1
|
Albery GF, Hasik AZ, Morris S, Morris A, Kenyon F, McBean D, Pemberton JM, Nussey DH, Firth JA. Divergent age-related changes in parasite infection occur independently of behaviour and demography in a wild ungulate. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230508. [PMID: 39463254 PMCID: PMC11513643 DOI: 10.1098/rstb.2023.0508] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/15/2024] [Accepted: 05/22/2024] [Indexed: 10/29/2024] Open
Abstract
As animals age, they exhibit a suite of phenotypic changes, often including reductions in movement and social behaviour ('behavioural ageing'). By altering an individual's exposure to parasites, behavioural ageing may influence infection status trajectories over the lifespan. However, these processes could be confounded by age-related changes in other phenotypic traits, or by selective disappearance of certain individuals owing to parasite-induced mortality. Here, we uncover contrasting age-related patterns of infection across three helminth parasites in wild adult female red deer (Cervus elaphus). Counts of strongyle nematodes (order: Strongylida) increased with age, while counts of liver fluke (Fasciola hepatica) and tissue worm (Elaphostrongylus cervi) decreased, and lungworm (Dictyocaulus) counts did not change. These relationships could not be explained by socio-spatial behaviours, spatial structuring, or selective disappearance, suggesting behavioural ageing is unlikely to be responsible for driving age trends. Instead, social connectedness and strongyle infection were positively correlated, such that direct age-infection trends were directly contrasted with the effects implied by previously documented behavioural ageing. This suggests that behavioural ageing may reduce parasite exposure, potentially countering other age-related changes. These findings demonstrate that different parasites can show contrasting age trajectories depending on diverse intrinsic and extrinsic factors, and that behaviour's role in these processes is likely to be complex and multidirectional.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Gregory F. Albery
- Institute of Ecology and Evolution, University of Edinburgh, EdinburghEH9 3FL, UK
- Department of Biology, Georgetown University, Washington, DC20057, USA
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin12587, Germany
- School of Natural Sciences, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Adam Z. Hasik
- Institute of Ecology and Evolution, University of Edinburgh, EdinburghEH9 3FL, UK
| | - Sean Morris
- Institute of Ecology and Evolution, University of Edinburgh, EdinburghEH9 3FL, UK
| | - Alison Morris
- Institute of Ecology and Evolution, University of Edinburgh, EdinburghEH9 3FL, UK
| | - Fiona Kenyon
- Moredun Research Institute, PenicuikEH26 0PZ, UK
| | - David McBean
- Moredun Research Institute, PenicuikEH26 0PZ, UK
| | | | - Daniel H. Nussey
- Institute of Ecology and Evolution, University of Edinburgh, EdinburghEH9 3FL, UK
| | - Josh A. Firth
- Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
- School of Biology, University of Leeds, LeedsLS2 9JT, UK
| |
Collapse
|
2
|
Nonnis F, Tamponi C, Pinna S, Diana F, Pudda F, Muzzeddu M, Cavallo L, Zeinoun P, Carta C, Varcasia A, Scala A, Otranto D, Roldan JAM. Epidemiological survey of gastrointestinal helminths and protozoa in Testudines from Sardinia, Italy. Vet Parasitol Reg Stud Reports 2024; 54:101084. [PMID: 39237228 DOI: 10.1016/j.vprsr.2024.101084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 09/07/2024]
Abstract
The order Testudines comprises some of the most endangered groups of vertebrates. Under specific circumstances, infectious and parasitic diseases may affect the survival and fecundity of these animals, potentially threatening Testudines populations. In Sardinia, besides the three species of tortoises present in the wild (Testudo hermanni, Testudo graeca and Testudo marginata), many others are kept as pets. However, epidemiological studies on these animals have not been conducted so far. Thus, the aim of the work was to investigate the presence of gastrointestinal parasites in captive and wild tortoises of Sardinia, Italy, with particular regard to those of zoonotic importance. For the 215 animals examined (n = 36 wild caught and n = 179 private-owned), fecal samples were collected and processed by flotation and modified Ziehl-Neelsen technique. An overall prevalence of 81.4% for endoparasites was detected, with oxyurids being the most prevalent (74.4%), followed by Nyctotherus spp. (18.6%), Cryptosporidium spp. (12.6%), Angusticaecum spp. (2.8%), strongyles (0.9%), Balantidium spp. (0.9%), coccidia (0.9%), cestodes (0.5%), and Giardia spp. (0.5%). Data suggest that tortoises are affected by a great variety of endoparasites, and further molecular analysis are required to assess the impact of Cryptosporidium and Giardia species in these hosts. Therefore, regular health screenings are of importance for the management of these animals and for preventing emerging infectious diseases.
