen 518100, China; (C.Y.)
| | - Zaixun Guo
- BMF Nano Material Technology Co., Ltd., Shenzhen 518100, China; (C.Y.)
| | - Bingjie Sun
- BMF Biotechnology, Inc., San Diego, CA 92121, USA
| |
Collapse
|
3
|
Lukić M, Ćirić A, Božić DD, Stanković JA, Medarević Đ, Maksimović Z. Extracts from Wheat, Maize, and Sunflower Waste as Natural Raw Materials for Cosmetics: Value-Added Products Reaching Sustainability Goals. Pharmaceutics 2024; 16:1182. [PMID: 39339218 PMCID: PMC11435005 DOI: 10.3390/pharmaceutics16091182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Agricultural waste is underutilized, and sometimes burning them has a negative impact on the environment and human health. This research investigates the untapped potential of extracts from maize, wheat and sunflower waste as natural materials for cutaneous, specifically, cosmetic application. The possibility of incorporating lipid and ethanol extracts from wheat, maize, and sunflower into creams was investigated together with their potential contribution to the structural and functional properties of the topical formulations. Results of the physicochemical characterization show that investigated extracts can be successfully incorporated into creams with satisfactory stability. All extracts showed a desirable safety profile and good antimicrobial activity against various microorganisms. Lipid extracts have proven to be promising structural ingredients of the oil phase, contributing to the spreadability, occlusivity, and emollient effect. Ethanol extracts influenced washability and stickiness of the formulation and could be considered as prospective ingredients in self-preserving formulations. The extracts affected the sensory properties of the creams, mainly the smell and color. These results suggest that the extracts from wheat, maize, and sunflower waste could be used as multifunctional natural ingredients for cosmetic formulations which can replace less sustainable raw materials. This also represents a valorization of waste and is in line with broader sustainability goals.
Collapse
Affiliation(s)
- Milica Lukić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Ana Ćirić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Dragana D Božić
- Department of Immunology and Microbiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Jelena Antić Stanković
- Department of Immunology and Microbiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Đorđe Medarević
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Zoran Maksimović
- Department of Pharmacognosy, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| |
Collapse
|
4
|
Liao Z, Laurent N, Hirt-Burri N, Scaletta C, Abdel-Sayed P, Raffoul W, Luo S, Krysan DJ, Laurent A, Applegate LA. Sustainable Primary Cell Banking for Topical Compound Cytotoxicity Assays: Protocol Validation on Novel Biocides and Antifungals for Optimized Burn Wound Care. EUROPEAN BURN JOURNAL 2024; 5:249-270. [PMID: 39599948 PMCID: PMC11544888 DOI: 10.3390/ebj5030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/04/2024] [Accepted: 08/01/2024] [Indexed: 11/29/2024]
Abstract
Thorough biological safety testing of topical therapeutic compounds and antimicrobials is a critical prerequisite for appropriate cutaneous wound care. Increasing pathogen resistance rates to traditional antibiotics and antifungals are driving the development and registration of novel chemical entities. Although they are notably useful for animal testing reduction, the gold standard in vitro cytotoxicity assays in continuous cell lines (HaCaT keratinocytes, 3T3 fibroblasts) may be discussed from a translational relevance standpoint. The aim of this study was thus to establish and validate a sustainable primary cell banking model with a view to performing optimized in vitro cytotoxicity assay development. Primary dermal fibroblasts and adipose-derived stem cell (ASC) types were established from four infant polydactyly sources. A multi-tiered primary cell banking model was then applied to prepare highly sustainable and standardized dermal fibroblast and ASC working cell banks (WCBs), potentially allowing for millions of biological assays to be performed. The obtained cellular materials were then validated for use in cytotoxicity assays through in vitro biosafety testing of topical antiseptics (chlorhexidine, hypochlorous acid) and an antifungal compound (AR-12) of interest for optimized burn wound care. The experimental results confirmed that IC50 values were comparable between cytotoxicity assays, which were performed with cell lines and with primary cells. The results also showed that hypochlorous acid (HOCl) displayed an enhanced toxicological profile as compared to the gold standard chlorhexidine (CLX). Generally, this study demonstrated that highly sustainable primary cell sources may be established and applied for consistent topical compound biological safety assessments with enhanced translational relevance. Overall, the study underscored the safety-oriented interest of functionally benchmarking the products that are applied on burn patient wounds for the global enhancement of burn care quality.
Collapse
Affiliation(s)
- Zhifeng Liao
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (Z.L.); (N.L.); (N.H.-B.); (C.S.); (P.A.-S.)
| | - Nicolas Laurent
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (Z.L.); (N.L.); (N.H.-B.); (C.S.); (P.A.-S.)
| | - Nathalie Hirt-Burri
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (Z.L.); (N.L.); (N.H.-B.); (C.S.); (P.A.-S.)
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Corinne Scaletta
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (Z.L.); (N.L.); (N.H.-B.); (C.S.); (P.A.-S.)
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Philippe Abdel-Sayed
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (Z.L.); (N.L.); (N.H.-B.); (C.S.); (P.A.-S.)
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- STI School of Engineering, Federal Polytechnical School of Lausanne, CH-1015 Lausanne, Switzerland
| | - Wassim Raffoul
- Plastic and Reconstructive Surgery, Ensemble Hospitalier de la Côte, CH-1110 Morges, Switzerland;
| | - Shengkang Luo
- Plastic and Reconstructive Surgery, Guangdong Second Provential General Hospital, Guangzhou 510317, China;
| | - Damian J. Krysan
- Stead Family Department of Pediatrics, Carver College of Medicine, Stead Family Children’s Hospital, University of Iowa, Iowa City, IA 52242, USA;
| | - Alexis Laurent
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (Z.L.); (N.L.); (N.H.-B.); (C.S.); (P.A.-S.)
- Manufacturing Department, TEC-PHARMA SA, CH-1038 Bercher, Switzerland
- Manufacturing Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
| | - Lee Ann Applegate
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (Z.L.); (N.L.); (N.H.-B.); (C.S.); (P.A.-S.)
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| |
Collapse
|
5
|
Sousa P, Tavares-Valente D, Pereira CF, Pinto-Ribeiro I, Azevedo-Silva J, Madureira R, Ramos ÓL, Pintado M, Fernandes J, Amorim M. Circular economyeast: Saccharomyces cerevisiae as a sustainable source of glucans and its safety for skincare application. Int J Biol Macromol 2024; 265:130933. [PMID: 38508554 DOI: 10.1016/j.ijbiomac.2024.130933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Glucans, a polysaccharide naturally present in the yeast cell wall that can be obtained from side streams generated during the fermentation process, have gained increasing attention for their potential as a skin ingredient. Therefore, this study focused on the extraction method to isolate and purify water-insoluble glucans from two different Saccharomyces cerevisiae strains: an engineered strain obtained from spent yeast in an industrial fermentation process and a wild strain produced through lab-scale fermentation. Two water-insoluble extracts with a high glucose content (> 90 %) were achieved and further subjected to a chemical modification using carboxymethylation to improve their water solubility. All the glucans' extracts, water-insoluble and carboxymethylated, were structurally and chemically characterized, showing almost no differences between both yeast-type strains. To ensure their safety for skin application, a broad safety assessment was undertaken, and no cytotoxic effect, immunomodulatory capacity (IL-6 and IL-8 regulation), genotoxicity, skin sensitization, and impact on the skin microbiota were observed. These findings highlight the potential of glucans derived from spent yeast as a sustainable and safe ingredient for cosmetic and skincare formulations, contributing to the sustainability and circular economy.
Collapse
Affiliation(s)
- Pedro Sousa
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Diana Tavares-Valente
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Carla F Pereira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Inês Pinto-Ribeiro
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - João Azevedo-Silva
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Raquel Madureira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Óscar L Ramos
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - João Fernandes
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Amorim
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
6
|
Gao C, Lu C, Liu H, Zhang Y, Qiao H, Jin A, Dai Q, Liu Y. Biofabrication of biomimetic undulating microtopography at the dermal-epidermal junction and its effects on the growth and differentiation of epidermal cells. Biofabrication 2024; 16:025018. [PMID: 38306682 DOI: 10.1088/1758-5090/ad2536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
The undulating microtopography located at the junction of the dermis and epidermis of the native skin is called rete ridges (RRs), which plays an important role in enhancing keratinocyte function, improving skin structure and stability, and providing three-dimensional (3D) microenvironment for skin cells. Despite some progress in recent years, most currently designed and manufactured tissue-engineered skin models still cannot replicate the RRs, resulting in a lack of biological signals in the manufactured skin models. In this study, a composite manufacturing method including electrospinning, 3D printing, and functional coating was developed to produce the epidermal models with RRs. Polycaprolactone (PCL) nanofibers were firstly electrospun to mimic the extracellular matrix environment and be responsible for cell attachment. PCL microfibers were then printed onto top of the PCL nanofibers layer by 3D printing to quickly prepare undulating microtopography and finally the entire structures were dip-coated with gelatin hydrogel to form a functional coating layer. The morphology, chemical composition, and structural properties of the fabricated models were studied. The results proved that the multi-process composite fabricated models were suitable for skin tissue engineering. Live and dead staining, cell counting kit-8 (CCK-8) as well as histology (haematoxylin and eosin (HE) methodology) and immunofluorescence (primary and secondary antibodies combination assay) were used to investigate the viability, metabolic activity, and differentiation of skin cells forin vitroculturing.In vitroresults showed that each model had high cell viability, good proliferation, and the expression of differentiation marker. It was worth noting that the sizes of the RRs affected the cell growth status of the epidermal models. In addition, the unique undulation characteristics of the epidermal-dermal junction can be reproduced in the developed epidermal models. Overall, thesein vitrohuman epidermal models can provide valuable reference for skin transplantation, screening and safety evaluation of drugs and cosmetics.
