1
|
Bayoumi M, Youshia J, Arafa MG, Nasr M, Sammour OA. Nanocarriers for the treatment of glioblastoma multiforme: A succinct review of conventional and repositioned drugs in the last decade. Arch Pharm (Weinheim) 2024; 357:e2400343. [PMID: 39074966 DOI: 10.1002/ardp.202400343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024]
Abstract
Glioblastoma multiforme is a very combative and threatening type of cancer. The standard course of treatment involves excising the tumor surgically, then administering chemotherapy and radiation therapy. Because of the presence of the blood-brain barrier and the unique characteristics of the tumor microenvironment, chemotherapy is extremely difficult and has a high incidence of relapse. With their capacity to precisely target and transport therapeutic medications to the tumor while overcoming the challenges provided by invasive and infiltrative gliomas, nanocarriers offer a potentially beneficial treatment option for gliomas. Drug repositioning or, in other words, finding novel therapeutic uses for medications that have received approval for previous uses has also recently emerged to provide alternative treatments for many diseases, with glioblastoma being among them. In this article, our goal is to shed light on the pathogenesis of glioma and summarize the proposed treatment approaches in the last decade, highlighting how combining repositioned drugs and nanocarriers technology can reduce drug resistance and improve therapeutic efficacy in primary glioma.
Collapse
Affiliation(s)
- Mahitab Bayoumi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - John Youshia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mona G Arafa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- Chemotherapeutic Unit, Mansoura University Hospitals, Mansoura, Egypt
- Nanotechnology Research Center, The British University in Egypt, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Omaima A Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Qiao L, Du X, Wang H, Wang Z, Gao S, Zhao CQ. Research Progress on the Strategies for Crossing the Blood-Brain Barrier. Mol Pharm 2024; 21:4786-4803. [PMID: 39231367 DOI: 10.1021/acs.molpharmaceut.4c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Recently, the incidence of brain diseases, such as central nervous system degenerative diseases, brain tumors, and cerebrovascular diseases, has increased. However, the blood-brain barrier (BBB) limits the effective delivery of drugs to brain disease areas. Therefore, the mainstream direction of new drug development for these diseases is to engineer drugs that can better cross the BBB to exert their effects in the brain. This paper reviews the research progress and application of the main trans-BBB drug delivery strategies (receptor/transporter-mediated BBB crossing, focused ultrasound to open the BBB, adenosine agonist reversible opening of the BBB, aromatic resuscitation, transnasal administration, cell-mediated trans-BBB crossing, and viral vector system-mediated brain drug delivery). Meanwhile, the potential applications, advantages, and disadvantages of these strategies for crossing the BBB are analyzed. Finally, the future development prospects of strategies for crossing the BBB are also discussed. These strategies have potential value for treating brain diseases.
Collapse
Affiliation(s)
- Li Qiao
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Xiuwei Du
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Hua Wang
- College of Intelligence and Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Zhiyi Wang
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Shijie Gao
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Chun-Qin Zhao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| |
Collapse
|
3
|
Wang C, Xiao Z, Fan J, Zhang C, Wang T, Qiu Z, Ye F, Chen M, Li Y. Nanocarriers Loaded with Danshensu for Treating Ischemic Stroke by Reducing Oxidative Stress and Glial Overactivation. ACS OMEGA 2024; 9:35686-35694. [PMID: 39184494 PMCID: PMC11339989 DOI: 10.1021/acsomega.4c03991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024]
Abstract
Ischemic stroke is a complex health condition that can cause ischemia and necrosis of brain tissue. Subsequently, the excessive activation of glial cells can result in various inflammatory and oxidative stress reactions that exacerbate ischemic brain injury. In this paper, we propose the targeted self-assembly of a three-dimensional nanoparticle network containing Danshensu to rescue ischemic penumbra by reducing oxidative stress and glial overactivation. The network comprises nanoparticles composed of chitosan, thiol ketone, and carboxymethyl-β-cyclodextrin as the core wrapped by the Pro-His-Ser-Arg-Asn (PHSRN) peptide sequence as the outer layer and loaded with Danshensu. The PHSRN-peptide-modified nanoparticles bind to integrin α5β1 overexpressed on the damaged blood-brain barrier and accumulate in the damaged brain in a rat model of ischemia/reperfusion. When stimulated by reactive oxygen species, thiol ketone bonded to the nanoparticles was hydrolyzed, facilitating responsive drug release while consuming the reactive oxygen species. Subsequently, the released Danshensu scavenged the reactive oxygen species to prevent oxidative stress and inhibited the activation of astrocytes, thereby suppressing proinflammatory cytokine secretion, improving the inflammatory brain microenvironment and reducing neuronal apoptosis.
Collapse
Affiliation(s)
- Cuihong Wang
- Department
of Pharmacy, Shanghai University of Medicine
and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Zhicheng Xiao
- 411
Hospital of Shanghai University, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Jinhui Fan
- 411
Hospital of Shanghai University, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Chuan Zhang
- 411
Hospital of Shanghai University, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Tingfang Wang
- 411
Hospital of Shanghai University, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Zheng Qiu
- Shenzhen
Medicines and Health Products IMP. & EXP. Co., Ltd., Guangdong 518000, China
| | - Fei Ye
- 411
Hospital of Shanghai University, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Min Chen
- Department
of Pharmacy, Shanghai University of Medicine
and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Yi Li
- 411
Hospital of Shanghai University, School of Medicine, Shanghai University, Shanghai 200444, China
| |
Collapse
|
4
|
Lai G, Wu H, Yang K, Hu K, Zhou Y, Chen X, Fu F, Li J, Xie G, Wang HF, Lv Z, Wu X. Progress of nanoparticle drug delivery system for the treatment of glioma. Front Bioeng Biotechnol 2024; 12:1403511. [PMID: 38919382 PMCID: PMC11196769 DOI: 10.3389/fbioe.2024.1403511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024] Open
Abstract
Gliomas are typical malignant brain tumours affecting a wide population worldwide. Operation, as the common treatment for gliomas, is always accompanied by postoperative drug chemotherapy, but cannot cure patients. The main challenges are chemotherapeutic drugs have low blood-brain barrier passage rate and a lot of serious adverse effects, meanwhile, they have difficulty targeting glioma issues. Nowadays, the emergence of nanoparticles (NPs) drug delivery systems (NDDS) has provided a new promising approach for the treatment of gliomas owing to their excellent biodegradability, high stability, good biocompatibility, low toxicity, and minimal adverse effects. Herein, we reviewed the types and delivery mechanisms of NPs currently used in gliomas, including passive and active brain targeting drug delivery. In particular, we primarily focused on various hopeful types of NPs (such as liposome, chitosan, ferritin, graphene oxide, silica nanoparticle, nanogel, neutrophil, and adeno-associated virus), and discussed their advantages, disadvantages, and progress in preclinical trials. Moreover, we outlined the clinical trials of NPs applied in gliomas. According to this review, we provide an outlook of the prospects of NDDS for treating gliomas and summarise some methods that can enhance the targeting specificity and safety of NPs, like surface modification and conjugating ligands and peptides. Although there are still some limitations of these NPs, NDDS will offer the potential for curing glioma patients.
