1
|
Abdel-Aal RA, Meligy FY, Maghraby N, Sayed N, Mohamed Ashry IES. Comparing levetiracetam and zonisamide effects on rivastigmine anti-Alzheimer's activity in aluminum chloride-induced Alzheimer's-like disease in rats: Impact on α7 nicotinic acetylcholine receptors and amyloid β. Brain Res 2025; 1855:149573. [PMID: 40096940 DOI: 10.1016/j.brainres.2025.149573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 02/02/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND AND AIM Alzheimer's disease (AD) is the most progressive form of neurodegenerative disease, which severely impairs cognitive function. The leading class of drugs used to treat AD is acetylcholinesterase inhibitors (AChE-Is) as Rivastigmine (RIVA), partially ameliorate its cognitive symptoms. Since epilepsy is a common comorbidity with AD, we explored the potential that new the antiepileptic drugs; Levetiracetam (LEV) and Zonisamide (ZNS) may possess an additional therapeutic benefit to RIVA in AlCl3-induced AD rat model. MATERIALS AND METHODS AlCl3 was used to provoke AD in rats which were then supplemented with treatment drugs for 2 weeks. Treated groups were: Control, AlCl3, RIVA, LEV, RIVA + LEV, ZNS and RIVA + ZNS. Then, the behavioral tests; passive avoidance (PA), Morris water maze (MWM) and novel object recognition (NOR) were conducted to assess cognitive behavior and memory. The Hippocampal Aβ assembly was thoroughly examined by histopathology and ELISA. α7 Nicotinic ACh receptors' (α7nAChRs) expression was assessed immunohistochemically and by real-time quantitative polymerase chain reaction (qPCR). Caspase 3 expression was also assessed by real-time qPCR in hippocampal tissues. RESULTS AlCl3 administration impaired memory and cognitive functions in rats, augmented hippocampal Aβ deposition, with subsequent neurodegeneration and α7nAChRs down-regulation. LEV, but not ZNS, administration significantly mitigated AlCl3-induced cognitive impairment probably through suppression of amyloid β (Aβ) deposition, enhancement of neurogenesis and α7nAChRs expression. When combined to RIVA, ZNS treatment negatively affected cognition possibly through its impact on hippocampal Aβ and subsequent neuronal damage. CONCLUSION Although our results indicated that neither LEV nor ZNS provided any extra benefit to cognitive enhancements in AD rats receiving rivastigmine, LEV demonstrated positive effects individually while ZNS had negative effects when combined with RIVA. As a result, this study suggests the use of LEV rather than ZNS for managing epilepsy in patients with AD given that Alzheimer's and epilepsy can coexist.
Collapse
Affiliation(s)
- Raafat A Abdel-Aal
- Pharmacology Department, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Fatma Y Meligy
- Department of Restorative Dentistry and Basic Medical Sciences, Faculty of Dentistry, University of Petra, Amman 11196, Jordan; Histology and Cell Biology Department, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Nashwa Maghraby
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Nehal Sayed
- Pharmacology Department, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | | |
Collapse
|
2
|
Gonzalez-Montealegre RA, González-Hernández A, Bonilla-Santos J, Cala-Martínez DY, Parra MA. Electrophysiological correlates of visual short-term memory binding deficits in community-dwelling seniors at risk of dementia. Clin Neurophysiol 2025; 171:227-239. [PMID: 39946839 DOI: 10.1016/j.clinph.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 03/11/2025]
Abstract
BACKGROUND Visual Short-Term Memory Binding (VSTMB) is a preclinical marker of Alzheimer's disease (AD). Reduced early event-related potentials (ERPs) (100-250 ms) over fronto-central (FC) and parieto-occipital (PO) regions have been reported in patients with Mild Cognitive Impairment (MCI) seen in the clinic. We investigated such ERPs in a larger sample of community-dwelling older adults who had not sought medical advice. METHODS Participants (n = 215) were assessed with a neuropsychological battery and the VSTMB Task. The latter assessed the ability to detect changes between two consecutive arrays of shapes or colored shapes (the Binding condition). Time-locked EEG signals were collected during the task. RESULTS Those who met the MCI criteria (n = 108) showed binding impairment. ERP analyses revealed significant Group x Time Windows interactions. Early ERP showed reduced neural recruitment (MCI < healthy controls (HC)) over the right FC regions, left PO, and right centro-parietal (CP) regions during Binding encoding, and over PO regions bilaterally and left FC during retrieval. Late ERP showed increased neural recruitment (MCI > HC) on left FC and PO regions during retrieval. CONCLUSIONS Hyper-recruitment may reflect functional reorganization aimed at behavioral compensation in the early stages of MCI. The role of such amplitude shifts as pointers of transition points in the AD continuum needs further investigation.
