1
|
Ding X, Li X, Fang R, Yue P, Jia Y, Li E, Hu Y, Zhou H, Song X. Targeting PYK2, entrectinib allays anterior subcapsular cataracts in mice by regulating TGFβ2 signaling pathway. Mol Med 2024; 30:163. [PMID: 39333897 PMCID: PMC11430177 DOI: 10.1186/s10020-024-00921-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Fibrosis cataract occurs in patients receiving cataract extraction. Still, no medication that can cure the disease exists in clinical. This study aims to investigate the effects and mechanisms of Entrectinib on fibrotic cataract in vitro and in vivo. METHODS The human lens cells line SRA 01/04 and C57BL/6J mice were applied in the study. Entrectinib was used in animals and cells. Cataract severity was assessed by slit lamp and Hematoxylin and Eosin staining. Expression of alpha-smooth muscle actin, fibronectin, and collagen I were examined by real-time quantitative PCR, western blotting, and immunofluorescence. Cell proliferation was evaluated by Cell Counting Kit-8. Cell migration was measured by wound healing and transwell assays. Molecular docking, Drug Affinity Responsive Target Stability, and Cellular Thermal Shift Assay were applied to seek and certify the target of Entrectinib treating fibrosis cataract. RESULTS Entrectinib can ameliorate fibrotic cataract in vitro and in vivo. At the RNA and the protein levels, the expression of alpha-smooth muscle actin, collagen I, and fibronectin can be downgraded by Entrectinib, while E-cadherin can be upregulated. The migration and proliferation of cells were inhibited by Entrectinib. Mechanistically, Entrectinib obstructs TGFβ2/Smad and TGFβ2/non-Smad signaling pathways to hinder the fibrosis cataract by targeting PYK2 protein. CONCLUSIONS Targeting with PYK2, Entrectinib can block TGF-β2/Smad and TGF-β2/non-Smad signaling pathways, lessen the activation of EMT, and alleviate fibrosis cataract. Entrectinib may be a potential treatment for fibrosis cataract in clinic.
Collapse
Affiliation(s)
- Xuefei Ding
- Beijing Tongren Hospital, Beijing, 100730, China
- Capital Medical University, Beijing, 100730, China
| | - Xiaohe Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nan Kai University, Tianjin, China
| | - Rui Fang
- Beijing Tongren Hospital, Beijing, 100730, China
- Capital Medical University, Beijing, 100730, China
| | - Peilin Yue
- Beijing Tongren Hospital, Beijing, 100730, China
- Capital Medical University, Beijing, 100730, China
| | - Yuxuan Jia
- Beijing Tongren Hospital, Beijing, 100730, China
- Capital Medical University, Beijing, 100730, China
| | - Enjie Li
- Beijing Tongren Hospital, Beijing, 100730, China
- Capital Medical University, Beijing, 100730, China
| | - Yayue Hu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nan Kai University, Tianjin, China
| | - Honggang Zhou
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nan Kai University, Tianjin, China.
| | - Xudong Song
- Beijing Tongren Hospital, Beijing, 100730, China.
- Capital Medical University, Beijing, 100730, China.
- Beijing Tongren Eye Center, Beijing, 100730, China.
- Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, 100730, China.
| |
Collapse
|
2
|
Mladenovic T, Zivic F, Petrovic N, Njezic S, Pavic J, Kotorcevic N, Milenkovic S, Grujovic N. Application of Silicone in Ophthalmology: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3454. [PMID: 39063747 PMCID: PMC11278226 DOI: 10.3390/ma17143454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
This paper reviews the latest trends and applications of silicone in ophthalmology, especially related to intraocular lenses (IOLs). Silicone, or siloxane elastomer, as a synthetic polymer, has excellent biocompatibility, high chemical inertness, and hydrophobicity, enabling wide biomedical applications. The physicochemical properties of silicone are reviewed. A review of methods for mechanical and in vivo characterization of IOLs is presented as a prospective research area, since there are only a few available technologies, even though these properties are vital to ensure medical safety and suitability for clinical use, especially if long-term function is considered. IOLs represent permanent implants to replace the natural lens or for correcting vision, with the first commercial foldable lens made of silicone. Biological aspects of posterior capsular opacification have been reviewed, including the effects of the implanted silicone IOL. However, certain issues with silicone IOLs are still challenging and some conditions can prevent its application in all patients. The latest trends in nanotechnology solutions have been reviewed. Surface modifications of silicone IOLs are an efficient approach to further improve biocompatibility or to enable drug-eluting function. Different surface modifications, including coatings, can provide long-term treatments for various medical conditions or medical diagnoses through the incorporation of sensory functions. It is essential that IOL optical characteristics remain unchanged in case of drug incorporation and the application of nanoparticles can enable it. However, clinical trials related to these advanced technologies are still missing, thus preventing their clinical applications at this moment.
Collapse
Affiliation(s)
- Tamara Mladenovic
- Faculty of Engineering, University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac, Serbia; (T.M.); (J.P.); (N.K.); (S.M.); (N.G.)
- Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijica bb, 34000 Kragujevac, Serbia
| | - Fatima Zivic
- Faculty of Engineering, University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac, Serbia; (T.M.); (J.P.); (N.K.); (S.M.); (N.G.)
| | - Nenad Petrovic
- Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
| | - Sasa Njezic
- Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Jelena Pavic
- Faculty of Engineering, University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac, Serbia; (T.M.); (J.P.); (N.K.); (S.M.); (N.G.)
- Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijica bb, 34000 Kragujevac, Serbia
| | - Nikola Kotorcevic
- Faculty of Engineering, University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac, Serbia; (T.M.); (J.P.); (N.K.); (S.M.); (N.G.)
| | - Strahinja Milenkovic
- Faculty of Engineering, University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac, Serbia; (T.M.); (J.P.); (N.K.); (S.M.); (N.G.)
| | - Nenad Grujovic
- Faculty of Engineering, University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac, Serbia; (T.M.); (J.P.); (N.K.); (S.M.); (N.G.)
| |
Collapse
|
3
|
Bill C, Kassumeh S, Hilterhaus C, Tersi N, Speidel AJ, Ohlmann A, Priglinger S, Priglinger C, Wolf A, Wertheimer CM. Conditions for modifying intraocular lenses as drug carriers for methotrexate using poly (lactic-co-glycolic acid). Eur J Ophthalmol 2024:11206721241239717. [PMID: 38494950 DOI: 10.1177/11206721241239717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
INTRODUCTION The intraocular lens (IOL) can be used as a slow-release drug carrier in cataract surgery to alleviate posterior capsular opacification (PCO). The following is a systematic development of an IOL using methotrexate and the solvent casting process with poly (lactic-co-glycolic acid) (PLGA) as a carrier polymer. METHODS Different solvents for PLGA and methotrexate were tested for dissolution properties and possible damage to the IOL. The required biological concentration of methotrexate was determined in human capsular bags implanted with an IOL. To detect fibrosis, α-SMA, f-actin, and fibronectin were labelled by immunofluorescence staining. Cell proliferation and extracellular matrix contraction were observed in a lens epithelial cell line (FHL-124). Finally, the IOL was designed, and an ocular pharmacokinetic model was used to measure drug release. RESULTS Solvent mixtures were found to allow coating of the IOL with drug and PLGA without damaging it. PCO in the capsular bag model was inhibited above 1 μM methotrexate (p = 0.02). Proliferation in FHL-124 was significantly reduced above a concentration of 10 nM (p = 0.04) and matrix contraction at 100 nM (p = 0.02). The release profile showed a steady state within therapeutic range. CONCLUSION After determination of the required physicochemical manufacturing conditions, a drug releasing IOL was designed. A favourable release profile in an ocular pharmacokinetics model could be shown.
Collapse
Affiliation(s)
- Clarissa Bill
- Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
| | - Stefan Kassumeh
- Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
| | - Christina Hilterhaus
- Department of Ophthalmology, University Hospital, University of Ulm, Ulm, Germany
| | - Natalie Tersi
- Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
| | - Arne J Speidel
- Department of Ophthalmology, University Hospital, University of Ulm, Ulm, Germany
| | - Andreas Ohlmann
- Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
| | | | - Claudia Priglinger
- Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
| | - Armin Wolf
- Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
- Department of Ophthalmology, University Hospital, University of Ulm, Ulm, Germany
| | - Christian M Wertheimer
- Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
- Department of Ophthalmology, University Hospital, University of Ulm, Ulm, Germany
| |
Collapse
|
4
|
Garcia O’Farrill N, Abi Karam M, Villegas VM, Flynn HW, Grzybowski A, Schwartz SG. New Approaches to Overcoming Antimicrobial Resistance in Endophthalmitis. Pharmaceuticals (Basel) 2024; 17:321. [PMID: 38543107 PMCID: PMC10974156 DOI: 10.3390/ph17030321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 04/01/2024] Open
Abstract
Endophthalmitis is a rare but vision-threatening infection characterized by marked inflammation of intraocular fluids and tissues, uncommonly seen following surgery and intravitreal injection. Antimicrobials are used worldwide in the prophylaxis and treatment of bacterial and fungal infections of the eye and are standard treatment in the preoperative and postoperative care of surgical patients. However, antimicrobials are reported to be overprescribed in many parts of the world, which contributes to antimicrobial resistance (AMR). AMR complicates the prophylaxis and treatment of endophthalmitis. This article examines the prevalence and mechanisms of AMR in ocular microorganisms, emphasizing the importance of understanding AMR patterns for tailored treatments. It also explores prophylaxis and management strategies for endophthalmitis, with a discussion on the use of intracameral antibiotic administration. The use of prophylactic intracameral antibiotics during cataract surgery is common in many parts of the world but is still controversial in some locations, especially in the US. Finally, it highlights the role of stewardship in ophthalmology and its benefits in the treatment of endophthalmitis.
Collapse
Affiliation(s)
- Noraliz Garcia O’Farrill
- Department of Ophthalmology, University of Puerto Rico School of Medicine, San Juan, PR 00936, USA; (N.G.O.); (V.M.V.)
| | - Mariana Abi Karam
- Department of Ophthalmology, MetroHealth, Cleveland, OH 44109, USA;
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Victor M. Villegas
- Department of Ophthalmology, University of Puerto Rico School of Medicine, San Juan, PR 00936, USA; (N.G.O.); (V.M.V.)