Collapse
Affiliation(s)
- Francesca Nonnis
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Claudia Tamponi
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Stefania Pinna
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Federica Diana
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Flavia Pudda
- Centro di recupero animali selvatici, Agenzia Regionale Forestas, Regione Autonoma della Sardegna, Strada Sassari Fertilia, 07100 Olmedo, Italy
| | - Marco Muzzeddu
- Centro di recupero animali selvatici, Agenzia Regionale Forestas, Regione Autonoma della Sardegna, Strada Sassari Fertilia, 07100 Olmedo, Italy
| | - Lia Cavallo
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Pamela Zeinoun
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Carlo Carta
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Antonio Varcasia
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy.
| | - Antonio Scala
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Strada Provinciale per Casamassima, 70010 Valenzano, Bari, Italy
| | - Jairo Alfonso Mendoza Roldan
- Department of Veterinary Medicine, University of Bari, Strada Provinciale per Casamassima, 70010 Valenzano, Bari, Italy
| |
Collapse
|
3
|
Mistrick J, Veitch JSM, Kitchen SM, Clague S, Newman BC, Hall RJ, Budischak SA, Forbes KM, Craft ME. Effects of food supplementation and helminth removal on space use and spatial overlap in wild rodent populations. J Anim Ecol 2024; 93:743-754. [PMID: 38415301 DOI: 10.1111/1365-2656.14067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/21/2024] [Indexed: 02/29/2024]
Abstract
Animal space use and spatial overlap can have important consequences for population-level processes such as social interactions and pathogen transmission. Identifying how environmental variability and inter-individual variation affect spatial patterns and in turn influence interactions in animal populations is a priority for the study of animal behaviour and disease ecology. Environmental food availability and macroparasite infection are common drivers of variation, but there are few experimental studies investigating how they affect spatial patterns of wildlife. Bank voles (Clethrionomys glareolus) are a tractable study system to investigate spatial patterns of wildlife and are amenable to experimental manipulations. We conducted a replicated, factorial field experiment in which we provided supplementary food and removed helminths in vole populations in natural forest habitat and monitored vole space use and spatial overlap using capture-mark-recapture methods. Using network analysis, we quantified vole space use and spatial overlap. We compared the effects of food supplementation and helminth removal and investigated the impacts of season, sex and reproductive status on space use and spatial overlap. We found that food supplementation decreased vole space use while helminth removal increased space use. Space use also varied by sex, reproductive status and season. Spatial overlap was similar between treatments despite up to threefold differences in population size. By quantifying the spatial effects of food availability and macroparasite infection on wildlife populations, we demonstrate the potential for space use and population density to trade-off and maintain consistent spatial overlap in wildlife populations. This has important implications for spatial processes in wildlife including pathogen transmission.
Collapse
Affiliation(s)
- Janine Mistrick
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Jasmine S M Veitch
- W.M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California, USA
| | - Shannon M Kitchen
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Samuel Clague
- W.M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California, USA
| | - Brent C Newman
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Richard J Hall
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Sarah A Budischak
- W.M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California, USA
| | - Kristian M Forbes
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Meggan E Craft
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
4
|
Keegan SP, Pedersen AB, Fenton A. The impact of within-host coinfection interactions on between-host parasite transmission dynamics varies with spatial scale. Proc Biol Sci 2024; 291:20240103. [PMID: 38628126 PMCID: PMC11021925 DOI: 10.1098/rspb.2024.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Within-host interactions among coinfecting parasites can have major consequences for individual infection risk and disease severity. However, the impact of these within-host interactions on between-host parasite transmission, and the spatial scales over which they occur, remain unknown. We developed and apply a novel spatially explicit analysis to parasite infection data from a wild wood mouse (Apodemus sylvaticus) population. We previously demonstrated a strong within-host negative interaction between two wood mouse gastrointestinal parasites, the nematode Heligmosomoides polygyrus and the coccidian Eimeria hungaryensis, using drug-treatment experiments. Here, we show this negative within-host interaction can significantly alter the between-host transmission dynamics of E. hungaryensis, but only within spatially restricted neighbourhoods around each host. However, for the closely related species E. apionodes, which experiments show does not interact strongly with H. polygyrus, we did not find any effect on transmission over any spatial scale. Our results demonstrate that the effects of within-host coinfection interactions can ripple out beyond each host to alter the transmission dynamics of the parasites, but only over local scales that likely reflect the spatial dimension of transmission. Hence there may be knock-on consequences of drug treatments impacting the transmission of non-target parasites, altering infection risks even for non-treated individuals in the wider neighbourhood.