Collapse
Affiliation(s)
| | - Alfredis González-Hernández
- Neurocognition and Psychophysiology Laboratory, Universidad Surcolombiana, Neiva, Colombia; Department of Psychology, Master Programme of Clinical Neuropsychology, Universidad Surcolombiana, Neiva, Colombia.
| | - Jasmin Bonilla-Santos
- Department of Psychology, Master Programme of Clinical Neuropsychology, Universidad Surcolombiana, Neiva, Colombia; Department of Psychology, Universidad Cooperativa de Colombia, Neiva, Colombia
| | - Dorian Yisela Cala-Martínez
- Department of Psychology, Master Programme of Clinical Neuropsychology, Universidad Surcolombiana, Neiva, Colombia; Department of Psychology, Universidad Cooperativa de Colombia, Neiva, Colombia
| | - Mario Alfredo Parra
- Department of Psychological Sciences and Health, University of Strathclyde, Glasgow, UK; Associate Researcher, Latin American Brain Health Institute, University Adolfo Ibañez, Chile.
| |
Collapse
|
3
|
Hamza Y, Yang Y, Vu J, Abdelmalek A, Malekifar M, Barnes CA, Zeng FG. Auditory brainstem responses as a biomarker for cognition. Commun Biol 2024; 7:1653. [PMID: 39702841 DOI: 10.1038/s42003-024-07346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
A non-invasive, accessible and effective biomarker is critical to the diagnosis, monitoring and treatment of age-related cognitive decline. Recent work has suggested a strong association between auditory brainstem responses (ABR) and cognitive function in aging macaques. Here we show in 118 human participants (66 females; age range=18-92 years; hearing loss = -5 to 70 dB HL) that cognition is associated with both age and hearing level, but this triad relationship is mainly driven by the age factor. After adjusting for age, cognition is still significantly associated with both the ABR wave V amplitude (B, 0.110, 95% CI, 0.018- 0.202; p = 0.020) and latency (B, -0.101, 95% CI, -0.186- -0.016; p = 0.021). Importantly, this age-adjusted ABR-cognition association is primarily driven by older individuals and language-dependent cognitive functions. We also perform the area under the curve (AUC) of the receiver-operating-characteristic analysis and find that the ABR wave V amplitude is best for detecting good cognitive performers (AUC = 0.96) whereas the wave V latency is best for detecting poor ones (AUC = 0.86). The present result not only confirms the previous animal work in humans but also shows the clinical potential of using auditory brainstem responses to improve diagnosis and treatment of age-related cognitive decline.
Collapse
Affiliation(s)
- Yasmeen Hamza
- Center for Hearing Research, Otolaryngology-Head and Neck Surgery, University of California Irvine, Irvine, CA, USA.
- Institute of Sound and Vibration Research, School of Engineering, University of Southampton, Southampton, UK.
| | - Ye Yang
- Center for Hearing Research, Otolaryngology-Head and Neck Surgery, University of California Irvine, Irvine, CA, USA
| | - Janie Vu
- Center for Hearing Research, Otolaryngology-Head and Neck Surgery, University of California Irvine, Irvine, CA, USA
| | - Antoinette Abdelmalek
- Center for Hearing Research, Otolaryngology-Head and Neck Surgery, University of California Irvine, Irvine, CA, USA
| | - Mobina Malekifar
- Center for Hearing Research, Otolaryngology-Head and Neck Surgery, University of California Irvine, Irvine, CA, USA
| | - Carol A Barnes
- Psychology, Neurology and Neuroscience, and Evelyn F. McKnight Brain Institute, University of Arizona, Tuscan, AZ, USA
| | - Fan-Gang Zeng
- Center for Hearing Research, Otolaryngology-Head and Neck Surgery, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
4
|
Jiang Y, Neal J, Sompol P, Yener G, Arakaki X, Norris CM, Farina FR, Ibanez A, Lopez S, Al‐Ezzi A, Kavcic V, Güntekin B, Babiloni C, Hajós M. Parallel electrophysiological abnormalities due to COVID-19 infection and to Alzheimer's disease and related dementia. Alzheimers Dement 2024; 20:7296-7319. [PMID: 39206795 PMCID: PMC11485397 DOI: 10.1002/alz.14089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 09/04/2024]
Abstract
Many coronavirus disease 2019 (COVID-19) positive individuals exhibit abnormal electroencephalographic (EEG) activity reflecting "brain fog" and mild cognitive impairments even months after the acute phase of infection. Resting-state EEG abnormalities include EEG slowing (reduced alpha rhythm; increased slow waves) and epileptiform activity. An expert panel conducted a systematic review to present compelling evidence that cognitive deficits due to COVID-19 and to Alzheimer's disease and related dementia (ADRD) are driven by overlapping pathologies and neurophysiological abnormalities. EEG abnormalities seen in COVID-19 patients resemble those observed in early stages of neurodegenerative diseases, particularly ADRD. It is proposed that similar EEG abnormalities in Long COVID and ADRD are due to parallel neuroinflammation, astrocyte reactivity, hypoxia, and neurovascular injury. These neurophysiological abnormalities underpinning cognitive decline in COVID-19 can be detected by routine EEG exams. Future research will explore the value of EEG monitoring