1
|
Casula L, Craparo EF, Lai E, Scialabba C, Valenti D, Schlich M, Sinico C, Cavallaro G, Lai F. Encapsulation of Nanocrystals in Mannitol-Based Inhalable Microparticles via Spray-Drying: A Promising Strategy for Lung Delivery of Curcumin. Pharmaceuticals (Basel) 2024; 17:1708. [PMID: 39770549 PMCID: PMC11676507 DOI: 10.3390/ph17121708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Curcumin is well known for its great anti-inflammatory and antioxidant efficacy, representing a potential strategy for the treatment of respiratory disorders. However, several drawbacks, such as chemical instability, poor water solubility and rapid metabolism, result in low bioavailability, limiting its clinical applications. In this study, curcumin nanocrystals were incorporated into mannitol-based microparticles to obtain an inhalable dry powder. METHODS A curcumin nanosuspension was produced by wet-ball media milling and thoroughly characterized. Spray drying was then used to produce mannitol microparticles incorporating curcumin nanocrystals. In vitro release/dissolution tests were carried out in simulated lung fluids, and the aerosolization properties were evaluated using a Next-Generation Impactor (NGI, Apparatus E Ph. Eu.). RESULTS The incorporation of curcumin nanocrystals into mannitol-based microparticles influenced their morphological properties, such as geometric diameters, and flowability. Despite these changes, nebulization studies confirmed optimal MMAD values (<5 µm), while multi-step dissolution/release studies evidenced the influence of mannitol. CONCLUSIONS The developed curcumin nanocrystals-loaded mannitol microparticles show promise as an inhalable treatment for respiratory diseases, combining effective aerodynamic properties with controlled drug release.
Collapse
Affiliation(s)
- Luca Casula
- Department of Life and Environmental Sciences, University of Cagliari, S.P. Monserrato-Sestu km 0.700, Monserrato, 09042 Cagliari, Italy; (L.C.); (E.L.); (D.V.); (M.S.); (C.S.)
| | - Emanuela Fabiola Craparo
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (E.F.C.); (C.S.); (G.C.)
| | - Eleonora Lai
- Department of Life and Environmental Sciences, University of Cagliari, S.P. Monserrato-Sestu km 0.700, Monserrato, 09042 Cagliari, Italy; (L.C.); (E.L.); (D.V.); (M.S.); (C.S.)
| | - Cinzia Scialabba
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (E.F.C.); (C.S.); (G.C.)
| | - Donatella Valenti
- Department of Life and Environmental Sciences, University of Cagliari, S.P. Monserrato-Sestu km 0.700, Monserrato, 09042 Cagliari, Italy; (L.C.); (E.L.); (D.V.); (M.S.); (C.S.)
| | - Michele Schlich
- Department of Life and Environmental Sciences, University of Cagliari, S.P. Monserrato-Sestu km 0.700, Monserrato, 09042 Cagliari, Italy; (L.C.); (E.L.); (D.V.); (M.S.); (C.S.)
| | - Chiara Sinico
- Department of Life and Environmental Sciences, University of Cagliari, S.P. Monserrato-Sestu km 0.700, Monserrato, 09042 Cagliari, Italy; (L.C.); (E.L.); (D.V.); (M.S.); (C.S.)
| | - Gennara Cavallaro
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (E.F.C.); (C.S.); (G.C.)
| | - Francesco Lai
- Department of Life and Environmental Sciences, University of Cagliari, S.P. Monserrato-Sestu km 0.700, Monserrato, 09042 Cagliari, Italy; (L.C.); (E.L.); (D.V.); (M.S.); (C.S.)
| |
Collapse
|
2
|
Verma SK, Patel KS, Naik BK. Coupled Discrete Phase and Eulerian Wall Film Models for Drug Deposition Efficacy Analysis in Human Respiratory Airways. Mol Pharm 2024; 21:5071-5087. [PMID: 39370819 DOI: 10.1021/acs.molpharmaceut.4c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The current study explores the effectiveness of drug particle deposition into human respiratory airways to cure various pulmonary-bound ailments. It has been assumed that drug solutions are inhaled in the form of tiny droplets or mist, which after striking create a thin layer along the inner surface of airways where the virus initially resides to infect the human body. A coupled Eulerian wall film (EWF) and discrete phase model (DPM) based simulation approach is used to capture these dynamics. Here, the Lagrangian DPM technique tracks the dynamics of tiny droplets, while the liquid layer formation after striking is captured using the Eulerian thin film approximations or the EWF model. Previous studies in this field primarily employed only the DPM method, which is inadequate to predict the poststriking dynamics of drug layer deposition and their spread to neutralize the respiratory virus. The drug delivery effectiveness is characterized by three different particle sizes, 1, 5, and 10 μm at the inhalation rates of 15, 30, and 60 L per minute (LPM). It has been found that the size of the drug particles significantly influences drug delivery effectiveness. The film thickness increases monotonically with particle sizes and inhalation rates. However, this increase in averaged film thickness is prominent in the range 5 to 10 μm (≈60%) compared to 1 to 5 μm (≈10%) droplet sizes at generation level 4 (G4). The other deposition parameters, e.g., deposition fraction, deposition density, and area coverage) roughly show similar behavior with the increase in droplet sizes. Therefore, it is recommended to vary the droplet sizes between 5 and 10 μm for better deposition effectiveness. The sizes of more than 10 μm mostly stuck into the oral cavity and cannot reach the targeted generations. In contrast, less than 5 μm may reach much deeper generations than the targeted one.