Collapse
Affiliation(s)
- Chuang Gao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
| | - Chunxiang Lu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
| | - Huazhen Liu
- School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
| | - Yi Zhang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
| | - Hao Qiao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
| | - Aoxiang Jin
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
| | - Qiqi Dai
- School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
| | - Yuanyuan Liu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
7
|
Fisher HA, Evans MV, Bunge AL, Hubal EAC, Vallero DA. A compartment model to predict in vitro finite dose absorption of chemicals by human skin. CHEMOSPHERE 2024; 349:140689. [PMID: 37963497 PMCID: PMC10842870 DOI: 10.1016/j.chemosphere.2023.140689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023]
Abstract
Dermal uptake is an important and complex exposure route for a wide range of chemicals. Dermal exposure can occur due to occupational settings, pharmaceutical applications, environmental contamination, or consumer product use. The large range of both chemicals and scenarios of interest makes it difficult to perform generalizable experiments, creating a need for a generic model to simulate various scenarios. In this study, a model consisting of a series of four well-mixed compartments, representing the source solution (vehicle), stratum corneum, viable tissue, and receptor fluid, was developed for predicting dermal absorption. The model considers experimental conditions including small applied doses as well as evaporation of the vehicle and chemical. To evaluate the model assumptions, we compare model predictions for a set of 26 chemicals to finite dose in-vitro experiments from a single laboratory using steady-state permeability coefficient and equilibrium partition coefficient data derived from in-vitro experiments of infinite dose exposures to these same chemicals from a different laboratory. We find that the model accurately predicts, to within an order of magnitude, total absorption after 24 h for 19 of these chemicals. In combination with key information on experimental conditions, the model is generalizable and can advance efficient assessment of dermal exposure for chemical risk assessment.
Collapse
Affiliation(s)
- H A Fisher
- Oak Ridge Associated Universities, Assigned to U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA
| | - M V Evans
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA
| | - A L Bunge
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | - E A Cohen Hubal
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA
| | - D A Vallero
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA.
| |
Collapse
|
8
|
Benhadda F, Zykwinska A, Colliec-Jouault S, Sinquin C, Thollas B, Courtois A, Fuzzati N, Toribio A, Delbarre-Ladrat C. Marine versus Non-Marine Bacterial Exopolysaccharides and Their Skincare Applications. Mar Drugs 2023; 21:582. [PMID: 37999406 PMCID: PMC10672628 DOI: 10.3390/md21110582] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023] Open
Abstract
Bacteria are well-known to synthesize high molecular weight polysaccharides excreted in extracellular domain, which constitute their protective microenvironment. Several bacterial exopolysaccharides (EPS) are commercially available for skincare applications in cosmetic products due to their unique structural features, conferring valuable biological and/or textural properties. This review aims to give an overview of bacterial EPS, an important group of macromolecules used in cosmetics as actives and functional ingredients. For this purpose, the main chemical characteristics of EPS are firstly described, followed by the basics of the development of cosmetic ingredients. Then, a focus on EPS production, including upstream and downstream processes, is provided. The diversity of EPS used in the cosmetic industry, and more specifically of marine-derived EPS is highlighted. Marine bacteria isolated from extreme environments are known to produce EPS. However, their production processes are highly challenging due to high or low temperatures; yield must be improved to reach economically viable ingredients. The biological properties of marine-derived EPS are then reviewed, resulting in the highlight of the challenges in this field.
Collapse
Affiliation(s)
- Fanny Benhadda
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
- CHANEL Fragrance and Beauty, F-93500 Pantin, France; (N.F.); (A.T.)
| | - Agata Zykwinska
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| | - Sylvia Colliec-Jouault
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| | - Corinne Sinquin
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| | | | | | - Nicola Fuzzati
- CHANEL Fragrance and Beauty, F-93500 Pantin, France; (N.F.); (A.T.)
| | - Alix Toribio
- CHANEL Fragrance and Beauty, F-93500 Pantin, France; (N.F.); (A.T.)
| | - Christine Delbarre-Ladrat
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| |
Collapse
|
9
|
Mohamadali M, Ghiaseddin A, Irani S, Amirkhani MA, Dahmardehei M. Design and evaluation of a skin-on-a-chip pumpless microfluidic device. Sci Rep 2023; 13:8861. [PMID: 37258538 DOI: 10.1038/s41598-023-34796-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023] Open
Abstract
The development of microfluidic culture technology facilitates the progress of study of cell and tissue biology. This technology expands the understanding of pathological and physiological changes. A skin chip, as in vitro model, consisting of normal skin tissue with epidermis and dermis layer (full thickness) was developed. Polydimethylsiloxane microchannels with a fed-batched controlled perfusion feeding system were used to create a full-thick ex-vivo human skin on-chip model. The design of a novel skin-on-a-chip model was reported, in which the microchannel structures mimic the architecture of the realistic vascular network as nutrients transporter to the skin layers. Viabilities of full-thick skin samples cultured on the microbioreactor and traditional tissue culture plate revealed that a precise controlled condition provided by the microfluidic enhanced tissue viability at least for seven days. Several advantages in skin sample features under micro-scale-controlled conditions were found such as skin mechanical strength, water adsorption, skin morphology, gene expression, and biopsy longevity. This model can provide an in vitro environment for localizing drug delivery and transdermal drug diffusion studies. The skin on the chip can be a valuable in vitro model for representing the interaction between drugs and skin tissue and a realistic platform for evaluating skin reaction to pharmaceutical materials and cosmetic products.
Collapse
Affiliation(s)
- Marjan Mohamadali
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Ghiaseddin
- Department of Chemistry, Michigan State University, East Lansing, MI, USA.
- Institute for Stem Cell Research and Regenerative Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Mostafa Dahmardehei
- Department of Plastic and Reconstructive Surgery, Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Kim R. Advanced Organotypic In Vitro Model Systems for Host-Microbial Coculture. BIOCHIP JOURNAL 2023; 17:1-27. [PMID: 37363268 PMCID: PMC10201494 DOI: 10.1007/s13206-023-00103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 06/28/2023]
Abstract
In vitro model systems have been advanced to recapitulate important physiological features of the target organ in vivo more closely than the conventional cell line cultures on a petri dish. The advanced organotypic model systems can be used as a complementary or alternative tool for various testing and screening. Numerous data from germ-free animal studies and genome sequencings of clinical samples indicate that human microbiota is an essential part of the human body, but current in vitro model systems rarely include them, which can be one of the reasons for the discrepancy in the tissue phenotypes and outcome of therapeutic intervention between in vivo and in vitro tissues. A coculture model system with appropriate microbes and host cells may have great potential to bridge the gap between the in vitro model and the in vivo counterpart. However, successfully integrating two species in one system introduces new variables to consider and poses new challenges to overcome. This review aims to provide perspectives on the important factors that should be considered for developing organotypic bacterial coculture models. Recent advances in various organotypic bacterial coculture models are highlighted. Finally, challenges and opportunities in developing organotypic microbial coculture models are also discussed.
Collapse
Affiliation(s)
- Raehyun Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| |
Collapse
|
11
|
EU’s next generation risk assessment: hurdles and opportunities for new approach methodologies. J Verbrauch Lebensm 2022. [DOI: 10.1007/s00003-022-01403-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
AbstractThe EU’s decision to ban animal testing for toxicity testing, has positively influenced the pace of developing New Approach Methodologies (NAMs). This development also supports replacing animal methods in other forms of risk assessment (RA), such as for oral-toxicity testing. This study aims to identify the hurdles and opportunities for validation and implementation of NAMs in the current EU’s chemical RA. Through conducting semi-structured interviews with 14 stakeholders, experiences and perspectives about the validation and implementation of NAMs in RA for orally ingested chemicals were analyzed. Stakeholders considered the use of NAMs for RA processes both a cultural and generational issue. Both were perceived as hurdles for reaching the next generation RA approach. The differing views on NAMs originated from experience and stakeholder positions, but communication and collaboration on developing future RA approaches could support overcoming this skepticism. Irrespectively of their background, all interviewees were generally optimistic that NAMs will support the development of more accurate and sustainable RA. This research highlights the need for the EU to adjust legislation and guidance documents to shift in testing requirements from the traditional overexposure approach to more predictive, mechanistic testing in RA, which will take time. This study, however, shows that—when all stakeholders engage in communication and confidence building—NAMs can already play an important role in reducing and refining animal testing.