of COVID-19 patients for predicting long-term outcomes and monitoring efficacy of therapeutic interventions. HIGHLIGHTS: Abnormal intrinsic electrophysiological brain activity, such as slowing of EEG, reduced alpha wave, and epileptiform are characteristic findings in COVID-19 patients. EEG abnormalities have the potential as neural biomarkers to identify neurological complications at the early stage of the disease, to assist clinical assessment, and to assess cognitive decline risk in Long COVID patients. Similar slowing of intrinsic brain activity to that of COVID-19 patients is typically seen in patients with mild cognitive impairments, ADRD. Evidence presented supports the idea that cognitive deficits in Long COVID and ADRD are driven by overlapping neurophysiological abnormalities resulting, at least in part, from neuroinflammatory mechanisms and astrocyte reactivity. Identifying common biological mechanisms in Long COVID-19 and ADRD can highlight critical pathologies underlying brain disorders and cognitive decline. It elucidates research questions regarding cognitive EEG and mild cognitive impairment in Long COVID that have not yet been adequately investigated.
Collapse
Affiliation(s)
- Yang Jiang
- Aging Brain and Cognition LaboratoryDepartment of Behavioral ScienceCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Sanders Brown Center on AgingCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Jennifer Neal
- Aging Brain and Cognition LaboratoryDepartment of Behavioral ScienceCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Pradoldej Sompol
- Sanders Brown Center on AgingCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Department of Pharmacology and Nutritional SciencesCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Görsev Yener
- Faculty of MedicineDept of Neurologyİzmir University of EconomicsİzmirTurkey
- IBG: International Biomedicine and Genome CenterİzmirTurkey
| | - Xianghong Arakaki
- Cognition and Brain Integration LaboratoryDepartment of NeurosciencesHuntington Medical Research InstitutesPasadenaCaliforniaUSA
| | - Christopher M. Norris
- Sanders Brown Center on AgingCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Department of Pharmacology and Nutritional SciencesCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | | | - Agustin Ibanez
- BrainLat: Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiagoChile
- Cognitive Neuroscience CenterUniversidad de San AndrésVictoriaBuenos AiresArgentina
- GBHI: Global Brain Health InstituteTrinity College DublinThe University of DublinDublin 2Ireland
| | - Susanna Lopez
- Department of Physiology and Pharmacology “V. Erspamer,”Sapienza University of RomeRomeItaly
| | - Abdulhakim Al‐Ezzi
- Cognition and Brain Integration LaboratoryDepartment of NeurosciencesHuntington Medical Research InstitutesPasadenaCaliforniaUSA
| | - Voyko Kavcic
- Institute of GerontologyWayne State UniversityDetroitMichiganUSA
| | - Bahar Güntekin
- Research Institute for Health Sciences and Technologies (SABITA)Istanbul Medipol UniversityIstanbulTurkey
- Department of BiophysicsSchool of MedicineIstanbul Medipol UniversityIstanbulTurkey
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “V. Erspamer,”Sapienza University of RomeRomeItaly
- Hospital San Raffaele CassinoCassinoFrosinoneItaly
| | - Mihály Hajós
- Cognito TherapeuticsCambridgeMassachusettsUSA
- Department of Comparative MedicineYale University School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
5
|
Yener G, Kıyı İ, Düzenli-Öztürk S, Yerlikaya D. Age-Related Aspects of Sex Differences in Event-Related Brain Oscillatory Responses: A Turkish Study. Brain Sci 2024; 14:567. [PMID: 38928567 PMCID: PMC11202018 DOI: 10.3390/brainsci14060567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Earlier research has suggested gender differences in event-related potentials/oscillations (ERPs/EROs). Yet, the alteration in event-related oscillations (EROs) in the delta and theta frequency bands have not been explored between genders across the three age groups of adulthood, i.e., 18-50, 51-65, and >65 years. Data from 155 healthy elderly participants who underwent a neurological examination, comprehensive neuropsychological assessment (including attention, memory, executive function, language, and visuospatial skills), and magnetic resonance imaging (MRI) from past studies were used. The delta and theta ERO powers across the age groups and between genders were compared and correlational analyses among the ERO power, age, and neuropsychological tests were performed. The results indicated that females displayed higher theta ERO responses than males in the frontal, central, and parietal regions but not in the occipital location between 18 and 50 years of adulthood. The declining theta power of EROs in women reached that of men after the age of 50 while the theta ERO power was more stable across the age groups in men. Our results imply that the cohorts must be recruited at specified age ranges across genders, and clinical trials using neurophysiological biomarkers as an intervention endpoint should take gender into account in the future.