Collapse
Affiliation(s)
- Sameer Kumar Verma
- Department of Mechanical Engineering, National Institute of Technology Rourkela, Odisha-769008, India
- Sustainable Thermal Energy Systems Laboratory (STESL), Department of Mechanical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha-769008, India
| | - Kishore Singh Patel
- Department of Mechanical Engineering, National Institute of Technology Rourkela, Odisha-769008, India
| | - B Kiran Naik
- Department of Mechanical Engineering, National Institute of Technology Rourkela, Odisha-769008, India
- Sustainable Thermal Energy Systems Laboratory (STESL), Department of Mechanical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha-769008, India
| |
Collapse
|
3
|
Khaksar S, Paknezhad M, Saidi M, Ahookhosh K. Numerical modeling of particle deposition in a realistic respiratory airway using CFD-DPM and genetic algorithm. Biomech Model Mechanobiol 2024; 23:1661-1677. [PMID: 38869656 DOI: 10.1007/s10237-024-01861-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024]
Abstract
In this study, a realistic model of the respiratory tract obtained from CT medical images was used to solve the flow field and particle motion using the Eulerian-Lagrangian approach to obtain the maximum particle deposition in the bronchial tree for the main purpose of optimizing the performance of drug delivery devices. The effects of different parameters, including particle diameter, particle shape factor, and air velocity, on the airflow field and particle deposition pattern in different zones of the lung were investigated. In addition, a genetic algorithm was employed to obtain the maximum particle deposition in the bronchial tree and the effect of the aforementioned parameters on particle deposition. Reverse flow, vortex formation, and laryngeal jet all affect the airflow structure and particle deposition pattern. The mouth-throat region had the highest deposition fraction at various flow rates. A change in the deposition pattern with an increased deposition fraction in the throat was observed owing to the increased diameter and shape factor of the particles, resulting from the higher inertia and drag force, respectively. The particle deposition analysis showed that three parameters, shape factor, diameter, and velocity, are directly related to particle deposition, and the diameter is the most effective parameter for particle deposition, with an effect of 60% compared to the shape factor and velocity. Finally, the prediction of the genetic algorithm reported a maximum particle deposition in the bronchial tree of 17%, whereas, based on the numerical results, the maximum particle deposition was reported to be 16%. Therefore, there is a 1% difference between the prediction of the genetic algorithm and the numerical results, which indicates the high accuracy of the prediction of the genetic algorithm.
Collapse
Affiliation(s)
- Saba Khaksar
- Mechanical Engineering Department, Faculty of Engineering, Razi University, 6714414971, Kermanshah, Iran
| | - Mehrad Paknezhad
- Mechanical Engineering Department, Faculty of Engineering, Razi University, 6714414971, Kermanshah, Iran
| | - Maysam Saidi
- Mechanical Engineering Department, Faculty of Engineering, Razi University, 6714414971, Kermanshah, Iran.
| | - Kaveh Ahookhosh
- Biomedical MRI Unit/Mosaic, Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
4
|
Spasov GH, Rossi R, Vanossi A, Cottini C, Benassi A. A critical analysis of the CFD-DEM simulation of pharmaceutical aerosols deposition in upper intra-thoracic airways: Considerations on air flow. Comput Biol Med 2024; 170:107948. [PMID: 38219648 DOI: 10.1016/j.compbiomed.2024.107948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/12/2023] [Accepted: 01/01/2024] [Indexed: 01/16/2024]
Abstract
A well-corroborated numerical methodology ensuring reproducibility in the modeling of pharmaceutical aerosols deposition in the respiratory system via CFD-DEM simulations within the RANS framework is currently missing. Often, inadequately clarified assumptions and approximations and the lack of evidences on their quantitative impact on the simulated deposition phenomenology, make a direct comparison among the different theoretical studies and the limited number of experiments a very challenging task. Here, with the ultimate goal of providing a critical analysis of some crucial computational aspects of aerosols deposition, we address the issues of velocity fluctuations propagation in the upper intra-thoracic airways and of the persistence of secondary flows using the SimInhale reference benchmark. We complement the investigation by describing how methodologies used to drive the flow through a truncated lung model may affect numerical results and how small discrepancies are observed in velocity profiles when comparing simulations based on different meshing strategies.