| | - Harry W. Flynn
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, 61-553 Poznan, Poland;
| | - Stephen G. Schwartz
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
5
|
Liu X, Li J, Liu S, Long Y, Kang C, Zhao C, Wei L, Huang S, Luo Y, Dai B, Zhu X. Fabrication of a 3D bioprinting model for posterior capsule opacification using GelMA and PLMA hydrogel-coated resin. Regen Biomater 2024; 11:rbae020. [PMID: 38529352 PMCID: PMC10963077 DOI: 10.1093/rb/rbae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/27/2024] Open
Abstract
Posterior capsule opacification (PCO) remains the predominant complication following cataract surgery, significantly impairing visual function restoration. In this study, we developed a PCO model that closely mimics the anatomical structure of the crystalline lens capsule post-surgery. The model incorporated a threaded structure for accurate positioning and observation, allowing for opening and closing. Utilizing 3D printing technology, a stable external support system was created using resin material consisting of a rigid, hollow base and cover. To replicate the lens capsule structure, a thin hydrogel coating was applied to the resin scaffold. The biocompatibility and impact on cellular functionality of various hydrogel compositions were assessed through an array of staining techniques, including calcein-AM/PI staining, rhodamine staining, BODIPY-C11 staining and EdU staining in conjunction with transwell assays. Additionally, the PCO model was utilized to investigate the effects of eight drugs with anti-inflammatory and anti-proliferative properties, including 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), THZ1, sorbinil, 4-octyl itaconate (4-OI), xanthohumol, zebularine, rapamycin and caffeic acid phenethyl ester, on human lens epithelial cells (HLECs). Confocal microscopy facilitated comprehensive imaging of the PCO model. The results demonstrated that the GelMA 60 5% + PLMA 2% composite hydrogel exhibited superior biocompatibility and minimal lipid peroxidation levels among the tested hydrogels. Moreover, compared to using hydrogel as the material for 3D printing the entire model, applying surface hydrogel spin coating with parameters of 2000 rpm × 2 on the resin-based 3D printed base yielded a more uniform cell distribution and reduced apoptosis. Furthermore, rapamycin, 4-OI and AICAR demonstrated potent antiproliferative effects in the drug intervention study. Confocal microscopy imaging revealed a uniform distribution of HLECs along the anatomical structure of the crystalline lens capsule within the PCO model, showcasing robust cell viability and regular morphology. In conclusion, the PCO model provides a valuable experimental platform for studying PCO pathogenesis and exploring potential therapeutic interventions.
Collapse
Affiliation(s)
- Xin Liu
- Cataract and Lens Refractive Surgery Group, Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai 200031, People’s Republic of China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, People’s Republic of China
| | - Jiale Li
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shuyu Liu
- Cataract and Lens Refractive Surgery Group, Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai 200031, People’s Republic of China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, People’s Republic of China
| | - Yan Long
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ching Kang
- Cataract and Lens Refractive Surgery Group, Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai 200031, People’s Republic of China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, People’s Republic of China
| | - Chen Zhao
- Cataract and Lens Refractive Surgery Group, Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai 200031, People’s Republic of China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, People’s Republic of China
| | - Ling Wei
- Cataract and Lens Refractive Surgery Group, Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai 200031, People’s Republic of China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, People’s Republic of China
| | - Shaoqi Huang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yi Luo
- Cataract and Lens Refractive Surgery Group, Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai 200031, People’s Republic of China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, People’s Republic of China
| | - Bo Dai
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiangjia Zhu
- Cataract and Lens Refractive Surgery Group, Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai 200031, People’s Republic of China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, People’s Republic of China
| |
Collapse
|
6
|
Wang Y, Wen C, Jing R, Yang Y, Qin Y, Qi T, Hu C, Bai X, Wu C, Pei C. Self-assembled coating with a metal-polyphenolic network for intraocular lens modification to prevent posterior capsule opacification. Biomed Mater 2024; 19:025011. [PMID: 38194710 DOI: 10.1088/1748-605x/ad1c9e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Posterior capsule opacification (PCO) is a main complication after cataract surgery and intraocular lens (IOLs) implantation and is attributed to residual lens epithelial cells (LECs) migrating to the IOL surface and posterior capsules. IOL surface modification has been a newly-developing research filed in recent years; however, the applicability and economical acquisition of modified materials remain unsolved. In this study, we first applied a metal-polyphenolic network coating with a self-assembly technique on the IOL surface by using tannic acid (TA) combined with AlCl3, which are easily acquire and applying on the IOL surface to solve the IOL transmittance affair. Using wound healing and Transwell assay to verify AZD0364 inhibits cell migration (P< 0.05), the lipopolysaccharide-induced macrophage inflammation model to verify pterostilbene (PTE) inhibits the inflammatory reaction (P< 0.01). By optimizes its self-assembly coating parameters and calculating its drug release kinetics, we successfully loaded these two drugs on the coating, named TA (AZD0364/PTE) IOL. Its surface morphology characteristics were analyzed by scanning electron microscope, x-ray photoelectron spectrometer and water contact angle. The optical performance was carefully investigated by optical instruments and equipment (n= 3). Thein vitroresults showed that TA (AZD0364/PTE) IOL can significantly inhibit cell adhesion and acute inflammation (n= 3,P< 0.0001). Importantly, afterin vivoimplantation for 28 d with eight rabbits PCO models in two groups, the TA (AZD0364/PTE) IOL group maintained clear refracting media and decreased the inflammatory reaction compared with the original IOL group (P< 0.05). This study provides a new applicable and economical strategy for preventing PCO and offers a reference for the next generation of IOLs that benefit cataract patients.
Collapse
Affiliation(s)
- Yunqing Wang
- Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Chan Wen
- Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Ruihua Jing
- Department of Ophthalmology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Yunfei Yang
- Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Yazhou Qin
- Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Tiantian Qi
- Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Conghui Hu
- Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Xinshan Bai
- Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Changrui Wu
- Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Cheng Pei
- Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| |
Collapse
|
7
|
Mandal S, Vishvakarma P, Bhumika K. Developments in Emerging Topical Drug Delivery Systems for Ocular Disorders. Curr Drug Res Rev 2024; 16:251-267. [PMID: 38158868 DOI: 10.2174/0125899775266634231213044704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 01/03/2024]
Abstract
According to the current information, using nano gels in the eyes have therapeutic benefits. Industry growth in the pharmaceutical and healthcare sectors has been filled by nanotechnology. Traditional ocular preparations have a short retention duration and restricted drug bioavailability because of the eye's architectural and physiological barriers, a big issue for physicians, patients, and chemists. In contrast, nano gels can encapsulate drugs within threedimensional cross-linked polymeric networks. Because of their distinctive structural designs and preparation methods, they can deliver loaded medications in a controlled and sustained manner, enhancing patient compliance and therapeutic efficacy. Due to their excellent drugloading capacity and biocompatibility, nano-gels outperform other nano-carriers. This study focuses on using nano gels to treat eye diseases and provides a brief overview of their creation and response to stimuli. Our understanding of topical drug administration will be advanced using nano gel developments to treat common ocular diseases such as glaucoma, cataracts, dry eye syndrome, bacterial keratitis, and linked medication-loaded contact lenses and natural active ingredients.
