1
|
Petrov Ivanković A, Ćorović M, Milivojević A, Blagojević S, Radulović A, Pjanović R, Bezbradica D. Assessment of Enzymatically Derived Blackcurrant Extract as Cosmetic Ingredient-Antioxidant Properties Determination and In Vitro Diffusion Study. Pharmaceutics 2024; 16:1209. [PMID: 39339245 PMCID: PMC11435148 DOI: 10.3390/pharmaceutics16091209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Blackcurrant is an anthocyanin-rich berry with proven antioxidant and photoprotective activity and emerging prebiotic potential, widely applied in cosmetic products. Hereby, highly efficient enzyme-assisted extraction of blackcurrant polyphenols was performed, giving extract with very high antioxidant activity. Obtained extract was characterized in terms of anthocyanin composition, incorporated into three different cosmetic formulations and subjected to Franz cell diffusion study. Experimental values obtained using cellulose acetate membrane for all four dominant anthocyanins (delphinidin 3-glucoside, delphinidin 3-rutinoside, cyanidin 3-glucoside and cyanidin 3-rutinoside) were successfully fitted with the Korsmeyer-Peppas diffusion model. Calculated effective diffusion coefficients were higher for hydrogel compared to oil-in-water cream gel and oil-in-water emulsion, whereas the highest value was determined for cyanidin 3-rutinoside. On the other hand, after a 72 h long experiment with transdermal skin diffusion model (Strat-M® membrane), no anthocyanins were detected in the receptor fluid, and only 0.5% of the initial quantity from the donor compartment was extracted from the membrane itself after experiment with hydrogel. Present study revealed that hydrogel is a suitable carrier system for the topical delivery of blackcurrant anthocyanins, while dermal and transdermal delivery of these molecules is very limited, which implies its applicability for treatments targeting skin surface (i.e., prebiotic, photoprotective).
Collapse
Affiliation(s)
| | - Marija Ćorović
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (R.P.); (D.B.)
| | - Ana Milivojević
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (R.P.); (D.B.)
| | - Stevan Blagojević
- Institute of General and Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia; (S.B.); (A.R.)
| | - Aleksandra Radulović
- Institute of General and Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia; (S.B.); (A.R.)
| | - Rada Pjanović
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (R.P.); (D.B.)
| | - Dejan Bezbradica
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (R.P.); (D.B.)
| |
Collapse
|
2
|
Zahel P, Bruggink V, Hülsmann J, Steiniger F, Hofstetter RK, Heinzel T, Beekmann U, Werz O, Kralisch D. Exploring Microemulsion Systems for the Incorporation of Glucocorticoids into Bacterial Cellulose: A Novel Approach for Anti-Inflammatory Wound Dressings. Pharmaceutics 2024; 16:504. [PMID: 38675165 PMCID: PMC11054342 DOI: 10.3390/pharmaceutics16040504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The effective pharmacological treatment of inflamed wounds such as pyoderma gangraenosum remains challenging, as the systemic application of suitable drugs such as glucocorticoids is compromised by severe side effects and the inherent difficulties of wounds as drug targets. Furthermore, conventional semi-solid formulations are not suitable for direct application to open wounds. Thus, the treatment of inflamed wounds could considerably benefit from the development of active wound dressings for the topical administration of anti-inflammatory drugs. Although bacterial cellulose appears to be an ideal candidate for this purpose due to its known suitability for advanced wound care and as a drug delivery system, the incorporation of poorly water-soluble compounds into the hydrophilic material still poses a problem. The use of microemulsions could solve that open issue. The present study therefore explores their use as a novel approach to incorporate poorly water-soluble glucocorticoids into bacterial cellulose. Five microemulsion formulations were loaded with hydrocortisone or dexamethasone and characterized in detail, demonstrating their regular microstructure, biocompatibility and shelf-life stability. Bacterial cellulose was successfully loaded with the formulations as confirmed by transmission electron microscopy and surprisingly showed homogenous incorporation, even of w/o type microemulsions. High and controllable drug permeation through Strat-M® membranes was observed, and the anti-inflammatory activity for permeated glucocorticoids was confirmed in vitro. This study presents a novel approach for the development of anti-inflammatory wound dressings using bacterial cellulose in combination with microemulsions.
Collapse
Affiliation(s)
- Paul Zahel
- JeNaCell GmbH—An Evonik Company, 07745 Jena, Germany; (P.Z.); (V.B.); (U.B.)
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, 07743 Jena, Germany; (R.K.H.); (O.W.)
| | - Vera Bruggink
- JeNaCell GmbH—An Evonik Company, 07745 Jena, Germany; (P.Z.); (V.B.); (U.B.)
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, 07743 Jena, Germany; (R.K.H.); (O.W.)
| | - Juliana Hülsmann
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University, 07745 Jena, Germany; (J.H.); (T.H.)
| | - Frank Steiniger
- Electron Microscopy Center, University Hospital Jena, Friedrich Schiller University, 07743 Jena, Germany;
| | - Robert K. Hofstetter
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, 07743 Jena, Germany; (R.K.H.); (O.W.)
| | - Thorsten Heinzel
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University, 07745 Jena, Germany; (J.H.); (T.H.)
| | - Uwe Beekmann
- JeNaCell GmbH—An Evonik Company, 07745 Jena, Germany; (P.Z.); (V.B.); (U.B.)
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, 07743 Jena, Germany; (R.K.H.); (O.W.)
| | - Dana Kralisch
- JeNaCell GmbH—An Evonik Company, 07745 Jena, Germany; (P.Z.); (V.B.); (U.B.)
- Evonik Operations GmbH, 45128 Essen, Germany
| |
Collapse
|
3
|
Galvan A, Pellicciari C, Calderan L. Recreating Human Skin In Vitro: Should the Microbiota Be Taken into Account? Int J Mol Sci 2024; 25:1165. [PMID: 38256238 PMCID: PMC10816982 DOI: 10.3390/ijms25021165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Skin plays crucial roles in the human body: besides protecting the organism from external threats, it acts as a thermal regulator, is responsible for the sense of touch, hosts microbial communities (the skin microbiota) involved in preventing the invasion of foreign pathogens, contains immunocompetent cells that maintain a healthy immunogenic/tolerogenic balance, and is a suitable route for drug administration. In the skin, four defense levels can be identified: besides the physical, chemical, and immune barriers that are inherent to the tissue, the skin microbiota (i.e., the numerous microorganisms living on the skin surface) provides an additional barrier. Studying the skin barrier function or the effects of drugs or cosmetic agents on human skin is a difficult task since snapshot evidence can only be obtained using bioptic samples where dynamic processes cannot properly be followed. To overcome these limitations, many different in vitro models of human skin have been developed that are characterized by diverse levels of complexity in terms of chemical, structural, and cellular composition. The aim of this review is to summarize and discuss the advantages and disadvantages of the different human skin models so far available and to underline how the insertion of a proper microbiota would positively impact an in vitro human skin model in an attempt to better mimic conditions in vivo.
Collapse
Affiliation(s)
- Andrea Galvan
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.G.); (L.C.)
| | - Carlo Pellicciari
- Department of Biology and Biotechnology, University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
| | - Laura Calderan
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.G.); (L.C.)
| |
Collapse
|
4
|
Patitucci F, Motta MF, Dattilo M, Malivindi R, Leonetti AE, Pezzi G, Prete S, Mileti O, Gabriele D, Parisi OI, Puoci F. 3D-Printed Alginate/Pectin-Based Patches Loaded with Olive Leaf Extracts for Wound Healing Applications: Development, Characterization and In Vitro Evaluation of Biological Properties. Pharmaceutics 2024; 16:99. [PMID: 38258109 PMCID: PMC10819698 DOI: 10.3390/pharmaceutics16010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Traditional wound dressings may lack suitability for diverse wound types and individual patient requirements. In this context, this study aimed to innovate wound care by developing a 3D-printed patch using alginate and pectin and incorporating Olive Leaf Extract (OLE) as an active ingredient. Different polymer-to-plasticizer ratios were systematically examined to formulate a printable ink with optimal viscosity. The resultant film, enriched with OLE, exhibited a substantial polyphenolic content of 13.15 ± 0.41 mg CAE/g, showcasing significant antioxidant and anti-inflammatory properties. Notably, the film demonstrated potent scavenging abilities against DPPH, ABTS, and NO radicals, with IC50 values of 0.66 ± 0.07, 0.47 ± 0.04, and 2.02 ± 0.14 mg/mL, respectively. In vitro release and diffusion studies were carried out and the release profiles revealed an almost complete release of polyphenols from the patch within 48 h. Additionally, the fabricated film exhibited the capacity to enhance cell motility and accelerate wound healing, evidenced by increased collagen I expression in BJ fibroblast cells. Structural assessments affirmed the ability of the patch to absorb exudates and maintain the optimal moisture balance, while biocompatibility studies underscored its suitability for biomedical applications. These compelling findings endorse the potential application of the developed film in advanced wound care, with the prospect of tailoring patches to individual patient needs.
Collapse
Affiliation(s)
- Francesco Patitucci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (F.P.); (M.F.M.); (M.D.); (R.M.); (A.E.L.); (G.P.); (S.P.); (F.P.)
| | - Marisa Francesca Motta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (F.P.); (M.F.M.); (M.D.); (R.M.); (A.E.L.); (G.P.); (S.P.); (F.P.)
| | - Marco Dattilo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (F.P.); (M.F.M.); (M.D.); (R.M.); (A.E.L.); (G.P.); (S.P.); (F.P.)
| | - Rocco Malivindi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (F.P.); (M.F.M.); (M.D.); (R.M.); (A.E.L.); (G.P.); (S.P.); (F.P.)
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Adele Elisabetta Leonetti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (F.P.); (M.F.M.); (M.D.); (R.M.); (A.E.L.); (G.P.); (S.P.); (F.P.)
| | - Giuseppe Pezzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (F.P.); (M.F.M.); (M.D.); (R.M.); (A.E.L.); (G.P.); (S.P.); (F.P.)
| | - Sabrina Prete
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (F.P.); (M.F.M.); (M.D.); (R.M.); (A.E.L.); (G.P.); (S.P.); (F.P.)
| | - Olga Mileti
- Department of Information, Modeling, Electronics and System Engineering, University of Calabria, 87036 Rende, CS, Italy; (O.M.); (D.G.)
| | - Domenico Gabriele
- Department of Information, Modeling, Electronics and System Engineering, University of Calabria, 87036 Rende, CS, Italy; (O.M.); (D.G.)
| | - Ortensia Ilaria Parisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (F.P.); (M.F.M.); (M.D.); (R.M.); (A.E.L.); (G.P.); (S.P.); (F.P.)
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (F.P.); (M.F.M.); (M.D.); (R.M.); (A.E.L.); (G.P.); (S.P.); (F.P.)