Collapse
Affiliation(s)
- G H Spasov
- International School for Advanced Studies (SISSA), Trieste, Italy; CNR-IOM, Consiglio Nazionale delle Ricerche - Istituto Officina dei Materiali, Trieste, Italy
| | - R Rossi
- RED Fluid Dynamics, Cagliari, Italy
| | - A Vanossi
- International School for Advanced Studies (SISSA), Trieste, Italy; CNR-IOM, Consiglio Nazionale delle Ricerche - Istituto Officina dei Materiali, Trieste, Italy
| | - C Cottini
- Chiesi Farmaceutici S.p.A., Parma, Italy
| | - A Benassi
- International School for Advanced Studies (SISSA), Trieste, Italy; Chiesi Farmaceutici S.p.A., Parma, Italy.
| |
Collapse
|
5
|
Craparo EF, Cabibbo M, Scialabba C, Casula L, Lai F, Cavallaro G. Rapamycin-based inhaled therapy for potential treatment of COPD-related inflammation: production and characterization of aerosolizable nano into micro (NiM) particles. Biomater Sci 2024; 12:387-401. [PMID: 37997957 DOI: 10.1039/d3bm01210g] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Our paper describes the production and characterization of inhalable microparticles loaded with nanoparticles for the lung administration of rapamycin (Rapa). In detail, core-shell lipid/polymer hybrid nanoparticles loaded with Rapa (Rapa@Man-LPHNPs) were produced with mean size of about 128 nm and slightly negative ζ potential (-13.8 mV). A fluorescent graft polyaspartamide-poly(lactic-co-glycolic acid) copolymer (PHEA-g-RhB-g-PLGA) for use as the polymeric core was obtained by nanoprecipitation, while an appropriate mixture of DPPC and mannosylated phospholipid (DSPE-PEG2000-Man) was used to provide the macrophage-targeting lipid shell. The successful formation of Rapa@Man-LPHNPs was confirmed by TEM and DSC analyses. The loaded drug (4.3 wt% of the total weight) was slowly released from the polymeric core and protected from hydrolysis, with the amount of intact drug after 24 h of incubation in the medium being equal to 74 wt% (compared to 40% when the drug is freely incubated at the same concentration). To obtain a formulation administrable by inhalation, Rapa@Man-LPHNPs were entrapped inside PVA : LEU microparticles by using the nano into micro (NiM) strategy, specifically by spray drying (SD) in the presence of a pore-forming agent. In this way, NiM particles with geometric and theoretical aerodynamic diameters equal to 4.52 μm and 3.26 μm, respectively, were obtained. Furthermore, these particles showed optimal nebulization performance, having an FPF and an MMAD equal to 27.5% and 4.3 μm, respectively.
Collapse
Affiliation(s)
- Emanuela Fabiola Craparo
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy.
| | - Marta Cabibbo
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy.
| | - Cinzia Scialabba
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy.
| | - Luca Casula
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale, 72, 09124 Cagliari, Italy
| | - Francesco Lai
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale, 72, 09124 Cagliari, Italy
| | - Gennara Cavallaro
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy.
- Advanced Technology and Network Center (ATeN Center), University of Palermo, Palermo 90133, Italy
| |
Collapse
|
6
|
Lou H, Ding L, Wu T, Li W, Khalaf R, Smyth HDC, Reid DL. Emerging Process Modeling Capabilities for Dry Powder Operations for Inhaled Formulations. Mol Pharm 2023; 20:5332-5344. [PMID: 37783568 DOI: 10.1021/acs.molpharmaceut.3c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Dry powder inhaler (DPI) products are commonly formulated as a mixture of micronized drug particles and large carrier particles, with or without additional fine particle excipients, followed by final powder filling into dose containment systems such as capsules, blisters, or reservoirs. DPI product manufacturing consists of a series of unit operations, including particle size reduction, blending, and filling. This review provides an overview of the relevant critical process parameters used for jet milling, high-shear blending, and dosator/drum capsule filling operations across commonly utilized instruments. Further, this review describes the recent achievements regarding the application of empirical and mechanistic models, especially discrete element method (DEM) simulation, in DPI process development. Although to date only limited modeling/simulation work has been accomplished, in the authors' perspective, process design and development are destined to be more modeling/simulation driven with the emphasis on evaluating the impact of material attributes/process parameters on process performance. The advancement of computational power is expected to enable modeling/simulation approaches to tackle more complex problems with better accuracy when dealing with real-world DPI process operations.