Collapse
Affiliation(s)
- Görsev Yener
- Faculty of Medicine, Izmir University of Economics, 35330 Balçova, Turkey
- Izmir Biomedicine and Genome Center, 35340 İzmir, Turkey
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, 35210 İzmir, Turkey; (İ.K.); (D.Y.)
| | - İlayda Kıyı
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, 35210 İzmir, Turkey; (İ.K.); (D.Y.)
| | - Seren Düzenli-Öztürk
- Department of Speech and Language Therapy, Faculty of Health Sciences, Izmir Bakırçay University, 35665 İzmir, Turkey;
| | - Deniz Yerlikaya
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, 35210 İzmir, Turkey; (İ.K.); (D.Y.)
| |
Collapse
|
6
|
Biačková N, Adamová A, Klírová M. Transcranial alternating current stimulation in affecting cognitive impairment in psychiatric disorders: a review. Eur Arch Psychiatry Clin Neurosci 2024; 274:803-826. [PMID: 37682331 PMCID: PMC11127835 DOI: 10.1007/s00406-023-01687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023]
Abstract
Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation method that, through its manipulation of endogenous oscillations, can affect cognition in healthy adults. Given the fact that both endogenous oscillations and cognition are impaired in various psychiatric diagnoses, tACS might represent a suitable intervention. We conducted a search of Pubmed and Web of Science databases and reviewed 27 studies where tACS is used in psychiatric diagnoses and cognition change is evaluated. TACS is a safe and well-tolerated intervention method, suitable for multiple-sessions protocols. It can be administered at home, individualized according to the patient''s anatomical and functional characteristics, or used as a marker of disease progression. The results are varying across diagnoses and applied protocols, with some protocols showing a long-term effect. However, the overall number of studies is small with a great variety of diagnoses and tACS parameters, such as electrode montage or used frequency. Precise mechanisms of tACS interaction with pathophysiological processes are only partially described and need further research. Currently, tACS seems to be a feasible method to alleviate cognitive impairment in psychiatric patients; however, a more robust confirmation of efficacy of potential protocols is needed to introduce it into clinical practise.
Collapse
Affiliation(s)
- Nina Biačková
- Neurostimulation Department, National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Andrea Adamová
- Neurostimulation Department, National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Monika Klírová
- Neurostimulation Department, National Institute of Mental Health, Klecany, Czech Republic.
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
7
|
Kolev V, Falkenstein M, Yordanova J. A distributed theta network of error generation and processing in aging. Cogn Neurodyn 2024; 18:447-459. [PMID: 38699606 PMCID: PMC11061062 DOI: 10.1007/s11571-023-10018-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Accepted: 09/28/2023] [Indexed: 05/05/2024] Open
Abstract
Based on previous concepts that a distributed theta network with a central "hub" in the medial frontal cortex is critically involved in movement regulation, monitoring, and control, the present study explored the involvement of this network in error processing with advancing age in humans. For that aim, the oscillatory neurodynamics of motor theta oscillations was analyzed at multiple cortical regions during correct and error responses in a sample of older adults. Response-related potentials (RRPs) of correct and incorrect reactions were recorded in a four-choice reaction task. RRPs were decomposed in the time-frequency domain to extract oscillatory theta activity. Motor theta oscillations at extended motor regions were analyzed with respect to power, temporal synchronization, and functional connectivity. Major results demonstrated that errors had pronounced effects on motor theta oscillations at cortical regions beyond the medial frontal cortex by being associated with (1) theta power increase in the hemisphere contra-lateral to the movement, (2) suppressed spatial and temporal synchronization at pre-motor areas contra-lateral to the responding hand, (2) inhibited connections between the medial frontal cortex and sensorimotor areas, and (3) suppressed connectivity and temporal phase-synchronization of motor theta networks in the posterior left hemisphere, irrespective of the hand, left, or right, with which the error was made. The distributed effects of errors on motor theta oscillations demonstrate that theta networks support performance monitoring. The reorganization of these networks with aging implies that in older individuals, performance monitoring is associated with a disengagement of the medial frontal region and difficulties in controlling the focus of motor attention and response selection. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-023-10018-4.
