1
|
Catlin EJ, Fandiño OE, Lopez-Vidal L, Sangalli M, Donnelly RF, Palma SD, Paredes AJ. A novel temperature-controlled media milling device to produce drug nanocrystals at the laboratory scale. Int J Pharm 2024; 666:124780. [PMID: 39349227 DOI: 10.1016/j.ijpharm.2024.124780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Poor aqueous solubility of preexisting and emerging drug molecules is a common issue faced in the field of pharmaceutics. To address this, particle size reduction techniques, including drug micro- and nanonisation have been widely employed. Nanocrystals (NCs), drug particles with particle sizes below 1 µm, offer high drug content, improved dissolution, and long-acting capabilities. Media milling is the most used method to prepare NCs using of-the-shelf machinery, both at the laboratory and industrial scales. However, early NCs development, especially when limited amounts of the active are available, require the use of milligram-scale media milling. This study introduces a novel mini-scale milling device (Mini-mill) that incorporates temperature control through a water-cooled jacket. The device was used to produce NCs of three model hydrophobic drugs, itraconazole, ivermectin and curcumin, with lowest particle sizes of 162.5 ± 0.4 nm, 178 ± 2 nm, and 116.7 ± 0.7 nm, respectively. Precise control of milling temperature was achieved at 15, 45, and 75°C, with drug dependent particle size reduction trends, with no adverse effects on the milling materials or polymorphic changes in the NCs, as confirmed by calorimetric analysis. Finally, a scale-up feasibility study was carried out in a lab-scale NanoDisp®, confirming that the novel Mini-mills are a material-efficient tool for early formulation development, with potential for scale-up to commercial mills.
Collapse
Affiliation(s)
- Elise J Catlin
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Octavio E Fandiño
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Lucía Lopez-Vidal
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Faculty of Chemical Sciences, National University of Córdoba (FCQ-UNC), Haya de la Torre y Medina Allende, X5000XHUA, Córdoba, Argentina
| | - Martina Sangalli
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Santiago D Palma
- Faculty of Chemical Sciences, National University of Córdoba (FCQ-UNC), Haya de la Torre y Medina Allende, X5000XHUA, Córdoba, Argentina
| | - Alejandro J Paredes
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
2
|
Zulbeari N, Ulrich Kristensen L, Mende S, Holm R. Temperature mapping of milling by dual centrifugation: A systematic investigation. Int J Pharm 2024; 666:124760. [PMID: 39332461 DOI: 10.1016/j.ijpharm.2024.124760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Using low quantities of drug compounds is often favorable in the early stages of drug development, especially for what require a large screening investigation to define the final formulation composition, such as nano- and microsuspensions. For that reason, the dual centrifugation approach has in the recent years been used due to its reproducible and fast-milling capacity with 40 samples in 2 mL vials simultaneously without the addition of cooling breaks due to a built-in cooling system. Nonetheless, heat can be dissipated into the samples during high-intensity milling, resulting in increased sample temperatures that potentially can affect thermolabile compounds and potential influence the obtained suspensions in the screening experiments if the used stabilizer has temperature dependent variations in the performance. Hence, a systematic investigation of the influence of different process parameters on the heat dissipation in samples during milling by the dual centrifugation approach was performed in the present study. It was found that the milling speed had the highest impact on the final sample temperature, but also other parameters, such as the bead loading, bead size, and placement in the centrifuge during milling had significantly influenced the final mean temperature of the milling media. Higher temperatures were obtained with higher bead loadings, i.e., 3000 mg milling beads/mL and milling speeds (1500 rpm), and when smaller milling beads, i.e., 0.1 mm, were used during production. The study further showed that higher temperatures were measured for samples located on the bottom disk during milling, and also when located on the outer placement on the sample disk. Upscale investigations showed immensely increased sample temperatures (almost up to boiling point) when samples were prepared under similar formulation parameters and milling speed as small-volume vials. Furthermore, the study indicated that the addition of drug compounds during suspension preparation decreased the final sample temperature compared to samples that only contained purified water due to energy absorption of the drug compound.