Collapse
|
12
|
Vahav I, Thon M, van den Broek LJ, Spiekstra SW, Atac B, Lindner G, Schimek K, Marx U, Gibbs S. Proof-of-Concept Organ-on-Chip Study: Topical Cinnamaldehyde Exposure of Reconstructed Human Skin with Integrated Neopapillae Cultured under Dynamic Flow. Pharmaceutics 2022; 14:pharmaceutics14081529. [PMID: 35893784 PMCID: PMC9330995 DOI: 10.3390/pharmaceutics14081529] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Pharmaceutical and personal care industries require human representative models for testing to ensure the safety of their products. A major route of penetration into our body after substance exposure is via the skin. Our aim was to generate robust culture conditions for a next generation human skin-on-chip model containing neopapillae and to establish proof-of-concept testing with the sensitizer, cinnamaldehyde. Reconstructed human skin consisting of a stratified and differentiated epidermis on a fibroblast populated hydrogel containing neopapillae spheroids (RhS-NP), were cultured air-exposed and under dynamic flow for 10 days. The robustness of three independent experiments, each with up to 21 intra-experiment replicates, was investigated. The epidermis was seen to invaginate into the hydrogel towards the neopapille spheroids. Daily measurements of lactate dehydrogenase (LDH) and glucose levels within the culture medium demonstrated high viability and stable metabolic activity throughout the culture period in all three independent experiments and in the replicates within an experiment. Topical cinnamaldehyde exposure to RhS-NP resulted in dose-dependent cytotoxicity (increased LDH release) and elevated cytokine secretion of contact sensitizer specific IL-18, pro-inflammatory IL-1β, inflammatory IL-23 and IFN-γ, as well as anti-inflammatory IL-10 and IL-12p70. This study demonstrates the robustness and feasibility of complex next generation skin models for investigating skin immunotoxicity.
Collapse
Affiliation(s)
- Irit Vahav
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- TissUse GmbH, Oudenarder Str. 16, 13347 Berlin, Germany
- Amsterdam Movement Sciences, Tissue Function & Regeneration, 1081 HV Amsterdam, The Netherlands
| | - Maria Thon
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, 1081 HV Amsterdam, The Netherlands
| | - Lenie J. van den Broek
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Sander W. Spiekstra
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, 1081 HV Amsterdam, The Netherlands
| | - Beren Atac
- TissUse GmbH, Oudenarder Str. 16, 13347 Berlin, Germany
- Department of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Gerd Lindner
- TissUse GmbH, Oudenarder Str. 16, 13347 Berlin, Germany
- Provio GmbH, Oranienburger Chaussee 2, 16548 Glienicke/Nordbahn, Germany
| | | | - Uwe Marx
- TissUse GmbH, Oudenarder Str. 16, 13347 Berlin, Germany
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, 1081 HV Amsterdam, The Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
13
|
Gao C, Lu C, Qiao H, Zhang Y, Liu H, Jian Z, Guo Z, Liu Y. Strategies for vascularized skin models in vitro. Biomater Sci 2022; 10:4724-4739. [PMID: 35861381 DOI: 10.1039/d2bm00784c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
As the largest organ of the human body, the skin has a complex multi-layered structure. The composition of the skin includes cells, extracellular matrix (ECM), vascular networks, and other appendages. Because of the shortage of donor sites, skin substitutes are of great significance in the field of skin tissue repair. Moreover, skin models for disease research, drug screening, and cosmetic testing fall far short of the demand. Skin tissue engineering has made remarkable progress in developing skin models over the years. However, there are still several problems to be resolved. One of the crucial aspects is the lack of vascular systems for nutrient transport and waste disposal. Here, we will focus on the discussion and analysis of advanced manufacturing strategies for prevascularized skin, such as a scaffold-based method, cell coating technology, cell sheet engineering, skin-on-a-chip, and three-dimensional (3D) bioprinting. These key challenges, which restrict the prevascularized skin and provide perspectives on future directions will also be highlighted.
Collapse
Affiliation(s)
- Chuang Gao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Chunxiang Lu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Hao Qiao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Yi Zhang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Huazhen Liu
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Zhian Jian
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Zilong Guo
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Yuanyuan Liu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China. .,Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| |
Collapse
|
14
|
Flaire E, Nachat-Kappes R, Laporte C, Harmand MF, Simon M, Poinsot C. Alternative in vitro models used in the main safety tests of cosmetic products and new challenges. Int J Cosmet Sci 2022; 44:604-613. [PMID: 35842748 DOI: 10.1111/ics.12803] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/15/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Guided by ethical considerations and regulatory requirements such as the 7th Amendment to the European Cosmetics Directive N° 1223/2009, the cosmetic industry has developed and evaluated alternative test strategies such as in vitro assays, in silico approaches for toxicological endpoints and efficacy of cosmetic products and cosmetics ingredients. In consequence, the European Centre for the Validation of Alternative Methods (ECVAM) has proposed a list of validated cell-based in vitro models for predicting the safety and toxicity of cosmetic ingredients. These models have been demonstrated as valuable and effective tools to overcome the limitations of animal in vivo studies. For example, 3D human skin equivalent models are used to evaluate skin irritation potential; and excised human skin is used as the gold standard for the evaluation of dermal absorption. OBJECTIVE This review presents, in relation to the regulatory requirements, the main alternative in vitro models used in the safety tests of cosmetic products, focusing on skin sensitization, skin corrosion, skin irritation and skin absorption, with advantages and limitations of each model. Recent innovative 3D cell technologies such as Organ-on-a-Chip (OoC) models that can bring significant improvements for toxicology and efficacy testing are also presented. CONCLUSION The development of OoC technology is promising for assessing the toxicity of substances contained in cosmetics, particularly for repeated dose toxicity, for which no alternative in vitro methods are currently available. Nevertheless, aside from the challenges, the technology needs to be validated and accepted by regulatory organizations as an effective method. Collaboration between researchers, regulatory organizations and industry would be required to achieve this validation.
Collapse
Affiliation(s)
- Edith Flaire
- Groupe ICARE. Biopôle, Saint Beauzire.,UMR 1019 INRAE-University Clermont-Auvergne, UNH (Human Nutrition Unity), ECREIN Team, Clermont-Ferrand, France
| | | | | | | | | | | |
Collapse
|
15
|
Akh LA, Ishak MO, Harris JF, Glaros TG, Sasiene ZJ, Mach PM, Lilley LM, McBride EM. -Omics potential of in vitro skin models for radiation exposure. Cell Mol Life Sci 2022; 79:390. [PMID: 35776214 PMCID: PMC11073334 DOI: 10.1007/s00018-022-04394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/12/2022] [Accepted: 05/24/2022] [Indexed: 11/12/2022]
Abstract
There is a growing need to uncover biomarkers of ionizing radiation exposure that leads to a better understanding of how exposures take place, including dose type, rate, and time since exposure. As one of the first organs to be exposed to external sources of ionizing radiation, skin is uniquely positioned in terms of model systems for radiation exposure study. The simultaneous evolution of both MS-based -omics studies, as well as in vitro 3D skin models, has created the ability to develop a far more holistic understanding of how ionizing radiation affects the many interconnected biomolecular processes that occur in human skin. However, there are a limited number of studies describing the biomolecular consequences of low-dose ionizing radiation to the skin. This review will seek to explore the current state-of-the-art technology in terms of in vitro 3D skin models, as well as track the trajectory of MS-based -omics techniques and their application to ionizing radiation research, specifically, the search for biomarkers within the low-dose range.
Collapse
Affiliation(s)
- Leyla A Akh
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Mohammad O Ishak
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Jennifer F Harris
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Trevor G Glaros
- Bioenergy and Biome Sciences Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Zachary J Sasiene
- Bioenergy and Biome Sciences Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Phillip M Mach
- Bioenergy and Biome Sciences Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Laura M Lilley
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Ethan M McBride
- Bioenergy and Biome Sciences Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
16
|
Liu J, Zhou Z, Zhang M, Song F, Feng C, Liu H. Simple and robust 3D bioprinting of full-thickness human skin tissue. Bioengineered 2022; 13:10087-10097. [PMID: 35412953 PMCID: PMC9161989 DOI: 10.1080/21655979.2022.2063651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Artificial skins have been used as skin substitutes for wound healing in the clinic, and as in vitro models for safety assessment in cosmetic and pharmaceutical industries. The three-dimensional (3D) bioprinting technique provides a promising strategy in the fabrication of artificial skins. Despite the technological advances, many challenges remain to be conquered, such as the complicated preparation conditions for bio-printed skin and the unavailability of stability and robustness of skin bioprinting. Here, we formulated a novel bio-ink composed of gelatin, sodium alginate and fibrinogen. By optimizing the ratio of components in the bio-ink, the design of the 3D model and the printing conditions, a fibroblasts-containing dermal layer construct was firstly fabricated, on the top of which laminin and keratinocytes were sequentially placed. Through air-liquid interface (ALI) culture by virtue of sterile wire mesh, a full-thickness skin tissue was thus prepared. HE and immunofluorescence staining showed that the bio-printed skin was not only morphologically representative of the human skin, but also expressed the specific markers related to epidermal differentiation and stratum corneum formation. The presented easy and robust preparation of full-thickness skin constructs provides a powerful tool for the establishment of artificial skins, holding critical academic significance and application value.