Collapse
Affiliation(s)
- Shaun P. Keegan
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Amy B. Pedersen
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Andy Fenton
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
5
|
Colombo VC, Lareschi M, Monje LD, Antoniazzi LR, Morand S, Beldomenico PM. Ecological factors shaping the ectoparasite community assembly of the Azara's Grass Mouse, Akodon azarae (Rodentia: Cricetidae). Parasitol Res 2023; 122:2011-2021. [PMID: 37341789 DOI: 10.1007/s00436-023-07901-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023]
Abstract
Parasites are integral members of the global biodiversity. They are useful indicators of environmental stress, food web structure and diversity. Ectoparasites have the potential to transmit vector-borne diseases of public health and veterinary importance and to play an important role in the regulation and evolution of host populations. The interlinkages between hosts, parasites and the environment are complex and challenging to study, leading to controversial results. Most previous studies have been focused on one or two parasite groups, while hosts are often co-infected by different taxa. The present study aims to assess the influence of environmental and host traits on the entire ectoparasite community composition of the rodent Akodon azarae. A total of 278 rodents were examined and mites (Mesostigmata), lice (Phthiraptera), ticks (Ixodida) and fleas (Siphonaptera) were determined. A multi-correspondence analysis was performed in order to analyze interactions within the ectoparasite community and the influence of environmental and host variables on this assembly. We found that environmental variables have a stronger influence on the composition of the ectoparasite community of A. azarae than the host variables analyzed. Minimum temperature was the most influential variable among the studied. In addition, we found evidence of agonistic and antagonistic interactions between ticks and mites, lice and fleas. The present study supports the hypothesis that minimum temperature plays a major role in the dynamics that shape the ectoparasite community of A. azarae, probably through both direct and indirect processes. This finding becomes particularly relevant in a climate change scenario.
Collapse
Affiliation(s)
- Valeria Carolina Colombo
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), R.P. Kreder 2805, 3080, Esperanza, Argentina.
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, 2610, Wilrijk, Belgium.
- Servicio de Neurovirosis, INEI-ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield 563, C1282AFF, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Marcela Lareschi
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE) (CONICET-UNLP), Bv. 120 S/N E/ 60 y 61, 1900, La Plata, Argentina
| | - Lucas Daniel Monje
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), R.P. Kreder 2805, 3080, Esperanza, Argentina
| | - Leandro Raúl Antoniazzi
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), R.P. Kreder 2805, 3080, Esperanza, Argentina
- Instituto de Bio y Geociencias del NOA (CONICET), 9 de Julio 14, 4405, Rosario de Lerma, Argentina
| | - Serge Morand
- Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle (MIVEGEC), Université de Montpellier, CNRS, IRD, 34090, Montpellier, France
| | - Pablo Martín Beldomenico
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), R.P. Kreder 2805, 3080, Esperanza, Argentina
| |
Collapse
|
6
|
Ramsay C, Rohr JR. Ontogeny of immunity and potential implications for co-infection. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220127. [PMID: 37305918 PMCID: PMC10258665 DOI: 10.1098/rstb.2022.0127] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/28/2022] [Indexed: 06/13/2023] Open
Abstract
