1
|
Islam N, Suwandecha T, Srichana T. Dry powder inhaler design and particle technology in enhancing Pulmonary drug deposition: challenges and future strategies. Daru 2024; 32:761-779. [PMID: 38861247 PMCID: PMC11555000 DOI: 10.1007/s40199-024-00520-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/27/2024] [Indexed: 06/12/2024] Open
Abstract
OBJECTIVES The efficient delivery of drugs from dry powder inhaler (DPI) formulations is associated with the complex interaction between the device design, drug formulations, and patient's inspiratory forces. Several challenges such as limited emitted dose of drugs from the formulation, low and variable deposition of drugs into the deep lungs, are to be resolved for obtaining the efficiency in drug delivery from DPI formulations. The objective of this study is to review the current challenges of inhaled drug delivery technology and find a way to enhance the efficiency of drug delivery from DPIs. METHODS/EVIDENCE ACQUISITION Using appropriate keywords and phrases as search terms, evidence was collected from the published articles following SciFinder, Web of Science, PubMed and Google Scholar databases. RESULTS Successful lung drug delivery from DPIs is very challenging due to the complex anatomy of the lungs and requires an integrated strategy for particle technology, formulation design, device design, and patient inhalation force. New DPIs are still being developed with limited performance and future device design employs computer simulation and engineering technology to overcome the ongoing challenges. Many issues of drug formulation challenges and particle technology are concerning factors associated with drug dispersion from the DPIs into deep lungs. CONCLUSION This review article addressed the appropriate design of DPI devices and drug formulations aligned with the patient's inhalation maneuver for efficient delivery of drugs from DPI formulations.
Collapse
Affiliation(s)
- Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.
- Centre for Immunology and Infection Control (CIIC), Queensland University of Technology, Brisbane, QLD, Australia.
| | - Tan Suwandecha
- Drug and Cosmetic Excellence Center and School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat, 80160, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center and Department of Pharmaceutical Technology, Prince of Songkla University, Hat Yai, Songkla, 90110, Thailand.
| |
Collapse
|
2
|
Cojocaru E, Petriș OR, Cojocaru C. Nanoparticle-Based Drug Delivery Systems in Inhaled Therapy: Improving Respiratory Medicine. Pharmaceuticals (Basel) 2024; 17:1059. [PMID: 39204164 PMCID: PMC11357421 DOI: 10.3390/ph17081059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Inhaled nanoparticle (NP) therapy poses intricate challenges in clinical and pharmacodynamic realms. Recent strides have revolutionized NP technology by enabling the incorporation of diverse molecules, thus circumventing systemic clearance mechanisms and enhancing drug effectiveness while mitigating systemic side effects. Despite the established success of systemic NP delivery in oncology and other disciplines, the exploration of inhaled NP therapies remains relatively nascent. NPs loaded with bronchodilators or anti-inflammatory agents exhibit promising potential for precise distribution throughout the bronchial tree, offering targeted treatment for respiratory diseases. This article conducts a comprehensive review of NP applications in respiratory medicine, highlighting their merits, ranging from heightened stability to exacting lung-specific delivery. It also explores cutting-edge technologies optimizing NP-loaded aerosol systems, complemented by insights gleaned from clinical trials. Furthermore, the review examines the current challenges and future prospects in NP-based therapies. By synthesizing current data and perspectives, the article underscores the transformative promise of NP-mediated drug delivery in addressing chronic conditions such as chronic obstructive pulmonary disease, a pressing global health concern ranked third in mortality rates. This overview illuminates the evolving landscape of NP inhalation therapies, presenting optimistic avenues for advancing respiratory medicine and improving patient outcomes.