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| |
Collapse
|
5
|
Wellington H, Rath S, Kanfer I. A comprehensively validated IVRT method reliably discriminates sameness and differences between several topical clotrimazole creams. Eur J Pharm Sci 2024; 192:106649. [PMID: 37992910 DOI: 10.1016/j.ejps.2023.106649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
In vitro release testing (IVRT) has gained increasing acceptance for use as a biowaiver for topical products intended for local action. Whereas the United States Food and Drug Administration (US FDA) has issued product specific guidances (PSGs) recommending IVRT for several products, the PSG for clotrimazole cream does not include an IVRT option. However, an important requirement to include supplemental selectivity in the validation process as described in the recent FDA draft guidance on IVRT studies for topical drug products has generally been conspicuously absent in the published literature describing the application of IVRT as a biowaiver. Supplemental selectivity involves the comparison of a reference product and altered formulations containing the same strength of the active pharmaceutical ingredient (API). In order to demonstrate supplemental selectivity, cream formulation containing the same API (clotrimazole), at the same strength (1 %) and in the same dosage form (cream) but manufactured using different excipients were used. This will help assess the impact that excipients may have on the release rate of clotrimazole and whether the method is capable of identifying differences in the microstructure and arrangement of matter (Q3) as an important performance parameter. In addition, products containing <30 % or >40 % clotrimazole to serve as negative controls were also included for the discriminatory power assessment. Hence, the primary objective was to develop and validate a simple, reliable, reproducible, and cost-effective in vitro technique in accordance with the recent draft FDA guidance to assess the "sameness" of topical creams containing 1 % clotrimazole. An in vitro release testing (IVRT) system was used and an IVRT method was developed and accordingly validated. The validated IVRT method showed the potential to accurately measure the release from 1 % clotrimazole creams and demonstrated supplemental selectivity and appropriate discriminatory power to identify "sameness" and/ or differences.
Collapse
Affiliation(s)
- Hannah Wellington
- Faculty of Pharmacy, Rhodes University, Grahamstown 6139, South Africa
| | - Seeprarani Rath
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Isadore Kanfer
- Faculty of Pharmacy, Rhodes University, Grahamstown 6139, South Africa; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.
| |
Collapse
|
6
|
Kim TH, Kim NY, Lee HU, Choi JW, Kang T, Chung BG. Smartphone-based iontophoresis transdermal drug delivery system for cancer treatment. J Control Release 2023; 364:383-392. [PMID: 37914000 DOI: 10.1016/j.jconrel.2023.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Cancer is a leading cause of the death worldwide. However, the conventional cancer therapy still suffers from several limitations, such as systemic side effects, poor efficacy, and patient compliance due to limited accessibility to the tumor site. To address these issues, the localized drug delivery system has emerged as a promising approach. In this study, we developed an iontophoresis-based transdermal drug delivery system (TDDS) controlled by a smartphone application for cancer treatment. Iontophoresis, a low-intensity electric current-based TDDS, enhances drug permeation across the skin to provide potential for localized drug delivery and minimize systemic side effects. The fundamental mechanism of our system was modeled using finite element analysis and its performance was corroborated through the flow-through skin permeation tests using a plastic-based microfluidic chip. The results of in vitro cell experiments and skin deposition tests successfully demonstrated that our smartphone-controlled iontophoresis system significantly enhanced the drug permeation for cancer treatment. Therefore, this hand-held smartphone-based iontophoresis TDDS could be a powerful tool for self-administrated anticancer drug delivery applications.
Collapse
Affiliation(s)
- Tae Hyeon Kim
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| | - Na Yeon Kim
- Department of Biomedical Engineering, Sogang University, Seoul, Republic of Korea
| | - Hee Uk Lee
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| | - Ji Wook Choi
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea; Institute of Integrated Biotechnology, Sogang University, Seoul, Republic of Korea
| | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea; Department of Biomedical Engineering, Sogang University, Seoul, Republic of Korea; Institute of Smart Biosensor, Sogang University, Seoul, Republic of Korea; Institute of Integrated Biotechnology, Sogang University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
de Lima SKS, Cavallone ÍN, Serrano DR, Anaya BJ, Lalatsa A, Laurenti MD, Lago JHG, da Silva Souza DC, Marinsek GP, Lopes BS, de Britto Mari R, Passero LFD. Therapeutic Activity of a Topical Formulation Containing 8-Hydroxyquinoline for Cutaneous Leishmaniasis. Pharmaceutics 2023; 15:2602. [PMID: 38004580 PMCID: PMC10675550 DOI: 10.3390/pharmaceutics15112602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Cutaneous leishmaniasis exhibits a wide spectrum of clinical manifestations; however, only a limited number of drugs are available and include Glucantime® and amphotericin B, which induce unacceptable side effects in patients, limiting their use. Thus, there is an urgent demand to develop a treatment for leishmaniasis. Recently, it was demonstrated that 8-hydroxyquinoline (8-HQ) showed significant leishmanicidal effects in vitro and in vivo. Based on that, this work aimed to develop a topical formulation containing 8-HQ and assess its activity in experimental cutaneous leishmaniasis. 8-HQ was formulated using a Beeler base at 1 and 2% and showed an emulsion size with a D50 of 25 and 51.3 µm, respectively, with a shear-thinning rheological behaviour. The creams were able to permeate artificial Strat-M membranes and excised porcine skin without causing any morphological changes in the porcine skin or murine skin tested. In BALB/c mice infected with L. (L.) amazonensis, topical treatment with creams containing 1 or 2% of 8-HQ was found to reduce the parasite burden and lesion size compared to infected controls with comparable efficacy to Glucantime® (50 mg/kg) administered at the site of the cutaneous lesion. In the histological section of the skin from infected controls, a diffuse inflammatory infiltrate with many heavily infected macrophages that were associated with areas of necrosis was observed. On the other hand, animals treated with both creams showed only moderate inflammatory infiltrate, characterised by few infected macrophages, while tissue necrosis was not observed. These histological characteristics in topically treated animals were associated with an increase in the amount of IFN-γ and a reduction in IL-4 levels. The topical use of 8-HQ was active in decreasing tissue parasitism and should therefore be considered an interesting alternative directed to the treatment of leishmaniasis, considering that this type of treatment is non-invasive, painless, and, importantly, does not require hospitalisation, improving patient compliance by allowing the treatment to be conducted.
Collapse
Affiliation(s)
- Sarah Kymberly Santos de Lima
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, São Vicente 11330-900, SP, Brazil; (S.K.S.d.L.); (Í.N.C.); (G.P.M.); (B.S.L.); (R.d.B.M.)
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School, São Paulo University, São Paulo 01246-903, SP, Brazil;
| | - Ítalo Novaes Cavallone
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, São Vicente 11330-900, SP, Brazil; (S.K.S.d.L.); (Í.N.C.); (G.P.M.); (B.S.L.); (R.d.B.M.)
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School, São Paulo University, São Paulo 01246-903, SP, Brazil;
| | - Dolores Remedios Serrano
- Department of Pharmaceutics and Food Science, Faculty of Pharmacy, Universidad Complutense of Madrid, Plaza Ramon y Cajal s/n, 28040 Madrid, Spain; (D.R.S.); (B.J.A.)
| | - Brayan J. Anaya
- Department of Pharmaceutics and Food Science, Faculty of Pharmacy, Universidad Complutense of Madrid, Plaza Ramon y Cajal s/n, 28040 Madrid, Spain; (D.R.S.); (B.J.A.)
| | - Aikaterini Lalatsa
- CRUK Formulation Unit, Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK;
| | - Márcia Dalastra Laurenti
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School, São Paulo University, São Paulo 01246-903, SP, Brazil;
| | - João Henrique Ghilardi Lago
- Center for Natural and Human Science (CCNH), Federal University of ABC, Santo André, São Paulo 09210-580, SP, Brazil; (J.H.G.L.); (D.C.d.S.S.)
| | - Dalete Christine da Silva Souza
- Center for Natural and Human Science (CCNH), Federal University of ABC, Santo André, São Paulo 09210-580, SP, Brazil; (J.H.G.L.); (D.C.d.S.S.)
| | - Gabriela Pustiglione Marinsek
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, São Vicente 11330-900, SP, Brazil; (S.K.S.d.L.); (Í.N.C.); (G.P.M.); (B.S.L.); (R.d.B.M.)
| | - Beatriz Soares Lopes
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, São Vicente 11330-900, SP, Brazil; (S.K.S.d.L.); (Í.N.C.); (G.P.M.); (B.S.L.); (R.d.B.M.)
| | - Renata de Britto Mari
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, São Vicente 11330-900, SP, Brazil; (S.K.S.d.L.); (Í.N.C.); (G.P.M.); (B.S.L.); (R.d.B.M.)
| | - Luiz Felipe Domingues Passero
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, São Vicente 11330-900, SP, Brazil; (S.K.S.d.L.); (Í.N.C.); (G.P.M.); (B.S.L.); (R.d.B.M.)
- Institute for Advanced Studies of Ocean, São Paulo State University (UNESP), Rua João Francisco Bensdorp, 1178, São Vicente 11350-011, SP, Brazil
| |
Collapse
|
8
|
Zhang G, Li X, Huang C, Jiang Y, Su J, Hu Y. Preparation of the Levo-Tetrahydropalmatine Liposome Gel and Its Transdermal Study. Int J Nanomedicine 2023; 18:4617-4632. [PMID: 37600118 PMCID: PMC10438440 DOI: 10.2147/ijn.s422305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
Purpose The aim of this study was to develop a liposome gel containing levo-tetrahydropalmatine (l-THP) and evaluate its transdermal properties. Methods A L16 (43) orthogonal experiment was conducted to optimize the preparation of l-THP liposomes and assess their characterization and stability in a gel. The transdermal features were analyzed through in vivo and in vitro experiments on rats and Strat-M® membrane, respectively. The metabolism of l-THP in liver and skin S9 fractions was also studied. Results The optimization of the orthogonal experiment revealed that the ideal mass ratio of phosphatidylcholine, cholesterol, and l-THP during preparation was 10:1:3. The resulting liposome exhibited a particle size of 68 nm, a PDI of 0.27, a drug loading of 4.33%, an encapsulation of 18.79%, and a zeta potential of -41.27 mV. Both the l-THP and its liposome-gel formulation were found to be stable for a duration of 45 days at 4 °C and 30 °C. During the in vivo transdermal study, the maximum concentration (Cmax) of l-THP from the liposome gel was 0.16 μg/mL, and the time to reach this maximum concentration (tmax) was 1.2 hours. The relative bioavailability of l-THP in the liposome gel was 233.8% compared to the emulsion. The concentration of l-THP (prepared in PBS) decreased at a rate of 0.0067 μg/mL/min in the liver S9 fraction and 0.0027 μg/mL/min in the skin S9 fraction, however, this difference was not observed when l-THP was encapsulated in liposomes. l-THP passed through the Strat-M® membrane at a rate of 0.0032 mg/cm2/h and 0.002 mg/cm2/h for the emulsion and liposome gel, respectively. Conclusion The optimal process for the preparation of l-THP liposomes was obtained. Compared to the emulsion, the liposomes provided greater bioavailability when used transdermally. The liposomes also provided greater stability for l-THP during storage.