Collapse
Affiliation(s)
- Hao Lou
- Drug Product Technologies, Process Development, Amgen, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Li Ding
- Drug Product Technologies, Process Development, Amgen, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Tian Wu
- Drug Product Technologies, Process Development, Amgen, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Weikun Li
- Drug Product Technologies, Process Development, Amgen, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Ryan Khalaf
- Drug Product Technologies, Process Development, Amgen, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Hugh D C Smyth
- College of Pharmacy, The University of Texas at Austin, 2409 West University Avenue, PHR 4.214, Austin, Texas 78712, United States
| | - Darren L Reid
- Drug Product Technologies, Process Development, Amgen, 360 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
7
|
Babamiri A, Ahookhosh K, Abdollahi H, Taheri MH, Cui X, Nabaei M, Farnoud A. Effect of laryngeal jet on dry powder inhaler aerosol deposition: a numerical simulation. Comput Methods Biomech Biomed Engin 2023; 26:1859-1874. [PMID: 36511428 DOI: 10.1080/10255842.2022.2152280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/19/2022] [Indexed: 12/15/2022]
Abstract
Although pulmonary drug delivery has been deeply investigated, the effect of the laryngeal jet on particle deposition during drug delivery with dry powder inhalers (DPI) has not been evaluated profoundly. In this study, the flow structure and particle deposition pattern of a DPI in two airway models, one with mouth-throat region including the larynx and the other one without it, are numerically investigated. The results revealed that the laryngeal jet has a considerable effect on particle deposition. The presence of laryngeal jet leads to 4-fold and 2-fold higher deposition efficiencies for inlet flow rates of 30 and 90 L/min, respectively.
Collapse
Affiliation(s)
- Arash Babamiri
- Department of Engineering, University of Kurdistan, Sanandaj, Iran
| | - Kaveh Ahookhosh
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Haniye Abdollahi
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Hasan Taheri
- Department of Mechanical Engineering, Technical and Vocational University (TVU), Mazandaran, Iran
| | - Xinguang Cui
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Malikeh Nabaei
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Ali Farnoud
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
8
|
Barrio-Perotti R, Martín-Fernández N, Vigil-Díaz C, Walters K, Fernández-Tena A. Predicting particle deposition using a simplified 8-path in silico human lung prototype. J Breath Res 2023; 17:046002. [PMID: 37437567 DOI: 10.1088/1752-7163/ace6c7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/12/2023] [Indexed: 07/14/2023]
Abstract
Understanding particle deposition in the human lung is crucial for the assessment of environmental pollutants and the design of new drug delivery systems. Traditionally, research has been carried out by experimental analysis, but this generally requires expensive equipment and exposure of volunteers to radiation, resulting in limited data. To overcome these drawbacks, there is an emphasis on the development of numerical models capable of accurate predictive analysis. The most advanced of these computer simulations are based on three-dimensional computational fluid dynamics. Solving the flow equations in a complete, fully resolved lung airway model is currently not feasible due to the computational resources required. In the present work, a simplified lung model is presented and validated for accurate prediction of particle deposition. Simulations are performed for an 8-path approximation to a full lung airway model. A novel boundary condition method is used to ensure accurate results in truncated flow branches. Simulations are performed at a steady inhalation flow rate of 18 l min-1, corresponding to a low activity breathing rate, while the effects of particle size and density are investigated. Comparison of the simulation results with available experimental data shows that reasonably accurate results can be obtained at a small fraction of the cost of a full airway model. The simulations clearly evaluate the effect of both particle size and particle density. Most importantly, the results show an improvement over a previously documented single-path model, both in terms of accuracy and the ability to obtain regional deposition rates. The present model represents an improvement over previously used simplified models, including single-path models. The multi-path reduced airway approach described can be used by researchers for general and patient-specific analyses of particle deposition and for the design of effective drug delivery systems.