Collapse
Affiliation(s)
- Jing Liu
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Zhengtong Zhou
- Department of Vascular Surgery, Xuanwu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Min Zhang
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Feng Song
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China
| | - Chong Feng
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Haochen Liu
- Department of Cardiovascular Surgery, Xi'an Children's Hospital, Xi'an, China
| |
Collapse
|
17
|
Lee BM, Lee SH, Yamada T, Park S, Wang Y, Kim KB, Kwon S. Read-across approaches: current applications and regulatory acceptance in Korea, Japan, and China. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:184-197. [PMID: 34670481 DOI: 10.1080/15287394.2021.1992323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The aim of this paper was to investigate the current status of read-across approaches in the Republic of Korea, Japan, and China in terms of applications and regulatory acceptance. In the Republic of Korea, over the last 6 years, approximately 8% of safety data records used for chemical registrations were based upon read-across, and a guideline published on the use of read-across results in 2017. In Japan, read-across is generally accepted for screening hazard classification of toxicological endpoints according to the Chemical Substances Control Law (CSCL). In China, read-across data, along with data from other animal alternatives are accepted as a data source for chemical registrations, but could be only considered when testing is not technically feasible. At present, read-across is not widely used for chemical registrations and regulatory acceptance of read-across may differ among countries in Asia. With consideration of the advantages and limitations of read-across, it is expected that read-across may soon gradually be employed in Asian countries. Thus, regulatory agencies need to prepare for this progression.
Collapse
Affiliation(s)
- Byung-Mu Lee
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Gyeonggi-Do, Korea
| | - Sang Hee Lee
- Chemicals Registration & Evaluation Team, Risk Assessment Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, Korea
| | - Takashi Yamada
- Division of Risk Assessment, Center for Biological Safety Research, National Institute of Health Sciences, Kawasaki, Japan
| | | | - Ying Wang
- Procter & Gamble (P&G) Technology (Beijing) Co., Ltd, Beijing, PR China
| | - Kyu-Bong Kim
- College of Pharmacy, Dankook University, Chungnam, Korea
| | - Seok Kwon
- Global Product Stewardship, Research & Development, Singapore Innovation Center, Procter & Gamble (P&G) International Operations, Singapore, Singapore
| |
Collapse
|
18
|
Dermal Delivery of Lipid Nanoparticles: Effects on Skin and Assessment of Absorption and Safety. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:83-114. [DOI: 10.1007/978-3-030-88071-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Dellaquila A, Le Bao C, Letourneur D, Simon‐Yarza T. In Vitro Strategies to Vascularize 3D Physiologically Relevant Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100798. [PMID: 34351702 PMCID: PMC8498873 DOI: 10.1002/advs.202100798] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/23/2021] [Indexed: 05/04/2023]
Abstract
Vascularization of 3D models represents a major challenge of tissue engineering and a key prerequisite for their clinical and industrial application. The use of prevascularized models built from dedicated materials could solve some of the actual limitations, such as suboptimal integration of the bioconstructs within the host tissue, and would provide more in vivo-like perfusable tissue and organ-specific platforms. In the last decade, the fabrication of vascularized physiologically relevant 3D constructs has been attempted by numerous tissue engineering strategies, which are classified here in microfluidic technology, 3D coculture models, namely, spheroids and organoids, and biofabrication. In this review, the recent advancements in prevascularization techniques and the increasing use of natural and synthetic materials to build physiological organ-specific models are discussed. Current drawbacks of each technology, future perspectives, and translation of vascularized tissue constructs toward clinics, pharmaceutical field, and industry are also presented. By combining complementary strategies, these models are envisioned to be successfully used for regenerative medicine and drug development in a near future.
Collapse
Affiliation(s)
- Alessandra Dellaquila
- Université de ParisINSERM U1148X Bichat HospitalParisF‐75018France
- Elvesys Microfluidics Innovation CenterParis75011France
- Biomolecular PhotonicsDepartment of PhysicsUniversity of BielefeldBielefeld33615Germany
| | - Chau Le Bao
- Université de ParisINSERM U1148X Bichat HospitalParisF‐75018France
- Université Sorbonne Paris NordGalilée InstituteVilletaneuseF‐93430France
| | | | | |
Collapse
|
20
|
Extraordinary composition of Actinidia arguta by-products as skin ingredients: A new challenge for cosmetic and medical skincare industries. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Grenier A, Legault J, Pichette A, Jean L, Bélanger A, Pouliot R. Antioxidant, Anti-Inflammatory, and Anti-Aging Potential of a Kalmia angustifolia Extract and Identification of Some Major Compounds. Antioxidants (Basel) 2021; 10:1373. [PMID: 34573004 PMCID: PMC8469236 DOI: 10.3390/antiox10091373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
Skin aging is the most visible element of the aging process, giving rise to a major concern for many people. Plants from the Ericaceae family generally have antioxidant and anti-inflammatory properties, making them potential anti-aging active ingredients. This study aimed to evaluate the safety and anti-aging efficacy of a Kalmia angustifolia extract using reconstructed skin substitutes. The safety evaluation was performed using a 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay, while the efficacy was determined by assessing antioxidant and anti-inflammatory activity and analyzing skin substitutes reconstructed according to the self-assembly method by histology and immunofluorescence staining (elastin, collagen-1, collagen-3, aquaporin-3). The cell viability assay established the safety of the extract at a concentration up to 200 μg/mL. The Oxygen Radical Absorbance Capacity (ORAC) assay and a cell-based assay using 2',7'-dichlorofluorescein-diacetate (DCFH-DA) revealed a strong antioxidant activity with an ORAC value of 16 µmol Trolox Equivalent/mg and a half-maximal inhibitory concentration (IC50) of 0.37 ± 0.02 μg/mL, while an interesting anti-inflammatory activity was found in the inhibition of NO production, with an inhibition percentage of NO production of 49 ± 2% at 80 µg/mL. The isolation and characterization of the extract allowed the identification of compounds that could be responsible for these biological activities, with two of them being identified for the first time in K. angustifolia: avicularin and epicatechin-(2β-O-7, 4β-6)-ent-epicatechin. Histological analyses of skin substitutes treated with the extract showed an increase in dermal thickness compared with the controls. K. angustifolia extract enhanced the expression of elastin and collagen-1, which are usually decreased with skin aging. These results suggest that K. angustifolia has promising antioxidant efficacy and anti-aging potential.
Collapse
Affiliation(s)
- Alexe Grenier
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec Université Laval, Québec, QC GIJ 1Z4, Canada;
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Jean Legault
- Centre de Recherche sur la Boréalie (CREB), Laboratoire d’Analyse et de Séparation des Essences Végétales (LASEVE), Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada; (J.L.); (A.P.); (L.J.); (A.B.)
| | - André Pichette
- Centre de Recherche sur la Boréalie (CREB), Laboratoire d’Analyse et de Séparation des Essences Végétales (LASEVE), Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada; (J.L.); (A.P.); (L.J.); (A.B.)
| | - Lorry Jean
- Centre de Recherche sur la Boréalie (CREB), Laboratoire d’Analyse et de Séparation des Essences Végétales (LASEVE), Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada; (J.L.); (A.P.); (L.J.); (A.B.)
| | - Audrey Bélanger
- Centre de Recherche sur la Boréalie (CREB), Laboratoire d’Analyse et de Séparation des Essences Végétales (LASEVE), Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada; (J.L.); (A.P.); (L.J.); (A.B.)
| | - Roxane Pouliot
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec Université Laval, Québec, QC GIJ 1Z4, Canada;
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
22
|
Risueño I, Valencia L, Jorcano JL, Velasco D. Skin-on-a-chip models: General overview and future perspectives. APL Bioeng 2021; 5:030901. [PMID: 34258497 PMCID: PMC8270645 DOI: 10.1063/5.0046376] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/10/2021] [Indexed: 01/13/2023] Open
Abstract
Over the last few years, several advances have been made toward the development and production of in vitro human skin models for the analysis and testing of cosmetic and pharmaceutical products. However, these skin models are cultured under static conditions that make them unable to accurately represent normal human physiology. Recent interest has focused on the generation of in vitro 3D vascularized skin models with dynamic perfusion and microfluidic devices known as skin-on-a-chip. These platforms have been widely described in the literature as good candidates for tissue modeling, as they enable a more physiological transport of nutrients and permit a high-throughput and less expensive evaluation of drug candidates in terms of toxicity, efficacy, and delivery. In this Perspective, recent advances in these novel platforms for the generation of human skin models under dynamic conditions for in vitro testing are reported. Advances in vascularized human skin equivalents (HSEs), transferred skin-on-a-chip (introduction of a skin biopsy or a HSE in the chip), and in situ skin-on-a-chip (generation of the skin model directly in the chip) are critically reviewed, and currently used methods for the introduction of skin cells in the microfluidic chips are discussed. An outlook on current applications and future directions in this field of research are also presented.