Collapse
Affiliation(s)
- Nadina Zulbeari
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Louise Ulrich Kristensen
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Stefan Mende
- NETZSCH-Feinmahltechnik GmbH, Sedanstrasse 70, 95100 Selb, Germany
| | - René Holm
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| |
Collapse
|
3
|
Ubhe A, Oldenkamp H, Wu K. Small Molecule Topical Ophthalmic Formulation Development-Data Driven Trends & Perspectives from Commercially Available Products in the US. J Pharm Sci 2024; 113:2997-3011. [PMID: 39117273 DOI: 10.1016/j.xphs.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Topical ophthalmic drug product development is a niche research domain as the drug formulations need to be designed to perform in the unique ocular physiological conditions. The most common array of small molecule drug formulations intended for topical ophthalmic administration include solutions, suspensions, emulsions, gels, and ointments. The formulation components such as excipients and container closure are unique to serve the needs of topical ophthalmic delivery compared to other parenteral products. The selection of appropriate formulation platform, excipients, and container closure for delivery of drugs by topical ophthalmic route is influenced by a combination of factors like physicochemical properties of the drug molecule, intended dose, pharmacological indication as well as the market trends influenced by the patient population. In this review, data from literature and packaging inserts of 118 reference listed topical ophthalmic medications marketed in the US are collected and analyzed to identify trends that would serve as a guidance for topical ophthalmic formulation development for small molecule drugs. Specifically, the topics reviewed include current landscape of the available small molecule topical ophthalmic drug products in the US, physicochemical properties of the active pharmaceutical ingredients (APIs), formulation platforms, excipients, and container closure systems.
Collapse
Affiliation(s)
- Anand Ubhe
- AbbVie, 2525 Dupont Drive, Irvine, CA 92612, USA.
| | | | - Ke Wu
- AbbVie, 2525 Dupont Drive, Irvine, CA 92612, USA
| |
Collapse
|
4
|
Salahshoor Z, Desai PM, Chattoraj S, Lam S. Exploring the relationship between bulk Young's Modulus of materials and milling efficiency during wet bead milling of pharmaceutical compounds. Int J Pharm 2024; 660:124365. [PMID: 38909922 DOI: 10.1016/j.ijpharm.2024.124365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Wet bead milling (WBM) is one of the main approaches for manufacturing long acting injectable (LAI) suspensions, wherein the particle size of an Active Pharmaceutical Ingredient (API) is reduced in a liquid vehicle via grinding. A common challenge observed during WBM is long milling time to achieve target particle size, resulting in poor milling efficiency. The objective of this work was to identify potential API attributes predictive of milling efficiency during WBM. In this study, physical and mechanical properties of nine APIs were characterized. Formulations with these APIs were manufactured using WBM. Bulk Young's Modulus was identified to have a significant influence on the rate of particle attrition. The rank order of Young's Moduli of the APIs was consistent with that of milling efficiency, estimated by an empirical function defined in this study called Milling Resistance (ϕ), representing the holistic impact of milling time, tip speed, bead loading, and batch to chamber volume ratio. The identification of such intrinsic material properties, which provide an early evaluation of potential manufacturing risks, is beneficial to product development, as these assessments can be performed with limited quantities of materials and help identify and design out scale-up challenges.
Collapse
Affiliation(s)
- Zahra Salahshoor
- Drug Product Development, Medicine Development & Supply, GSK R&D, PA, USA
| | - Parind M Desai
- Drug Product Development, Medicine Development & Supply, GSK R&D, PA, USA.
| | - Sayantan Chattoraj
- Drug Product Development, Medicine Development & Supply, GSK R&D, PA, USA.