Collapse
Affiliation(s)
- R Barrio-Perotti
- Departamento de Energía, Universidad de Oviedo, and GRUBIPU-ISPA, Gijón, Spain
| | | | - C Vigil-Díaz
- Hospital Universitario Central de Asturias, and GRUBIPU-ISPA, Oviedo, Spain
| | - K Walters
- College of Engineering, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - A Fernández-Tena
- Facultad de Enfermería, Universidad de Oviedo, Instituto Nacional de Silicosis, and GRUBIPU-ISPA, Gijón, Spain
| |
Collapse
|
9
|
Kole E, Jadhav K, Sirsath N, Dudhe P, Verma RK, Chatterjee A, Naik J. Nanotherapeutics for pulmonary drug delivery: An emerging approach to overcome respiratory diseases. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
10
|
Newman B, Babiskin A, Bielski E, Boc S, Dhapare S, Fang L, Feibus K, Kaviratna A, Li BV, Luke MC, Ma T, Spagnola M, Walenga RL, Wang Z, Zhao L, El-Gendy N, Bertha CM, Abd El-Shafy M, Gaglani DK. Scientific and regulatory activities initiated by the U.S. Food and drug administration to foster approvals of generic dry powder inhalers: Bioequivalence perspective. Adv Drug Deliv Rev 2022; 190:114526. [PMID: 36067967 DOI: 10.1016/j.addr.2022.114526] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 01/24/2023]
Abstract
Regulatory science for generic dry powder inhalers (DPIs) in the United States (U.S.) has evolved over the last decade. In 2013, the U.S. Food and Drug Administration (FDA) published the draft product-specific guidance (PSG) for fluticasone propionate and salmeterol xinafoate inhalation powder. This was the first PSG for a DPI available in the U.S., which provided details on a weight-of-evidence approach for establishing bioequivalence (BE). A variety of research activities including in vivo and in vitro studies were used to support these recommendations, which have led to the first approval of a generic DPI in the U.S. for fluticasone propionate and salmeterol xinafoate inhalation powder in January of 2019. This review describes the scientific and regulatory activities that have been initiated by FDA to support the current BE recommendations for DPIs that led to the first generic DPI approvals, as well as research with novel in vitro and in silico methods that may potentially facilitate generic DPI development and approval.
Collapse
Affiliation(s)
- Bryan Newman
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Andrew Babiskin
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Elizabeth Bielski
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Susan Boc
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sneha Dhapare
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lanyan Fang
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Katharine Feibus
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Anubhav Kaviratna
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Bing V Li
- Office of Bioequivalence, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Markham C Luke
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Tian Ma
- Division of Bioequivalence I, Office of Bioequivalence, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Michael Spagnola
- Division of Clinical Safety and Surveillance, Office of Safety and Clinical Evaluation, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ross L Walenga
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA.
| | - Zhong Wang
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Liang Zhao
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Nashwa El-Gendy
- Division of Immediate and Modified Release Drug Products III, Office of Lifecycle Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Craig M Bertha
- Division of New Drug Products II, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Mohammed Abd El-Shafy
- Division of Immediate and Modified Release Drug Products III, Office of Lifecycle Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Dhaval K Gaglani
- Division of Immediate and Modified Release Drug Products III, Office of Lifecycle Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
11
|
Craparo EF, Cabibbo M, Emanuele Drago S, Casula L, Lai F, Cavallaro G. Inhalable polymeric microparticles as pharmaceutical porous powder for drug administration. Int J Pharm 2022; 628:122325. [DOI: 10.1016/j.ijpharm.2022.122325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 10/31/2022]
|
12
|
Ciloglu D, Karaman A. A Numerical Simulation of the Airflow and Aerosol Particle Deposition in a Realistic Airway Model of a Healthy Adult. J Pharm Sci 2022; 111:3130-3140. [PMID: 35948158 DOI: 10.1016/j.xphs.2022.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022]
Abstract
Determining the behavior of aerosol drug particles is of vital importance in the treatment of respiratory tract diseases. Despite the development of imaging techniques in the pulmonary region in recent years, current imaging techniques are insufficient to detect particle deposition. Computational fluid dynamics (CFD) methods can fill the gap in this field as they take into account the very different physical processes that occur during aerosol transport. This study aims to numerically investigate the airflow and the aerosol particle dynamics on a realistic human respiratory tract model during multiple breathing cycles. The simulations were conducted on the different breathing conditions for people under light, normal, and heavy physical activities, and the aerosol particles with different aerodynamic diameters (i.e., dp=2, 5, and 7 µm). The numerical results were validated by comparing extensively with experimental and numerical results. The results indicated that the airflow during inspiration and expiration was characteristically different from each other and changed with the inspiration flow rate. It was determined that small-sized particles followed the streamlines and moved towards the distal of the lung under low respiratory conditions. On the other hand, larger particles tended to deposit in higher generations due to the higher inertia. It was found that with the increase of inspiration flow rate the deposition of particles increased for all particles during multiple breaths. For light breathing conditions, low deposition efficiencies were obtained because the particles followed the streamlines and moved towards the distal part of the lung. The particle deposition efficiency under heavy breathing conditions was 28.2% for 2 µm, 33.05% for 5 µm, and 38.4% for 7 µm particles. The results showed that inertial impaction plays an active role in particle deposition.