Collapse
Affiliation(s)
- Elena Cojocaru
- Morpho-Functional Sciences II Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Ovidiu Rusalim Petriș
- Medical II Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristian Cojocaru
- Medical III Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
3
|
Li Y, Huang Y, Zhu K, Duan X, Li S, Xu M, Yang C, Liu J, Bäumler H, Yu P, Xie H, Li B, Cao Y, Chen L. Functionalized protein microparticles targeting hACE2 as a novel preventive strategy for SARS-CoV-2 infection. Int J Pharm 2023; 638:122921. [PMID: 37028575 PMCID: PMC10082558 DOI: 10.1016/j.ijpharm.2023.122921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2), resulting in a serious burden on public health and social economy worldwide. SARS-CoV-2 infection is mainly initialized in the nasopharyngeal cavity through the binding of viral spike (S) protein to human angiotensin-converting enzyme 2 (hACE2) receptors which are widely expressed in many human cells. Thus, blockade of the interaction between viral S protein and hACE2 receptor in the primary entry site is a promising prevention strategy for the management of COVID-19. Here we showed protein microparticles (PMPs) decorated with hACE2 could bind and neutralize SARS-CoV-2 S protein-expressing pseudovirus (PSV) and protect host cells from infection in vitro. In the hACE2 transgenic mouse model, administration of intranasal spray with hACE2-decorated PMPs markedly decreased the viral load of SARS-CoV-2 in the lungs though the inflammation was not attenuated significantly. Our results provided evidence for developing functionalized PMPs as a potential strategy for preventing emerging air-borne infectious pathogens, such as SARS-CoV-2 infection.
Collapse
|
4
|
Hye T, Moinuddin SM, Sarkar T, Nguyen T, Saha D, Ahsan F. An evolving perspective on novel modified release drug delivery systems for inhalational therapy. Expert Opin Drug Deliv 2023; 20:335-348. [PMID: 36720629 PMCID: PMC10699164 DOI: 10.1080/17425247.2023.2175814] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Drugs delivered via the lungs are predominantly used to treat various respiratory disorders, including asthma, chronic obstructive pulmonary diseases, respiratory tract infections and lung cancers, and pulmonary vascular diseases such as pulmonary hypertension. To treat respiratory diseases, targeted, modified or controlled release inhalation formulations are desirable for improved patient compliance and superior therapeutic outcome. AREAS COVERED This review summarizes the important factors that have an impact on the inhalable modified release formulation approaches with a focus toward various formulation strategies, including dissolution rate-controlled systems, drug complexes, site-specific delivery, drug-polymer conjugates, and drug-polymer matrix systems, lipid matrix particles, nanosystems, and formulations that can bypass clearance via mucociliary system and alveolar macrophages. EXPERT OPINION Inhaled modified release formulations can potentially reduce dosing frequency by extending drug's residence time in the lungs. However, inhalable modified or controlled release drug delivery systems remain unexplored and underdeveloped from the commercialization perspective. This review paper addresses the current state-of-the-art of inhaled controlled release formulations, elaborates on the avenues for developing newer technologies for formulating various drugs with tailored release profiles after inhalational delivery and explains the challenges associated with translational feasibility of modified release inhalable formulations.
Collapse
Affiliation(s)
- Tanvirul Hye
- Oakland University William Beaumont School of Medicine, 586 Pioneer Dr, 48309, Rochester, MI, USA
| | - Sakib M. Moinuddin
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, 95757, Elk Grove, CA, USA
- East Bay Institute for Research & Education (EBIRE), 95655, Mather, CA, USA
| | - Tanoy Sarkar
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, 95757, Elk Grove, CA, USA
- East Bay Institute for Research & Education (EBIRE), 95655, Mather, CA, USA
| | - Trieu Nguyen
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, 95757, Elk Grove, CA, USA
- East Bay Institute for Research & Education (EBIRE), 95655, Mather, CA, USA
| | - Dipongkor Saha
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, 95757, Elk Grove, CA, USA
| | - Fakhrul Ahsan
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, 95757, Elk Grove, CA, USA
- East Bay Institute for Research & Education (EBIRE), 95655, Mather, CA, USA
- MedLuidics, 95757, Elk Grove, CA, USA
| |
Collapse
|
5
|
Timin AS, Postovalova AS, Karpov TE, Antuganov D, Bukreeva AS, Akhmetova DR, Rogova AS, Muslimov AR, Rodimova SA, Kuznetsova DS, Zyuzin MV. Calcium carbonate carriers for combined chemo- and radionuclide therapy of metastatic lung cancer. J Control Release 2022; 344:1-11. [PMID: 35181413 DOI: 10.1016/j.jconrel.2022.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022]