Collapse
Affiliation(s)
- Guizhen Zhang
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Xuejian Li
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Chunyun Huang
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Yuanyuan Jiang
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Jian Su
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Ying Hu
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
9
|
Marin Villegas CA, Zagury GJ. Metal(loid) speciation in dermal bioaccessibility extracts from contaminated soils and permeation through synthetic skin. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131523. [PMID: 37150097 DOI: 10.1016/j.jhazmat.2023.131523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
Dermal exposure to metal(loid)s from contaminated soils can contribute to health risk. Metal(loid) speciation will influence their bioaccessibility in sweat and subsequent permeation across the skin. Therefore, the speciation of the bioaccessible fraction of metal(loid)s in two synthetic sweat formulations (sweat A (pH 6.5) and B (pH 4.7)) was assessed using chemical equilibrium modelling (Visual MINTEQ). Permeation through synthetic skin and the influence of sebum in the permeation of As, Cr, Cu, Ni, Pb, and Zn were also investigated using Franz cells. Following dermal bioaccessibility tests for five Chromated Copper Arsenate (CCA)-contaminated soils and one certified soil (SQC001), mean metal(loid) bioaccessibility (%) was higher in sweat B (2.33-18.8) compared to sweat A (0.12-7.53). Arsenic was almost entirely found as As(V) in both sweats. In sweat A, comparable concentrations of Cr(III) and Cr(VI) were found whereas in sweat B, Cr was primarily present as Cr(III). Copper was primarily found as Cu2+. Bioaccessible Cr extracted from nearly all soils permeated through the Strat-M membrane when it was coated with sebum. The Cr permeation coefficient (Kp) ranged between 0.004 and 0.13 cm/h and the Kp for Cu was higher (0.024-0.52 cm/h). As, Ni, Pb, and Zn did not permeate the synthetic skin.
Collapse
Affiliation(s)
- Carlos A Marin Villegas
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montreal, QC H3C 3A7, Canada
| | - Gerald J Zagury
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montreal, QC H3C 3A7, Canada.
| |
Collapse
|
10
|
Ghislain FA, Zagury GJ. Influence of sebum proportion in synthetic sweat on dermal bioaccessibility and on permeation of metal(loid)s from contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86762-86772. [PMID: 37414993 DOI: 10.1007/s11356-023-28388-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/18/2023] [Indexed: 07/08/2023]
Abstract
Even if dermal exposure to metal(loid)s from contaminated soils has received less attention than oral and inhalation exposure, the human health risk can be significant for some contaminants and exposure scenarios. The purpose of this study was to assess the influence of sebum proportion (1% v/v and 3% v/v) in two synthetic sweat formulations (EN 1811, pH 6.5 (sweat A) and NIHS 96-10, pH 4.7 (sweat B)) on As, Cr, Cu, Ni, Pb, and Zn dermal bioaccessibility and on subsequent diffusion through synthetic skin. A Franz cell with a Strat-M® membrane was used to quantify permeation parameters of bioaccessible metal(loid)s. Sebum's presence in synthetic sweat formulations significantly modified bioaccessibility percentages for As, Cr, and Cu. However, sebum proportion in both sweats did not influence the bioaccessibility of Pb and Zn. Some metal(loid)s, namely As and Cu, permeated the synthetic skin membrane during permeation tests when sebum was added to sweat while no permeation was observed without sebum in sweat formulations. Depending on sweat formulation, the addition of sebum (1% v/v) increased or decreased the Cr permeation coefficients (Kp). In all cases, bioaccessible Cr was no longer permeable when extracted with 3% sebum. Ni transdermal permeation was not influenced by the presence of sebum, and no permeation was observed for Pb and Zn. Further studies on the speciation of metal(loid)s in bioaccessible extracts in the presence of sebum are recommended.
Collapse
Affiliation(s)
- Florent A Ghislain
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montreal, QC, H3C 3A7, Canada
| | - Gerald J Zagury
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montreal, QC, H3C 3A7, Canada.
| |
Collapse
|
11
|
Ruiz VH, Encinas-Basurto D, Sun B, Eedara BB, Roh E, Alarcon NO, Curiel-Lewandrowski C, Bode AM, Mansour HM. Innovative Rocuronium Bromide Topical Formulation for Targeted Skin Drug Delivery: Design, Comprehensive Characterization, In Vitro 2D/3D Human Cell Culture and Permeation. Int J Mol Sci 2023; 24:ijms24108776. [PMID: 37240122 DOI: 10.3390/ijms24108776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second-most common type of non-melanoma skin cancer and is linked to long-term exposure to ultraviolet (UV) radiation from the sun. Rocuronium bromide (RocBr) is an FDA-approved drug that targets p53-related protein kinase (PRPK) that inhibits the development of UV-induced cSCC. This study aimed to investigate the physicochemical properties and in vitro behavior of RocBr. Techniques such as thermal analysis, electron microscopy, spectroscopy and in vitro assays were used to characterize RocBr. A topical oil/water emulsion lotion formulation of RocBr was successfully developed and evaluated. The in vitro permeation behavior of RocBr from its lotion formulation was quantified with Strat-M® synthetic biomimetic membrane and EpiDerm™ 3D human skin tissue. Significant membrane retention of RocBr drug was evident and more retention was obtained with the lotion formulation compared with the solution. This is the first systematic and comprehensive study to report these findings.
Collapse
Affiliation(s)
- Victor H Ruiz
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
| | - David Encinas-Basurto
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
- Department of Physics, Mathematics and Engineering, Campus Navojoa, Universidad de Sonora, Sonora 85880, Mexico
| | - Bo Sun
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
- The University of Arizona Cancer Center, Skin Cancer Institute, Tucson, AZ 85721, USA
| | - Basanth Babu Eedara
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Eunmiri Roh
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Department of Cosmetic Science, Kwangju Women's University, Gwangju 62396, Republic of Korea
| | - Neftali Ortega Alarcon
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
| | - Clara Curiel-Lewandrowski
- The University of Arizona Cancer Center, Skin Cancer Institute, Tucson, AZ 85721, USA
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
- Department of Medicine, Division of Dermatology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Heidi M Mansour
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
- Department of Medicine, Division of Translational & Regenerative Medicine, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
12
|
Kumar M, Sharma A, Mahmood S, Thakur A, Mirza MA, Bhatia A. Franz diffusion cell and its implication in skin permeation studies. J DISPER SCI TECHNOL 2023. [DOI: 10.1080/01932691.2023.2188923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
13
|
Biondo NE, Argenta DF, Caon T. A Comparative Analysis of Biological and Synthetic Skin Models for Drug Transport Studies. Pharm Res 2023; 40:1209-1221. [PMID: 36959412 DOI: 10.1007/s11095-023-03499-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/04/2023] [Indexed: 03/25/2023]
Abstract
Ethical restrictions as well as practical or economic issues related to use of animal and human skin has been the main reason the growth in the number of investigations with alternative models. Reconstructed skin models, for example, have been useful to evaluate the in vitro toxicity of compounds; however, these models usually overestimate the amount of drug permeated due to impaired barrier properties. In this review, the performance of synthetic and biological skin models in transport studies was compared by considering two compounds with different physicochemical properties. The advantages and limitations of each skin model are discussed in detail. Although synthetic and reconstructed skin models have shown to be useful in the formulation optimization step, they present many limitations: (1) impaired barrier properties; (2) lack of follicular transport; (3) no metabolism in synthetic membranes; (4) differences in terms of lipid organization; (5) more affected by formulation constituents. Therefore, animal and human tissues should still be prioritized in drug transport studies until new advances in alternative models are achieved. Investigations of the impact of cell-culture conditions on skin formation, in turn, bring perspectives related to the development of unhealthy/injured skin models (an aspect that still deserves attention).
Collapse
Affiliation(s)
- Nicole Esposto Biondo
- Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, S/N - Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Débora Fretes Argenta
- Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, S/N - Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Thiago Caon
- Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, S/N - Trindade, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
14
|
Wang B, Tian L, Tian L, Wang X, He Y, Ji R. Insights into Health Risks of Face Paint Application to Opera Performers: The Release of Heavy Metals and Stage-Light-Induced Production of Reactive Oxygen Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3703-3712. [PMID: 36820615 DOI: 10.1021/acs.est.2c03595] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Face paints used by opera performers have been shown to contain high levels of heavy metals. However, whether frequent exposure, via dermal contact and inadvertent oral ingestion, results in occupational diseases is unknown, as is the potential exacerbation of toxicity by high-intensity irradiation from stage lights. In this study, we examined the release of Cr, Cu, Pb, and Zn from 40 face paints and the consequent health risks posed by different practical scenarios involving their use. The results showed that the in vitro bioaccessibility (IVBA) of Cr, Cu, Pb, and Zn in the tested products was, on average, 7.0, 5.5, 19.9, and 7.9% through oral ingestion and 1.1, 2.2, 1.6, and 1.2% through dermal contact, respectively. Stage light irradiation significantly increased the IVBA associated with dermal contact, to the average of 4.8, 34.9, 5.7, and 1.9% for Cr, Cu, Pb, and Zn, respectively. The increase was mainly due to the light-induced generation of reactive oxygen species, particularly hydroxyl free radicals. The vitality and transcriptional response of 3D skin models as well as a quantitative risk assessment of skin sensitization indicated that dermal contact with face paints may induce predictable skin damage and potentially other skin diseases. Long-term exposure to face paints on stage may also pose a non-carcinogenic health risk. The demonstrated health risks to opera performers of face paint exposure should lead to strict regulations regarding the content of theatrical face paints.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Liyan Tian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lili Tian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xisheng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yujie He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China
| |
Collapse
|
15
|
Cannabidiol-Loaded Nanostructured Lipid Carriers (NLCs) for Dermal Delivery: Enhancement of Photostability, Cell Viability, and Anti-Inflammatory Activity. Pharmaceutics 2023; 15:pharmaceutics15020537. [PMID: 36839859 PMCID: PMC9964291 DOI: 10.3390/pharmaceutics15020537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
The aim of this study was to encapsulate cannabidiol (CBD) extract in nanostructured lipid carriers (NLCs) to improve the chemical stability and anti-inflammatory activity of CBD for dermal delivery. CBD-loaded NLCs (CBD-NLCs) were prepared using cetyl palmitate (CP) as a solid lipid and stabilized with Tego® Care 450 (TG450) or poloxamer 188 (P188) by high-pressure homogenization (HPH). The CBD extract was loaded at 1% w/w. Three different oils were employed to produce CBD-NLCs, including Transcutol® P, medium-chain triglycerides (MCT), and oleic acid (OA). CBD-NLCs were successfully prepared with an entrapment efficiency (E.E.) of 100%. All formulations showed particle sizes between 160 and 200 nm with PDIs less than 0.10. The type of surfactant and oil used affected the particle sizes, zeta potential, and crystallinity of the CBD-NLCs. CBD-NLCs stabilized with TG450 showed higher crystallinity after production and storage at 30 °C for 30 days as compared to those with P188. Encapsulation of the CBD extract in NLCs enhanced its chemical stability after exposure to simulated sunlight (1000 kJ/m2) compared to that of the CBD extract in ethanolic solution. The CBD-NLCs prepared from MCT and OA showed slower CBD release compared with that from Transcutol® P, and the kinetic data for release of CBD from CBD-NLCs followed Higuchi's release model with a high coefficient of determination (>0.95). The extent of CBD permeation through Strat-M® depended on the oil type. The cytotoxicity of the CBD extract on HaCaT and HDF cells was reduced by encapsulation in the NLCs. The anti-inflammatory activity of the CBD extract in RAW264.7 cell macrophages was enhanced by encapsulation in CBD-NLCs prepared from MCT and OA.