Collapse
Affiliation(s)
- Vasil Kolev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 23, Sofia, 1113 Bulgaria
| | | | - Juliana Yordanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 23, Sofia, 1113 Bulgaria
| |
Collapse
|
8
|
Yordanova J, Falkenstein M, Kolev V. Aging alters functional connectivity of motor theta networks during sensorimotor reactions. Clin Neurophysiol 2024; 158:137-148. [PMID: 38219403 DOI: 10.1016/j.clinph.2023.12.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/13/2023] [Accepted: 12/15/2023] [Indexed: 01/16/2024]
Abstract
OBJECTIVE Both cognitive and primary motor networks alter with advancing age in humans. The networks activated in response to external environmental stimuli supported by theta oscillations remain less well explored. The present study aimed to characterize the effects of aging on the functional connectivity of response-related theta networks during sensorimotor tasks. METHODS Electroencephalographic signals were recorded in young and middle-to-older age adults during three tasks performed in two modalities, auditory and visual: a simple reaction task, a Go-NoGo task, and a choice-reaction task. Response-related theta oscillations were computed. The phase-locking value (PLV) was used to analyze the spatial synchronization of primary motor and motor control theta networks. RESULTS Performance was overall preserved in older adults. Independently of the task, aging was associated with reorganized connectivity of the contra-lateral primary motor cortex. In younger adults, it was synchronized with motor control regions (intra-hemispheric premotor/frontal and medial frontal). In older adults, it was only synchronized with intra-hemispheric sensorimotor regions. CONCLUSIONS Motor theta networks of older adults manifest a functional decoupling between the response-generating motor cortex and motor control regions, which was not modulated by task variables. The overall preserved performance in older adults suggests that the increased connectivity within the sensorimotor network is associated with an excessive reliance on sensorimotor feedback during movement execution compensating for a deficient cognitive regulation of motor regions during sensorimotor reactions. SIGNIFICANCE New evidence is provided for the reorganization of motor networks during sensorimotor reactions already at the transition from middle to old age.
Collapse
Affiliation(s)
- Juliana Yordanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | | | - Vasil Kolev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
9
|
Engels-Domínguez N, Koops EA, Prokopiou PC, Van Egroo M, Schneider C, Riphagen JM, Singhal T, Jacobs HIL. State-of-the-art imaging of neuromodulatory subcortical systems in aging and Alzheimer's disease: Challenges and opportunities. Neurosci Biobehav Rev 2023; 144:104998. [PMID: 36526031 PMCID: PMC9805533 DOI: 10.1016/j.neubiorev.2022.104998] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/30/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022]
Abstract
Primary prevention trials have shifted their focus to the earliest stages of Alzheimer's disease (AD). Autopsy data indicates that the neuromodulatory subcortical systems' (NSS) nuclei are specifically vulnerable to initial tau pathology, indicating that these nuclei hold great promise for early detection of AD in the context of the aging brain. The increasing availability of new imaging methods, ultra-high field scanners, new radioligands, and routine deep brain stimulation implants has led to a growing number of NSS neuroimaging studies on aging and neurodegeneration. Here, we review findings of current state-of-the-art imaging studies assessing the structure, function, and molecular changes of these nuclei during aging and AD. Furthermore, we identify the challenges associated with these imaging methods, important pathophysiologic gaps to fill for the AD NSS neuroimaging field, and provide future directions to improve our assessment, understanding, and clinical use of in vivo imaging of the NSS.
Collapse
Affiliation(s)
- Nina Engels-Domínguez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands
| | - Elouise A Koops
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Prokopis C Prokopiou
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maxime Van Egroo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands
| | - Christoph Schneider
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joost M Riphagen
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tarun Singhal
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Heidi I L Jacobs
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
10
|
Babiloni C. The Dark Side of Alzheimer's Disease: Neglected Physiological Biomarkers of Brain Hyperexcitability and Abnormal Consciousness Level. J Alzheimers Dis 2022; 88:801-807. [PMID: 35754282 DOI: 10.3233/jad-220582] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy.,Hospital San Raffaele Cassino, Cassino (FR), Italy
| |
Collapse
|