Abstract
Considering the clinical limitations of individual approaches against metastatic lung cancer, the use of combined therapy can potentially improve the therapeutic effect of treatment. However, determination of the appropriate strategy of combined treatment can be challenging. In this study, combined chemo- and radionuclide therapy has been realized using radionuclide carriers (177Lu-labeled core-shell particles, 177Lu-MPs) and chemotherapeutic drug (cisplatin, CDDP) for treatment of lung metastatic cancer. The developed core-shell particles can be effectively loaded with 177Lu therapeutic radionuclide and exhibit good radiochemical stability for a prolonged period of time. In vivo biodistribution experiments have demonstrated the accumulation of the developed carriers predominantly in lungs. Direct radiometry analysis did not reveal an increased absorbance of radiation by healthy organs. It has been shown that the radionuclide therapy with 177Lu-MPs in mono-regime is able to inhibit the number of metastatic nodules (untreated mice = 120 ± 12 versus177Lu-MPs = 50 ± 7). The combination of chemo- and radionuclide therapy when using 177Lu-MPs and CDDP further enhanced the therapeutic efficiency of tumor treatment compared to the single therapy (177Lu-MPs = 50 ± 7 and CDDP = 65 ± 10 versus177Lu-MPs + CDDP = 37 ± 5). Thus, this work is a systematic research on the applicability of the combination of chemo- and radionuclide therapy to treat metastatic lung cancer.
Collapse
Affiliation(s)
- Alexander S Timin
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation; Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation; Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russian Federation.
| | - Alisa S Postovalova
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation; Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Timofey E Karpov
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation; Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Dmitrii Antuganov
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation
| | - Anastasia S Bukreeva
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Darya R Akhmetova
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Anna S Rogova
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Albert R Muslimov
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Svetlana A Rodimova
- N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina ave., Nizhny Novgorod 603022, Russian Federation; Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky research medical university, 10/1 Minin and Pozharsky sq., Nizhny Novgorod 603022, Russian Federation
| | - Daria S Kuznetsova
- N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina ave., Nizhny Novgorod 603022, Russian Federation; Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky research medical university, 10/1 Minin and Pozharsky sq., Nizhny Novgorod 603022, Russian Federation
| | - Mikhail V Zyuzin
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation
| |
Collapse
|
6
|
Zeeshan F, Madheswaran T, Panneerselvam J, Taliyan R, Kesharwani P. Human Serum Albumin as Multifunctional Nanocarrier for Cancer Therapy. J Pharm Sci 2021; 110:3111-3117. [PMID: 33989679 DOI: 10.1016/j.xphs.2021.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 01/05/2023]
Abstract
Human serum albumin or simply called albumin is a flexible protein employed as a carrier in the fabrication of albumin-based nanocarriers (ANCs) for the administration of cancer therapeutics. Albumin can contribute enhanced tumour specificity, reduced drug induced cytotoxicity and retain concentration of the therapeutically active agent such as drug, peptide, protein, and gene for a prolonged time duration. Nevertheless, apart from cancer management, ANCs are also employed in the diagnosis, imaging, and multimodal cancer therapy. This article figures out salient characteristics, design as well as categories of ANCs in the context of their application in cancer management. In addition, this review article discusses the fabrication methods of ANCs, use of ANCs in gene, cancer, and multimodal therapy along with cancer diagnosis and imaging. Lastly, this review also briefly discusses about (ANCs) formulations, commercial products, and those under clinical testing.
Collapse
Affiliation(s)
- Farrukh Zeeshan
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University (IMU), Kuala Lumpur, Malaysia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University (IMU), Kuala Lumpur, Malaysia
| | - Jithendra Panneerselvam
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University (IMU), Kuala Lumpur, Malaysia
| | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India.