Collapse
|
16
|
Topical Delivery of Atraric Acid Derived from Stereocaulon japonicum with Enhanced Skin Permeation and Hair Regrowth Activity for Androgenic Alopecia. Pharmaceutics 2023; 15:pharmaceutics15020340. [PMID: 36839662 PMCID: PMC9960134 DOI: 10.3390/pharmaceutics15020340] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Atraric acid (AA) is a phenolic compound isolated from Stereocaulon japonicum that has demonstrated anti-androgen properties and was used to design an alternative formulation for the treatment of alopecia. This new topical formulation was designed using a solvent mixture system composed of ethanol as a volatile vehicle, oleic acid as a permeation enhancer, and water for skin hydration. The ideal topical AA formulation (AA-TF#15) exhibited an 8.77-fold higher human skin flux and a 570% increase in dermal drug deposition, compared to 1% (w/w) AA in ethanol. In addition, compared to other formulations, AA-TF#15 (1% [w/w] AA) activated keratinocytes and human dermal papilla cell proliferation at a concentration of 50 µM AA, which is equivalent to 50 µM minoxidil. Moreover, AA-TF#15 treatment produced a significant increase in hair regrowth by 58.0% and 41.9% compared to the 1% (w/w) minoxidil and oral finasteride (1 mg/kg)-treated mice. In addition, AA-TF#15 showed a higher expression level of aldehyde dehydrogenase 1, β-catenin, cyclin D1, and pyruvate kinase M2 proteins in the skin of AA-TF#15-treated mice compared to that of those treated with minoxidil and oral finasteride. These findings suggest AA-TF#15 is an effective formulation for the treatment of scalp androgenic alopecia.
Collapse
|
17
|
Saweres-Argüelles C, Ramírez-Novillo I, Vergara-Barberán M, Carrasco-Correa EJ, Lerma-García MJ, Simó-Alfonso EF. Skin absorption of inorganic nanoparticles and their toxicity: A review. Eur J Pharm Biopharm 2023; 182:128-140. [PMID: 36549398 DOI: 10.1016/j.ejpb.2022.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The role of inorganic nanoparticles in our society is increasing every day, from its use in sunscreens to their introduction in analytical laboratories, pharmacy, medicine, agricultural and other uses. Therefore, in order to establish precautions as well as correct handling of this type of material by operators, it is important to determine the ability of these compounds to travel through the different layers of the skin and to study their possible toxicological effects. In this sense, several authors have studied the ability of inorganic nanoparticles to penetrate the skin barrier by diverse methodologies in in vivo and in vitro modes. In the first case, most of the studies have been performed with animal skins that can imitate the human one (porcine, mouse and guinea pigs, among others), although human skin from surgery have been also explored. However, the use of animals is a common model that should be avoided in the following years due to ethical issues. In this sense, the use of in vitro methodologies is also usually selected to study the dermal absorption of nanoparticles through the skin. Nevertheless, most of the studies are performed with authentic animal skins, instead of the use of synthetic skins that imitate the permeability of our skin system, which has been scarcely studied. In addition, most of the literature is focused in achieving high-transdermal uptake to use nanoparticles (not only inorganic) as carriers for drugs, but little efforts have been done in the study of their inherent percutaneous absorption and toxicity. For these reasons, this review covers the current state-of-the-art of dermal absorption of inorganic nanoparticles in skin and their possible toxicity taking into account that people can be in contact with these nanomaterials in daily life, work or other places. In this sense, the observed results showed that the nanoparticles rarely reach the blood circulatory system, and no big toxicological effects were commonly found when in vivo and actual skin was used. In addition, similar results were found when synthetic skins were used, demonstrating the possibility of avoiding animals in these studies. In any case, more studies covering the dermal absorption of nanoparticles should be performed to have a better understanding of how nanoparticles can affect our health.
Collapse
Affiliation(s)
- Clara Saweres-Argüelles
- CLECEM Group, Department of Analytical Chemistry, University of Valencia, C/ Doctor Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Icíar Ramírez-Novillo
- CLECEM Group, Department of Analytical Chemistry, University of Valencia, C/ Doctor Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - María Vergara-Barberán
- CLECEM Group, Department of Analytical Chemistry, University of Valencia, C/ Doctor Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Enrique Javier Carrasco-Correa
- CLECEM Group, Department of Analytical Chemistry, University of Valencia, C/ Doctor Moliner, 50, 46100 Burjassot, Valencia, Spain.
| | - María Jesús Lerma-García
- CLECEM Group, Department of Analytical Chemistry, University of Valencia, C/ Doctor Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Ernesto Francisco Simó-Alfonso
- CLECEM Group, Department of Analytical Chemistry, University of Valencia, C/ Doctor Moliner, 50, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
18
|
Preparation and Evaluation of Vitamin D3 Supplementation as Transdermal Film-Forming Solution. Pharmaceutics 2022; 15:pharmaceutics15010039. [PMID: 36678668 PMCID: PMC9863400 DOI: 10.3390/pharmaceutics15010039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Vitamin D3 is available in oral and injectable dosage forms. Interest in the transdermal route as an alternative to the oral and parenteral routes has grown recently. In this study, several film-forming solutions for the transdermal delivery of vitamin D3 were prepared. They contained 6000 IU/mL of vitamin D3 that formed a dry and acceptable film in less than 5 min after application. The formulations consisted of ethanol and acetone 80:20, and one or more of the following ingredients: Eudragit L100-55, PVP, PG, limonene, oleic acid, camphor, and menthol. Vitamin D3 release was studied from both the film-forming solution and pre-dried films using a Franz diffusion cell. The film-forming solution released a significant amount of vitamin D3 compared to the dry film, which is attributed mostly to the saturation driving force due to the evaporation of volatile solvents. In vitro permeation studies through artificial skin Strat M® membrane revealed that the cumulative amount of vitamin D3 permeated after 24 h under the experimental conditions was around 800 IU across 3.14 cm2. The cumulative permeation curve showed faster permeation in earlier stages. Young's modulus, viscosity, and pH of the formulations were determined. Most of the formulations were stable for 3 weeks.
Collapse
|
19
|
Validation and testing of a new artificial biomimetic barrier for estimation of transdermal drug absorption. Int J Pharm 2022; 628:122266. [DOI: 10.1016/j.ijpharm.2022.122266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/22/2022]
|
20
|
Kuznetsov DM, Kuznetsova DA, Zakharova LY. Liposomes modified with borneol-containing surfactants for transdermal delivery of hydrophilic substrates. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3606-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
21
|
Milivojević A, Ćorović M, Simović M, Banjanac K, Pjanović R, Bezbradica D. Evaluation of in vitro Skin Permeation of Enzymatically Synthesized Phloridzin Acetates from Emulsions and Liposomes Dispersed in Gel. EUR J LIPID SCI TECH 2022. [DOI: 10.1002/ejlt.202200073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ana Milivojević
- Innovation Center of Faculty of Technology and Metallurgy Karnegijeva 4 Belgrade 11000 Serbia
| | - Marija Ćorović
- Department of Biochemical Engineering and Biotechnology Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 Belgrade 11000
| | - Milica Simović
- Department of Biochemical Engineering and Biotechnology Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 Belgrade 11000
| | - Katarina Banjanac
- Innovation Center of Faculty of Technology and Metallurgy Karnegijeva 4 Belgrade 11000 Serbia
| | - Rada Pjanović
- Department of Chemical Engineering Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 Belgrade 11000
| | - Dejan Bezbradica
- Department of Biochemical Engineering and Biotechnology Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 Belgrade 11000
| |
Collapse
|
22
|
Pironi AM, Melero A, Eloy JO, Guillot AJ, Pini Santos K, Chorilli M. Solid dipersions included in poloxamer hydrogels have favorable rheological properties for topical application and enhance the in vivo antiinflammatory effect of ursolic acid. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Preparation and Optimization of an Ultraflexible Liposomal Gel for Lidocaine Transdermal Delivery. MATERIALS 2022; 15:ma15144895. [PMID: 35888361 PMCID: PMC9325174 DOI: 10.3390/ma15144895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022]
Abstract
The pain caused by lidocaine injections into the face prior to facial plastic surgeries intended to remove growths or tumorous lesions has been reported by many patients to be the worst part of these procedures. However, the lidocaine gels and creams currently on the market do not deliver an equal or better local anesthetic effect to replace these injections. To develop an alternative to the painful local anesthetic injection, we prepared ultraflexible liposomes using soy phosphatidylcholine, lidocaine, and different amounts of sodium cholate, a surfactant. The prepared ultraflexible liposomes (UFLs) were examined for particle size, zeta potential, cytotoxicity, and in vitro release. By using a carbomer as a gelling agent, the prepared UFL lidocaine gels were evaluated for their penetration ability in a Franz diffusion cell, using Strat-M membranes. The formulation achieving the highest amount of penetrated lidocaine was chosen for further pH, viscosity, and stability tests. The local anesthetic efficacy of the formulation was investigated by an in vivo tail-flick test in rats. Our findings suggested that this topical gel formulated with ultraflexible liposomal lidocaine has enhanced skin permeation ability, as well as an improved local analgesic effect from the lidocaine.