Collapse
Affiliation(s)
- Guogang Lai
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Hao Wu
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Kaixia Yang
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Kaikai Hu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yan Zhou
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiao Chen
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Fan Fu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jiayi Li
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guomin Xie
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Hai-Feng Wang
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Zhongyue Lv
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiping Wu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
5
|
BenDavid E, Ramezanian S, Lu Y, Rousseau J, Schroeder A, Lavertu M, Tremblay JP. Emerging Perspectives on Prime Editor Delivery to the Brain. Pharmaceuticals (Basel) 2024; 17:763. [PMID: 38931430 PMCID: PMC11206523 DOI: 10.3390/ph17060763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Prime editing shows potential as a precision genome editing technology, as well as the potential to advance the development of next-generation nanomedicine for addressing neurological disorders. However, turning in prime editors (PEs), which are macromolecular complexes composed of CRISPR/Cas9 nickase fused with a reverse transcriptase and a prime editing guide RNA (pegRNA), to the brain remains a considerable challenge due to physiological obstacles, including the blood-brain barrier (BBB). This review article offers an up-to-date overview and perspective on the latest technologies and strategies for the precision delivery of PEs to the brain and passage through blood barriers. Furthermore, it delves into the scientific significance and possible therapeutic applications of prime editing in conditions related to neurological diseases. It is targeted at clinicians and clinical researchers working on advancing precision nanomedicine for neuropathologies.
Collapse
Affiliation(s)
- Eli BenDavid
- Laboratory of Biomaterials and Tissue Engineering, Department of Chemical Engineering, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada;
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
- Laboratory of Nanopharmacology and Pharmaceutical Nanoscience, Faculty of Pharmacy, Laval University, Québec, QC G1V 4G2, Canada
- Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Sina Ramezanian
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| | - Yaoyao Lu
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| | - Joël Rousseau
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel;
| | - Marc Lavertu
- Laboratory of Biomaterials and Tissue Engineering, Department of Chemical Engineering, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada;
| | - Jacques P. Tremblay
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| |
Collapse
|
6
|
Borisenkova AA, Bolshakova OI, Titova AV, Ryabokon IS, Markova MA, Lyutova ZB, Sedov VP, Varfolomeeva EY, Bakhmetyev VV, Arutyunyan AV, Burdakov VS, Sarantseva SV. Fullerene C 60 Conjugate with Folic Acid and Polyvinylpyrrolidone for Targeted Delivery to Tumor Cells. Int J Mol Sci 2024; 25:5350. [PMID: 38791388 PMCID: PMC11120752 DOI: 10.3390/ijms25105350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/04/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
The use of targeted drug delivery systems, including those based on selective absorption by certain receptors on the surface of the target cell, can lead to a decrease in the minimum effective dose and the accompanying toxicity of the drug, as well as an increase in therapeutic efficacy. A fullerene C60 conjugate (FA-PVP-C60) with polyvinylpyrrolidone (PVP) as a biocompatible spacer and folic acid (FA) as a targeting ligand for tumor cells with increased expression of folate receptors (FR) was obtained. Using 13C NMR spectroscopy, FT-IR, UV-Vis spectrometry, fluorometry and thermal analysis, the formation of the conjugate was confirmed and the nature of the binding of its components was established. The average particle sizes of the conjugate in aqueous solutions and cell culture medium were determined using dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). The FA-PVP-C60 showed antiradical activity against •DPPH, •OH and O2•-, but at the same time, it was shown to generate 1O2. It was found that the conjugate in the studied concentration range (up to 200 μg/mL) is non-toxic in vitro and does not affect the cell cycle. To confirm the ability of the conjugate to selectively accumulate through folate-mediated endocytosis, its uptake into cells was analyzed by flow cytometry and confocal microscopy. It was shown that the conjugate is less absorbed by A549 cells with low FR expression than by HeLa, which has a high level of expression of this receptor.
Collapse
Affiliation(s)
- Alina A. Borisenkova
- Radiation Technology Department, St. Petersburg State Institute of Technology (Technical University), 190013 St. Petersburg, Russia
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Olga I. Bolshakova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Anna V. Titova
- Radiation Technology Department, St. Petersburg State Institute of Technology (Technical University), 190013 St. Petersburg, Russia
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Irina S. Ryabokon
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Maria A. Markova
- Radiation Technology Department, St. Petersburg State Institute of Technology (Technical University), 190013 St. Petersburg, Russia
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Zhanna B. Lyutova
- Radiation Technology Department, St. Petersburg State Institute of Technology (Technical University), 190013 St. Petersburg, Russia
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Victor P. Sedov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Elena Yu. Varfolomeeva
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Vadim V. Bakhmetyev
- Radiation Technology Department, St. Petersburg State Institute of Technology (Technical University), 190013 St. Petersburg, Russia
| | - Alexandr V. Arutyunyan
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Vladimir S. Burdakov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Svetlana V. Sarantseva
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, 188300 Gatchina, Russia
| |
Collapse
|
7
|
Chen H, Wang Y, Wang H, Zhang K, Liu Y, Li Q, Li C, Wen Z, Chen Z. Biomimetic nanocarriers loaded with temozolomide by cloaking brain-targeting peptides for targeting drug delivery system to promote anticancer effects in glioblastoma cells. Heliyon 2024; 10:e28256. [PMID: 38596030 PMCID: PMC11002058 DOI: 10.1016/j.heliyon.2024.e28256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
Glioma is the leading cancer of the central nervous system (CNS). The efficacy of glioma treatment is significantly hindered by the presence of the blood-brain barrier (BBB) and blood-brain tumour barrier (BBTB), which prevent most drugs from entering the brain and tumours. Hence, we established a novel drug delivery nanosystem of brain tumour-targeting that could self-assemble the method using an amphiphilic Zein protein isolated from corn. Zein's amphiphilicity prompted it to self-assembled into NPs, efficiently containing TMZ. This allowed us to investigate temozolomide (TMZ) for glioblastoma (GBM) treatment. To construct TMZ-encapsulated NPs (TMZ@RVG-Zein NPs), the NPs' Zein was clocked to rabies virus glycoprotein 29 (RVG29). To verify that the NPs could penetrate the BBB and precisely target and kill the GBM cancer cell line, in vitro studies were performed. The process of NPs penetrating cancer cell membranes was investigated using enzyme-linked immunosorbent assays (ELISAs) to measure the expressions of nicotinic acetylcholine receptors (nAChRs) on the U87 cell line. Therefore, effective targeted brain cancer treatment is possible by forming NP clocks, a cell-penetrating natural Zein protein with an RVG29. These NPs can penetrate the blood-brain barrier (BBB) and enter the glioblastoma (U87) cell line to release TMZ. These NPs have a distinct cocktail of biocompatibility and brain-targeting abilities, making them ideal for involving brain diseases.