| |
Collapse
|
7
|
Guan M, Zeng X, Shi R, Zheng Y, Fan W, Su W. Aerosolization Performance, Antitussive Effect and Local Toxicity of Naringenin-Hydroxypropyl-β-Cyclodextrin Inhalation Solution for Pulmonary Delivery. AAPS PharmSciTech 2021; 22:20. [PMID: 33389225 DOI: 10.1208/s12249-020-01889-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/23/2020] [Indexed: 01/08/2023] Open
Abstract
The aim of present study was to evaluate the feasibility of a naringenin-hydroxypropyl-β-cyclodextrin (naringenin-HPβCD) inhalation solution for pulmonary delivery. Naringenin, a flavanone derived from citrus fruits, has been proven to exhibit excellent peripheral antitussive effect. To address the limitation of its poor oral bioavailability and low local concentration in the lung, a naringenin-HPβCD inhalation solution was prepared for pulmonary delivery. The aerosolization performance of formulation was evaluated by next generation impactor (NGI). Both dose-dependent and time-dependent antitussive effects of naringenin-HPβCD inhalation solution on acute cough induced by citric acid in guinea pigs were investigated. In vitro toxicity of naringenin-HPβCD inhalation solution in pulmonary Calu-3 cells was evaluated by MTS assay, and in vivo local toxicity investigation was achieved by assessing bronchoalveolar lavage (BALF) and lung histology after a 7-day inhalation treatment in guinea pigs. Fine particle fraction (FPF) of the formulation was determined as 53.09%. After inhalation treatment of 15 min, naringenin-HPβCD inhalation solution within the studied range of 0.2-3.6 mg/kg could dose-dependently reduce the cough frequency with the antitussive rate of 29.42-39.42%. Naringenin-HPβCD inhalation solution in concentration range of 100-400 μM did not decrease cell viability of Calu-3 cells, and the maximum effective dose (3.6 mg/kg) was non-toxic during the short-term inhalation treatment for guinea pigs. In conclusion, naringenin-HPβCD inhalation solution was capable for nebulization and could provide rapid response with reduced dose for the treatment of cough.
Collapse
|
8
|
Dorjsuren B, Chaurasiya B, Ye Z, Liu Y, Li W, Wang C, Shi D, Evans CE, Webster TJ, Shen Y. Cetuximab-Coated Thermo-Sensitive Liposomes Loaded with Magnetic Nanoparticles and Doxorubicin for Targeted EGFR-Expressing Breast Cancer Combined Therapy. Int J Nanomedicine 2020; 15:8201-8215. [PMID: 33122906 PMCID: PMC7591010 DOI: 10.2147/ijn.s261671] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/14/2020] [Indexed: 02/01/2023] Open
Abstract
Background One major limitation of cancer chemotherapy is a failure to specifically target a tumor, potentially leading to side effects such as systemic cytotoxicity. In this case, we have generated a cancer cell-targeting nanoparticle-liposome drug delivery system that can be activated by near-infrared laser light to enable local photo-thermal therapy and the release of chemotherapeutic agents, which could achieve combined therapeutic efficiency. Methods To exploit the magnetic potential of iron oxide, we prepared and characterized citric acid-coated iron oxide magnetic nanoparticles (CMNPs) and encapsulated them into thermo-sensitive liposomes (TSLs). The chemotherapeutic drug, doxorubicin (DOX), was then loaded into the CMNP-TSLs, which were coated with an antibody against the epidermal growth factor receptor (EGFR), cetuximab (CET), to target EGFR-expressing breast cancer cells in vitro and in vivo studies in mouse model. Results The resulting CET-DOX-CMNP–TSLs were stable with an average diameter of approximately 120 nm. First, the uptake of TSLs into breast cancer cells increased by the addition of the CET coating. Next, the viability of breast cancer cells treated with CET-CMNP-TSLs and CET-DOX-CMNP-TSLs was reduced by the addition of photo-thermal therapy using near-infrared (NIR) laser irradiation. What is more, the viability of breast cancer cells treated with CMNP-TSLs plus NIR was reduced by the addition of DOX to the CMNP-TSLs. Finally, photo-thermal therapy studies on tumor-bearing mice subjected to NIR laser irradiation showed that treatment with CMNP-TSLs or CET-CMNP-TSLs led to an increase in tumor surface temperature to 44.7°C and 48.7°C, respectively, compared with saline-treated mice body temperature ie, 35.2°C. Further, the hemolysis study shows that these nanocarriers are safe for systemic delivery. Conclusion Our studies revealed that a combined therapy of photo-thermal therapy and targeted chemotherapy in thermo-sensitive nano-carriers represents a promising therapeutic strategy against breast cancer.