Collapse
Affiliation(s)
- Suraj Mandal
- Department of Pharmacy, IIMT College of Medical Sciences, IIMT University, O-Pocket, Ganganagar, Meerut, 250001, U.P., India
| | - Prabhakar Vishvakarma
- Department of Pharmacy, IIMT College of Medical Sciences, IIMT University, O-Pocket, Ganganagar, Meerut, 250001, U.P., India
| | - Km Bhumika
- Department of Pharmacy, IIMT College of Medical Sciences, IIMT University, O-Pocket, Ganganagar, Meerut, 250001, U.P., India
| |
Collapse
|
8
|
Hong Y, Fang Q, Bai T, Zhao P, Han Y, Lin Q. Cascade reaction triggering and photothermal AuNPs@MIL MOFs doped intraocular lens for enhanced posterior capsular opacification prevention. J Nanobiotechnology 2023; 21:134. [PMID: 37095517 PMCID: PMC10127092 DOI: 10.1186/s12951-023-01897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023] Open
Abstract
Posterior capsular opacification (PCO) is the most common complication after cataract surgery. Present strategies can't meet the clinical needs of long-term prevention. This research reports a novel intraocular lens (IOL) bulk material with high biocompatibility and synergistic therapy. Gold nanoparticles (AuNPs) doped MIL-101-NH2 metal-organic frameworks (MOFs) (AuNPs@MIL) was firstly fabricated via in situ reductions. Then the functionalized MOFs were uniformly mixed with glycidyl methacrylate (GMA) and 2-(2-ethoxyethoxy) ethyl acrylate (EA) to form the nanoparticle doped polymer (AuNPs@MIL-PGE), and which was used to fabricate IOL bulk materials. The materials' optical and mechanical properties with different mass contents of nanoparticles are investigated. Such bulk functionalized IOL material could efficiently remove residual human lens epithelial cells (HLECs) in the capsular bag in the short term, and can prevent PCO on demand in the long run by near-infrared illumination (NIR) action. In vivo and in vitro experiments demonstrate the biosafety of the material. The AuNPs@MIL-PGE exhibits excellent photothermal effects, which could inhibit cell proliferation under NIR and doesn't cause pathological effects on the surrounding tissues. Such functionalized IOL can not only avoid the side effects of the antiproliferative drugs but also realize the enhanced PCO prevention in clinical practice.
Collapse
Affiliation(s)
- Yueze Hong
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qiuna Fang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ting Bai
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Peiyi Zhao
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuemei Han
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Quankui Lin
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
9
|
Wu Y, Tao Q, Xie J, Lu L, Xie X, Zhang Y, Jin Y. Advances in Nanogels for Topical Drug Delivery in Ocular Diseases. Gels 2023; 9:gels9040292. [PMID: 37102904 PMCID: PMC10137933 DOI: 10.3390/gels9040292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Nanotechnology has accelerated the development of the pharmaceutical and medical technology fields, and nanogels for ocular applications have proven to be a promising therapeutic strategy. Traditional ocular preparations are restricted by the anatomical and physiological barriers of the eye, resulting in a short retention time and low drug bioavailability, which is a significant challenge for physicians, patients, and pharmacists. Nanogels, however, have the ability to encapsulate drugs within three-dimensional crosslinked polymeric networks and, through specific structural designs and distinct methods of preparation, achieve the controlled and sustained delivery of loaded drugs, increasing patient compliance and therapeutic efficiency. In addition, nanogels have higher drug-loading capacity and biocompatibility than other nanocarriers. In this review, the main focus is on the applications of nanogels for ocular diseases, whose preparations and stimuli-responsive behaviors are briefly described. The current comprehension of topical drug delivery will be improved by focusing on the advances of nanogels in typical ocular diseases, including glaucoma, cataracts, dry eye syndrome, and bacterial keratitis, as well as related drug-loaded contact lenses and natural active substances.
Collapse
Affiliation(s)
- Yongkang Wu
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei 230032, China
| | - Qing Tao
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei 230032, China
| | - Jing Xie
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei 230032, China
| | - Lili Lu
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei 230032, China
| | - Xiuli Xie
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei 230032, China
| | - Yang Zhang
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei 230032, China
| | - Yong Jin
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei 230032, China
| |
Collapse
|
10
|
Wang N, Zhang Y, Wang W, Ye Z, Chen H, Hu G, Ouyang D. How can machine learning and multiscale modeling benefit ocular drug development? Adv Drug Deliv Rev 2023; 196:114772. [PMID: 36906232 DOI: 10.1016/j.addr.2023.114772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/06/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
The eyes possess sophisticated physiological structures, diverse disease targets, limited drug delivery space, distinctive barriers, and complicated biomechanical processes, requiring a more in-depth understanding of the interactions between drug delivery systems and biological systems for ocular formulation development. However, the tiny size of the eyes makes sampling difficult and invasive studies costly and ethically constrained. Developing ocular formulations following conventional trial-and-error formulation and manufacturing process screening procedures is inefficient. Along with the popularity of computational pharmaceutics, non-invasive in silico modeling & simulation offer new opportunities for the paradigm shift of ocular formulation development. The current work first systematically reviews the theoretical underpinnings, advanced applications, and unique advantages of data-driven machine learning and multiscale simulation approaches represented by molecular simulation, mathematical modeling, and pharmacokinetic (PK)/pharmacodynamic (PD) modeling for ocular drug development. Following this, a new computer-driven framework for rational pharmaceutical formulation design is proposed, inspired by the potential of in silico explorations in understanding drug delivery details and facilitating drug formulation design. Lastly, to promote the paradigm shift, integrated in silico methodologies were highlighted, and discussions on data challenges, model practicality, personalized modeling, regulatory science, interdisciplinary collaboration, and talent training were conducted in detail with a view to achieving more efficient objective-oriented pharmaceutical formulation design.
