1
|
Li C, Zhang G, Zhao B, Xie D, Du H, Duan X, Hu Y, Zhang L. Advances of surgical robotics: image-guided classification and application. Natl Sci Rev 2024; 11:nwae186. [PMID: 39144738 PMCID: PMC11321255 DOI: 10.1093/nsr/nwae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 08/16/2024] Open
Abstract
Surgical robotics application in the field of minimally invasive surgery has developed rapidly and has been attracting increasingly more research attention in recent years. A common consensus has been reached that surgical procedures are to become less traumatic and with the implementation of more intelligence and higher autonomy, which is a serious challenge faced by the environmental sensing capabilities of robotic systems. One of the main sources of environmental information for robots are images, which are the basis of robot vision. In this review article, we divide clinical image into direct and indirect based on the object of information acquisition, and into continuous, intermittent continuous, and discontinuous according to the target-tracking frequency. The characteristics and applications of the existing surgical robots in each category are introduced based on these two dimensions. Our purpose in conducting this review was to analyze, summarize, and discuss the current evidence on the general rules on the application of image technologies for medical purposes. Our analysis gives insight and provides guidance conducive to the development of more advanced surgical robotics systems in the future.
Collapse
Affiliation(s)
- Changsheng Li
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Gongzi Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100141, China
| | - Baoliang Zhao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dongsheng Xie
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Hailong Du
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100141, China
| | - Xingguang Duan
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ying Hu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lihai Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100141, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
2
|
Gong YJ, Li YK, Zhou R, Liang Z, Zhang Y, Cheng T, Zhang ZJ. A novel approach for estimating lung tumor motion based on dynamic features in 4D-CT. Comput Med Imaging Graph 2024; 115:102385. [PMID: 38663077 DOI: 10.1016/j.compmedimag.2024.102385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/18/2023] [Accepted: 04/15/2024] [Indexed: 06/03/2024]
Abstract
Due to the high expenses involved, 4D-CT data for certain patients may only include five respiratory phases (0%, 20%, 40%, 60%, and 80%). This limitation can affect the subsequent planning of radiotherapy due to the absence of lung tumor information for the remaining five respiratory phases (10%, 30%, 50%, 70%, and 90%). This study aims to develop an interpolation method that can automatically derive tumor boundary contours for the five omitted phases using the available 5-phase 4D-CT data. The dynamic mode decomposition (DMD) method is a data-driven and model-free technique that can extract dynamic information from high-dimensional data. It enables the reconstruction of long-term dynamic patterns using only a limited number of time snapshots. The quasi-periodic motion of a deformable lung tumor caused by respiratory motion makes it suitable for treatment using DMD. The direct application of the DMD method to analyze the respiratory motion of the tumor is impractical because the tumor is three-dimensional and spans multiple CT slices. To predict the respiratory movement of lung tumors, a method called uniform angular interval (UAI) sampling was developed to generate snapshot vectors of equal length, which are suitable for DMD analysis. The effectiveness of this approach was confirmed by applying the UAI-DMD method to the 4D-CT data of ten patients with lung cancer. The results indicate that the UAI-DMD method effectively approximates the lung tumor's deformable boundary surface and nonlinear motion trajectories. The estimated tumor centroid is within 2 mm of the manually delineated centroid, a smaller margin of error compared to the traditional BSpline interpolation method, which has a margin of 3 mm. This methodology has the potential to be extended to reconstruct the 20-phase respiratory movement of a lung tumor based on dynamic features from 10-phase 4D-CT data, thereby enabling more accurate estimation of the planned target volume (PTV).
Collapse
Affiliation(s)
- Ye-Jun Gong
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha, Hunan 410081, PR China
| | - Yue-Ke Li
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha, Hunan 410081, PR China
| | - Rongrong Zhou
- Department of Radiation Oncology, Xiangya Hospital Central South University, Changsha, Hunan, PR China; Xiangya Lung Cancer Center, Xiangya Hospital Central South University, Changsha, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, PR China
| | - Zhan Liang
- Department of Radiation Oncology, Xiangya Hospital Central South University, Changsha, Hunan, PR China; Xiangya Lung Cancer Center, Xiangya Hospital Central South University, Changsha, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, PR China
| | - Yingying Zhang
- Department of Radiation Oncology, Xiangya Hospital Central South University, Changsha, Hunan, PR China; Xiangya Lung Cancer Center, Xiangya Hospital Central South University, Changsha, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, PR China
| | - Tingting Cheng
- Xiangya Lung Cancer Center, Xiangya Hospital Central South University, Changsha, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, PR China; Department of general practice, Xiangya Hospital Central South University, Changsha, Hunan, PR China.