Collapse
Affiliation(s)
- I Risueño
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28911 Leganés (Madrid), Spain
| | - L Valencia
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28911 Leganés (Madrid), Spain
| | - J L Jorcano
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28911 Leganés (Madrid), Spain
| | | |
Collapse
|
23
|
Thá EL, Canavez ADPM, Schuck DC, Gagosian VSC, Lorencini M, Leme DM. Beyond dermal exposure: The respiratory tract as a target organ in hazard assessments of cosmetic ingredients. Regul Toxicol Pharmacol 2021; 124:104976. [PMID: 34139277 DOI: 10.1016/j.yrtph.2021.104976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/30/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
Dermal contact is the main route of exposure for most cosmetics; however, inhalation exposure could be significant for some formulations (e.g., aerosols, powders). Current cosmetic regulations do not require specific tests addressing respiratory irritation and sensitisation, and despite the prohibition of animal testing for cosmetics, no alternative methods have been validated to assess these endpoints to date. Inhalation hazard is mainly determined based on existing human and animal evidence, read-across, and extrapolation of data from different target organs or tissues, such as the skin. However, because of mechanistic differences, effects on the skin cannot predict effects on the respiratory tract, which indicates a substantial need for the development of new approach methodologies addressing respiratory endpoints for inhalable chemicals in general. Cosmetics might present a particularly significant need for risk assessments of inhalation exposure to provide a more accurate toxicological evaluation and ensure consumer safety. This review describes the differences in the mechanisms of irritation and sensitisation between the skin and the respiratory tract, the progress that has already been made, and what still needs to be done to fill the gap in the inhalation risk assessment of cosmetic ingredients.
Collapse
Affiliation(s)
- Emanoela Lundgren Thá
- Graduate Program in Genetics, Department of Genetics - Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | | | | | | | - Márcio Lorencini
- Grupo Boticário, Product Safety Management- Q&PP, São José dos Pinhais, PR, Brazil
| | - Daniela Morais Leme
- Department of Genetics - Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| |
Collapse
|
24
|
Žnidarič M, Žurga ŽM, Maver U. Design of In Vitro Hair Follicles for Different Applications in the Treatment of Alopecia-A Review. Biomedicines 2021; 9:biomedicines9040435. [PMID: 33923738 PMCID: PMC8072628 DOI: 10.3390/biomedicines9040435] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
The hair research field has seen great improvement in recent decades, with in vitro hair follicle (HF) models being extensively developed. However, due to the cellular complexity and number of various molecular interactions that must be coordinated, a fully functional in vitro model of HFs remains elusive. The most common bioengineering approach to grow HFs in vitro is to manipulate their features on cellular and molecular levels, with dermal papilla cells being the main focus. In this study, we focus on providing a better understanding of HFs in general and how they behave in vitro. The first part of the review presents skin morphology with an emphasis on HFs and hair loss. The remainder of the paper evaluates cells, materials, and methods of in vitro growth of HFs. Lastly, in vitro models and assays for evaluating the effects of active compounds on alopecia and hair growth are presented, with the final emphasis on applications of in vitro HFs in hair transplantation. Since the growth of in vitro HFs is a complicated procedure, there is still a great number of unanswered questions aimed at understanding the long-term cycling of HFs without losing inductivity. Incorporating other regions of HFs that lead to the successful formation of different hair classes remains a difficult challenge.
Collapse
|
25
|
Fritsche E, Haarmann-Stemmann T, Kapr J, Galanjuk S, Hartmann J, Mertens PR, Kämpfer AAM, Schins RPF, Tigges J, Koch K. Stem Cells for Next Level Toxicity Testing in the 21st Century. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006252. [PMID: 33354870 DOI: 10.1002/smll.202006252] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/13/2020] [Indexed: 06/12/2023]
Abstract
The call for a paradigm change in toxicology from the United States National Research Council in 2007 initiates awareness for the invention and use of human-relevant alternative methods for toxicological hazard assessment. Simple 2D in vitro systems may serve as first screening tools, however, recent developments infer the need for more complex, multicellular organotypic models, which are superior in mimicking the complexity of human organs. In this review article most critical organs for toxicity assessment, i.e., skin, brain, thyroid system, lung, heart, liver, kidney, and intestine are discussed with regards to their functions in health and disease. Embracing the manifold modes-of-action how xenobiotic compounds can interfere with physiological organ functions and cause toxicity, the need for translation of such multifaceted organ features into the dish seems obvious. Currently used in vitro methods for toxicological applications and ongoing developments not yet arrived in toxicity testing are discussed, especially highlighting the potential of models based on embryonic stem cells and induced pluripotent stem cells of human origin. Finally, the application of innovative technologies like organs-on-a-chip and genome editing point toward a toxicological paradigm change moves into action.
Collapse
Affiliation(s)
- Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
- Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | | | - Julia Kapr
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Saskia Galanjuk
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Hartmann
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Peter R Mertens
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, Magdeburg, 39106, Germany
| | - Angela A M Kämpfer
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Katharina Koch
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| |
Collapse
|
26
|
Moldes AB, Rodríguez-López L, Rincón-Fontán M, López-Prieto A, Vecino X, Cruz JM. Synthetic and Bio-Derived Surfactants Versus Microbial Biosurfactants in the Cosmetic Industry: An Overview. Int J Mol Sci 2021; 22:ijms22052371. [PMID: 33673442 PMCID: PMC7956807 DOI: 10.3390/ijms22052371] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022] Open
Abstract
This article includes an updated review of the classification, uses and side effects of surfactants for their application in the cosmetic, personal care and pharmaceutical industries. Based on their origin and composition, surfactants can be divided into three different categories: (i) synthetic surfactants; (ii) bio-based surfactants; and (iii) microbial biosurfactants. The first group is the most widespread and cost-effective. It is composed of surfactants, which are synthetically produced, using non-renewable sources, with a final structure that is different from the natural components of living cells. The second category comprises surfactants of intermediate biocompatibility, usually produced by chemical synthesis but integrating fats, sugars or amino acids obtained from renewable sources into their structure. Finally, the third group of surfactants, designated as microbial biosurfactants, are considered the most biocompatible and eco-friendly, as they are produced by living cells, mostly bacteria and yeasts, without the intermediation of organic synthesis. Based on the information included in this review it would be interesting for cosmetic, personal care and pharmaceutical industries to consider microbial biosurfactants as a group apart from surfactants, needing specific regulations, as they are less toxic and more biocompatible than chemical surfactants having formulations that are more biocompatible and greener.
Collapse
Affiliation(s)
- Ana B. Moldes
- Chemical Engineering Department, School of Industrial Engineering—Cintecx, Campus As Lagoas-Marcosende, University of Vigo, 36310 Vigo, Spain; (L.R.-L.); (M.R.-F.); (A.L.-P.); (J.M.C.)
- Correspondence: (A.B.M.); (X.V.)
| | - Lorena Rodríguez-López
- Chemical Engineering Department, School of Industrial Engineering—Cintecx, Campus As Lagoas-Marcosende, University of Vigo, 36310 Vigo, Spain; (L.R.-L.); (M.R.-F.); (A.L.-P.); (J.M.C.)
| | - Myriam Rincón-Fontán
- Chemical Engineering Department, School of Industrial Engineering—Cintecx, Campus As Lagoas-Marcosende, University of Vigo, 36310 Vigo, Spain; (L.R.-L.); (M.R.-F.); (A.L.-P.); (J.M.C.)
| | - Alejandro López-Prieto
- Chemical Engineering Department, School of Industrial Engineering—Cintecx, Campus As Lagoas-Marcosende, University of Vigo, 36310 Vigo, Spain; (L.R.-L.); (M.R.-F.); (A.L.-P.); (J.M.C.)
| | - Xanel Vecino
- Chemical Engineering Department, School of Industrial Engineering—Cintecx, Campus As Lagoas-Marcosende, University of Vigo, 36310 Vigo, Spain; (L.R.-L.); (M.R.-F.); (A.L.-P.); (J.M.C.)
- Chemical Engineering Department, Barcelona East School of Engineering (EEBE)—Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, Polytechnic University of Catalonia (UPC), 08930 Barcelona, Spain
- Correspondence: (A.B.M.); (X.V.)
| | - José M. Cruz
- Chemical Engineering Department, School of Industrial Engineering—Cintecx, Campus As Lagoas-Marcosende, University of Vigo, 36310 Vigo, Spain; (L.R.-L.); (M.R.-F.); (A.L.-P.); (J.M.C.)
| |
Collapse
|
27
|
Canavez ADPM, de Oliveira Prado Corrêa G, Isaac VLB, Schuck DC, Lorencini M. Integrated approaches to testing and assessment as a tool for the hazard assessment and risk characterization of cosmetic preservatives. J Appl Toxicol 2021; 41:1687-1699. [PMID: 33624850 DOI: 10.1002/jat.4156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 01/21/2023]
Abstract
The safety assessment of cosmetic products is based on the safety of the ingredients, which requires information on chemical structures, toxicological profiles, and exposure data. Approximately 6% of the population is sensitized to cosmetic ingredients, especially preservatives and fragrances. In this context, the aim of this study was to perform a hazard assessment and risk characterization of benzalkonium chloride (BAC), benzyl alcohol (BA), caprylyl glycol (CG), ethylhexylglycerin (EG), chlorphenesin (CP), dehydroacetic acid (DHA), sodium dehydroacetate (SDH), iodopropynyl butylcarbamate (IPBC), methylchloroisothiazolinone and methylisothiazolinone (MCI/MIT), methylisothiazolinone (MIT), phenoxyethanol (PE), potassium sorbate (PS), and sodium benzoate (SB). Considering the integrated approaches to testing and assessment (IATA) and weight of evidence (WoE) as a decision tree, based on published safety reports. The hazard assessment was composed of a toxicological matrix correlating the toxicity level, defined as low (L), moderate (M), or high (H) and local or systemic exposure, considering the endpoints of skin sensitization, skin irritation, eye irritation, phototoxicity, acute oral toxicity, carcinogenicity, mutagenicity/genotoxicity, and endocrine activity. In a risk assessment approach, most preservatives had a margin of safety (MoS) above 100, except for DHA, SDH, and EG, considering the worst-case scenario (100% dermal absorption). However, isolated data do not set up a safety assessment. It is necessary to carry out a rational risk characterization considering hazard and exposure assessment to estimate the level of risk of an adverse health outcome, based on the concentration in a product, frequency of use, type of product, route of exposure, body surface location, and target population.