| | - Stephanie Lam
- Drug Substance Development, Medicine Development & Supply, GSK R&D, PA, USA
| |
Collapse
|
5
|
Aldeeb MME, Wilar G, Suhandi C, Elamin KM, Wathoni N. Nanosuspension-Based Drug Delivery Systems for Topical Applications. Int J Nanomedicine 2024; 19:825-844. [PMID: 38293608 PMCID: PMC10824615 DOI: 10.2147/ijn.s447429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Nanosuspensions have garnered recent attention as a promising strategy for mitigating the bioavailability challenges of hydrophobic drugs, particularly those characterized by poor solubility in both aqueous and organic environments. Addressing solubility issues associated with poorly water-soluble drugs has largely resolved the need to enhance drug absorption and bioavailability. As mucosal formulations and topical administration progress in the future, nanosuspension drug delivery, straightforward formulation techniques, and versatile applications will continue to be subjects of interest. Nanosuspensions have undergone extensive scrutiny in preparation for topical applications, encompassing ocular, pulmonary, and dermal usage. Among the numerous methods aimed at improving cutaneous application, nanocrystals represent a relatively recent yet profoundly intriguing approach. Despite the increasing availability of various nanosuspension products, primarily designed for oral administration, only a limited number of studies have explored skin permeability and drug accumulation in the context of nanosuspensions. Nevertheless, the scant published research unequivocally underscores the potential of this approach for enhancing cutaneous bioavailability, particularly for active ingredients with low to medium solubility. Nanocrystals exhibit increased skin adhesiveness in addition to heightened saturation solubility and dissolution rate, thereby augmenting cutaneous distribution. The article provides a comprehensive overview of nanosuspensions for topical application. The methodology employed is robust, with a well-defined experimental design; however, the limited sample size raises concerns about the generalizability of the findings. While the results demonstrate promising outcomes in terms of enhanced drug delivery, the discussion falls short of addressing certain limitations. Additionally, the references largely focus on recent studies, but a more diverse inclusion of historical perspectives could offer a more holistic view of the subject.
Collapse
Affiliation(s)
- Mohamed Mahmud E Aldeeb
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Department of Pharmaceutics, Faculty of Pharmacy, Elmergib University, Alkhoms, 40414, Libya
| | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Khaled M Elamin
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| |
Collapse
|
6
|
Guner G, Mehaj M, Seetharaman N, Elashri S, Yao HF, Clancy DJ, Bilgili E. Do Mixtures of Beads with Different Sizes Improve Wet Stirred Media Milling of Drug Suspensions? Pharmaceutics 2023; 15:2213. [PMID: 37765182 PMCID: PMC10535179 DOI: 10.3390/pharmaceutics15092213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
The impacts of bead sizes and bead mixtures on breakage kinetics, the number of milling cycles applied to prevent overheating, and power consumption during the nanomilling of drug (griseofulvin) suspensions were investigated from both an experimental and theoretical perspective. Narrowly sized zirconia beads with nominal sizes of 100, 200, and 400 µm and their half-and-half binary mixtures were used at 3000 and 4000 rpm with two bead loadings of 0.35 and 0.50. Particle size evolution was measured during the 3 h milling experiments using laser diffraction. An nth-order breakage model was fitted to the experimental median particle size evolution, and various microhydrodynamic parameters were calculated. In general, the beads and their mixtures with smaller median sizes achieved faster breakage. While the microhydrodynamic model explained the impacts of process parameters, it was limited in describing bead mixtures. For additional test runs performed, the kinetics model augmented with a decision tree model using process parameters outperformed that augmented with an elastic-net regression model using the microhydrodynamic parameters. The evaluation of the process merit scores suggests that the use of bead mixtures did not lead to notable process improvement; 100 µm beads generally outperformed bead mixtures and coarser beads in terms of fast breakage, low power consumption and heat generation, and low intermittent milling cycles.