Collapse
Affiliation(s)
- Huaming Chen
- Department of Neurosurgery, Pu'er People's Hospital, Pu'er, 665099, China
| | - Yunhong Wang
- Department of Neurosurgery, Pu'er People's Hospital, Pu'er, 665099, China
| | - Hai Wang
- Department of Neurosurgery, Pu'er People's Hospital, Pu'er, 665099, China
| | - Kun Zhang
- Department of Emergency, Pu'er People's Hospital, Pu'er, 665099, China
| | - Yunfei Liu
- Department of Ultrasound Medicine, Pu'er People's Hospital, Pu'er, 665099, China
| | - Qiangfeng Li
- Department of Neurosurgery, Pu'er People's Hospital, Pu'er, 665099, China
| | - Chengli Li
- Department of Neurosurgery, Pu'er People's Hospital, Pu'er, 665099, China
| | - Zhonghui Wen
- Department of Neurosurgery, Pu'er People's Hospital, Pu'er, 665099, China
| | - Ziyu Chen
- Department of Nephrology, Pu'er People's Hospital, Pu'er, 665099, China
| |
Collapse
|
8
|
Bhatt S, Anitha K, Chellappan DK, Mukherjee D, Shilpi S, Suttee A, Gupta G, Singh TG, Dua K. Targeting inflammatory signaling in obsessive compulsive disorder: a promising approach. Metab Brain Dis 2024; 39:335-346. [PMID: 37950815 DOI: 10.1007/s11011-023-01314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/23/2023] [Indexed: 11/13/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder. Approximately, around 2% to 3% percent of the general population experience symptoms of OCD over the course of their lifetime. OCD can lead to economic burden, poor quality of life, and disability. The characteristic features exhibited generally in OCD are continuous intrusive thoughts and periodic ritualized behaviours. Variations in genes, pathological function of Cortico-Striato-Thalamo-Cortical (CSTC) circuits and dysregulation in the synaptic conduction have been the major factors involved in the pathological progression of OCD. However, the basic mechanisms still largely unknown. Current therapies for OCD largely target monoaminergic neurotransmitters (NTs) in specific dopaminergic and serotonergic circuits. However, such therapies have limited efficacy and tolerability. Drug resistance has been one of the important reasons reported to critically influence the effectiveness of the available drugs. Inflammation has been a crucial factor which is believed to have a significant importance in OCD progression. A significant number of proinflammatory cytokines have been reportedly amplified in patients with OCD. Mechanisms of drug treatment involve attenuation of the symptoms via modulation of inflammatory signalling pathways, modification in brain structure, and synaptic plasticity. Hence, targeting inflammatory signaling may be considered as a suitable approach in the treatment of OCD. The present review focuses mainly on the significant findings from the animal and human studies conducted in this area, that targets inflammatory signaling in neurological conditions. In addition, it also focusses on the therapeutic approaches that target OCD via modification of the inflammatory signaling pathways.
Collapse
Affiliation(s)
- Shvetank Bhatt
- School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra, 411038, India.
| | - Kuttiappan Anitha
- Department of Pharmacology, School of Pharmacy & Technology Management (SPTM), SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Shirpur, 425405, Maharashtra, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Dhrubojyoti Mukherjee
- Department of Pharmaceutics, School of Pharmacy & Technology Management (SPTM), SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Shirpur, Maharashtra, 425405, India
| | - Satish Shilpi
- Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Ashish Suttee
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Saveetha Nagar, Thandalam, Kanchipuram - Chennai Rd, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, 302017, India
| | | | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
9
|
Dong M, Liu Y, Liu B, Peng J, Tang Y, Lu G, Shi H, Zhu F. Enhanced anti-glioma efficacy of biodegradable periodic mesoporous organosilica nanoparticles through target delivery of chemotherapeutics. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:48. [PMID: 37792144 PMCID: PMC10550876 DOI: 10.1007/s10856-023-06747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/09/2023] [Indexed: 10/05/2023]
Abstract
Glioma is the most common malignant tumor of the brain and enhancing the efficacy of chemotherapy in glioma is critical for improving patients' prognosis. In this study, a glioma-targeting drug delivery system is constructed using biodegradable periodic mesoporous organosilica nanoparticles (PMO) that are modified with lactoferrin (Lf) ligands. The obtained PMO is doped with thioether groups and can be degraded in the high concentration of glutathione in tumor cells. The surface area and pore volume of PMO are 772 cm2/g and 0.98 cm3/g, respectively and the loading capacity of doxorubicin (Dox) is as high as 20%. The results of the confocal laser scanning microscope show that the uptake of PMO-Lf@Dox by C6 cells is higher than PMO@Dox. The quantitative analysis of the flow cytometer further demonstrates that more PMO-Lf@Dox enter C6 cells, indicating that the modification of lactoferrin can significantly increase the uptake of C6 cells. Finally, the therapeutic efficacy results show that Lf-modified PMO enhances the inhibitory effect of Dox on C6 cells when incubated for 24 h and 72 h. In summary, this lactoferrin receptor-mediated PMO drug carrier with biodegradability in glutathione in tumor cells can be used to enhance drug delivery into glioma without long-term accumulation in vivo. In this study, a glioma-targeting drug delivery system is constructed using periodic mesoporous organosilica nanoparticles (PMO) that modified with lactoferrin (Lf) ligands. This lactoferrin receptor-mediated PMO drug carrier can be used to enhance drug delivery into brain glioma.