Collapse
Affiliation(s)
| | | | | | | | - Marcio Lorencini
- Department of Safety Assessment, Grupo Boticário, São José dos Pinhais, PR, Brazil
| |
Collapse
|
28
|
Li M, Yang T, Gao L, Xu H. An inadvertent issue of human retina exposure to endocrine disrupting chemicals: A safety assessment. CHEMOSPHERE 2021; 264:128484. [PMID: 33022499 DOI: 10.1016/j.chemosphere.2020.128484] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/07/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are a group of chemical compounds that present a considerable public health problem due to their pervasiveness and associations with chronic diseases. EDCs can interrupt the endocrine system and interfere with hormone homeostasis, leading to abnormalities in human physiology. Much attention has been focused on the adverse effects EDCs have on the reproductive system, neurogenesis, neuroendocrine system, and thyroid dysfunction. The eye is usually directly exposed to the surrounding environment; however, the influences of EDCs on the eye have received comparatively little attention. Ocular diseases, such as ocular surface diseases and retinal diseases, have been implicated in hormone deficiency or excess. Epidemiologic studies have shown that EDC exposure not only causes ocular surface disorders, such as dry eye, but also associates with visual deficits and retinopathy. EDCs can pass through the human blood-retinal barrier and enter the neural retina, and can then accumulate in the retina. The retina is an embryologic extension of the central nervous system, and is extremely sensitive and vulnerable to EDCs that could be passed across the placenta during critical periods of retinal development. Subtle alterations in the retinal development process usually result in profound immediate, long-term, and delayed effects late in life. This review, based on extensive literature survey, briefly summarizes the current knowledge about the impact of representative manufactured EDCs on retinal toxicity, including retinal structure alterations and dysfunction. We also highlight the potential mechanism of action of EDCs on the retina, and the predictive retinal models of EDC exposure.
Collapse
Affiliation(s)
- Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Tian Yang
- Department of Cold Environmental Medicine, College of High Altitude Military Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lixiong Gao
- Department of Ophthalmology, Third Medical Center of PLA General Hospital, Beijing, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China.
| |
Collapse
|
29
|
Weindl G. Immunocompetent Human Intestinal Models in Preclinical Drug Development. Handb Exp Pharmacol 2020; 265:219-233. [PMID: 33349897 DOI: 10.1007/164_2020_429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The intestinal epithelial barrier, together with the microbiome and local immune system, is a critical component that maintains intestinal homeostasis. Dysfunction may lead to chronic inflammation, as observed in inflammatory bowel diseases. Animal models have historically been used in preclinical research to identify and validate new drug targets in intestinal inflammatory diseases. Yet, limitations about their biological relevance to humans and advances in tissue engineering have forced the development of more complex three-dimensional reconstructed intestinal epithelium. By introducing immune and commensal microbial cells, these models more accurately mimic the gut's physiology and the pathophysiological changes occurring in vivo in the inflamed intestine. Specific advantages and limitations of two-dimensional (2D) and three-dimensional (3D) intestinal models such as coculture systems, organoids, and microfluidic devices to study inflammatory and immune-related responses are highlighted. While current cell culture models lack the cellular and molecular complexity observed in vivo, the emphasis is put on how these models can be used to improve preclinical drug development for inflammatory diseases of the intestine.
Collapse
Affiliation(s)
- Günther Weindl
- Pharmacology and Toxicology Section, Pharmaceutical Institute, University of Bonn, Bonn, Germany.
| |
Collapse
|
30
|
Sanches PL, Geaquinto LRDO, Cruz R, Schuck DC, Lorencini M, Granjeiro JM, Ribeiro ARL. Toxicity Evaluation of TiO 2 Nanoparticles on the 3D Skin Model: A Systematic Review. Front Bioeng Biotechnol 2020; 8:575. [PMID: 32587852 PMCID: PMC7298140 DOI: 10.3389/fbioe.2020.00575] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/12/2020] [Indexed: 01/14/2023] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are regularly used in sunscreens because of their photoprotective capacity. The advantage of using TiO2 on the nanometer scale is due to its transparency and better UV blocking efficiency. Due to the greater surface area/volume ratio, NPs become more (bio)-reactive giving rise to concerns about their potential toxicity. To evaluate the irritation and corrosion of cosmetics, 3D skin models have been used as an alternative method to animal experimentation. However, it is not known if this model is appropriate to study skin irritation, corrosion and phototoxicity of nanomaterials such as TiO2 NPs. This systematic review (SR) proposed the following question: Can the toxicity of TiO2 nanoparticles be evaluated in a 3D skin model? This SR was conducted according to the Preliminary Report on Systematic Review and Meta-Analysis (PRISMA). The protocol was registered in CAMARADES and the ToxRTool evaluation was performed in order to increase the quality and transparency of this search. In this SR, 7 articles were selected, and it was concluded that the 3D skin model has shown to be promising to evaluate the toxicity of TiO2 NPs. However, most studies have used biological assays that have already been described as interfering with these NPs, demonstrating that misinterpretations can be obtained. This review will focus in the possible efforts that should be done in order to avoid interference of NPs with biological assays applied in 3D in vitro culture.
Collapse
Affiliation(s)
- Priscila Laviola Sanches
- Postgraduate Program in Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil
- Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
| | - Luths Raquel de Oliveira Geaquinto
- Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Duque de Caxias, Brazil
| | - Rebecca Cruz
- Fluminense Federal University, Rio de Janeiro, Brazil
| | | | | | - José Mauro Granjeiro
- Postgraduate Program in Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil
- Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Duque de Caxias, Brazil
- Fluminense Federal University, Rio de Janeiro, Brazil
| | - Ana Rosa Lopes Ribeiro
- Postgraduate Program in Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Duque de Caxias, Brazil
| |
Collapse
|
31
|
Ma X, Wang H, Song Y, Pan Y. Skin irritation potential of cosmetic preservatives: An exposure-relevant study. J Cosmet Dermatol 2020; 20:195-203. [PMID: 32492262 DOI: 10.1111/jocd.13502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Preservatives represent one of the main causes of skin irritation and contact allergies. AIMS To comprehensively evaluate the skin irritation potential of phenoxyethanol, methylparaben, propylparaben, imidazolidinyl urea, and DMDM hydantoin under regulatory acceptable concentrations. METHODS A patch test and repeated open application test (ROAT) were applied to evaluate skin irritation in vivo. In vitro alternative methods consisting of the keratinocyte cytotoxicity assay, red blood cell (RBC) test, and hen's egg test-chorioallantoic membrane (HET-CAM) were performed to elucidate the mechanism of preservative-induced irritation responses. RESULTS The patch test showed that all test substances showed a weak erythema response. Propylparaben had the highest occlusive irritancy potential in the patch test, owing to damage to the cell membrane. The two formaldehyde releasers showed noticeable skin irritation potential in the ROAT through their cytotoxicity to keratinocytes, while a visible response was observed after applying phenoxyethanol and the two parabens. No filtration was noticed in the in vivo tests, which might be attributed to the failure of subcutaneous vessel alteration by the preservatives. CONCLUSIONS Commonly used cosmetic preservatives have minor skin irritation potential with mild erythema reaction under practical use, especially formaldehyde releasers and propylparaben.
Collapse
Affiliation(s)
- Xue Ma
- Department of Cosmetics, School of Science, Beijing Technology and Business University, Beijing, China.,Beijing Key Laboratory of Plant Research and Development, Beijing, China
| | - Huan Wang
- Department of Cosmetics, School of Science, Beijing Technology and Business University, Beijing, China.,Beijing Key Laboratory of Plant Research and Development, Beijing, China
| | - Yanqing Song
- Department of Cosmetics, School of Science, Beijing Technology and Business University, Beijing, China.,Beijing Key Laboratory of Plant Research and Development, Beijing, China
| | - Yao Pan
- Department of Cosmetics, School of Science, Beijing Technology and Business University, Beijing, China.,Beijing Key Laboratory of Plant Research and Development, Beijing, China
| |
Collapse
|
32
|
Testing the Effectiveness of Curcuma longa Leaf Extract on a Skin Equivalent Using a Pumpless Skin-on-a-Chip Model. Int J Mol Sci 2020; 21:ijms21113898. [PMID: 32486109 PMCID: PMC7312991 DOI: 10.3390/ijms21113898] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 01/19/2023] Open
Abstract
The in vitro tests in current research employ simple culture methods that fail to mimic the real human tissue. In this study, we report drug testing with a ‘pumpless skin-on-a-chip’ that mimics the structural and functional responses of human skin. This model is a skin equivalent constituting two layers of the skin, dermis and epidermis, developed using human primary fibroblasts and keratinocytes. Using the gravity flow device system, the medium was rotated at an angle of 15 degrees on both sides so as to circulate through the pumpless skin-on-a-chip microfluidic channel. This pumpless skin-on-a-chip is composed of upper and lower chips, and is manufactured using porous membranes so that medium can be diffused and supplied to the skin equivalent. Drug testing was performed using Curcuma longa leaf extract (CLLE), a natural product cosmetic ingredient, to evaluate the usefulness of the chip and the efficacy of the cosmetic ingredient. It was found that the skin barrier function of the skin epidermis layer is enhanced to exhibit antiaging effects. This result indicates that the pumpless skin-on-a-chip model can be potentially used not only in the cosmetics and pharmaceutical industries but also in clinical applications as an alternative to animal studies.