Collapse
Affiliation(s)
- Buyankhishig Dorjsuren
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Birendra Chaurasiya
- Department of Pediatrics, Critical Care Division, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zixuan Ye
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yanyan Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wei Li
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Chaoyang Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Di Shi
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Colin E Evans
- Department of Pediatrics, Critical Care Division, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Yan Shen
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
9
|
Parodi A, Miao J, Soond SM, Rudzińska M, Zamyatnin AA. Albumin Nanovectors in Cancer Therapy and Imaging. Biomolecules 2019; 9:E218. [PMID: 31195727 PMCID: PMC6627831 DOI: 10.3390/biom9060218] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
Albumin nanovectors represent one of the most promising carriers recently generated because of the cost-effectiveness of their fabrication, biocompatibility, safety, and versatility in delivering hydrophilic and hydrophobic therapeutics and diagnostic agents. In this review, we describe and discuss the recent advances in how this technology has been harnessed for drug delivery in cancer, evaluating the commonly used synthesis protocols and considering the key factors that determine the biological transport and the effectiveness of such technology. With this in mind, we highlight how clinical and experimental albumin-based delivery nanoplatforms may be designed for tackling tumor progression or improving the currently established diagnostic procedures.
Collapse
Affiliation(s)
- Alessandro Parodi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia.
| | - Jiaxing Miao
- Ohio State University, 410 W 10th Ave. Columbus, 43210, Ohio, USA.
| | - Surinder M Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia.
| | - Magdalena Rudzińska
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia.
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
10
|
Mohammad IS, Hu H, Yin L, He W. Drug nanocrystals: Fabrication methods and promising therapeutic applications. Int J Pharm 2019; 562:187-202. [PMID: 30851386 DOI: 10.1016/j.ijpharm.2019.02.045] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/07/2019] [Accepted: 02/25/2019] [Indexed: 12/29/2022]
Abstract
The drug nanocrystals (NCs) with unique physicochemical properties are now considered as a promising drug delivery system for poorly water-soluble drugs. So far >20 formulations of NCs have been approved in the market. In this review, we summarized recent advances of NCs with emphasis on their therapeutic applications based on administration route and disease states. At the end, we present a brief description of the future perspectives of NCs and their potential role as a promising drug delivery system. As a strategy for solubilization and bioavailability enhancement, the NCs have gained significant success. Besides this, the function of NCs is still far from developed. The emerging NC-based drug delivery approach would widen the applications of NCs in drug delivery and bio-medical field. Their in vitro and in vivo fate is extremely unclear; and the development of hybrid NCs with environment-sensitive fluorophores may assist to extend the scope of bio-imaging and provide better insight to their intracellular uptake kinetics, in vitro and in vivo.
Collapse
Affiliation(s)
- Imran Shair Mohammad
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Haiyan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Lifang Yin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Wei He
- Shanghai Dermatology Hospital, Shanghai 200443, PR China; Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
11
|
Chaurasiya B, Zhou M, Tu J, Sun C. Design and validation of a simple device for insufflation of dry powders in a mice model. Eur J Pharm Sci 2018; 123:495-501. [PMID: 30098390 DOI: 10.1016/j.ejps.2018.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 08/04/2018] [Accepted: 08/08/2018] [Indexed: 01/08/2023]
Abstract
Delivery of inhalational dry powders (DPs) to the lung of mice is pivotal for pre-clinical pharmacokinetic and pharmacodynamic investigations. Although several devices have been reported, their application is always limited by many factors, including complicated design, high price, commercially discontinued status, as well as requirement of special skills. Here, we have introduced a simple device for non-invasive and precise delivery of DPs in mice. We set up the self-made device using a 20 G cannula tube and a 1 mL syringe. Subsequently, it was validated in terms for proper installation, delivery of dry powder and safety. Taken together, we believe that this device will be helpful in pre-clinical studies, especially in laboratory experiments, for respiratory drug delivery in small animal models.
Collapse
Affiliation(s)
- Birendra Chaurasiya
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Muye Zhou
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Jiasheng Tu
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | - Chunmeng Sun
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|