Collapse
Affiliation(s)
- Min Dong
- Department of Comparative Medicine, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, PR China
| | - Ying Liu
- School of Intelligent Manufacturing and Electronic Engineering, Wenzhou University of Technology, Wenzhou, 325025, PR China
| | - Biao Liu
- Department of Comparative Medicine, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, PR China
| | - Jin Peng
- Intervention Department, Chenggong Hospital Affiliated to Xiamen University, 94-96 Wenyuan Road, Xiamen, 361003, PR China
| | - Yuxia Tang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, PR China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, PR China.
| | - Haibin Shi
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, PR China.
| | - Feipeng Zhu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, PR China.
| |
Collapse
|
10
|
Gajbhiye KR, Salve R, Narwade M, Sheikh A, Kesharwani P, Gajbhiye V. Lipid polymer hybrid nanoparticles: a custom-tailored next-generation approach for cancer therapeutics. Mol Cancer 2023; 22:160. [PMID: 37784179 PMCID: PMC10546754 DOI: 10.1186/s12943-023-01849-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/23/2023] [Indexed: 10/04/2023] Open
Abstract
Lipid-based polymeric nanoparticles are the highly popular carrier systems for cancer drug therapy. But presently, detailed investigations have revealed their flaws as drug delivery carriers. Lipid polymer hybrid nanoparticles (LPHNPs) are advanced core-shell nanoconstructs with a polymeric core region enclosed by a lipidic layer, presumed to be derived from both liposomes and polymeric nanounits. This unique concept is of utmost importance as a combinable drug delivery platform in oncology due to its dual structured character. To add advantage and restrict one's limitation by other, LPHNPs have been designed so to gain number of advantages such as stability, high loading of cargo, increased biocompatibility, rate-limiting controlled release, and elevated drug half-lives as well as therapeutic effectiveness while minimizing their drawbacks. The outer shell, in particular, can be functionalized in a variety of ways with stimuli-responsive moieties and ligands to provide intelligent holding and for active targeting of antineoplastic medicines, transport of genes, and theragnostic. This review comprehensively provides insight into recent substantial advancements in developing strategies for treating various cancer using LPHNPs. The bioactivity assessment factors have also been highlighted with a discussion of LPHNPs future clinical prospects.
Collapse
Affiliation(s)
- Kavita R Gajbhiye
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Erandwane, Pune, 411038, India
| | - Rajesh Salve
- Nanobioscience, Agharkar Research Institute, Pune, 411038, India
- Savitribai Phule Pune University, Pune, 411007, India
| | - Mahavir Narwade
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Erandwane, Pune, 411038, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Virendra Gajbhiye
- Nanobioscience, Agharkar Research Institute, Pune, 411038, India.
- Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
11
|
Di Filippo LD, de Carvalho SG, Duarte JL, Luiz MT, Paes Dutra JA, de Paula GA, Chorilli M, Conde J. A receptor-mediated landscape of druggable and targeted nanomaterials for gliomas. Mater Today Bio 2023; 20:100671. [PMID: 37273792 PMCID: PMC10238751 DOI: 10.1016/j.mtbio.2023.100671] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/13/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
Gliomas are the most common type of brain cancer, and among them, glioblastoma multiforme (GBM) is the most prevalent (about 60% of cases) and the most aggressive type of primary brain tumor. The treatment of GBM is a major challenge due to the pathophysiological characteristics of the disease, such as the presence of the blood-brain barrier (BBB), which prevents and regulates the passage of substances from the bloodstream to the brain parenchyma, making many of the chemotherapeutics currently available not able to reach the brain in therapeutic concentrations, accumulating in non-target organs, and causing considerable adverse effects for the patient. In this scenario, nanocarriers emerge as tools capable of improving the brain bioavailability of chemotherapeutics, in addition to improving their biodistribution and enhancing their uptake in GBM cells. This is possible due to its nanometric size and surface modification strategies, which can actively target nanocarriers to elements overexpressed by GBM cells (such as transmembrane receptors) related to aggressive development, drug resistance, and poor prognosis. In this review, an overview of the most frequently overexpressed receptors in GBM cells and possible approaches to chemotherapeutic delivery and active targeting using nanocarriers will be presented.
Collapse
Affiliation(s)
| | | | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marcela Tavares Luiz
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Geanne Aparecida de Paula
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - João Conde
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
12
|
Tofani LB, Luiz MT, Paes Dutra JA, Abriata JP, Chorilli M. Three-dimensional culture models: emerging platforms for screening the antitumoral efficacy of nanomedicines. Nanomedicine (Lond) 2023; 18:633-647. [PMID: 37183804 DOI: 10.2217/nnm-2022-0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Nanomedicines have been investigated for delivering drugs to tumors due to their ability to accumulate in the tumor tissues. 2D in vitro cell culture has been used to investigate the antitumoral potential of nanomedicines. However, a 2D model cannot adequately mimic the in vivo tissue conditions because of the lack of cell-cell interaction, a gradient of nutrients and the expression of genes. To overcome this limitation, 3D cell culture models have emerged as promising platforms that better replicate the complexity of native tumors. For this purpose, different techniques can be used to produce 3D models, including scaffold-free, scaffold-based and microfluidic-based models. This review addresses the principles, advantages and limitations of these culture methods for evaluating the antitumoral efficacy of nanomedicines.