Collapse
|
33
|
Bal-Öztürk A, Miccoli B, Avci-Adali M, Mogtader F, Sharifi F, Çeçen B, Yaşayan G, Braeken D, Alarcin E. Current Strategies and Future Perspectives of Skin-on-a-Chip Platforms: Innovations, Technical Challenges and Commercial Outlook. Curr Pharm Des 2019; 24:5437-5457. [PMID: 30727878 DOI: 10.2174/1381612825666190206195304] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/02/2019] [Indexed: 01/09/2023]
Abstract
The skin is the largest and most exposed organ in the human body. Not only it is involved in numerous biological processes essential for life but also it represents a significant endpoint for the application of pharmaceuticals. The area of in vitro skin tissue engineering has been progressing extensively in recent years. Advanced in vitro human skin models strongly impact the discovery of new drugs thanks to the enhanced screening efficiency and reliability. Nowadays, animal models are largely employed at the preclinical stage of new pharmaceutical compounds development for both risk assessment evaluation and pharmacokinetic studies. On the other hand, animal models often insufficiently foresee the human reaction due to the variations in skin immunity and physiology. Skin-on-chips devices offer innovative and state-of-the-art platforms essential to overcome these limitations. In the present review, we focus on the contribution of skin-on-chip platforms in fundamental research and applied medical research. In addition, we also highlighted the technical and practical difficulties that must be overcome to enhance skin-on-chip platforms, e.g. embedding electrical measurements, for improved modeling of human diseases as well as of new drug discovery and development.
Collapse
Affiliation(s)
- Ayça Bal-Öztürk
- Department of Analytical Chemistry, Faculty of Pharmacy, İstinye University, 34010, Zeytinburnu, Istanbul, Turkey,Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, 34010 Istanbul, Turkey
| | - Beatrice Miccoli
- Imec, Department of Life Sciences and Imaging, 3001 Heverlee, Belgium,Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Ferzaneh Mogtader
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, 34010 Istanbul, Turkey,NanoBMT, Cyberpark, Bilkent 06800, Ankara, Turkey
| | - Fatemeh Sharifi
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 11365-11155, Iran
| | - Berivan Çeçen
- Biomechanics Department, Institute of Health Science, Dokuz Eylul University, 35340, Inciraltı, Izmir, Turkey; Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Gökçen Yaşayan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, 34668, Haydarpaşa, Istanbul, Turkey
| | - Dries Braeken
- Imec, Department of Life Sciences and Imaging, 3001 Heverlee, Belgium
| | - Emine Alarcin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, 34668, Haydarpaşa, Istanbul, Turkey
| |
Collapse
|
34
|
Schmidt F, Wenzel J, Halland N, Güssregen S, Delafoy L, Czich A. Computational Investigation of Drug Phototoxicity: Photosafety Assessment, Photo-Toxophore Identification, and Machine Learning. Chem Res Toxicol 2019; 32:2338-2352. [PMID: 31625387 DOI: 10.1021/acs.chemrestox.9b00338] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
One of the most appreciated capabilities of computational toxicology is to support the design of pharmaceuticals with reduced toxicological hazard. To this end, we have strengthened our drug photosafety assessments by applying novel computer models for the anticipation of in vitro phototoxicity and human photosensitization. These models are typically used in pharmaceutical discovery projects as part of the compound toxicity assessments and compound optimization methods. To ensure good data quality and aiming at models with global applicability we separately compiled and curated highly chemically diverse data sets from 3T3 NRU phototoxicity reports (450 compounds) and clinical photosensitization alerts (1419 compounds) which are provided as supplements. The latter data gives rise to a comprehensive list of explanatory fragments for visual guidance, termed phototoxophores, by application of a Bayesian statistics approach. To extend beyond the domain of well sampled fragments we applied machine learning techniques based on explanatory descriptors such as pharmacophoric fingerprints or, more important, accurate electronic energy descriptors. Electronic descriptors were extracted from quantum chemical computations at the density functional theory (DFT) level. Accurate UV/vis spectral absorption descriptors and pharmacophoric fingerprints turned out to be necessary for predictive computer models, which were both derived from Deep Neural Networks but also the simpler Random Decision Forests approach. Model accuracies of 83-85% could typically be reached for diverse test data sets and other company in-house data, while model sensitivity (the capability of correctly detecting toxicants) was even better, reaching 86%-90%. Importantly, a computer model-triggered response-map allowed for graphical/chemical interpretability also in the case of previously unknown phototoxophores. The photosafety models described here are currently applied in a prospective manner for the hazard identification, prioritization, and optimization of newly designed molecules.
Collapse
Affiliation(s)
| | - Jan Wenzel
- Sanofi R&D , Industriepark Hoechst , 65926 Frankfurt , Germany
| | - Nis Halland
- Sanofi R&D , Industriepark Hoechst , 65926 Frankfurt , Germany
| | | | | | - Andreas Czich
- Sanofi R&D , Industriepark Hoechst , 65926 Frankfurt , Germany
| |
Collapse
|
35
|
Simard M, Julien P, Fradette J, Pouliot R. Modulation of the Lipid Profile of Reconstructed Skin Substitutes after Essential Fatty Acid Supplementation Affects Testosterone Permeability. Cells 2019; 8:E1142. [PMID: 31557890 PMCID: PMC6829228 DOI: 10.3390/cells8101142] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/21/2023] Open
Abstract
Skin models with efficient skin barrier function are required for percutaneous absorption studies. The contribution of media supplementation with n-3 and n-6 polyunsaturated fatty acids (PUFAs) to the development of the skin barrier function of in vitro skin models remains incompletely understood. To investigate whether PUFAs, alpha-linolenic acid (ALA, n-3 PUFA) and linoleic acid (LA, n-6 PUFA), could enhance the impermeability of a three-dimensional reconstructed human skin model, skin substitutes were produced according to the self-assembly method using culture media supplemented with either 10 μM ALA or 10 μM LA. The impact of PUFAs on skin permeability was studied by using a Franz cell diffusion system to assess the percutaneous absorption of testosterone and benzoic acid. Our findings showed that ALA supplementation induced a decrease in the absorption of testosterone, while LA supplementation did not significantly influence the penetration of testosterone and benzoic acid under present experimental conditions. Both ALA and LA were incorporated into phospholipids of the skin substitutes, resulting in an increase in n-3 total PUFAs or n-6 total PUFAs. Collectively, these results revealed the under-estimated impact of n-3 PUFA supplementation as well as the importance of the n-6 to n-3 ratio on the formation of the skin barrier of in vitro reconstructed human skin models.
Collapse
Affiliation(s)
- Mélissa Simard
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC G1J 1Z4, Canada.
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1J 1Z4, Canada.
- Faculté de Pharmacie de l'Université Laval, Québec, QC G1V 0A6, Canada.
| | - Pierre Julien
- Axe d'Endocrinologie et de Néphrologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada.
| | - Julie Fradette
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC G1J 1Z4, Canada.
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1J 1Z4, Canada.
- Département de Chirurgie de l'Université Laval, Québec, QC G1V 0A6, Canada.
| | - Roxane Pouliot
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC G1J 1Z4, Canada.
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1J 1Z4, Canada.
- Faculté de Pharmacie de l'Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
36
|
Kejlová K, Dvořáková M, Vavrouš A, Ševčík V, Kanďárová H, Letašiová S, Sosnovcová J, Jírová D. Toxicity of food contact paper evaluated by combined biological and chemical methods. Toxicol In Vitro 2019; 59:26-34. [PMID: 30951805 DOI: 10.1016/j.tiv.2019.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 12/16/2022]
|
37
|
Yu JR, Navarro J, Coburn JC, Mahadik B, Molnar J, Holmes JH, Nam AJ, Fisher JP. Current and Future Perspectives on Skin Tissue Engineering: Key Features of Biomedical Research, Translational Assessment, and Clinical Application. Adv Healthc Mater 2019; 8:e1801471. [PMID: 30707508 PMCID: PMC10290827 DOI: 10.1002/adhm.201801471] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/04/2019] [Indexed: 12/20/2022]
Abstract
The skin is responsible for several important physiological functions and has enormous clinical significance in wound healing. Tissue engineered substitutes may be used in patients suffering from skin injuries to support regeneration of the epidermis, dermis, or both. Skin substitutes are also gaining traction in the cosmetics and pharmaceutical industries as alternatives to animal models for product testing. Recent biomedical advances, ranging from cellular-level therapies such as mesenchymal stem cell or growth factor delivery, to large-scale biofabrication techniques including 3D printing, have enabled the implementation of unique strategies and novel biomaterials to recapitulate the biological, architectural, and functional complexity of native skin. This progress report highlights some of the latest approaches to skin regeneration and biofabrication using tissue engineering techniques. Current challenges in fabricating multilayered skin are addressed, and perspectives on efforts and strategies to meet those limitations are provided. Commercially available skin substitute technologies are also examined, and strategies to recapitulate native physiology, the role of regulatory agencies in supporting translation, as well as current clinical needs, are reviewed. By considering each of these perspectives while moving from bench to bedside, tissue engineering may be leveraged to create improved skin substitutes for both in vitro testing and clinical applications.