Collapse
|
24
|
Petrov A, Ćorović M, Milivojević A, Simović M, Banjanac K, Pjanović R, Bezbradica D. Prebiotic effect of galacto‐oligosaccharides on the skin microbiota and determination of their diffusion properties. Int J Cosmet Sci 2022; 44:309-319. [DOI: 10.1111/ics.12778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Anja Petrov
- Innovation center of Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 Belgrade Serbia
| | - Marija Ćorović
- Department of Biochemical Engineering and Biotechnology Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 Belgrade Serbia
| | - Ana Milivojević
- Innovation center of Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 Belgrade Serbia
| | - Milica Simović
- Department of Biochemical Engineering and Biotechnology Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 Belgrade Serbia
| | - Katarina Banjanac
- Innovation center of Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 Belgrade Serbia
| | - Rada Pjanović
- Department of Chemical Engineering Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 Belgrade Serbia
| | - Dejan Bezbradica
- Department of Biochemical Engineering and Biotechnology Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 Belgrade Serbia
| |
Collapse
|
25
|
Ruiz VH, Encinas-Basurto D, Sun B, Eedara BB, Dickinson SE, Wondrak GT, Chow HHS, Curiel-Lewandrowski C, Mansour HM. Design, Physicochemical Characterization, and In Vitro Permeation of Innovative Resatorvid Topical Formulations for Targeted Skin Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14040700. [PMID: 35456534 PMCID: PMC9026853 DOI: 10.3390/pharmaceutics14040700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Nonmelanoma skin cancers (NMSCs) are the most common malignancies worldwide and affect more than 5 million people in the United States every year. NMSC is directly linked to the excessive exposure of the skin to solar ultraviolet (UV) rays. The toll-like receptor 4 (TLR4) antagonist, resatorvid (TAK-242), is a novel prototype chemo preventive agent that suppresses the production of inflammation mediators induced by UV exposure. This study aimed to design and develop TAK-242 into topical formulations using FDA-approved excipients, including DermaBaseTM, PENcreamTM, polyethylene glycol (PEG)-400, propylene glycol (PG), carbomer gel, hyaluronic acid (HA) gel, and Pluronic® F-127 poloxamer triblock copolymer gel for the prevention of skin cancer. The physicochemical properties of raw TAK-242, which influence the compatibility and solubility in the selected base materials, were confirmed using X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), hot-stage microscopy (HSM), Raman spectroscopy, and attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopic analysis. The permeation behavior of TAK-242 from the prepared formulations was determined using Strat-M® transdermal diffusion membranes, and 3D cultured primary human-derived epidermal keratinocytes (EpiDermTM). Despite TAK-242′s high molecular weight and hydrophobicity, it can permeate through reconstructed human epidermis from all formulations. The findings, reported for the first time in this study, emphasize the capabilities of the topical application of TAK-242 via these multiple innovative topical drug delivery formulation platforms.
Collapse
Affiliation(s)
- Victor H. Ruiz
- Department of Pharmacology and Toxicology, The University of Arizona College of Pharmacy, Tucson, AZ 85721, USA; (V.H.R.); (D.E.-B.); (B.S.); (B.B.E.); (G.T.W.)
| | - David Encinas-Basurto
- Department of Pharmacology and Toxicology, The University of Arizona College of Pharmacy, Tucson, AZ 85721, USA; (V.H.R.); (D.E.-B.); (B.S.); (B.B.E.); (G.T.W.)
| | - Bo Sun
- Department of Pharmacology and Toxicology, The University of Arizona College of Pharmacy, Tucson, AZ 85721, USA; (V.H.R.); (D.E.-B.); (B.S.); (B.B.E.); (G.T.W.)
| | - Basanth Babu Eedara
- Department of Pharmacology and Toxicology, The University of Arizona College of Pharmacy, Tucson, AZ 85721, USA; (V.H.R.); (D.E.-B.); (B.S.); (B.B.E.); (G.T.W.)
- Center for Translational Science, Florida Interational University, Port St. Lucie, FL 34987, USA
| | - Sally E. Dickinson
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA; (S.E.D.); (H.-H.S.C.); (C.C.-L.)
- Department of Pharmacology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Georg T. Wondrak
- Department of Pharmacology and Toxicology, The University of Arizona College of Pharmacy, Tucson, AZ 85721, USA; (V.H.R.); (D.E.-B.); (B.S.); (B.B.E.); (G.T.W.)
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA; (S.E.D.); (H.-H.S.C.); (C.C.-L.)
| | - H. -H. Sherry Chow
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA; (S.E.D.); (H.-H.S.C.); (C.C.-L.)
- Department of Medicine, Division of Hematology and Oncology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Clara Curiel-Lewandrowski
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA; (S.E.D.); (H.-H.S.C.); (C.C.-L.)
- Department of Medicine, Division of Dermatology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
- BIO5 Institute, University of Arizona, Tucson, AZ 85724, USA
| | - Heidi M. Mansour
- Department of Pharmacology and Toxicology, The University of Arizona College of Pharmacy, Tucson, AZ 85721, USA; (V.H.R.); (D.E.-B.); (B.S.); (B.B.E.); (G.T.W.)
- Center for Translational Science, Florida Interational University, Port St. Lucie, FL 34987, USA
- BIO5 Institute, University of Arizona, Tucson, AZ 85724, USA
- Department of Medicine, Division of Translational & Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
- Correspondence: ; Tel.: +1-772-345-4731
| |
Collapse
|
26
|
Kovács A, Zsikó S, Falusi F, Csányi E, Budai-Szűcs M, Csóka I, Berkó S. Comparison of Synthetic Membranes to Heat-Separated Human Epidermis in Skin Permeation Studies In Vitro. Pharmaceutics 2021; 13:pharmaceutics13122106. [PMID: 34959387 PMCID: PMC8709252 DOI: 10.3390/pharmaceutics13122106] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
In recent years, the study of dermal preparations has received increased attention. There are more and more modern approaches to evaluate transdermal formulations, which are crucial in proving the efficacy of a formulation. The aim of this study was to compare permeation across innovative synthetic membranes (Strat-M and Skin PAMPA membranes) and heat-separated human epidermis (HSE, gold standard membrane) using four different dermal formulations. The Strat-M and Skin PAMPA membranes were designed to mimic the stratum corneum layer of the human epidermis. There have also been some publications on their use in dermal formulation development, but further information is needed. Drug permeation was measured using formulations containing diclofenac sodium (two hydrogels and two creams). The HSE, Strat-M, and Skin PAMPA membranes proved to be significantly different, but based on the results, the Strat-M membrane showed the greatest similarity to HSE. The permeation data of the different formulations across different membranes showed good correlations with formulations similar to these four, which allows the prediction of permeation across HSE using these synthetic membranes. In addition, Strat-M and Skin PAMPA membranes have the potential to select and differentiate a dermal formulation containing diclofenac sodium as an early screening model.
Collapse
|
27
|
A Promising Cutaneous Leishmaniasis Treatment with a Nanoemulsion-Based Cream with a Generic Pentavalent Antimony (Ulamina) as the Active Ingredient. COSMETICS 2021. [DOI: 10.3390/cosmetics8040115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Leishmania parasites are the etiological agents of Leishmaniasis, a tropical disease that affects around 15 million people in about 90 countries. The chosen therapy for this disease is based on antimony V compounds, such as meglumine antimoniate. It can be administered as a parenteral, subcutaneous or perilesional form as successive infiltrations with pre-established doses localized in the border of the granuloma that characterizes the wound of Cutaneous Leishmaniasis (CL). Herein, a topical pharmaceutical recipe, such as an emulsion, is proposed to eliminate the trauma caused by administering the medicine in parenteral form to the face or other difficult access zones. The evaluation of this vehicle was performed by analyzing parameters such as pH, viscosity, homogeneity and droplet size distribution. Furthermore, the effectiveness of the emulsion was proved by in vitro experiments using Strat-M synthetic membranes, showing that the transdermal passage of the antimonial complex is guaranteed. Moreover, complete healing of the wound has been attained in patients with CL, as shown with two clinical cases in this article.
Collapse
|
28
|
An easy 3D printing approach to manufacture vertical diffusion cells for in vitro release and permeation studies. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Pandiyan R, Sugumaran A, Samiappan S, Sengottaiyan P, Ayyaru S, Dharmaraj S, Ashokkumar V, Pugazhendhi A. Fabrication and characterization of in vitro 2D skin model – An attempt to establish scaffold for tissue engineering. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Petrov E, Verkhovskiy A. Xenon as a transdermal enhancer for niacinamide in Strat-M™ membranes. Med Gas Res 2021; 12:24-27. [PMID: 34472499 PMCID: PMC8447954 DOI: 10.4103/2045-9912.320704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Xenon is confirmed to diffuse readily through membranes and has properties of transdermal enhancer. In this study, the ability of xenon to regulate the transdermal diffusion of niacinamide was investigated using a model of an artificial skin analogue of Strat-M™ membranes in Franz cells. Based on the data obtained, we found that in the simplified biophysical model of Strat-M™ membranes xenon exerts its enhancer effect based on the heterogeneous nucleation of xenon at the interfaces in the microporous structures of Strat-M™ membranes.
Collapse
Affiliation(s)
- Evgeny Petrov
- Laboratory of Biochemistry of Transport Systems, Faculty of Innovative Technologies, National Research Tomsk State University, Tomsk, Russian Federation
| | - Alexander Verkhovskiy
- Laboratory of Biochemistry of Transport Systems, Faculty of Innovative Technologies, National Research Tomsk State University, Tomsk, Russian Federation
| |
Collapse
|
31
|
Milanowski B, Wosicka-Frąckowiak H, Główka E, Sosnowska M, Woźny S, Stachowiak F, Suchenek A, Wilkowski D. Optimization and Evaluation of the In Vitro Permeation Parameters of Topical Products with Non-Steroidal Anti-Inflammatory Drugs through Strat-M ® Membrane. Pharmaceutics 2021; 13:1305. [PMID: 34452264 PMCID: PMC8398299 DOI: 10.3390/pharmaceutics13081305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 11/23/2022] Open
Abstract
Pharmaceutical products containing non-steroidal anti-inflammatory drugs (NSAIDs) are among the most prescribed topical formulations used for analgesic and antirheumatic properties. These drugs must overcome the skin barrier to cause a therapeutic effect. Human skin has been widely used as a model to study in vitro drug diffusion and permeation, however, it suffers from many limitations. Therefore, to perform in vitro permeation test (IVPT), we used a Strat-M® membrane with diffusion characteristics well-correlated to human skin. This study's objective was to optimize the IVPT conditions using Plackett-Burman experimental design for bio-predictive evaluation of the in vitro permeation rates of five non-steroidal anti-inflammatory drugs (diclofenac, etofenamate, ibuprofen, ketoprofen, naproxen) across Strat-M® membrane from commercial topical formulations. The Plackett-Burman factorial design was used to screen the effect of seven factors in eight runs with one additional center point. This tool allowed us to set the sensitive and discriminative IVPT final conditions that can appropriately characterize the NSAIDs formulations. The permeation rate of etofenamate (ETF) across the Strat-M® membrane was 1.7-14.8 times faster than other NSAIDs from selected semisolids but 1.6 times slower than the ETF spray formulation.
Collapse
Affiliation(s)
- Bartłomiej Milanowski
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, ul. Grunwaldzka 6, 60-780 Poznań, Poland; (H.W.-F.); (E.G.)
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o. o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (M.S.); (S.W.); (F.S.)
| | - Hanna Wosicka-Frąckowiak
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, ul. Grunwaldzka 6, 60-780 Poznań, Poland; (H.W.-F.); (E.G.)