Collapse
Affiliation(s)
- Larissa Bueno Tofani
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - Marcela Tavares Luiz
- School of Pharmaceutical Science of Sao Paulo State University (UNESP), Araraquara, Sao Paulo, 14800-903, Brazil
| | - Jessyca Aparecida Paes Dutra
- School of Pharmaceutical Science of Sao Paulo State University (UNESP), Araraquara, Sao Paulo, 14800-903, Brazil
| | - Juliana Palma Abriata
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Science of Sao Paulo State University (UNESP), Araraquara, Sao Paulo, 14800-903, Brazil
| |
Collapse
|
13
|
Zhong X, Wei G, Liu B, Wang C, Wang J, Lu Y, Cui W, Guo H. Polyhedral Oligomeric Silsesquioxane-Based Nanoparticles for Efficient Chemotherapy of Glioblastoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207248. [PMID: 36725316 DOI: 10.1002/smll.202207248] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/10/2023] [Indexed: 05/04/2023]
Abstract
Glioblastoma (GBM) is the most common lethal brain tumor with dismal treatment outcomes and poor response to chemotherapy. As the regulatory center of cytogenetics and metabolism, most tumor chemotherapeutic molecules exert therapeutic effects in the nucleus. Nanodrugs showing the nuclear aggregation effect are expected to eliminate and fundamentally suppress tumor cells. In this study, a nanodrug delivery system based on polyhedral oligomeric silsesquioxane (POSS) is introduced to deliver drugs into the nuclei of GBM cells, effectively enhancing the therapeutic efficacy of chemotherapy. The nanoparticles are modified with folic acid and iRGD peptides molecules to improve their tumor cell targeting and uptake via receptor-mediated endocytosis. Nuclear aggregation allows for the direct delivery of chemotherapeutic drug temozolomide (TMZ) to the tumor cell nuclei, resulting in more significant DNA damage and inhibition of tumor cell proliferation. Herein, TMZ-loaded POSS nanoparticles can significantly improve the survival of GBM-bearing mice. Therefore, the modified POSS nanoparticles may serve as a promising drug-loaded delivery platform to improve chemotherapy outcomes in GBM patients.
Collapse
Affiliation(s)
- Xiangyang Zhong
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Gang Wei
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Boyang Liu
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Chenyang Wang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Yong Lu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Hongbo Guo
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
14
|
Huang X, Shi S, Wang H, Zhao T, Wang Y, Huang S, Su Y, Zhao C, Yang M. Advances in antibody-based drugs and their delivery through the blood-brain barrier for targeted therapy and immunotherapy of gliomas. Int Immunopharmacol 2023; 117:109990. [PMID: 37012874 DOI: 10.1016/j.intimp.2023.109990] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Gliomas are highly invasive and are the most common type of primary malignant brain tumor. The routine treatments for glioma include surgical resection, radiotherapy, and chemotherapy. However, glioma recurrence and patient survival remain unsatisfactory after employing these traditional treatment approaches. With the rapid development of molecular immunology, significant breakthroughs have been made in targeted glioma therapy and immunotherapy. Antibody-based therapy has excellent advantages in treating gliomas due to its high specificity and sensitivity. This article reviewed various targeted antibody drugs for gliomas, including anti-glioma surface marker antibodies, anti-angiogenesis antibodies, and anti-immunosuppressive signal antibodies. Notably, many antibodies have been validated clinically, such as bevacizumab, cetuximab, panitumumab, and anti-PD-1 antibodies. These antibodies can improve the targeting of glioma therapy, enhance anti-tumor immunity, reduce the proliferation and invasion of glioma, and thus prolong the survival time of patients. However, the existence of the blood-brain barrier (BBB) has caused significant difficulties in drug delivery for gliomas. Therefore, this paper also summarized drug delivery methods through the BBB, including receptor-mediated transportation, nano-based carriers, and some physical and chemical methods for drug delivery. With these exciting advancements, more antibody-based therapies will likely enter clinical practice and allow more successful control of malignant gliomas.
Collapse
Affiliation(s)
- Xin Huang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Shuyou Shi
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Hongrui Wang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Tiesuo Zhao
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yibo Wang
- The College of Clinical College, Jilin University, Changchun, China
| | - Sihua Huang
- The College of Clinical College, Jilin University, Changchun, China
| | - Yingying Su
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Chunyan Zhao
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China.
| | - Ming Yang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China.
| |
Collapse
|
15
|
Rodà F, Caraffi R, Picciolini S, Tosi G, Vandelli MA, Ruozi B, Bedoni M, Ottonelli I, Duskey JT. Recent Advances on Surface-Modified GBM Targeted Nanoparticles: Targeting Strategies and Surface Characterization. Int J Mol Sci 2023; 24:ijms24032496. [PMID: 36768820 PMCID: PMC9916841 DOI: 10.3390/ijms24032496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant brain tumor, associated with low long-term survival. Nanoparticles (NPs) developed against GBM are a promising strategy to improve current therapies, by enhancing the brain delivery of active molecules and reducing off-target effects. In particular, NPs hold high potential for the targeted delivery of chemotherapeutics both across the blood-brain barrier (BBB) and specifically to GBM cell receptors, pathways, or the tumor microenvironment (TME). In this review, the most recent strategies to deliver drugs to GBM are explored. The main focus is on how surface functionalizations are essential for BBB crossing and for tumor specific targeting. We give a critical analysis of the various ligand-based approaches that have been used to target specific cancer cell receptors and the TME, or to interfere with the signaling pathways of GBM. Despite the increasing application of NPs in the clinical setting, new methods for ligand and surface characterization are needed to optimize the synthesis, as well as to predict their in vivo behavior. An expert opinion is given on the future of this research and what is still missing to create and characterize a functional NP system for improved GBM targeting.
Collapse
Affiliation(s)
- Francesca Rodà
- Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Riccardo Caraffi
- Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | | | - Giovanni Tosi
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Maria Angela Vandelli
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Barbara Ruozi
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Marzia Bedoni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Ilaria Ottonelli
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Jason Thomas Duskey
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: ; Tel.: +39-0592058573
| |
Collapse
|
16
|
Yin X, He Z, Ge W, Zhao Z. Application of aptamer functionalized nanomaterials in targeting therapeutics of typical tumors. Front Bioeng Biotechnol 2023; 11:1092901. [PMID: 36873354 PMCID: PMC9978196 DOI: 10.3389/fbioe.2023.1092901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
Cancer is a major cause of human death all over the world. Traditional cancer treatments include surgery, radiotherapy, chemotherapy, immunotherapy, and hormone therapy. Although these conventional treatment methods improve the overall survival rate, there are some problems, such as easy recurrence, poor treatment, and great side effects. Targeted therapy of tumors is a hot research topic at present. Nanomaterials are essential carriers of targeted drug delivery, and nucleic acid aptamers have become one of the most important targets for targeted tumor therapy because of their high stability, high affinity, and high selectivity. At present, aptamer-functionalized nanomaterials (AFNs), which combine the unique selective recognition characteristics of aptamers with the high-loading performance of nanomaterials, have been widely studied in the field of targeted tumor therapy. Based on the reported application of AFNs in the biomedical field, we introduce the characteristics of aptamer and nanomaterials, and the advantages of AFNs first. Then introduce the conventional treatment methods for glioma, oral cancer, lung cancer, breast cancer, liver cancer, colon cancer, pancreatic cancer, ovarian cancer, and prostate cancer, and the application of AFNs in targeted therapy of these tumors. Finally, we discuss the progress and challenges of AFNs in this field.