Collapse
Affiliation(s)
- Dogan Ciloglu
- Vocational College of Technical Sciences, Ataturk University, Erzurum, Turkey.
| | - Adem Karaman
- Department of Radiology, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
13
|
Spasov G, Rossi R, Vanossi A, Cottini C, Benassi A. A critical analysis of the CFD-DEM simulation of pharmaceutical aerosols deposition in extra-thoracic airways. Int J Pharm 2022; 629:122331. [DOI: 10.1016/j.ijpharm.2022.122331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
|
14
|
Computational investigation of particle penetration and deposition pattern in a realistic respiratory tract model from different types of dry powder inhalers. Int J Pharm 2022; 612:121293. [PMID: 34808267 DOI: 10.1016/j.ijpharm.2021.121293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/08/2023]
Abstract
The aim of this study was to evaluate the device performance of a new design by comparing with a typical commercial DPI. Computational fluid dynamics (CFD) coupled with the discrete element method (DEM) collision has been utilized in this study to characterize and examine the flow field and particle transportation, respectively. A typical commercial DPI and an in-house designed novel DPI with distinct design features were compared to explore their dispersion capabilities and suitability for delivery to the respiratory tract. For this exploration, realistic oral to larynx and tracheobronchial airway models consisting of bio-relevant features were adopted to enhance practical feasibility. Distinct aerosol performances were observed between the two DPIs in the respiratory tract, where the in-house DPI, in comparison with the commercial DPI, has shown approximately 30% lower deposition fraction in the mouth-throat region with approximately 7% higher escape rate in the tracheobronchial region under the identical inhalation condition. This observation demonstrates that a novel in-house designed DPI provides higher device efficiency over the selected typical commercial DPI.
Collapse
|
15
|
Sommerfeld M, Sgrott OL, Taborda MA, Koullapis P, Bauer K, Kassinos S. Analysis of flow field and turbulence predictions in a lung model applying RANS and implications for particle deposition. Eur J Pharm Sci 2021; 166:105959. [PMID: 34324962 DOI: 10.1016/j.ejps.2021.105959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/16/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
Airflow and aerosol deposition in the human airways are important aspects for applications such as pulmonary drug delivery and human exposure to aerosol pollutants. Numerical simulations are widely used nowadays to shed light in airflow features and particle deposition patterns inside the airways. For that purpose, the Euler/Lagrange approach is adopted for predicting flow field and particle deposition through point-particle tracking. Steady-state RANS (Reynolds-averaged Navier-Stokes) computations of flow evolution in an extended lung model applying different turbulence models were conducted and compared to measurements as well as high resolution LES (large-eddy simulations) for several flow rates. In addition, various inlet boundary conditions were considered and their influence on the predicted flow field was analysed. The results showed that the mean velocity field was simulated reasonably well, however, turbulence intensity was completely under-predicted by two-equation turbulence models. Only a Reynolds-stress model (RSM) was able predicting a turbulence level comparable to the measurements and the high resolution LES. Remarkable reductions in wall deposition were observed when wall effects were accounted for in the drag and lift force expressions. Naturally, turbulence is an essential contribution to particle deposition and it is well known that two-equation turbulence models considerably over-predict deposition due to the spurious drift effect. A full correction of this error is only possible in connection with a Reynolds-stress turbulence model whereby the predicted deposition in dependence of particle diameter yielded better agreement to the LES predictions. Specifically, with the RSM larger deposition is predicted for smaller particles and lower deposition fraction for larger particles compared to LES. The local deposition fraction along the lung model was numerically predicted with the same trend as found from the measurements, however the values in the middle region of the lung model were found to be somewhat larger.
Collapse
Affiliation(s)
- M Sommerfeld
- Multiphase Flow Systems (MPS), Otto-von-Guericke-University Magdeburg, Hoher Weg 7b, D-06120 Halle (Saale), Germany.
| | - O L Sgrott
- Multiphase Flow Systems (MPS), Otto-von-Guericke-University Magdeburg, Hoher Weg 7b, D-06120 Halle (Saale), Germany
| | - M A Taborda
- Multiphase Flow Systems (MPS), Otto-von-Guericke-University Magdeburg, Hoher Weg 7b, D-06120 Halle (Saale), Germany
| | - P Koullapis
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| | - K Bauer
- Institute of Mechanics and Fluid Dynamics, TU Bergakademie Freiberg, Freiberg, Germany.