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o. o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (M.S.); (S.W.); (F.S.)
| | - Eliza Główka
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, ul. Grunwaldzka 6, 60-780 Poznań, Poland; (H.W.-F.); (E.G.)
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o. o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (M.S.); (S.W.); (F.S.)
| | - Małgorzata Sosnowska
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o. o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (M.S.); (S.W.); (F.S.)
| | - Stanisław Woźny
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o. o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (M.S.); (S.W.); (F.S.)
| | - Filip Stachowiak
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o. o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (M.S.); (S.W.); (F.S.)
| | - Angelika Suchenek
- MYLAN Healthcare Sp. z o. o., ul. Postępu 21B, 02-676 Warszawa, Poland; (A.S.); (D.W.)
| | - Dariusz Wilkowski
- MYLAN Healthcare Sp. z o. o., ul. Postępu 21B, 02-676 Warszawa, Poland; (A.S.); (D.W.)
| |
Collapse
|
32
|
Kocabaş NÖ, Kahraman E, Güngör S. Assessment of membrane type effects on in vitro performance of topical semi-solid products. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Sreedharan Nair R, Rahman H, Kong MX, Tan XY, Chen KY, Shanmugham S. Development and Rheological Evaluation of DEET (N,N-DiethyL-3-Methylbenzamide) Microparticles Loaded Hydrogel For Topical Application. Turk J Pharm Sci 2021; 18:352-359. [PMID: 34157826 DOI: 10.4274/tjps.galenos.2020.88725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Objectives N,N-Diethyl-3-methylbenzamide (DEET) is a broad-spectrum insect repellent that can easily permeate through the skin and can cause undesirable effects, especially in children and pregnant women. The objective of this research was to formulate and evaluate DEET-encapsulated microparticles containing a hydrogel designed to reduce skin permeation and prolong drug release. Materials and Methods The formulation design was based on the independent formulation variables of the concentration of chitosan and sodium tripolyphosphate using a simple factorial design experiment. DEET-loaded microparticles were developed and incorporated into a hydrogel. The size of the microparticles was analyzed using the Zetasizer Nano® particle size analyzer, and the surface morphology, using field emission scanning electron microscopy. Drug release from the microparticles was determined by the dialysis bag method. A rheological evaluation of the formulated gel was performed using a Thermo Haake Rheometer. The in vitro permeation of the formulation was performed using a synthetic Strat-M® membrane. Results The size of the microparticles ranged from 0.45 to 8.3 μm, and the encapsulation efficiencies were >50% for all the formulations. The drug-release curves showed no initial burst release from the microparticle formulation. Instead, a slow and controlled drug release was observed over 24 hours that followed Higuchi kinetics. The cumulative amount of DEET permeated (over 24 h) from the DEET solution (control), and the formulation was 211.6±19.5 μg/cm2 and 4.07±0.08 μg/cm2, respectively. Conclusion A significantly low DEET permeation from the microparticle formulations indicated minimal absorption of the drug into the body and thus, reduced systemic toxicity. Thixotropic evaluation of the hydrogel formulation demonstrated a hysteresis loop that fitted closely to the Herschel-Bulkley rheological model, ensuring an effortless application and prolonged retention on the skin. Hence, it can be concluded that the developed formulation is an effective delivery approach for controlled insect repellent activity with reduced skin absorption.
Collapse
Affiliation(s)
- Rajesh Sreedharan Nair
- Monash University Malaysia, School of Pharmacy, Department of Pharmaceutics, Selangor, Malaysia
| | - Habibur Rahman
- UCSI University, Faculty of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Kuala Lumpur, Malaysia
| | - Min Xian Kong
- UCSI University, Faculty of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Kuala Lumpur, Malaysia
| | - Xin Yi Tan
- UCSI University, Faculty of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Kuala Lumpur, Malaysia
| | - Kah Yin Chen
- UCSI University, Faculty of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Kuala Lumpur, Malaysia
| | - Suresh Shanmugham
- International Medical University, School of Pharmacy, Department of Pharmacy Practice, Kuala Lumpur, Malaysia
| |
Collapse
|
34
|
Kuznetsova DA, Vasileva LA, Gaynanova GA, Vasilieva EA, Lenina OA, Nizameev IR, Kadirov MK, Petrov KA, Zakharova LY, Sinyashin OG. Cationic liposomes mediated transdermal delivery of meloxicam and ketoprofen: Optimization of the composition, in vitro and in vivo assessment of efficiency. Int J Pharm 2021; 605:120803. [PMID: 34144135 DOI: 10.1016/j.ijpharm.2021.120803] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/22/2021] [Accepted: 06/12/2021] [Indexed: 12/13/2022]
Abstract
New liposomes modified with pyrrolidinium surfactants containing a hydroxyethyl fragment (CnPB, n = 12, 14, 16) were prepared for transdermal delivery of non-steroidal anti-inflammatory drugs. In order to obtain the optimal composition, the surfactant/lipid molar ratio (0.02/1; 0.029/1; 0.04/1) and the amphiphile hydrocarbon tail length were varied. Rhodamine B was loaded in all formulations, while meloxicam and ketoprofen in selected ones. For liposomes studied the hydrodynamic diameter was in the range of 80-130 nm, the zeta potential ranged from +35 to +50 mV, EE was 75-99%. Liposome modification leads to a prolonged release of the rhodamine B (up to 10-12 h) and faster release of non-steroidal drugs (up to 7-8 h) in vitro. The ability to cross the skin barrier using Franz cells was investigated for liposomal meloxicam and ketoprofen. The total amount of meloxicam and ketoprofen passed through the Strat-M® membranes during 51 h was 51-114 μg/cm2 and 87-105 μg/cm2 respectively. The evaluation of transdermal diffusion ex vivo showed that total amount of liposomal ketoprofen passed through the skin during 51 h was 140-162 μg/cm2. Liposomes modified with C16PB were found as the most effective inflammation reducing formulation in the carrageenan edema model of rat paw.
Collapse
Affiliation(s)
- Darya A Kuznetsova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation.
| | - Leysan A Vasileva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Gulnara A Gaynanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Elmira A Vasilieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Oksana A Lenina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Irek R Nizameev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Marsil K Kadirov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Konstantin A Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation; Kazan (Volga region) Federal University, 18 Kremlyovskaya str, 420008 Kazan, Russian Federation
| | - Lucia Ya Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Oleg G Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| |
Collapse
|
35
|
Marin Villegas CA, Zagury GJ. Comparison of Synthetic Sweat and Influence of Sebum in the Permeation of Bioaccessible Metal(loid)s from Contaminated Soils through a Synthetic Skin Membrane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8215-8222. [PMID: 34039002 DOI: 10.1021/acs.est.1c02038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dermal exposure to metal(loid)s from contaminated soils has received less attention than oral and inhalation exposure. Still, it can be a relevant pathway for some contaminants. Comparison of synthetic sweats (donor solutions), the influence of sebum, and the characterization of diffusion parameters through a synthetic membrane (acting as skin surrogate) in the permeation of metal(loid)s (As, Cr, Cu, Ni, Pb, and, Zn) from polluted soils is missing. The dermal bioaccessibility tests were performed using two sweat compositions [EN 1811, pH 6.5 (sweat A) and NIHS 96-10, pH 4.7 (sweat B)]. Diffusion parameters of soluble metal(loid)s using the Franz cell methodology were calculated using the Strat-M membrane. The influence of synthetic sebum in the permeation of metal(loid)s was also investigated. The metal(loid) bioaccessibility percentage was higher for sweat B (pH 4.7) compared to sweat A (pH 6.5), attributed to lower pH of sweat B. Among the six elements tested, only chromium and copper permeated the membrane. Permeation coefficient (Kp) was higher for chromium in sweat A (0.05-0.11 cm h-1) than sweat B (0.0007-0.0037 cm h-1) likely due to a higher pH and thus more permeable Cr species. The presence of sebum increased lag times for copper permeation. Additional studies regarding speciation of metal(loid)s following extractions in synthetic sweat and comparison of synthetic membrane Strat-M and human skin in the permeation of metal(loid)s are recommended.
Collapse
Affiliation(s)
- Carlos A Marin Villegas
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montreal, Quebec H3C 3A7, Canada
| | - Gerald J Zagury
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montreal, Quebec H3C 3A7, Canada
| |
Collapse
|
36
|
Lee MS, Lee JW, Kim SJ, Pham-Nguyen OV, Park J, Park JH, Jung YM, Lee JB, Yoo HS. Comparison Study of the Effects of Cationic Liposomes on Delivery across 3D Skin Tissue and Whitening Effects in Pigmented 3D Skin. Macromol Biosci 2021; 21:e2000413. [PMID: 33713560 DOI: 10.1002/mabi.202000413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/18/2021] [Indexed: 11/09/2022]
Abstract
Charged phospholipids are employed to formulate liposomes with different surface charges to enhance the permeation of active ingredients through epidermal layers. Although 3D skin tissue is widely employed as an alternative to permeation studies using animal skin, only a small number of studies have compared the difference between these skin models. Liposomal delivery strategies are investigated herein, through 3D skin tissue based on their surface charges. Cationic, anionic, and neutral liposomes are formulated and their size, zeta-potential, and morphology are characterized using dynamic light scattering and cryogenic-transmission electron microscopy (cryo-TEM). A Franz diffusion cell is employed to determine the delivery efficiency of various liposomes, where all liposomes do not exhibit any recognizable difference of permeation through the synthetic membrane. When the fluorescence liposomes are applied to 3D skin, considerable fluorescence intensity is observed at the stratum cornea and epithelium layers. Compared to other liposomes, cationic liposomes exhibit the highest fluorescence intensity, suggesting the enhanced permeation of liposomes through the 3D skin layers. Finally, the ability of niacinamide (NA)-incorporated liposomes to suppress melanin transfer in pigmented 3D skin is examined, where cationic liposomes exhibit the highest degree of whitening effects.
Collapse
Affiliation(s)
- Mi So Lee
- Department of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ju Won Lee
- Department of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Su Ji Kim
- Innovation Lab., Cosmax R&I Center, Seongnam-si, 13486, Republic of Korea
| | - Oanh-Vu Pham-Nguyen
- Department of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ju Hyun Park
- Department of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Young Mee Jung
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jun Bae Lee
- Innovation Lab., Cosmax R&I Center, Seongnam-si, 13486, Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
37
|
Ponmozhi J, Dhinakaran S, Varga-Medveczky Z, Fónagy K, Bors LA, Iván K, Erdő F. Development of Skin-On-A-Chip Platforms for Different Utilizations: Factors to Be Considered. MICROMACHINES 2021; 12:mi12030294. [PMID: 33802208 PMCID: PMC8001759 DOI: 10.3390/mi12030294] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/20/2022]
Abstract
There is increasing interest in miniaturized technologies in diagnostics, therapeutic testing, and biomedicinal fundamental research. The same is true for the dermal studies in topical drug development, dermatological disease pathology testing, and cosmetic science. This review aims to collect the recent scientific literature and knowledge about the application of skin-on-a-chip technology in drug diffusion studies, in pharmacological and toxicological experiments, in wound healing, and in fields of cosmetic science (ageing or repair). The basic mathematical models are also presented in the article to predict physical phenomena, such as fluid movement, drug diffusion, and heat transfer taking place across the dermal layers in the chip using Computational Fluid Dynamics techniques. Soon, it can be envisioned that animal studies might be at least in part replaced with skin-on-a-chip technology leading to more reliable results close to study on humans. The new technology is a cost-effective alternative to traditional methods used in research institutes, university labs, and industry. With this article, the authors would like to call attention to a new investigational family of platforms to refresh the researchers’ theranostics and preclinical, experimental toolbox.