Collapse
Affiliation(s)
- Justine R Yu
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, 20742, USA
- NIH/NBIB Center for Engineering Complex Tissues, University of Maryland, College Park, College Park, MD, 20742, USA
- University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Javier Navarro
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, 20742, USA
- NIH/NBIB Center for Engineering Complex Tissues, University of Maryland, College Park, College Park, MD, 20742, USA
| | - James C Coburn
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, 20742, USA
- Division of Biomedical Physics, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, 20903, USA
| | - Bhushan Mahadik
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, 20742, USA
- NIH/NBIB Center for Engineering Complex Tissues, University of Maryland, College Park, College Park, MD, 20742, USA
| | - Joseph Molnar
- Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - James H Holmes
- Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - Arthur J Nam
- Division of Plastic, Reconstructive and Maxillofacial Surgery, R. Adams Cowley Shock Trauma Center, University of Maryland, Baltimore, Baltimore, MD, 21201, USA
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, 20742, USA
- NIH/NBIB Center for Engineering Complex Tissues, University of Maryland, College Park, College Park, MD, 20742, USA
| |
Collapse
|
38
|
Lee S, Greenstein T, Shi L, Maguire T, Schloss R, Yarmush M. Tri-culture system for pro-hapten sensitizer identification and potency classification. TECHNOLOGY 2018; 6:67-74. [PMID: 30519598 PMCID: PMC6276108 DOI: 10.1142/s233954781850005x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Allergic contact dermatitis (ACD) is an inflammatory disease that impacts 15-20% of the general population and accurate screening methods for chemical risk assessment are needed. However, most approaches poorly predict pre- and pro-hapten sensitizers, which require abiotic or metabolic conversion prior to inducing sensitization. We developed a tri-culture system comprised of MUTZ-3-derived Langerhans cells, HaCaT keratinocytes, and primary dermal fibroblasts to mimic the cellular and metabolic environments of skin sensitization. A panel of non-sensitizers and sensitizers was tested and the secretome was evaluated. A support vector machine (SVM) was used to identify the most predictive sensitization signature and classification trees identified statistical thresholds to predict sensitizer potency. The SVM computed 91% tri-culture prediction accuracy using the top 3 ranking biomarkers (IL-8, MIP-1β, and GM-CSF) and improved the detection of pre- and pro-haptens. This in vitro assay combined with in silico data analysis presents a promising approach and offers the possibility of multi-metric analysis for enhanced ACD sensitizer screening.
Collapse
Affiliation(s)
- Serom Lee
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Talia Greenstein
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Lingting Shi
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Tim Maguire
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Rene Schloss
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Martin Yarmush
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
- Center for Engineering in Medicine and the Department of Surgery, Massachusetts General Hospital and the Shriners Burns Hospital, Boston, MA 02114, USA
| |
Collapse
|
39
|
Di Mauro MD, Tomasello B, Giardina RC, Dattilo S, Mazzei V, Sinatra F, Caruso M, D'Antona N, Renis M. Sugar and mineral enriched fraction from olive mill wastewater for promising cosmeceutical application: characterization, in vitro and in vivo studies. Food Funct 2018; 8:4713-4722. [PMID: 29165474 DOI: 10.1039/c7fo01363a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nowadays, agro-food by-products represent a potential low-cost source of biologically active ingredients which have been paid significant attention as nutraceuticals, medicine, food and cosmetics. In a previous study we evaluated the total sugars, metals and polyphenols of olive mill wastewater (OMWW) from a Cerasuola olive cultivar. In the present work we selectively recovered a sugar and mineral enriched fraction (SMEF) from Cerasuola OMWW by a green adsorption/desorption process. The SMEF was mainly found to be composed of monosaccharides and potassium by HPLC-ELSD and ICP-MS. The in vitro cytotoxicity on human fibroblasts, at different concentrations of the fraction, was investigated by MTT and comet assays. In addition, intracellular reactive oxygen species (ROS) production, apoptosis and cell morphological changes were examined. The physical stability of a formulation containing the SMEF (1% w/w) and its in vivo skin effects were also assessed.Our results highlighted that the SMEF showed a toxic effect at higher concentrations (i.e. cell viability reduction, DNA fragmentation and morphological alterations) well correlated with high ROS levels. Conversely, at low concentrations (0.5% and 1% w/w), no significant changes were observed. For the first time, through stability studies and in vivo tests, we also demonstrated that the SMEF formulation is stable and safe for topical application, since skin hydration improvement without negative effects was observed after 7 days of its use. Therefore, the SMEF has great potential to be used for cosmeceutical applications.
Collapse
Affiliation(s)
- Maria Domenica Di Mauro
- Department of Drug Sciences, Biochemistry Section, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Dolbashid AS, Mokhtar MS, Muhamad F, Ibrahim F. Potential applications of human artificial skin and electronic skin (e-skin): a review. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2018. [DOI: 10.1680/jbibn.17.00002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Asdani Saifullah Dolbashid
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia; Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Mas Sahidayana Mokhtar
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia; Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Farina Muhamad
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia; Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
41
|
Toropov AA, Toropova AP, Marzo M, Dorne JL, Georgiadis N, Benfenati E. QSAR models for predicting acute toxicity of pesticides in rainbow trout using the CORAL software and EFSA's OpenFoodTox database. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 53:158-163. [PMID: 28599185 DOI: 10.1016/j.etap.2017.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/21/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
Optimal (flexible) descriptors were used to establish quantitative structure - activity relationships (QSAR) for toxicity of pesticides (n=116) towards rainbow trout. A heterogeneous set of hundreds of pesticides has been used, taken from the EFSA's chemical Hazards Database: OpenFoodTox. Optimal descriptors are preparing from simplified molecular input-line entry system (SMILES). So-called, correlation weights of different fragments of SMILES are calculating by the Monte Carlo optimization procedure where correlation coefficient between endpoint and optimal descriptor plays role of the target function. Having maximum of the correlation coefficient for the training set, one can suggest that the optimal descriptor calculated with these correlation weights can correlate with endpoint for external validation set. This approach was checked up with three different distributions into the training (≈85%) set and external validation (≈15%) set. The statistical characteristics of these models are (i) for training set correlation coefficient (r2) ranges 0.72-0.81, and root mean squared error (RMSE) ranges 0.54-1.25; (ii) for external (validation) set r2 ranges 0.74-0.84; and RMSE ranges 0.64-0.75. Computational experiments have shown that presence of chlorine, fluorine, sulfur, and aromatic fragments is promoter of increase for the toxicity.
Collapse
Affiliation(s)
- Andrey A Toropov
- Department of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano, Italy
| | - Alla P Toropova
- Department of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano, Italy.
| | - Marco Marzo
- Department of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano, Italy
| | - Jean Lou Dorne
- Scientific Committee and Emerging Risks Unit, European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy
| | - Nikolaos Georgiadis
- Scientific Committee and Emerging Risks Unit, European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy
| | - Emilio Benfenati
- Department of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano, Italy
| |
Collapse
|
42
|
Toropova AP, Toropov AA, Marzo M, Escher SE, Dorne JL, Georgiadis N, Benfenati E. The application of new HARD-descriptor available from the CORAL software to building up NOAEL models. Food Chem Toxicol 2017; 112:544-550. [PMID: 28366846 DOI: 10.1016/j.fct.2017.03.060] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/16/2017] [Accepted: 03/28/2017] [Indexed: 12/19/2022]
Abstract
Continuous QSAR models have been developed and validated for the prediction of no-observed-adverse-effect (NOAEL) in rats, using training and test sets from the Fraunhofer RepDose® database and EFSA's Chemical Hazards Database: OpenFoodTox. This paper demonstrates that the HARD index, as an integrated attribute of SMILES, improves the prediction power of NOAEL values using the continuous QSAR models and Monte Carlo simulations. The HARD-index is a line of eleven symbols, which represents the presence, or absence of eight chemical elements (nitrogen, oxygen, sulfur, phosphorus, fluorine, chlorine, bromine, and iodine) and different kinds of chemical bonds (double bond, triple bond, and stereo chemical bond). Optimal molecular descriptors calculated with the Monte Carlo technique (maximization of correlation coefficient between the descriptor and endpoint) give satisfactory predictive models for NOAEL. Optimal molecular descriptors calculated in this way with the Monte Carlo technique (maximization of correlation coefficient between the descriptor and endpoint) give amongst the best results available in the literature. The models are built up in accordance with OECD principles.
Collapse
Affiliation(s)
- Alla P Toropova
- Department of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano, Italy.
| | - Andrey A Toropov
- Department of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano, Italy
| | - Marco Marzo
- Department of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano, Italy
| | - Sylvia E Escher
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Jean Lou Dorne
- Scientific Committee and Emerging Risks Unit, European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy
| | - Nikolaos Georgiadis
- Scientific Committee and Emerging Risks Unit, European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy
| | - Emilio Benfenati
- Department of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano, Italy
| |
Collapse
|