| | - S Kassinos
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
16
|
Rahman M, Zhao M, Islam MS, Dong K, Saha SC. Aging effects on airflow distribution and micron-particle transport and deposition in a human lung using CFD-DPM approach. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Effect of swirling flow and particle-release pattern on drug delivery to human tracheobronchial airways. Biomech Model Mechanobiol 2021; 20:2451-2469. [PMID: 34515918 DOI: 10.1007/s10237-021-01518-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
The present study aims to investigate the effect of swirling flow on particle deposition in a realistic human airway. A computational fluid dynamic (CFD) model was utilized for the simulation of oral inhalation and particle transport patterns, considering the k-ω turbulence model. Lagrangian particle tracking was used to track the particles' trajectories. A normal breathing condition (30 L/min) was applied, and two-micron particles were injected into the mouth, considering swirling flow to the oral inhalation airflow. Different cases were considered for releasing the particles, which evaluated the impacts of various parameters on the deposition efficiency (DE), including the swirl intensity, injection location and pattern of the particle. The work's novelty is applying several injection locations and diameters simultaneously. The results show that the swirling flow enhances the particle deposition efficiency (20-40%) versus no-swirl flow, especially in the mouth. However, releasing particles inside the mouth, or injecting them randomly with a smaller injection diameter (dinj) reduced DE in swirling flow condition, about 50 to 80%. Injecting particles inside the mouth can decrease DE by about 20%, and releasing particles with smaller dinj leads to 50% less DE in swirling flow. In conclusion, it is indicated that the airflow condition is an important parameter for a reliable drug delivery, and it is more beneficial to keep the inflow uniform and avoid swirling flow.
Collapse
|
18
|
Flow Structure and Particle Deposition Analyses for Optimization of a Pressurized Metered Dose Inhaler (pMDI) in a Model of Tracheobronchial Airway. Eur J Pharm Sci 2021; 164:105911. [PMID: 34129919 DOI: 10.1016/j.ejps.2021.105911] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 01/13/2023]
Abstract
Inhalation therapy plays an important role in management or treatment of respiratory diseases such asthma and chronic obstructive pulmonary diseases (COPDs). For decades, pressurized metered dose inhalers (pMDIs) have been the most popular and prescribed drug delivery devices for inhalation therapy. The main objectives of the present computational work are to study flow structure inside a pMDI, as well as transport and deposition of micron-sized particles in a model of human tracheobronchial airways and their dependence on inhalation air flow rate and characteristic pMDI parameters. The upper airway geometry, which includes the extrathoracic region, trachea, and bronchial airways up to the fourth generation in some branches, was constructed based on computed tomography (CT) images of an adult healthy female. Computational fluid dynamics (CFD) simulation was employed using the k-ω model with low-Reynolds number (LRN) corrections to accomplish the objectives. The deposition results of the present study were verified with the in vitro deposition data of our previous investigation on pulmonary drug delivery using a hollow replica of the same airway geometry as used for CFD modeling. It was found that the flow structure inside the pMDI and extrathoracic region strongly depends on inhalation flow rate and geometry of the inhaler. In addition, regional aerosol deposition patterns were investigated at four inhalation flow rates between 30 and 120 L/min and for 60 L/min yielding highest deposition fractions of 24.4% and 3.1% for the extrathoracic region (EX) and the trachea, respectively. It was also revealed that particle deposition was larger in the right branches of the bronchial airways (right lung) than the left branches (left lung) for all of the considered cases. Also, optimization of spray characteristics showed that the optimum values for initial spray velocity, spray cone angle and spray duration were 100 m/s, 10° and 0.1 sec, respectively. Moreover, spray cone angle, more than any other of the investigated pMDI parameters can change the deposition pattern of inhaled particles in the airway model. In conclusion, the present investigation provides a validated CFD model for particle deposition and new insights into the relevance of flow structure for deposition of pMDI-emitted pharmaceutical aerosols in the upper respiratory tract.
Collapse
|
19
|
Agujetas R, Barrio-Perotti R, Ferrera C, Pandal-Blanco A, Walters DK, Fernández-Tena A. Construction of a hybrid lung model by combining a real geometry of the upper airways and an idealized geometry of the lower airways. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 196:105613. [PMID: 32593974 DOI: 10.1016/j.cmpb.2020.105613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Health care costs represent a substantial an increasing percentage of global expenditures. One key component is treatment of respiratory diseases, which account for one in twelve deaths in Europe. Computational simulations of lung airflow have potential to provide considerable cost reduction and improved outcomes. Such simulations require accurate in silico modeling of the lung airway. The geometry of the lung is extremely complex and for this reason very simple morphologies have primarily been used to date. The objective of this work is to develop an effective methodology for the creation of hybrid pulmonary geometries combining patient-specific models obtained from CT images and idealized pulmonary models, for the purpose of carrying out experimental and numerical studies on aerosol/particle transport and deposition in inhaled drug delivery. METHODS For the construction of the hybrid numerical model, lung images obtained from computed tomography were exported to the DICOM format to be treated with a commercial software to build the patient-specific part of the model. At the distal terminus of each airway of this portion of the model, an idealization of a single airway path is connected, extending to the sixteenth generation. Because these two parts have different endings, it is necessary to create an intermediate solid to link them together. Physically realistic treatment of truncated airway boundaries in the model was accomplished by mapping of the flow velocity distribution from corresponding conducting airway segments. RESULTS The model was verified using two sets of simulations, steady inspiration/expiration and transient simulation of forced spirometry. The results showed that the hybrid model is capable of providing a realistic description of air flow dynamics in the lung while substantially reducing computational costs relative to models of the full airway tree. CONCLUSIONS The model development outlined here represents an important step toward computational simulation of lung dynamics for patient-specific applications. Further research work may consist of investigating specific diseases, such as chronic bronchitis and pulmonary emphysema, as well as the study of the deposition of pollutants or drugs in the airways.