Collapse
Affiliation(s)
- J. Ponmozhi
- Microfluidics Laboratory, Department of Mechanical Engineering, IPS Academy-Institute of Engineering Science, Indore 452012, India;
| | - S. Dhinakaran
- The Centre for Fluid Dynamics, Department of Mechanical Engineering, Indian Institute of Technology Indore, Indore 453552, India;
| | - Zsófia Varga-Medveczky
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (Z.V.-M.); (K.F.); (L.A.B.); (K.I.)
| | - Katalin Fónagy
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (Z.V.-M.); (K.F.); (L.A.B.); (K.I.)
| | - Luca Anna Bors
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (Z.V.-M.); (K.F.); (L.A.B.); (K.I.)
- Heart and Vascular Centre, Faculty of Medicine, Semmelweis University, 1122 Budapest, Hungary
| | - Kristóf Iván
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (Z.V.-M.); (K.F.); (L.A.B.); (K.I.)
| | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (Z.V.-M.); (K.F.); (L.A.B.); (K.I.)
- Correspondence:
| |
Collapse
|
38
|
Xenikakis I, Tsongas K, Tzimtzimis EK, Zacharis CK, Theodoroula N, Kalogianni EP, Demiri E, Vizirianakis IS, Tzetzis D, Fatouros DG. Fabrication of hollow microneedles using liquid crystal display (LCD) vat polymerization 3D printing technology for transdermal macromolecular delivery. Int J Pharm 2021; 597:120303. [PMID: 33540009 DOI: 10.1016/j.ijpharm.2021.120303] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/19/2022]
Abstract
The present study aimed to fabricate a hollow microneedle device consisting of an array and a reservoir by means of 3D printing technology for transdermal peptide delivery. Hollow microneedles (HMNs) were fabricated using a biocompatible resin material, while PLA filament was used for the reservoirs. The fabricated microdevice was characterized by means of optical microscopy, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), contact angle measurements and leakage inspection studies to ensure the passageway of liquid formulations. Mechanical failure and penetration tests were carried out and supported by Finite Element Analysis (FEA). The cytocompatibility of the microneedle arrays was assessed to human keratinocytes (HaCaT). Finally, the transport of the model peptide octreotide acetate across artificial membranes was assessed in Franz cells using the aforementioned HMN design.
Collapse
Affiliation(s)
- Iakovos Xenikakis
- School of Health, Faculty of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Konstantinos Tsongas
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, School of Science and Technology, 14km Thessaloniki - N. Moudania, Thermi GR57001, Greece
| | - Emmanouil K Tzimtzimis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, School of Science and Technology, 14km Thessaloniki - N. Moudania, Thermi GR57001, Greece
| | - Constantinos K Zacharis
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124, Greece
| | - Nikoleta Theodoroula
- School of Health, Faculty of Pharmacy, Laboratory of Pharmacology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Eleni P Kalogianni
- Department of Food Science and Technology, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece
| | - Euterpi Demiri
- Department of Plastic Surgery, Medical School, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis S Vizirianakis
- School of Health, Faculty of Pharmacy, Laboratory of Pharmacology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; FunPATH (Functional Proteomics and Systems Biology Research Group at AUTH) Research Group, KEDEK - Aristotle University of Thessaloniki, Balkan Center, GR-57001 Thessaloniki, Greece
| | - Dimitrios Tzetzis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, School of Science and Technology, 14km Thessaloniki - N. Moudania, Thermi GR57001, Greece.
| | - Dimitrios G Fatouros
- School of Health, Faculty of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
39
|
Poloxamine/D-α-Tocopheryl polyethylene glycol succinate (TPGS) mixed micelles and gels: Morphology, loading capacity and skin drug permeability. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Costa Duarte FÍ, Sabino de Mendonça Costa AB, Vieira Filho JF, Pinto Freite VL, Alves Freire JV, Converti A, Ferrari M, Barreto Gomes AP, Ostrosky EA, Neves de Lima ÁA. In vitro release studies of ferulic acid in semi-solid formulations with optimized synthetic membrane. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Phenethyl Isothiocyanate-Containing Carbomer Gel for Use against Squamous Cell Carcinoma. Pharmaceutics 2021; 13:pharmaceutics13010106. [PMID: 33467626 PMCID: PMC7830123 DOI: 10.3390/pharmaceutics13010106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/26/2022] Open
Abstract
It is currently estimated that one in every five Americans will develop skin cancer during their lifetime. Squamous cell carcinoma (SCC) is a common type of skin cancer that can develop due to the skin’s exposure to the sun. Herein, we prepared a topical gel containing 0.5% v/w phenethyl isothiocyanate (PEITC) for the treatment of SCC. PEITC is a naturally occurring isothiocyanate that has been shown to have efficacy against various types of cancer in preclinical studies. We first incorporated PEITC into a carbomer gel. A uniform formulation was prepared, and its viscosity was appropriate for topical application. We then demonstrated the release of PEITC from the gel into and through a Strat-M skin-like membrane. Finally, the effects of the PEITC-containing gel were tested against SCC and normal keratinocytes skin cells in culture, and these results were compared to those obtained for free 5-fluoruracil (5-FU), a commonly used skin-cancer drug. Our results show that a homogeneous PEITC-containing topical gel can be prepared and used to kill SCC cells. Thus, our formulation may be useful for treating SCC in the clinic.
Collapse
|
42
|
Nair RS, Billa N, Leong CO, Morris AP. An evaluation of tocotrienol ethosomes for transdermal delivery using Strat-M ® membrane and excised human skin. Pharm Dev Technol 2020; 26:243-251. [PMID: 33274672 DOI: 10.1080/10837450.2020.1860087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tocotrienol (TRF) ethosomes were developed and evaluated in vitro for potential transdermal delivery against melanoma. The optimised TRF ethosomal size ranged between 64.9 ± 2.2 nm to 79.6 ± 3.9 nm and zeta potential (ZP) between -53.3 mV to -62.0 ± 2.6 mV. Characterisation of the ethosomes by ATR-FTIR indicated the successful formation of TRF-ethosomes. Scanning electron microscopy (SEM) images demonstrated the spherical shape of ethosomes, and the entrapment efficiencies of all the formulations were above 66%. In vitro permeation studies using full-thickness human skin showed that the permeation of gamma-T3 from the TRF ethosomal formulations was significantly higher (p < 0.05) than from the control. The cumulative amount of gamma-T3 permeated from TRF ethosome after 48 hours was 1.03 ± 0.24 µg cm-2 with a flux of 0.03 ± 0.01 µg cm-2 h-1. Furthermore, the flux of gamma-T3 across the Strat-M ® and the epidermal membrane was significantly higher than that across full-thickness human skin (p < 0.05). In vitro cytotoxicity studies on HaCat cells showed significantly higher cell viability than the pure drug solution (p < 0.05). The enhanced skin permeation and high cell viability associated with this formulation suggest a promising carrier for transdermal delivery.
Collapse
Affiliation(s)
- Rajesh Sreedharan Nair
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia.,School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Nashiru Billa
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia.,College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Chee-Onn Leong
- Center for Cancer and Stem Cell Research, International Medical University, Kuala Lumpur, Malaysia
| | - Andrew P Morris
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia.,Swansea University Medical School, Swansea University, Swansea, UK
| |
Collapse
|
43
|
Le Guyader G, Do B, Vieillard V, Andrieux K, Paul M. Comparison of the In Vitro and Ex Vivo Permeation of Existing Topical Formulations Used in the Treatment of Facial Angiofibroma and Characterization of the Variations Observed. Pharmaceutics 2020; 12:pharmaceutics12111060. [PMID: 33171735 PMCID: PMC7694993 DOI: 10.3390/pharmaceutics12111060] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Rapamycin has been used topically to treat facial angiofibromas associated with tuberous sclerosis for more than a decade. In the absence of a commercial form, a large number of formulations have been clinically tested. However, given the great heterogeneity of these studies, particularly with regard to the response criteria, it was difficult to know the impact and thus to compare the relevance of the formulations used. The objective of this work was therefore to evaluate the link between the diffusion of rapamycin and the physico-chemical characteristics of these different formulations on Strat-M® membranes as well as on human skin using Franz cells. Our results underline the importance of the type of vehicle used (hydrogel > cream > lipophilic ointment), the soluble state of rapamycin and its concentration close to saturation to ensure maximum thermodynamic activity. Thus, this is the first time that a comparative study of the different rapamycin formulations identified in the literature for the management of facial angiofibromas has been carried out using a pharmaceutical and biopharmaceutical approach. It highlights the important parameters to be considered in the development and optimization of topical rapamycin formulations with regard to cutaneous absorption for clinical efficacy.
Collapse
Affiliation(s)
- Guillaume Le Guyader
- Department of Pharmacy, AP-HP, Hôpital Henri Mondor, F-94010 Créteil, France; (B.D.); (V.V.); (M.P.)
- Department of Pharmacy, CHI Creteil, F-94010 Créteil, France
- Correspondence: ; Tel.: +33-1498-147-53
| | - Bernard Do
- Department of Pharmacy, AP-HP, Hôpital Henri Mondor, F-94010 Créteil, France; (B.D.); (V.V.); (M.P.)
- Department of Pharmacy, Université Paris-Saclay, Matériaux et Santé, 92296 Châtenay-Malabry, France
| | - Victoire Vieillard
- Department of Pharmacy, AP-HP, Hôpital Henri Mondor, F-94010 Créteil, France; (B.D.); (V.V.); (M.P.)
| | - Karine Andrieux
- Department of Pharmacy, Université de Paris, CNRS, INSERM, UTCBS, F-75006 Paris, France;
| | - Muriel Paul
- Department of Pharmacy, AP-HP, Hôpital Henri Mondor, F-94010 Créteil, France; (B.D.); (V.V.); (M.P.)