Collapse
Affiliation(s)
- Xiujuan Yin
- Department of Radiology, Shaoxing People's Hospital, Shaoxing, China.,Key Laboratory of Functional Molecular Imaging of Tumor and Interventional Diagnosis and Treatment of Shaoxing City, Shaoxing, China
| | - Zhenqiang He
- Clinical Medical College of Hebei University, Baoding, China.,Department of Radiology, Hebei University Affiliated Hospital, Baoding, China
| | - Weiying Ge
- Department of Radiology, Hebei University Affiliated Hospital, Baoding, China
| | - Zhenhua Zhao
- Department of Radiology, Shaoxing People's Hospital, Shaoxing, China.,Key Laboratory of Functional Molecular Imaging of Tumor and Interventional Diagnosis and Treatment of Shaoxing City, Shaoxing, China.,Medical College of Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Wang Y, Su Y, Yang Y, Jin H, Wu M, Wang Q, Sun P, Zhang J, Yang X, Shu X. Increased brain uptake of pterostilbene loaded folate modified micellar delivery system. Drug Deliv 2022; 29:3071-3086. [PMID: 36131589 PMCID: PMC9848421 DOI: 10.1080/10717544.2022.2126559] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Effective chemotherapy for clinical treatment of brain diseases is still lacking due to the poor penetration of the blood-brain barrier (BBB). The aim of this study was to construct a folate modified pterostilbene (Pt) loaded polymeric micellar delivery system (F-Pt/M) with mPEG-PCL as carrier material to aim at penetrating the BBB for brain tissue targeting via receptor-mediated endocytosis. In this study, F-Pt/M was prepared using thin-film hydration method and then optimized by response surface methodology (RSM) with the entrapment efficiency (EE), drug loading (DL) and hydrodynamic diameter (HD) as indexes. The average hydrodynamic diameter and zeta potential of optimal F-Pt/M were 133.2 nm and 24.6 mV, respectively. DL (18.3%) and EE (98.6%) made the solubility of Pt in water about 25 times higher than that of crude Pt. Results of DSC evaluation revealed that drugs were successfully encapsulated inside the polymeric micelles. TEM images showed that homogeneous spherical micellar structures with a narrow size distribution were developed. The release result in vitro showed that F-Pt/M presented sustained release behavior compared to control free Pt solution. Compared to non-targeted Pt/M, F-Pt/M had a significantly higher cytotoxicity against FR-overexpressing A172 cells. In vitro cellular uptake tests illustrated that the micellar delivery system could significantly improve the accumulation of drugs in target cells via receptor-mediated endocytosis. BBB penetration value (P) of F-Pt/M was about 4 folds higher than that of free Pt group. In addition, drug targeting index (DTI) was calculated to determine targeting of F-Pt/M to the brain which was found to be 4.89, implying improved brain targeting was achieved. Hence, the developed F-Pt/M exhibited great potential for delivering more drug molecules across the BBB for the treatment of brain diseases.
Collapse
Affiliation(s)
- Yinan Wang
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China,College of Pharmacy, Dalian Medical University, Dalian, China,The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanan Su
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yunqiao Yang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huan Jin
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Moli Wu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qian Wang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Pengyuan Sun
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jianbin Zhang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaobo Yang
- College of Pharmacy, Dalian Medical University, Dalian, China,Xiaobo Yang College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian116044, China
| | - Xiaohong Shu
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China,College of Pharmacy, Dalian Medical University, Dalian, China,CONTACT Xiaohong Shu Institute of Integrative Medicine, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China
| |
Collapse
|
18
|
Qi H, Zhang S, Liang J, He S, Wang Y. Controllable blood–brain barrier (BBB) regulation based on gigahertz acoustic streaming. NANOTECHNOLOGY AND PRECISION ENGINEERING 2022. [DOI: 10.1063/10.0014861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The blood–brain barrier (BBB) is a structural and functional barrier necessary for brain homeostasis, and it plays an important role in the realization of neural function and in protecting the brain from damage by circulating toxins and pathogens. However, the extremely dense BBB also severely limits the transport of molecules across it, which is a great hindrance to the diagnosis and treatment of central nervous system (CNS) diseases. This paper reports a new method for controllable opening of the BBB, based on the gigahertz acoustic streaming (AS) generated by a bulk acoustic wave resonant device. By adjusting the input power and working distance of the device, AS with tunable flow rate can be generated to disrupt tight junction proteins (TJs) between endothelial cells. The results obtained with this method show that the gigahertz AS promotes the penetration of dextran molecules with different molecular weights across the BBB. This work provides a new platform for studying the mechanical regulation of BBB by fluid shear forces and a new method for improving the efficiency of drug delivery.