Collapse
Affiliation(s)
- Gulenay Guner
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Drug Product Development, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Mirsad Mehaj
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Natasha Seetharaman
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Sherif Elashri
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Helen F Yao
- Drug Product Development, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Donald J Clancy
- Drug Product Development, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Ecevit Bilgili
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
7
|
Marques SM, Kumar L. Factors affecting the preparation of nanocrystals: characterization, surface modifications and toxicity aspects. Expert Opin Drug Deliv 2023; 20:871-894. [PMID: 37222381 DOI: 10.1080/17425247.2023.2218084] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/22/2023] [Indexed: 05/25/2023]
Abstract
INTRODUCTION The fabrication of well-defined nanocrystals in size and form is the focus of much investigation. In this work, we have critically reviewed several recent instances from the literature that shows how the production procedure affects the physicochemical properties of the nanocrystals. AREAS COVERED Scopus, MedLine, PubMed, Web of Science, and Google Scholar were searched for peer-review articles published in the past few years using different key words. Authors chose relevant publications from their files for this review. This review focuses on the range of techniques available for producing nanocrystals. We draw attention to several recent instances demonstrating the impact of various process and formulation variables that affect the nanocrystals' physicochemical properties. Moreover, various developments in the characterization techniques explored for nanocrystals concerning their size, morphology, etc. have been discussed. Last but not least, recent applications, the effect of surface modifications, and the toxicological traits of nanocrystals have also been reviewed. EXPERT OPINION The selection of an appropriate production method for the formation of nanocrystals, together with a deep understanding of the relationship between the drug's physicochemical properties, unique features of the various formulation alternatives, and anticipated in-vivo performance, would significantly reduce the risk of failure during human clinical trials that are inadequate.
Collapse
Affiliation(s)
- Shirleen Miriam Marques
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| |
Collapse
|
8
|
Meng T, Li Y, Ma S, Zhang Q, Qiao F, Hou Y, Gao T, Yang J. Elaborating the crystal transformation referenced microhydrodynamic model and fracture mechanism combined molecular modelling of irbesartan nanosuspensions formation in wet media milling. Int J Pharm 2023; 632:122562. [PMID: 36586631 DOI: 10.1016/j.ijpharm.2022.122562] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/13/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
In recent years, polymorphic transformation involved in media milling has become a key factor in inducing the instability of nanosuspensions (NSs). The variation trend of microhydrodynamic parameters, including milling intensity factor (F), can be observed under different milling conditions. Therefore, this study first referenced the microhydrodynamic model to explore how formulations and process parameters affect Irbesartan (IRB) form A crystallinity during wet media milling. As a result, the crystallinity of form A was affected by the intermolecular interactions between drug particles and stabilizers. The crystallinity of form A decreased with decreasing drug loading, increasing stirrer speed and bead loading, which depended on the role of F. Milling could promote the transformation from a 1H to 2H tetrazole ring with stabilizers containing -OH, and form B was changed to form A and finally to an amorphous state. Molecular modelling shows that forms A and B are ductile and fragile materials, respectively, and both present anisotropy. When milling beads hit both polymorphs paralleling to the (010) surface, the bead-bead collisions are more helpful in fracturing IRB particles. The results of this study may provide a foundation for controlling crystal transformation and obtaining ideal crystal forms.
Collapse
Affiliation(s)
- Tingting Meng
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China
| | - Ye Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China
| | - Shijie Ma
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China
| | - Qian Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China
| | - Fangxia Qiao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China
| | - Yanhui Hou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China
| | - Ting Gao
- Department of Preparation Center, General Hospital of Ningxia Medical University, No. 804 Shengli South Street, Yinchuan 750004, PR China.
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China.