Immunity changes through ontogeny and can mediate facilitative and inhibitory interactions among co-infecting parasite species. In amphibians, most immune memory is not carried through metamorphosis, leading to variation in the complexity of immune responses across life stages. To test if the ontogeny of host immunity might drive interactions among co-infecting parasites, we simultaneously exposed Cuban treefrogs (Osteopilus septentrionalis) to a fungus (Batrachochytrium dendrobaditis, Bd) and a nematode (Aplectana hamatospicula) at tadpole, metamorphic and post-metamorphic life stages. We measured metrics of host immunity, host health and parasite abundance. We predicted facilitative interactions between co-infecting parasites as the different immune responses hosts mount to combat these infectious are energetically challenging to mount simultaneously. We found ontogenetic differences in IgY levels and cellular immunity but no evidence that metamorphic frogs were more immunosuppressed than tadpoles. There was also little evidence that these parasites facilitated one another and no evidence that A. hamatospicula infection altered host immunity or health. However, Bd, which is known to be immunosuppressive, decreased immunity in metamorphic frogs. This made metamorphic frogs both less resistant and less tolerant of Bd infection than the other life stages. These findings indicate that changes in immunity altered host responses to parasite exposures throughout ontogeny. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
- Chloe Ramsay
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46656, USA
| | - Jason R. Rohr
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46656, USA
| |
Collapse
|
7
|
The Connection between Immunocompetence and Reproduction in Wildlife. Life (Basel) 2023; 13:life13030785. [PMID: 36983939 PMCID: PMC10051471 DOI: 10.3390/life13030785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
Reproduction rate is important for the survival of animal populations. During gravidity, a trade-off occurs between the individual well-being of gravid females and investment in offspring. Due to the high synthesis and energy requirements for the growing fetus, other physiological activities are downregulated in pregnant females. This causes changes in the composition of the reproductive microbiome and a decreased immune response to presented antigens and pathogens. As a result, the immunocompetence of gravid wild animals declines. In general, therefore, increased infection rates during pregnancy can be observed in all wildlife species studied. In the course of evolution, however, this has apparently evolved as a suitable strategy to ensure the survival of the population as a whole.
Collapse
|
8
|
Taylor CH, Friberg IM, Jackson JA, Arriero E, Begon M, Wanelik KM, Paterson S, Bradley JE. Living with chronic infection: Persistent immunomodulation during avirulent haemoparasitic infection in a wild rodent. Mol Ecol 2023; 32:1197-1210. [PMID: 36478482 DOI: 10.1111/mec.16819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/07/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Apicomplexans are a protozoan phylum of obligate parasites which may be highly virulent during acute infections, but may also persist as chronic infections which appear to have little fitness cost. Babesia microti is an apicomplexan haemoparasite that, in immunocompromised individuals, can cause severe, potentially fatal disease. However, in its natural host, wild field voles (Microtus agrestis), it exhibits chronic infections that have no detectable impact on survival or female fecundity. How is damage minimized, and what is the impact on the host's immune state and health? We examine the differences in immune state (here represented by expression of immune-related genes in multiple tissues) associated with several common chronic infections in a population of wild field voles. While some infections show little impact on immune state, we find strong associations between immune state and B. microti. These include indications of clearance of infected erythrocytes (increased macrophage activity in the spleen) and activity likely associated with minimizing damage from the infection (anti-inflammatory and antioxidant activity in the blood). By analysing gene expression from the same individuals at multiple time points, we show that the observed changes are a response to infection, rather than a risk factor. Our results point towards continual investment to minimize the damage caused by the infection. Thus, we shed light on how wild animals can tolerate some chronic infections, but emphasize that this tolerance does not come without a cost.