Collapse
Affiliation(s)
- Nannan Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Yunsen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Wei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Zhuyifan Ye
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Hongyu Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China; Faculty of Science and Technology (FST), University of Macau, Macau, China
| | - Guanghui Hu
- Faculty of Science and Technology (FST), University of Macau, Macau, China
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China; Department of Public Health and Medicinal Administration, Faculty of Health Sciences (FHS), University of Macau, Macau, China.
| |
Collapse
|
11
|
Innovation in the Development of Synthetic and Natural Ocular Drug Delivery Systems for Eye Diseases Treatment: Focusing on Drug-Loaded Ocular Inserts, Contacts, and Intraocular Lenses. Pharmaceutics 2023; 15:pharmaceutics15020625. [PMID: 36839947 PMCID: PMC9961328 DOI: 10.3390/pharmaceutics15020625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Nowadays, ocular drug delivery still remains a challenge, since the conventional dosage forms used for anterior and posterior ocular disease treatments, such as topical, systemic, and intraocular administration methods, present important limitations mainly related to the anatomical complexity of the eye. In particular, the blood-ocular barrier along with the corneal barrier, ocular surface, and lacrimal fluid secretion reduce the availability of the administered active compounds and their efficacy. These limitations have increased the need to develop safe and effective ocular delivery systems able to sustain the drug release in the interested ocular segment over time. In the last few years, thanks to the innovations in the materials and technologies employed, different ocular drug delivery systems have been developed. Therefore, this review aims to summarize the synthetic and natural drug-loaded ocular inserts, contacts, and intraocular lenses that have been recently developed, emphasizing the characteristics that make them promising for future ocular clinical applications.
Collapse
|
12
|
Oliveira AS, Silva JC, Loureiro MV, Marques AC, Kotov NA, Colaço R, Serro AP. Super-Strong Hydrogel Composites Reinforced with PBO Nanofibers for Cartilage Replacement. Macromol Biosci 2023; 23:e2200240. [PMID: 36443994 DOI: 10.1002/mabi.202200240] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/28/2022] [Indexed: 11/30/2022]
Abstract
Cartilage replacement materials exhibiting a set of demanding properties such as high water content, high mechanical stiffness, low friction, and excellent biocompatibility are quite difficult to achieve. Here, poly(p-phenylene-2,6-benzobisoxazole) (PBO) nanofibers are combined with polyvinyl alcohol (PVA) to form a super-strong structure with a performance that surpasses the vast majority of previously existing hydrogels. PVA-PBO composites with water contents in the 59-76% range exhibit tensile and compressive moduli reaching 20.3 and 4.5 MPa, respectively, and a coefficient of friction below 0.08. Further, they are biocompatible and support the viability of chondrocytes for 1 week, with significant improvements in cell adhesion, proliferation, and differentiation compared to PVA. The new composites can be safely sterilized by steam heat or gamma radiation without compromising their integrity and overall performance. In addition, they show potential to be used as local delivery platforms for anti-inflammatory drugs. These attractive features make PVA-PBO composites highly competitive engineered materials with remarkable potential for use in the design of load-bearing tissues. Complementary work has also revealed that these composites will be interesting alternatives in other industrial fields where high thermal and mechanical resistance are essential requirements, or which can take advantage of the pH responsiveness functionality.
Collapse
Affiliation(s)
- Andreia S Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal.,Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, Caparica, 2829-511, Portugal.,Instituto de Engenharia Mecânica and Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal
| | - João C Silva
- Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal.,Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal.,Centre for Rapid and Sustainable Product Development, Politécnico de Leiria, Rua de Portugal-Zona Industrial, Marinha Grande, 2430-028, Portugal
| | - Mónica V Loureiro
- Centro de Recursos Naturais e Ambiente, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal
| | - Ana C Marques
- Centro de Recursos Naturais e Ambiente, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal
| | - Nicholas A Kotov
- Biointerfaces Institute, Department of Chemical Engineering, and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rogério Colaço
- Instituto de Engenharia Mecânica and Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal
| | - Ana P Serro
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal.,Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, Caparica, 2829-511, Portugal
| |
Collapse
|
13
|
Li K, Yu L, Ma L, Xia J, Peng J, Hu P, Liu G, Ye J. Surface modification of commercial intraocular lens by zwitterionic and antibiotic-loaded coating for preventing postoperative endophthalmitis. Colloids Surf B Biointerfaces 2023; 222:113093. [PMID: 36542949 DOI: 10.1016/j.colsurfb.2022.113093] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/01/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
After cataract surgery, to prevent possible postoperative endophthalmitis (POE) caused by attached pathogenic bacteria onto the surface of implanted intraocular lens (IOL), various antibiotic-loaded IOLs have been proposed and widely studied to inhibit bacterial infection. However, most of these developed antibiotic-loaded IOLs still suffer from shortcomings such as insufficient drug loading, short release time, poor biocompatibility, and risk of secondary infection. Herein, we propose a zwitterionic and high-drug loading coating for surface modification of commercial hydrophobic IOL with both antifouling and antibacterial properties to effectively prevent POE. In this strategy, zwitterionic poly(carboxylbetaine-co-dopamine methacrylamide) copolymers (pCBDA) and dopamine (DA) were first robustly co-deposited onto IOL surface via facile mussel-inspired chemistry, resulting in a hydrophilic coating (defined as PCB) without sacrificing the high light transmittance of the native IOL. Subsequently, amikacin (AMK), an amine-rich antibiotic was reversibly conjugated onto the coating through the acid-sensitive Schiff base bonds formed by the reaction between amino and catechol groups, with high-drug payload over ∼35.5 μg per IOL and 30 days of sustained drug release under weak acid environment. Benefiting from the antifouling property of zwitterionic pCBDA copolymers, the intraocularly implanted PCB/AMK-coated IOL could effectively resist the adhesion and proliferation of residual LECs to inhibit the development of posterior capsule opacification (PCO) without affecting the normal ocular tissues, demonstrating excellent in vivo biocompatibility. Moreover, the synergy of zwitterionic pCBDA and conjugated AMK with acidic-dependent release behavior endowed this PCB/AMK-coated IOL strong antibacterial activity against both in vitro biofilm formation and in vivo postoperative Staphylococcus aureus infection, suggesting its promising application in preventing POE.