Collapse
Affiliation(s)
- Hang Qi
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Shuaihua Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Jiaxue Liang
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Shan He
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yanyan Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
19
|
Wu H, Wei M, Xu Y, Li Y, Zhai X, Su P, Ma Q, Zhang H. PDA-Based Drug Delivery Nanosystems: A Potential Approach for Glioma Treatment. Int J Nanomedicine 2022; 17:3751-3775. [PMID: 36065287 PMCID: PMC9440714 DOI: 10.2147/ijn.s378217] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/22/2022] [Indexed: 01/03/2023] Open
Abstract
Glioma is characterized by high mortality and low postoperative survival. Despite the availability of various therapeutic approaches and molecular typing, the treatment failure rate and the recurrence rate of glioma remain high. Given the limitations of existing therapeutic tools, nanotechnology has emerged as an alternative treatment option. Nanoparticles, such as polydopamine (PDA)-based nanoparticles, are embodied with reliable biodegradability, efficient drug loading rate, relatively low toxicity, considerable biocompatibility, excellent adhesion properties, precisely targeted delivery, and strong photothermal conversion properties. Therefore, they can further enhance the therapeutic effects in patients with glioma. Moreover, polydopamine contains pyrocatechol, amino and carboxyl groups, active double bonds, catechol, and other reactive groups that can react with biofunctional molecules containing amino, aldehyde, or sulfhydryl groups (main including, self-polymerization, non-covalent self-assembly, π-π stacking, electrostatic attraction interaction, chelation, coating and covalent co-assembly), which form a reversible dynamic covalent Schiff base bond that is extremely sensitive to pH values. Meanwhile, PDA has excellent adhesion capability that can be further functionally modified. Consequently, the aim of this review is to summarize the application of PDA-based NPs in glioma and to acquire insight into the therapeutic effect of the drug-loaded PDA-based nanocarriers (PDA NPs). A wealthy understanding and argument of these sides is anticipated to afford a better approach to develop more reasonable and valid PDA-based cancer nano-drug delivery systems. Finally, we discuss the expectation for the prospective application of PDA in this sphere and some individual viewpoints.
Collapse
Affiliation(s)
- Hao Wu
- Neurosurgery, Graduate School of Dalian Medical University, Dalian, People’s Republic of China
| | - Min Wei
- Neurosurgery, Graduate School of Dalian Medical University, Dalian, People’s Republic of China
| | - Yu Xu
- Nanotechnology, Jinling Institute of Technology, Nanjing, People’s Republic of China
| | - Yuping Li
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xue Zhai
- Department of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing, People’s Republic of China
| | - Peng Su
- Department of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing, People’s Republic of China
| | - Qiang Ma
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Hengzhu Zhang
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Correspondence: Hengzhu Zhang, 98 Nantong Xi Lu, Yangzhou, Jiangsu Province, People’s Republic of China, Tel +86 18051061558, Fax +86-0514-87373562, Email
| |
Collapse
|
20
|
Wu H, Wei M, Xu Y, Li Y, Zhai X, Su P, Ma Q, Zhang H. PDA-Based Drug Delivery Nanosystems: A Potential Approach for Glioma Treatment. Int J Nanomedicine 2022; Volume 17:3751-3775. [DOI: https:/doi.org/10.2147/ijn.s378217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
|
21
|
Polysaccharides Extracted from Angelica sinensis (Oliv.) Diels Relieve the Malignant Characteristics of Glioma Cells through Regulating the MiR-373-3p-Mediated TGF- β/Smad4 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7469774. [PMID: 35855826 PMCID: PMC9288290 DOI: 10.1155/2022/7469774] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/09/2022] [Accepted: 06/18/2022] [Indexed: 11/18/2022]
Abstract
Objectives Angelica sinensis polysaccharide (ASP) is a traditional herbal medicine accompanied by antitumor potential. This study aims to explore the therapeutic potential of ASP on glioma, as well as the underlying mechanisms involving microRNA-373-3p (miR-373-3p) and the TGF-β/Smad4 signaling pathway. Methods U251 cells (a human glioma cell line) were treated with different concentrations of ASP. miR-373-3p was silenced in U251 cells by the transfection of the miR-373-3p inhibitor. Cell viability and apoptosis were measured by CCK-8 assay and flow cytometry, respectively. Cell migration and invasion were detected by wound healing and transwell assays, respectively. The miR-373-3p expression was measured by RT-qPCR. The protein expressions of TGF-β and Smad4 were evaluated by both western blotting and immunofluorescence. Results ASP inhibited the viability, migration, and invasion, and enhanced the apoptosis of U251 cells in a dose-dependent manner. ASP increased miR-373-3p expression and decreased TGF-β and Smad4 expressions in U251 cells. Silencing of miR-373-3p weakened the effects of ASP on inhibiting cell viability, migration, and invasion, as well as promoting cell apoptosis. In addition, deleting miR-373-3p weakened the inhibiting effects of ASP on the TGF-β/Smad4 pathway in U251 cells. Conclusions ASP suppresses the malignant progression of glioma via regulating the miR-373-3p-mediated TGF-β/Smad4 pathway.
Collapse
|
22
|
Duskey JT, Rinaldi A, Ottonelli I, Caraffi R, De Benedictis CA, Sauer AK, Tosi G, Vandelli MA, Ruozi B, Grabrucker AM. Glioblastoma Multiforme Selective Nanomedicines for Improved Anti-Cancer Treatments. Pharmaceutics 2022; 14:1450. [PMID: 35890345 PMCID: PMC9325049 DOI: 10.3390/pharmaceutics14071450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma Multiforme (GBM) is a devastating disease with a low survival rate and few efficacious treatment options. The fast growth, late diagnostics, and off-target toxicity of currently used drugs represent major barriers that need to be overcome to provide a viable cure. Nanomedicines (NMeds) offer a way to overcome these pitfalls by protecting and loading drugs, increasing blood half-life, and being targetable with specific ligands on their surface. In this study, the FDA-approved polymer poly (lactic-co-glycolic) acid was used to optimise NMeds that were surface modified with a series of potential GBM-specific ligands. The NMeds were fully characterised for their physical and chemical properties, and then in vitro testing was performed to evaluate cell uptake and GBM cell specificity. While all targeted NMeds showed improved uptake, only those decorated with the-cell surface vimentin antibody M08 showed specificity for GBM over healthy cells. Finally, the most promising targeted NMed candidate was loaded with the well-known chemotherapeutic, paclitaxel, to confirm targeting and therapeutic effects in C6 GBM cells. These results demonstrate the importance of using well-optimised NMeds targeted with novel ligands to advance delivery and pharmaceutical effects against diseased cells while minimising the risk for nearby healthy cells.
Collapse
Affiliation(s)
- Jason Thomas Duskey
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
| | - Arianna Rinaldi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Ilaria Ottonelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Riccardo Caraffi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
| | | | - Ann Katrin Sauer
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (C.A.D.B.); (A.K.S.)