Collapse
Affiliation(s)
| | - Ida M Friberg
- School of Environment and Life Sciences, University of Salford, Salford, UK
| | - Joseph A Jackson
- School of Environment and Life Sciences, University of Salford, Salford, UK
| | - Elena Arriero
- School of Life Sciences, University of Nottingham, Nottingham, UK.,Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain
| | - Mike Begon
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Klara M Wanelik
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK.,Department of Zoology, University of Oxford, Oxford, UK
| | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
9
|
Affiliation(s)
- Amy R. Sweeny
- Institute of Evolutionary Biology University of Edinburgh Edinburgh Scotland
| | - Gregory F. Albery
- Department of Biology Georgetown University Washington DC USA
- Wissenschaftskolleg zu Berlin Berlin Germany
| |
Collapse
|
10
|
Morgan ER, Lanusse C, Rinaldi L, Charlier J, Vercruysse J. Confounding factors affecting faecal egg count reduction as a measure of anthelmintic efficacy. Parasite 2022; 29:20. [PMID: 35389336 PMCID: PMC8988865 DOI: 10.1051/parasite/2022017] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Abstract
Increasing anthelmintic resistance (AR) in livestock has stimulated growing efforts to monitor anthelmintic effectiveness (AE) on livestock farms. On-farm assessment of AE relies on measuring the reduction in faecal egg count (FEC) following treatment; and if conducted rigorously, qualifies as a formal FEC reduction test (FECRT) for AR. Substantial research effort has been devoted to designing robust protocols for the FECRT and its statistical interpretation; however, a wide range of factors other than AR can affect FEC reduction on farms. These are not always possible to control, and can affect the outcome and repeatability of AE measurements and confound the on-farm classification of AR using FECRT. This review considers confounders of FEC reduction, focusing on gastrointestinal nematodes of ruminants, including host and parasite physiology and demography; pharmacokinetic variation between drugs, parasites and hosts; and technical performance. Drug formulation and delivery, host condition and diet, and seasonal variation in parasite species composition, can all affect AE and hence observed FEC reduction. Causes of variation in FEC reduction should be attenuated, but this is not always possible. Regular monitoring of AE can indicate a need to improve anthelmintic administration practices, and detect AR early in its progression. Careful interpretation of FEC reduction, however, taking into account possible confounders, is essential before attributing reduced FEC reduction to AR. Understanding of confounders of FEC reduction will complement advances in FECRT design and interpretation to provide measures of anthelmintic efficacy that are both rigorous and accessible.
Collapse
Affiliation(s)
- Eric R Morgan
- School of Biological Sciences, Queen's University Belfast, 19, Chlorine Gardens, BT9 5DL Belfast, United Kingdom
| | - Carlos Lanusse
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN) (UNCPBA-CICPBA-CONICET), Facultad de Ciencias Veterinarias, UNCPBA, 7000 Tandil, Argentina
| | - Laura Rinaldi
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino, 1, 80137 Naples, Italy
| | | | - Jozef Vercruysse
- Faculty of Veterinary Medicine, University of Gent, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
11
|
Ferreira SCM, Veiga MM, Hofer H, East ML, Czirják GÁ. Noninvasively measured immune responses reflect current parasite infections in a wild carnivore and are linked to longevity. Ecol Evol 2021; 11:7685-7699. [PMID: 34188844 PMCID: PMC8216923 DOI: 10.1002/ece3.7602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 01/03/2023] Open
Abstract
Host immune defenses are important components of host-parasite interactions that affect the outcome of infection and may have fitness consequences for hosts when increased allocation of resources to immune responses undermines other essential life processes. Research on host-parasite interactions in large free-ranging wild mammals is currently hampered by a lack of verified noninvasive assays. We successfully adapted existing assays to measure innate and adaptive immune responses produced by the gastrointestinal mucosa in spotted hyena (Crocuta crocuta) feces, including enzyme-linked immunosorbent assays (ELISAs), to quantify fecal immunoglobulins (total IgA, total IgG) and total fecal O-linked oligosaccharides (mucin). We investigated the effect of infection load by an energetically costly hookworm (Ancylostoma), parasite richness, host age, sex, year of sampling, and clan membership on immune responses and asked whether high investment in immune responses during early life affects longevity in individually known spotted hyenas in the Serengeti National Park, Tanzania. Fecal concentrations of IgA, IgG, and mucin increased with Ancylostoma egg load and were higher in juveniles than in adults. Females had higher mucin concentrations than males. Juvenile females had higher IgG concentrations than juvenile males, whereas adult females had lower IgG concentrations than adult males. High IgA concentrations during the first year of life were linked to reduced longevity after controlling for age at sampling and Ancylostoma egg load. Our study demonstrates that the use of noninvasive methods can increase knowledge on the complex relationship between gastrointestinal parasites and host local immune responses in wild large mammals and reveal fitness-relevant effects of these responses.