Collapse
Affiliation(s)
- Kaijun Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Ling Yu
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, 400042, China
| | - Li Ma
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiali Xia
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, 400042, China
| | - Jinyu Peng
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Pan Hu
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, 400042, China
| | - Gongyan Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | - Jian Ye
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
14
|
Lu D, Wang H, Feng C, Bai T, Xu B, Wei Y, Shen L, Lin Q. Spin-Coating-Based Facile Annular Photodynamic Intraocular Lens Fabrication for Efficient and Safer Posterior Capsular Opacification Prevention. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48341-48355. [PMID: 36255103 DOI: 10.1021/acsami.2c09612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Posterior capsular opacification (PCO) is the most common complication after cataract surgery, which is primarily caused by the proliferation of the residual lens epithelial cells (LECs) in the lens capsule. Previous studies have demonstrated that a drug-eluting intraocular lens (IOL), aimed to in situ eliminate LECs, are an effective and promising way to prevent PCO. However, because of the potential toxicities of the antiproliferative drugs to the adjacent tissues, the safety of such drug-eluting IOLs is still a highly important issue to be solved. In this investigation, a facile photodynamic coating-modified IOL was developed for effective and safer PCO prevention. An annular poly(lactide-co-glycolic acid) (PLGA) coating loaded with photosensitizer chlorin e6 (Ce6) was prepared by a spin-coating technique. The optical property investigations showed that the Ce6@PLGA coating was particularly suitable for the IOL surface modification. The in vitro cell culture investigation showed that Ce6@PLGA coating-modified IOLs effectively eliminated LECs when treated with light illumination, whereas it appeared to have good cytocompatibility without irradiation. The investigation of the cell elimination mechanism showed that the apoptosis of HLECs may be associated with the cytomembrane disruption induced by ROS, which is generated by the photodynamic coating during light illumination. The in vivo implantation experiments confirmed the desired PCO prevention effect, as well as the safety to and biocompatibility with the surrounding tissues. Thus, the facile Ce6@PLGA coating will provide an effective yet safe alternative of IOL surface modification for PCO prevention.
Collapse
Affiliation(s)
- Duoduo Lu
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Hui Wang
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Chulei Feng
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Ting Bai
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Baoqi Xu
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Youfei Wei
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Liangliang Shen
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Quankui Lin
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| |
Collapse
|
15
|
Hong Y, Zou H, Hu Y, Fei F, Liang L, Liu D, Han Y, Lin Q. Design of foldable, responsively drug-eluting polyacrylic intraocular lens bulk materials for prevention of postoperative complications. J Mater Chem B 2022; 10:8398-8406. [PMID: 36250493 DOI: 10.1039/d2tb01974d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Posterior capsular opacification (PCO), resulting from undesired intracapsular cell proliferation, is the most common complication of intraocular lens (IOL) implantation after cataract surgery. In recent years, IOLs have been developed into a drug delivery platform. Compared with traditional eye drops, drug-loaded IOLs have the characteristics of independent patient compliance and no other operation except surgical implantation. In this work, a series of poly(glycidyl methacrylate-co-2-(2-ethoxyethoxy)ethyl acrylate) (PGE) acrylic intraocular lens materials were synthesized as drug delivery platforms. The PGE synthesized with 10% crosslinking agent has excellent optical, foldable, and thermomechanical properties. An aldehyde group was subsequently introduced into the PGE chains, and an antiproliferative drug (doxorubicin) was immobilized onto the PGE chains via an H+-sensitive imine bond. The IOL exhibits H+-dependent Dox release behavior in a simulated pathological environment. The in vitro and in vivo systematical evaluations indicate that such a responsively drug-eluting PGE IOL can effectively prevent PCO.
Collapse
Affiliation(s)
- Yueze Hong
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, P. R. China.
| | - Haoyu Zou
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, P. R. China.
| | - Yulin Hu
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, P. R. China.
| | - Fan Fei
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, P. R. China.
| | - Lin Liang
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, P. R. China.
| | - Dong Liu
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, P. R. China.
| | - Yuemei Han
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, P. R. China.
| | - Quankui Lin
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, P. R. China.