| |
Collapse
|
9
|
Pielenhofer J, Meiser SL, Gogoll K, Ciciliani AM, Denny M, Klak M, Lang BM, Staubach P, Grabbe S, Schild H, Radsak MP, Spahn-Langguth H, Langguth P. Quality by Design (QbD) Approach for a Nanoparticulate Imiquimod Formulation as an Investigational Medicinal Product. Pharmaceutics 2023; 15:pharmaceutics15020514. [PMID: 36839835 PMCID: PMC9965879 DOI: 10.3390/pharmaceutics15020514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The present article exemplifies the application of the concept of quality by design (QbD) for the systematic development of a nanoparticulate imiquimod (IMQ) emulsion gel formulation as an investigational medicinal product (IMP) for evaluation in an academic phase-I/II clinical trial for the treatment of actinic keratosis (AK) against the comparator Aldara (EudraCT: 2015-002203-28). The design of the QbD elements of a quality target product profile (QTPP) enables the identification of the critical quality attributes (CQAs) of the drug product as the content of IMQ, the particle-size distribution, the pH, the rheological properties, the permeation rate and the chemical, physical and microbiological stability. Critical material attributes (CMAs) and critical process parameters (CPPs) are identified by using a risk-based approach in an Ishikawa diagram and in a risk-estimation matrix. In this study, the identified CPPs of the wet media ball-milling process's milling time and milling speed are evaluated in a central composite design of experiments (DoEs) approach, revealing criticality for both factors for the resulting mean particle size, while only the milling time is significantly affecting the polydispersity. To achieve a mean particle size in the range of 300-400 nm with a minimal PdI, the optimal process conditions are found to be 650 rpm for 135 min. Validating the model reveals a good correlation between the predicted and observed values. Adequate control strategies were implemented for intermediate products as in-process controls (IPCs) and quality control (QC) tests of the identified CQAs. The IPC and QC data from 13 "IMI-Gel" batches manufactured in adherence to good manufacturing practice (GMP) reveal consistent quality with minimal batch-to-batch variability.
Collapse
Affiliation(s)
- Jonas Pielenhofer
- Department for Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Correspondence: or (J.P.); (P.L.)
| | - Sophie Luise Meiser
- Department for Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Karsten Gogoll
- Department for Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Anna-Maria Ciciliani
- Department for Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Mark Denny
- Department for Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Michael Klak
- Department for Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Berenice M. Lang
- Department of Dermatology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Petra Staubach
- Department of Dermatology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Hansjörg Schild
- Institute for Immunology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Markus P. Radsak
- 3rd Department Internal Medicine, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Hilde Spahn-Langguth
- Department for Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Peter Langguth
- Department for Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Correspondence: or (J.P.); (P.L.)
| |
Collapse
|
10
|
Predicting the Temperature Evolution during Nanomilling of Drug Suspensions via a Semi-Theoretical Lumped-Parameter Model. Pharmaceutics 2022; 14:pharmaceutics14122840. [PMID: 36559333 PMCID: PMC9788500 DOI: 10.3390/pharmaceutics14122840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Although temperature can significantly affect the stability and degradation of drug nanosuspensions, temperature evolution during the production of drug nanoparticles via wet stirred media milling, also known as nanomilling, has not been studied extensively. This study aims to establish both descriptive and predictive capabilities of a semi-theoretical lumped parameter model (LPM) for temperature evolution. In the experiments, the mill was operated at various stirrer speeds, bead loadings, and bead sizes, while the temperature evolution at the mill outlet was recorded. The LPM was formulated and fitted to the experimental temperature profiles in the training runs, and its parameters, i.e., the apparent heat generation rate Qgen and the apparent overall heat transfer coefficient times surface area UA, were estimated. For the test runs, these parameters were predicted as a function of the process parameters via a power law (PL) model and machine learning (ML) model. The LPM augmented with the PL and ML models was used to predict the temperature evolution in the test runs. The LPM predictions were also compared with those of an enthalpy balance model (EBM) developed recently. The LPM had a fitting capability with a root-mean-squared error (RMSE) lower than 0.9 °C, and a prediction capability, when augmented with the PL and ML models, with an RMSE lower than 4.1 and 2.1 °C, respectively. Overall, the LPM augmented with the PL model had both good descriptive and predictive capability, whereas the one with the ML model had a comparable predictive capability. Despite being simple, with two parameters and obviating the need for sophisticated numerical techniques for its solution, the semi-theoretical LPM generally predicts the temperature evolution similarly or slightly better than the EBM. Hence, this study has provided a validated, simple model for pharmaceutical engineers to simulate the temperature evolution during the nanomilling process, which will help to set proper process controls for thermally labile drugs.
Collapse
|