Collapse
Affiliation(s)
- Susana C. M. Ferreira
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
- Present address:
Division of Computational Systems BiologyCentre for Microbiology and Environmental Systems ScienceViennaAustria
| | - Miguel M. Veiga
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
| | - Heribert Hofer
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
- Department of Veterinary MedicineFreie Universität BerlinBerlinGermany
- Department of Biology, Chemistry and PharmacyFreie Universität BerlinBerlinGermany
| | - Marion L. East
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
| | - Gábor Á. Czirják
- Department of Wildlife DiseasesLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
| |
Collapse
|
12
|
Sweeny AR, Albery GF, Venkatesan S, Fenton A, Pedersen AB. Spatiotemporal variation in drivers of parasitism in a wild wood mouse population. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amy R. Sweeny
- Institute of Evolutionary Biology, School of Biological Sciences University of Edinburgh Edinburgh UK
| | | | - Saudamini Venkatesan
- Institute of Evolutionary Biology, School of Biological Sciences University of Edinburgh Edinburgh UK
| | - Andy Fenton
- Institute of Infection, Veterinary and Ecological Sciences University of Liverpool Liverpool UK
| | - Amy B. Pedersen
- Institute of Evolutionary Biology, School of Biological Sciences University of Edinburgh Edinburgh UK
| |
Collapse
|
13
|
Sweeny AR, Clerc M, Pontifes PA, Venkatesan S, Babayan SA, Pedersen AB. Supplemented nutrition decreases helminth burden and increases drug efficacy in a natural host-helminth system. Proc Biol Sci 2021; 288:20202722. [PMID: 33468010 PMCID: PMC7893286 DOI: 10.1098/rspb.2020.2722] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022] Open
Abstract
Gastrointestinal (GI) helminths are common parasites of humans, wildlife, and livestock, causing chronic infections. In humans and wildlife, poor nutrition or limited resources can compromise an individual's immune response, predisposing them to higher helminth burdens. This relationship has been tested in laboratory models by investigating infection outcomes following reductions of specific nutrients. However, much less is known about how diet supplementation can impact susceptibility to infection, acquisition of immunity, and drug efficacy in natural host-helminth systems. We experimentally supplemented the diet of wood mice (Apodemus sylvaticus) with high-quality nutrition and measured resistance to the common GI nematode Heligmosomoides polygyrus. To test whether diet can enhance immunity to reinfection, we also administered anthelmintic treatment in both natural and captive populations. Supplemented wood mice were more resistant to H. polygyrus infection, cleared worms more efficiently after treatment, avoided a post-treatment infection rebound, produced stronger general and parasite-specific antibody responses, and maintained better body condition. In addition, when applied in conjunction with anthelmintic treatment, supplemented nutrition significantly reduced H. polygyrus transmission potential. These results show the rapid and extensive benefits of a well-balanced diet and have important implications for both disease control and wildlife health under changing environmental conditions.
Collapse
Affiliation(s)
- Amy R. Sweeny
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Melanie Clerc
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Paulina A. Pontifes
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Avenida Ciudad Universitaria 3000, CP 04510 Coyoacán, Ciudad de México, México
| | - Saudamini Venkatesan
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Simon A. Babayan
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Amy B. Pedersen
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
14
|
Colombo SAP, Grencis RK. Immunity to Soil-Transmitted Helminths: Evidence From the Field and Laboratory Models. Front Immunol 2020; 11:1286. [PMID: 32655568 PMCID: PMC7324686 DOI: 10.3389/fimmu.2020.01286] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
Infection with soil-transmitted helminths (STH) remains a major burden on global health and agriculture. Our understanding of the immunological mechanisms that govern whether an individual is resistant or susceptible to infection is derived primarily from model infections in rodents. Typically, experimental infections employ an artificially high, single bolus of parasites that leads to rapid expulsion of the primary infection and robust immunity to subsequent challenges. However, immunity in natura is generated slowly, and is only partially effective, with individuals in endemic areas retaining low-level infections throughout their lives. Therefore, there is a gap between traditional model STH systems and observations in the field. Here, we review the immune response to traditional model STH infections in the laboratory. We compare these data to studies of natural infection in humans and rodents in endemic areas, highlighting crucial differences between experimental and natural infection. We then detail the literature to date on the use of "trickle" infections to experimentally model the kinetics of natural infection.