| |
Collapse
|
16
|
Ye Z, Huang Y, Li J, Ma T, Gao L, Hu H, He Q, Jin H, Li Z. Two-dimensional ultrathin Ti3C2 MXene nanosheets coated intraocular lens for synergistic photothermal and NIR-controllable rapamycin releasing therapy against posterior capsule opacification. Front Bioeng Biotechnol 2022; 10:989099. [PMID: 36110318 PMCID: PMC9468448 DOI: 10.3389/fbioe.2022.989099] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Posterior capsule opacification (PCO) is one of the most frequent late-onset complications after cataract surgery. Several kinds of drug-eluting intraocular lenses (IOL) were designed for sustainable drug release to suppress ocular inflammation, the proliferation of lens epithelial cells (LECs) and the development of PCO after cataract surgery. Despite previous advances in this field, the drug-loaded IOLs were limited in ocular toxicity, insufficient drug-loading capacity, and short release time. To prevent PCO and to address these drawbacks, a novel drug-loaded IOL (Rapa@Ti3C2-IOL), prepared from two-dimensional ultrathin Ti3C2 MXene nanosheets and rapamycin (Rapa), was fabricated with a two-step spin coating method in this study. Rapa@Ti3C2 was prepared via electrostatic self-assembly of Ti3C2 and Rapa, with a loading capacity of Rapa at 92%. Ti3C2 was used as a drug delivery reservoir of Rapa. Rapa@Ti3C2-IOL was designed to have the synergistic photothermal and near infrared (NIR)-controllable drug release property. As a result, Rapa@Ti3C2-IOL exhibited the advantages of simple preparation, high light transmittance, excellent photothermal conversion capacity, and NIR-controllable drug release behavior. The Rapa@Ti3C2 coating effectively eliminated the LECs around Rapa@Ti3C2-IOL under a mild 808-nm NIR laser irradiation (1.0 W/cm−2). Moreover, NIR-controllable Rapa release inhibited the migration of LECs and suppressed the inflammatory response after photothermal therapy in vitro. Then, Rapa@Ti3C2-IOL was implanted into chinchilla rabbit eyes, and the effectiveness and biocompatibility to prevent PCO were evaluated for 4 weeks. The Rapa@Ti3C2-IOL implant exhibited excellent PCO prevention ability with the assistance of NIR irradiation and no obvious pathological damage was observed in surrounding healthy tissues. In summary, the present study offers a promising strategy for preventing PCO via ultrathin Ti3C2 MXene nanosheet-based IOLs with synergistic photothermal and NIR-controllable Rapa release properties.
Collapse
Affiliation(s)
- Zi Ye
- Senior Department of Ophthalmology, The Third Medical Center, The Chinese PLA General Hospital, Beijing, China
| | - Yang Huang
- Department of Ophthalmology, Shanghai Electric Power Hospital, Shanghai, China
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinglan Li
- Senior Department of Ophthalmology, The Third Medical Center, The Chinese PLA General Hospital, Beijing, China
| | - Tianju Ma
- Senior Department of Ophthalmology, The Third Medical Center, The Chinese PLA General Hospital, Beijing, China
| | - Lixiong Gao
- Senior Department of Ophthalmology, The Third Medical Center, The Chinese PLA General Hospital, Beijing, China
| | - Huihui Hu
- Suzhou Beike Nano Technology Co., Ltd., Suzhou, China
- *Correspondence: Huihui Hu, ; Qing He, 2608169765qq.com; Haiying Jin, ; Zhaohui Li,
| | - Qing He
- Suzhou Beike Nano Technology Co., Ltd., Suzhou, China
- *Correspondence: Huihui Hu, ; Qing He, 2608169765qq.com; Haiying Jin, ; Zhaohui Li,
| | - Haiying Jin
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Huihui Hu, ; Qing He, 2608169765qq.com; Haiying Jin, ; Zhaohui Li,
| | - Zhaohui Li
- Senior Department of Ophthalmology, The Third Medical Center, The Chinese PLA General Hospital, Beijing, China
- *Correspondence: Huihui Hu, ; Qing He, 2608169765qq.com; Haiying Jin, ; Zhaohui Li,
| |
Collapse
|
17
|
Lee K, Lee G, Lee S, Park CY. Advances in ophthalmic drug delivery technology for postoperative management after cataract surgery. Expert Opin Drug Deliv 2022; 19:945-964. [PMID: 35917497 DOI: 10.1080/17425247.2022.2109624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Cataract surgery is becoming more common due to an aging world population. Intraocular lenses and surgical technique have developed remarkably recently, but the development of postoperative medication to prevent postsurgery complications has been relatively delayed. We still largely depend on eye drops for the management of post-cataract-surgery patients. Mental and physical problems that often occur in elderly cataract patients make it difficult for patients to apply eye drops by themselves. It is necessary to develop new effective drug delivery methods. AREAS COVERED This updated review article provides a brief review of why drug management is needed following cataract surgery and an overview of current developments in new drug delivery methods for ophthalmic treatment. In particular, various novel drug delivery methods that can be used for post-cataract-surgery management and their current development stages are extensively reviewed. EXPERT OPINION Rapidly developing technologies, such as intraocular and external ophthalmic implants, polymers, and nanotechnology, are being actively applied to develop novel drug delivery systems for safe and effective management after cataract surgery. Their goal is to achieve sufficient drug release for the desired duration with a single application. These will largely replace the inconvenience of eye drops for elderly patients in the future.