Collapse
Affiliation(s)
- R Agujetas
- Departamento de Ingeniería Mecánica, Energética y de los Materiales and ICCAEx, Universidad de Extremadura, Spain.
| | - R Barrio-Perotti
- Departamento de Energía, Universidad de Oviedo and GRUBIPU-ISPA, Spain.
| | - C Ferrera
- Departamento de Ingeniería Mecánica, Energética y de los Materiales and ICCAEx, Universidad de Extremadura, Spain.
| | - A Pandal-Blanco
- Departamento de Energía, Universidad de Oviedo and GRUBIPU-ISPA, Spain.
| | - D K Walters
- School of Aerospace and Mechanical Engineering, University of Oklahoma, United States.
| | - A Fernández-Tena
- Facultad de Enfermería, Universidad de Oviedo, Instituto Nacional de Silicosis and GRUBIPU-ISPA, Spain.
| |
Collapse
|
20
|
Dry powder inhaler aerosol deposition in a model of tracheobronchial airways: Validating CFD predictions with in vitro data. Int J Pharm 2020; 587:119599. [DOI: 10.1016/j.ijpharm.2020.119599] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/15/2022]
|
21
|
Ahookhosh K, Pourmehran O, Aminfar H, Mohammadpourfard M, Sarafraz MM, Hamishehkar H. Development of human respiratory airway models: A review. Eur J Pharm Sci 2020; 145:105233. [DOI: 10.1016/j.ejps.2020.105233] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/11/2020] [Accepted: 01/20/2020] [Indexed: 10/25/2022]
|
22
|
Woo SD, Ye YM, Lee Y, Lee SH, Shin YS, Park JH, Choi H, Lee HY, Shin HJ, Park HS. Efficacy and Safety of a Pressurized Metered-Dose Inhaler in Older Asthmatics: Comparison to a Dry Powder Inhaler in a 12-Week Randomized Trial. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:454-466. [PMID: 32141259 PMCID: PMC7061154 DOI: 10.4168/aair.2020.12.3.454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022]
Abstract
Purpose Asthma control in older asthmatics is often less effective, which may be attributed to small airway dysfunction and poor inhalation technique. We compared the efficacy of 2 inhalers (fluticasone propionate/formoterol treatment using a pressurized metered-dose inhaler [p-MDI group] vs. fluticasone propionate/salmeterol treatment using a dry powder inhaler [DPI group]) in older asthmatics. Methods We conducted a 12-week, randomized, open-label, parallel-designed trial in older patients (over 55 years old) with moderate-to-severe asthma, and compared the efficacy and safety for asthma control between the 2 groups. Subgroup analyses on disease duration and air trapping were performed. Clinical parameters, including changes in lung function parameters, inhaler technique and adherence, were compared with monitoring adverse reactions between the 2 groups. Results A total of 68 patients underwent randomization, and 63 (30 in the p-MDI group and 33 in the DPI group) completed this study. The p-MDI group was non-inferior to the DPI group with regard to the rate of well-controlled asthma (53.3% vs. 45.5%, P < 0.001; a predefined non-inferiority limit of 17%). In subgroup analyses, the proportion of patients who did not reach well-controlled asthma in the p-MDI group was non-inferior to that in the DPI group; the difference was 12.7% among those with a longer disease duration (≥ 15 years) and 17.5% among those with higher air-trapping (RV/TLC ≥ 45%), respectively (a predefined non-inferiority limit of 17%, P < 0.001). No significant differences were observed in lung function parameters, inhalation techniques, adherence and adverse reactions between the 2 groups. Conclusion These results suggest that the p-MDI group may be comparable to the DPI group in the management of older asthmatics in aspects of efficacy and safety.
Collapse
Affiliation(s)
- Seong Dae Woo
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Young Min Ye
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Youngsoo Lee
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - So Hee Lee
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Joo Hun Park
- Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Hyunna Choi
- Clinical Trial Center, Ajou University Medical Center, Suwon, Korea
| | - Hyun Young Lee
- Clinical Trial Center, Ajou University Medical Center, Suwon, Korea
| | - Hyun Jung Shin
- Clinical Trial Center, Ajou University Medical Center, Suwon, Korea
| | - Hae Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|