Collapse
Affiliation(s)
- Stefano A. P. Colombo
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Richard K. Grencis
- Division of Infection, Immunity and Respiratory Medicine, Wellcome Trust Centre for Cell Matrix Research, Lydia Becker Institute for Immunology and Inflammation, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
15
|
Rynkiewicz EC, Clerc M, Babayan SA, Pedersen AB. Variation in Local and Systemic Pro-Inflammatory Immune Markers of Wild Wood Mice after Anthelmintic Treatment. Integr Comp Biol 2020; 59:1190-1202. [PMID: 31368489 PMCID: PMC6863754 DOI: 10.1093/icb/icz136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The immune system represents a host's main defense against infection to parasites and pathogens. In the wild, a host's response to immune challenges can vary due to physiological condition, demography (age, sex), and coinfection by other parasites or pathogens. These sources of variation, which are intrinsic to natural populations, can significantly impact the strength and type of immune responses elicited after parasite exposure and infection. Importantly, but often neglected, a host's immune response can also vary within the individual, across tissues and between local and systemic scales. Consequently, how a host responds at each scale may impact its susceptibility to concurrent and subsequent infections. Here we analyzed how characteristics of hosts and their parasite infections drive variation in the pro-inflammatory immune response in wild wood mice (Apodemus sylvaticus) at both the local and systemic scale by experimentally manipulating within-host parasite communities through anthelmintic drug treatment. We measured concentrations of the pro-inflammatory cytokine tumor necrosis factor alpha (TNF-α) produced in vitro in response to a panel of toll-like receptor agonists at the local (mesenteric lymph nodes [MLNs]) and systemic (spleen) scales of individuals naturally infected with two gastrointestinal parasites, the nematode Heligmosomoides polygyrus and the protozoan Eimeria hungaryensis. Anthelmintic-treated mice had a 20-fold lower worm burden compared to control mice, as well as a four-fold higher intensity of the non-drug targeted parasite E. hungaryensis. Anthelmintic treatment differentially impacted levels of TNF-α expression in males and females at the systemic and local scales, with treated males producing higher, and treated females lower, levels of TNF-α, compared to control mice. Also, TNF-α was affected by host age, at the local scale, with MLN cells of young, treated mice producing higher levels of TNF-α than those of old, treated mice. Using complementary, but distinct, measures of inflammation measured across within-host scales allowed us to better assess the wood mouse immune response to changes in parasite infection dynamics after anthelmintic treatment. This same approach could be used to understand helminth infections and responses to parasite control measures in other systems in order to gain a broader view of how variation impacts the immune response.
Collapse
Affiliation(s)
- Evelyn C Rynkiewicz
- Fashion Institute of Technology, State University of New York, New York, NY 10001, USA
| | - Melanie Clerc
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - Simon A Babayan
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Amy B Pedersen
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| |
Collapse
|
16
|
Abdoli A, Ardakani HM. Helminth infections and immunosenescence: The friend of my enemy. Exp Gerontol 2020; 133:110852. [PMID: 32007545 DOI: 10.1016/j.exger.2020.110852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/13/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022]
Abstract
Age-associated alterations of the immune system, which known as "immunosenescence", is characterized by a decline in innate and adaptive immunity, which leading to increased susceptibility to age-associated diseases, such as infectious diseases, rheumatic disease and malignancies. On the other hand, helminth infections are among the most prevalent infections in older individuals, especially in the nursing homes. Most of helminth infections have minor clinical symptoms and usually causing chronic infections without treatment. Nevertheless, chronic helminthiasis alters immune responses somewhat similar to the immunosenescence. Some similarities also exist between helminth infections and immunosenescence: 1) both of them led to declining the immune responses; 2) undernutrition is a consequence of immunosenescence and helminthiasis; 3) vaccine efficacy declines in aging and individuals with helminth infections; 4) increase incidence and prevalence of infectious diseases in the elder individuals and patients with helminth infections; and 5) both of them promote tumorigenesis. Hence, it is probable that helminth infections in the elderly population can intensify the immunosenescence outcomes due to the synergistic immunoregulatory effects of each of them. It would be suggested that, diagnosis, treatment and prevention of helminth infections should be more considered in older individuals. Also, it would be suggested that helminths or their antigens can be used for investigation of immunosenescence because both of them possess some similarities in immune alterations. Taken together, this review offers new insights into the immunology of aging and helminth infections.
Collapse
Affiliation(s)
- Amir Abdoli
- Department of Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran; Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran; Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.
| | - Hoda Mirzaian Ardakani
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|