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
| | - Maria Angela Vandelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
| | - Barbara Ruozi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
| | - Andreas Martin Grabrucker
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (C.A.D.B.); (A.K.S.)
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
23
|
Nikolaeva ME, Nechaev AV, Shmendel EV, Akasov RA, Maslov MA, Mironov AF. New Cysteine-Containing PEG-Glycerolipid Increases the Bloodstream Circulation Time of Upconverting Nanoparticles. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092763. [PMID: 35566114 PMCID: PMC9105005 DOI: 10.3390/molecules27092763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Abstract
Upconverting nanoparticles have unique spectral and photophysical properties that make them suitable for development of theranostics for imaging and treating large and deep-seated tumors. Nanoparticles based on NaYF4 crystals doped with lanthanides Yb3+ and Er3+ were obtained by the high-temperature decomposition of trifluoroacetates in oleic acid and 1-octadecene. Such particles have pronounced hydrophobic properties. Therefore, to obtain stable dispersions in aqueous media for the study of their properties in vivo and in vitro, the polyethylene glycol (PEG)-glycerolipids of various structures were obtained. To increase the circulation time of PEG-lipid coated nanoparticles in the bloodstream, long-chain substituents are needed to be attached to the glycerol backbone using ether bonds. To prevent nanoparticle aggregation, an L-cysteine-derived negatively charged carboxy group should be included in the lipid molecule.
Collapse
Affiliation(s)
- Maria E. Nikolaeva
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 86 Vernadsky Ave., 119571 Moscow, Russia; (A.V.N.); (E.V.S.); (A.F.M.)
- Correspondence: (M.E.N.); (M.A.M.); Tel.: +7-(968)672-55-60 (M.E.N.)
| | - Andrey V. Nechaev
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 86 Vernadsky Ave., 119571 Moscow, Russia; (A.V.N.); (E.V.S.); (A.F.M.)
| | - Elena V. Shmendel
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 86 Vernadsky Ave., 119571 Moscow, Russia; (A.V.N.); (E.V.S.); (A.F.M.)
| | - Roman A. Akasov
- Federal Scientific Research Centre “Crystallography and Photonics” of RAS, 59 Leninsky Ave., 119333 Moscow, Russia;
| | - Mikhail A. Maslov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 86 Vernadsky Ave., 119571 Moscow, Russia; (A.V.N.); (E.V.S.); (A.F.M.)
- Correspondence: (M.E.N.); (M.A.M.); Tel.: +7-(968)672-55-60 (M.E.N.)
| | - Andrey F. Mironov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 86 Vernadsky Ave., 119571 Moscow, Russia; (A.V.N.); (E.V.S.); (A.F.M.)
| |
Collapse
|
24
|
The 3.0 Cell Communication: New Insights in the Usefulness of Tunneling Nanotubes for Glioblastoma Treatment. Cancers (Basel) 2021; 13:cancers13164001. [PMID: 34439156 PMCID: PMC8392307 DOI: 10.3390/cancers13164001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/05/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Communication between cells helps tumors acquire resistance to chemotherapy and makes the struggle against cancer more challenging. Tunneling nanotubes (TNTs) are long channels able to connect both nearby and distant cells, contributing to a more malignant phenotype. This finding might be useful in designing novel strategies of drug delivery exploiting these systems of connection. This would be particularly important to reach tumor niches, where glioblastoma stem cells proliferate and provoke immune escape, thereby increasing metastatic potential and tumor recurrence a few months after surgical resection of the primary mass. Along with the direct inhibition of TNT formation, TNT analysis, and targeting strategies might be useful in providing innovative tools for the treatment of this tumor. Abstract Glioblastoma (GBM) is a particularly challenging brain tumor characterized by a heterogeneous, complex, and multicellular microenvironment, which represents a strategic network for treatment escape. Furthermore, the presence of GBM stem cells (GSCs) seems to contribute to GBM recurrence after surgery, and chemo- and/or radiotherapy. In this context, intercellular communication modalities play key roles in driving GBM therapy resistance. The presence of tunneling nanotubes (TNTs), long membranous open-ended channels connecting distant cells, has been observed in several types of cancer, where they emerge to steer a more malignant phenotype. Here, we discuss the current knowledge about the formation of TNTs between different cellular types in the GBM microenvironment and their potential role in tumor progression and recurrence. Particularly, we highlight two prospective strategies targeting TNTs as possible therapeutics: (i) the inhibition of TNT formation and (ii) a boost in drug delivery between cells through these channels. The latter may require future studies to design drug delivery systems that are exchangeable through TNTs, thus allowing for access to distant tumor niches that are involved in tumor immune escape, maintenance of GSC plasticity, and increases in metastatic potential.
Collapse
|
25
|
Disulfiram-loaded copper sulfide nanoparticles for potential anti-glioma therapy. Int J Pharm 2021; 607:120978. [PMID: 34371152 DOI: 10.1016/j.ijpharm.2021.120978] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 01/11/2023]
Abstract
Disulfiram (DSF) is an effective copper (Cu2+)-dependent antitumor agent. In the present study, we explored use of transferrin (Tf)-modified DSF/copper sulfide (CuS) nanocomplex (Tf-DSF/CuS) for glioma therapy. Tf was used as glioma targeting motifs, DSF as an anticancer agent, and CuS as a source of Cu2+ ions and a photothermal agent. DSF was loaded on CuS by metal-chelation, and released from the nanocomplex under acidic condition. The Tf-DSF/CuS complex exhibited high cytotoxic effect in vitro. Notably, cytotoxic activity was correlated with pH triggered release of Cu2+ which initiated non-toxicity to toxicity switch of DSF. Ultrasound-targeted microbubble destruction (UTMD) technique was used for highly selective accumulation of intravenous injected Tf-DSF/CuS in the glioma orthotopic tumor as compared with the free drugs and non-targeted DSF/CuS groups. Magnetic resonance imaging and pathological examinations showed that Tf-DSF/CuS effectively suppressed tumor growth, with an inhibition ratio of ~85%. Additionally, DSF load did not compromise photothermal conversion ability of CuS nanoparticles. Efficacy of the photothermal ablation therapy of Tf-DSF/CuS was evaluated under 808 nm laser irradiation both in vitro and in vivo. These findings show that copper-sulfide based disulfiram nanoparticles are effective agents for anti-glioma therapy.
Collapse
|