Collapse
Affiliation(s)
- Kangmin Lee
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, South Korea
| | - Gahye Lee
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, South Korea
| | - Soomin Lee
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, South Korea
| | - Choul Yong Park
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, South Korea
| |
Collapse
|
18
|
Zhang Y, Zhang C, Chen S, Hu J, Shen L, Yu Y. Research Progress Concerning a Novel Intraocular Lens for the Prevention of Posterior Capsular Opacification. Pharmaceutics 2022; 14:1343. [PMID: 35890240 PMCID: PMC9318653 DOI: 10.3390/pharmaceutics14071343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/12/2022] [Accepted: 06/23/2022] [Indexed: 11/24/2022] Open
Abstract
Posterior capsular opacification (PCO) is the most common complication resulting from cataract surgery and limits the long-term postoperative visual outcome. Using Nd:YAG laser-assisted posterior capsulotomy for the clinical treatment of symptomatic PCO increases the risks of complications, such as glaucoma, retinal diseases, uveitis, and intraocular lens (IOL) pitting. Therefore, finding how to prevent PCO development is the subject of active investigations. As a replacement organ, the IOL is implanted into the lens capsule after cataract surgery, but it is also associated with the occurrence of PCO. Using IOL as a medium for PCO prophylaxis is a more facile and efficient method that has demonstrated various clinical application prospects. Thus, scientists have conducted a lot of research on new intraocular lens fabrication methods, such as optimizing IOL materials and design, and IOL surface modification (including plasma/ultraviolet/ozone treatment, chemical grafting, drug loading, coating modification, and layer-by-layer self-assembly methods). This paper summarizes the research progress for different types of intraocular lenses prepared by different surface modifications, including anti-biofouling IOLs, enhanced-adhesion IOLs, micro-patterned IOLs, photothermal IOLs, photodynamic IOLs, and drug-loading IOLs. These modified intraocular lenses inhibit PCO development by reducing the residual intraoperative lens epithelial cells or by regulating the cellular behavior of lens epithelial cells. In the future, more works are needed to improve the biosecurity and therapeutic efficacy of these modified IOLs.
Collapse
Affiliation(s)
- Yidong Zhang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (C.Z.); (S.C.); (J.H.); (L.S.)
| | - Chengshou Zhang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (C.Z.); (S.C.); (J.H.); (L.S.)
| | - Silong Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (C.Z.); (S.C.); (J.H.); (L.S.)
| | - Jianghua Hu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (C.Z.); (S.C.); (J.H.); (L.S.)
- Jiande Branch, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Lifang Shen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (C.Z.); (S.C.); (J.H.); (L.S.)
| | - Yibo Yu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (C.Z.); (S.C.); (J.H.); (L.S.)
| |
Collapse
|
19
|
Luo C, Wang H, Chen X, Xu J, Yin H, Yao K. Recent Advances of Intraocular Lens Materials and Surface Modification in Cataract Surgery. Front Bioeng Biotechnol 2022; 10:913383. [PMID: 35757812 PMCID: PMC9213654 DOI: 10.3389/fbioe.2022.913383] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in cataract surgery have increased the demand for intraocular lens (IOL) materials. At present, the progress of IOL materials mainly contains further improving biocompatibility, providing better visual quality and adjustable ability, reducing surgical incision, as well as dealing with complications such as posterior capsular opacification (PCO) and ophthalmitis. The purpose of this review is to describe the research progress of relevant IOL materials classified according to different clinical purposes. The innovation of IOL materials is often based on the common IOL materials on the market, such as silicon and acrylate. Special properties and functions are obtained by adding extra polymers or surface modification. Most of these studies have not yet been commercialized, which requires a large number of clinical trials. But they provide valuable thoughts for the optimization of the IOL function.
Collapse
Affiliation(s)
| | | | | | | | | | - Ke Yao
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Lu D, Han Y, Liu D, Chen S, Qie J, Qu J, Lin Q. Centrifugally concentric ring-patterned drug-loaded polymeric coating as an intraocular lens surface modification for efficient prevention of posterior capsular opacification. Acta Biomater 2022; 138:327-341. [PMID: 34800717 DOI: 10.1016/j.actbio.2021.11.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/25/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023]
Abstract
Posterior capsular opacification (PCO) is the main postoperative complication after intraocular lens (IOL) implantation in cataract surgery, because of the proliferation of the residual lens epithelial cells (LECs) in the lens capsule. Drug-eluting IOLs, aimed to develop an in situ drug delivery device, are the promising concept in recent years. As IOLs are optical devices other than implants, the feasibility and applicability remain a challenge for drug-eluting coatings. In this investigation, a centrifugally concentric ring-patterned drug-loaded poly(lactide-co-glycolic acid) (PLGA) coating was designed and fabricated by the spin coating technique. The concentric ring-patterned morphologies and the drug loading and release properties were carefully investigated, and the spin coating parameters were optimized. A concentric annular coating with a thin center and thick periphery was obtained, which was particularly suitable for the surface modification of IOLs, as the visual pathway of the intraocular light transmission greatly requires good light transmittance of the IOLs. IOLs with the immunosuppressant cyclosporin A (CsA)-loaded coating (CsA @ PLGA) modification were then fabricated for PCO prevention. The in vitro LECs culture results showed that the CsA @ PLGA coating-modified IOLs significantly inhibited cell proliferation and induced cell death. Western blot analysis showed that the efficient cell inhibition behavior of CsA was due to the autophagy-mediated cell death pathway. The in vivo intraocular implantation results confirmed the desired PCO inhibition effect. Thus, the centrifugally concentric ring-patterned drug-loaded PLGA coating obtained by the spin coating technique provides a simple yet effective alternative of IOL modification for PCO prevention. STATEMENT OF SIGNIFICANCE: • Concentric ring-patterned polymer coating, specifically for drug-eluting IOL fabrication, was developed by the spin coating technique. • The immunosuppressant CsA inhibited LEC proliferation through the autophagy-mediated cell death pathway. • Concentric ring-patterned CsA-eluting IOLs exhibited reliable in vivo PCO prevention. • The drug-eluting IOLs fabricated by the simple and economical spin coating technique have a great potential in clinical translation.
Collapse
Affiliation(s)
- Duoduo Lu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Yuemei Han
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Dong Liu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Siqi Chen
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Jiqiao Qie
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Jia Qu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, PR China.
| | - Quankui Lin
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, PR China.
| |
Collapse
|
21
|
Controlled brimonidine release from nanostructured lipid carriers-laden silicone contact lens to treat glaucoma. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|