- Department of Pharmacy, EpidermE, Université Paris Est Créteil, F-94010 Créteil, France
| |
Collapse
|
44
|
Takeuchi I, Kagawa A, Makino K. Skin permeability and transdermal delivery route of 30-nm cyclosporin A-loaded nanoparticles using PLGA-PEG-PLGA triblock copolymer. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124866] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Davis DA, Martins PP, Zamloot MS, Kucera SA, Williams RO, Smyth HDC, Warnken ZN. Complex Drug Delivery Systems: Controlling Transdermal Permeation Rates with Multiple Active Pharmaceutical Ingredients. AAPS PharmSciTech 2020; 21:165. [PMID: 32500420 DOI: 10.1208/s12249-020-01682-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/08/2020] [Indexed: 11/30/2022] Open
Abstract
A transdermal drug delivery system (TDDS) is generally designed to deliver an active pharmaceutical ingredient (API) through the skin for systemic action. Permeation of an API through the skin is controlled by adjusting drug concentration, formulation composition, and patch design. A bilayer, drug-in-adhesive TDDS design may allow improved modulation of the drug release profile by facilitating varying layer thicknesses and drug spatial distribution across each layer. We hypothesized that the co-release of two fixed-dose APIs from a bilayer TDDS could be controlled by modifying spatial distribution and layer thickness while maintaining the same overall formulation composition. Franz cell diffusion studies demonstrated that three different bilayer patch designs, with different spatial distribution of drug and layer thicknesses, could modulate drug permeation and be compared with a reference single-layer monolith patch design. Compared with the monolith, decreased opioid antagonist permeation while maintaining fentanyl permeation could be achieved using a bilayer design. In addition, modulation of the drug spatial distribution and individual layer thicknesses, control of each drug's permeation could be independently achieved. Bilayer patch performance did not change over an 8-week period in accelerated stability storage conditions. In conclusion, modifying the patch design of a bilayer TDDS achieves an individualized permeation of each API while maintaining constant patch composition.
Collapse
|
46
|
Rabbit Ear Membranes as an Interesting Alternative for Permeability Tests in the Preformulation Stages of Cosmetic Products. COSMETICS 2020. [DOI: 10.3390/cosmetics7020035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In the pre-formulation stages of cosmetic products, in vitro permeability tests correspond to an important alternative for making better decisions regarding the stability, performance and biocompatibility of these products. Moreover, these tests allow us to establish whether a cosmetic ingredient can penetrate the different layers of the skin, which is essential in these products. This study was focused on the extraction, characterization and preservation of rabbit ear membranes and their subsequent performance comparison against two synthetic membranes (cellulose and Strat-MTM). For this, the rabbit ear stratum corneum was isolated and characterized histologically, using the Hematoxylin and Eosin (HE) staining protocol along with light microscopy and image analysis. Then, the Frank diffusion cell (FC) model was employed to evaluate and compare the permeability of the model compound Naproxen sodium (NPX) between the three membrane systems. The results show that NPX permeability is strongly affected by the type of membrane, and the implementation of rabbit ear membranes shows high reproducibility, demonstrating that this model could be implemented during pre-formulation studies of cosmetic products.
Collapse
|
47
|
Alonso C, Collini I, Carrer V, Barba C, Martí M, Coderch L. Permeation kinetics of active drugs through lanolin-based artificial membranes. Colloids Surf B Biointerfaces 2020; 192:111024. [PMID: 32388029 DOI: 10.1016/j.colsurfb.2020.111024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022]
Abstract
Skin-penetration studies play an essential role in the selection of drugs for dermal or transdermal application. In vivo experiments in humans are not always possible for ethical, practical, or economic reasons, especially in the first part of the drug development. It is necessary to develop alternative methods using accessible and reproducible surrogates for in vivo human skin. The in vitro methodologies using biological membranes (human and animal skin) are recognized and well accepted as an alternative but present high inter- and intra-individual variability. Therefore, the formation of synthetic membranes has been studied to obtain skin- mimicking models for permeation studies. The aim of this work is to create lanolin-based artificial membranes that can mimic the absorption through the skin of compounds applied topically. A series of synthetic membranes using two different types of lanolin (water-extracted (WE) and solvent-extracted (SE)) were prepared. Next, the in vitro release test of three drugs (diclofenac sodium, ibuprofen and lidocaine) was performed on artificial membranes and on porcine skin placed on Franz cells. The percentage of release, flux, permeability coefficient, lag time, area under the curve, maximal concentration and time were determined for each compound in the different types of membrane. The results showed that lanolin membranes presented a strong diminution of permeability compared to most artificial membranes, leading to a very similar permeability to that of skin. The SE and WE membranes showed a diminution of transepidermal water loss and permeability of compounds compared with membranes alone. The results from WE membranes were similar to those found for the skin. The lanolin membranes were not capable of perfectly mimicking permeation through the skin, but they did have the same rank order of drug penetration as the skin. It may be deduced from these tests that these systems provide more reliable results for compounds with low to medium lipophilicity. The results demonstrated that new lanolin-based artificial membranes have the potential to be exploited as screening models for determining the permeability of a compound destined to be topically delivered.
Collapse
Affiliation(s)
- Cristina Alonso
- Institute of Advanced Chemical of Catalonia of CSIC, (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - I Collini
- Institute of Advanced Chemical of Catalonia of CSIC, (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - V Carrer
- Institute of Advanced Chemical of Catalonia of CSIC, (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - C Barba
- Institute of Advanced Chemical of Catalonia of CSIC, (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M Martí
- Institute of Advanced Chemical of Catalonia of CSIC, (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - L Coderch
- Institute of Advanced Chemical of Catalonia of CSIC, (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
48
|
Bolla PK, Clark BA, Juluri A, Cheruvu HS, Renukuntla J. Evaluation of Formulation Parameters on Permeation of Ibuprofen from Topical Formulations Using Strat-M ® Membrane. Pharmaceutics 2020; 12:E151. [PMID: 32069850 PMCID: PMC7076669 DOI: 10.3390/pharmaceutics12020151] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 12/19/2022] Open
Abstract
Topical drug delivery is an attractive alternative to conventional methods because of advantages such as non-invasive delivery, by-pass of first pass metabolism, and improved patient compliance. However, several factors such as skin, physicochemical properties of the drug, and vehicle characteristics influence the permeation. Within a formulation, critical factors such as concentration of drug, physical state of drug in the formulation, and organoleptic properties affect the flux across the skin. The aim of the study was to develop and investigate topical semisolid preparations (creams and gels) with ibuprofen as the model drug and investigate the effect of various formulation parameters on the in-vitro performance across the Strat-M® membrane using flow-through cells. In addition, the physical stability of the developed formulations was investigated by studying viscosity, pH, and appearance. All the formulations developed in the study had appealing appearance with smooth texture and no signs of separation. Viscosity and pH of the formulations were acceptable. Cumulative amount of drug permeated at the end of 24 h was highest for clear gel (3% w/w ibuprofen; F6: 739.6 ± 36.1 µg/cm2) followed by cream with high concentration of ibuprofen in suspended form (5% w/w; F3: 320.8 ± 17.53 µg/cm2), emulgel (3% w/w ibuprofen; F5: 178.5 ± 34.5 µg/cm2), and cream with solubilized ibuprofen (3% w/w; F2A: 163.2 ± 9.36 µg/cm2). Results from this study showed that permeation of ibuprofen was significantly influenced by formulation parameters such as concentration of ibuprofen (3% vs. 5% w/w), physical state of ibuprofen (solubilized vs. suspended), formulation type (cream vs. gel), mucoadhesive agents, and viscosity (high vs. low). Thus, findings from this study indicate that pharmaceutical formulation scientists should explore these critical factors during the early development of any new topical drug product in order to meet pre-determined quality target product profile.
Collapse
Affiliation(s)
- Pradeep Kumar Bolla
- Department of Biomedical Engineering, College of Engineering, The University of Texas at El Paso, 500 W. University Ave, El Paso, TX 79968, USA;
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC 27268, USA;
| | - Bradley A. Clark
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC 27268, USA;
| | - Abhishek Juluri
- Department of Pharmaceutics, The University of Mississippi, Oxford, MS 38677, USA;
| | - Hanumanth Srikanth Cheruvu
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India;
| | - Jwala Renukuntla
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC 27268, USA;
| |
Collapse
|
49
|
Neupane R, Boddu SH, Renukuntla J, Babu RJ, Tiwari AK. Alternatives to Biological Skin in Permeation Studies: Current Trends and Possibilities. Pharmaceutics 2020; 12:E152. [PMID: 32070011 PMCID: PMC7076422 DOI: 10.3390/pharmaceutics12020152] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
: The transdermal route of drugs has received increased attention in recent years due to numerous advantages over the oral and injectable routes, such as avoidance of the hepatic metabolism, protection of drugs from the gastrointestinal tract, sustained drug delivery, and good patient compliance. The assessment of ex vivo permeation during the pharmaceutical development process helps in understanding the product quality and performance of a transdermal delivery system. Generally, excised human skin relevant to the application site or animal skin is recommended for ex vivo permeation studies. However, the limited availability of the human skin and ethical issues surrounding the use of animal skin rendered these models less attractive in the permeation study. In the last three decades, enormous efforts have been put into developing artificial membranes and 3D cultured human skin models as surrogates to the human skin. This manuscript provides an insight on the European Medicines Agency (EMA) guidelines for permeation studies and the parameters affected when using Franz diffusion cells in the permeation study. The need and possibilities for skin alternatives, such as artificially cultured human skin models, parallel artificial membrane permeability assays (PAMPA), and artificial membranes for penetration and permeation studies, are comprehensively discussed.
Collapse
Affiliation(s)
- Rabin Neupane
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (R.N.); (A.K.T.)
| | - Sai H.S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, UAE;
| | - Jwala Renukuntla
- Department of Pharmaceutical Sciences, School of Pharmacy, High Point University, High Point, NC 27240, USA
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA;
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (R.N.); (A.K.T.)
| |
Collapse
|
50
|
Vigato AA, Querobino SM, de Faria NC, Candido ACBB, Magalhães LG, Cereda CMS, Tófoli GR, Campos EVR, Machado IP, Fraceto LF, de Sairre MI, de Araujo DR. Physico-Chemical Characterization and Biopharmaceutical Evaluation of Lipid-Poloxamer-Based Organogels for Curcumin Skin Delivery. Front Pharmacol 2019; 10:1006. [PMID: 31572185 PMCID: PMC6751402 DOI: 10.3389/fphar.2019.01006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/08/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Aryane Alves Vigato
- Human and Natural Sciences Center, ABC Federal University, Santo André, Brazil
| | | | | | | | - Lizandra Guidi Magalhães
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, Brazil
| | | | | | - Estefânia Vangelie Ramos Campos
- Human and Natural Sciences Center, ABC Federal University, Santo André, Brazil
- Department of Environmental Engineering, State University “Júlio de Mesquita Filho”, Sorocaba, Brazil
| | - Ian Pompermayer Machado
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | | | - Daniele Ribeiro de Araujo
- Human and Natural Sciences Center, ABC Federal University, Santo André, Brazil
- *Correspondence: Daniele Ribeiro de Araujo, ;
| |
Collapse
|