| | - Zi-Jian Zhang
- Department of Radiation Oncology, Xiangya Hospital Central South University, Changsha, Hunan, PR China; Xiangya Lung Cancer Center, Xiangya Hospital Central South University, Changsha, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
3
|
Lee HY, Lee G, Ferguson D, Hsu SH, Hu YH, Huynh E, Sudhyadhom A, Williams CL, Cagney DN, Fitzgerald KJ, Kann BH, Kozono D, Leeman JE, Mak RH, Han Z. Lung sparing in MR-guided non-adaptive SBRT treatment of peripheral lung tumors. Biomed Phys Eng Express 2024; 10:045048. [PMID: 38861951 DOI: 10.1088/2057-1976/ad567d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Objective.We aim to: (1) quantify the benefits of lung sparing using non-adaptive magnetic resonance guided stereotactic body radiotherapy (MRgSBRT) with advanced motion management for peripheral lung cancers compared to conventional x-ray guided SBRT (ConvSBRT); (2) establish a practical decision-making guidance metric to assist a clinician in selecting the appropriate treatment modality.Approach.Eleven patients with peripheral lung cancer who underwent breath-hold, gated MRgSBRT on an MR-guided linear accelerator (MR linac) were studied. Four-dimensional computed tomography (4DCT)-based retrospective planning using an internal target volume (ITV) was performed to simulate ConvSBRT, which were evaluated against the original MRgSBRT plans. Metrics analyzed included planning target volume (PTV) coverage, various lung metrics and the generalized equivalent unform dose (gEUD). A dosimetric predictor for achievable lung metrics was derived to assist future patient triage across modalities.Main results.PTV coverage was high (median V100% > 98%) and comparable for both modalities. MRgSBRT had significantly lower lung doses as measured by V20 (median 3.2% versus 4.2%), mean lung dose (median 3.3 Gy versus 3.8 Gy) and gEUD. Breath-hold, gated MRgSBRT resulted in an average reduction of 47% in PTV volume and an average increase of 19% in lung volume. Strong correlation existed between lung metrics and the ratio of PTV to lung volumes (RPTV/Lungs) for both modalities, indicating that RPTV/Lungsmay serve as a good predictor for achievable lung metrics without the need for pre-planning. A threshold value of RPTV/Lungs< 0.035 is suggested to achieve V20 < 10% using ConvSBRT. MRgSBRT should otherwise be considered if the threshold cannot be met.Significance.The benefits of lung sparing using MRgSBRT were quantified for peripheral lung tumors; RPTV/Lungswas found to be an effective predictor for achievable lung metrics across modalities. RPTV/Lungscan assist a clinician in selecting the appropriate modality without the need for labor-intensive pre-planning, which has significant practical benefit for a busy clinic.
Collapse
Affiliation(s)
- Ho Young Lee
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Grace Lee
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Dianne Ferguson
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Shu-Hui Hsu
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Yue-Houng Hu
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Elizabeth Huynh
- Department of Radiation Oncology, London Regional Cancer Program, London, ON, Canada
| | - Atchar Sudhyadhom
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Christopher L Williams
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Daniel N Cagney
- Radiotherapy Department, Mater Private Network, Dublin, Ireland
| | - Kelly J Fitzgerald
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Benjamin H Kann
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - David Kozono
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Jonathan E Leeman
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Raymond H Mak
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Zhaohui Han
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
4
|
Wu Y, Wang Z, Chu Y, Peng R, Peng H, Yang H, Guo K, Zhang J. Current Research Status of Respiratory Motion for Thorax and Abdominal Treatment: A Systematic Review. Biomimetics (Basel) 2024; 9:170. [PMID: 38534855 DOI: 10.3390/biomimetics9030170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/29/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
Malignant tumors have become one of the serious public health problems in human safety and health, among which the chest and abdomen diseases account for the largest proportion. Early diagnosis and treatment can effectively improve the survival rate of patients. However, respiratory motion in the chest and abdomen can lead to uncertainty in the shape, volume, and location of the tumor, making treatment of the chest and abdomen difficult. Therefore, compensation for respiratory motion is very important in clinical treatment. The purpose of this review was to discuss the research and development of respiratory movement monitoring and prediction in thoracic and abdominal surgery, as well as introduce the current research status. The integration of modern respiratory motion compensation technology with advanced sensor detection technology, medical-image-guided therapy, and artificial intelligence technology is discussed and analyzed. The future research direction of intraoperative thoracic and abdominal respiratory motion compensation should be non-invasive, non-contact, use a low dose, and involve intelligent development. The complexity of the surgical environment, the constraints on the accuracy of existing image guidance devices, and the latency of data transmission are all present technical challenges.
Collapse
Affiliation(s)
- Yuwen Wu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Zhisen Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yuyi Chu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Renyuan Peng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Haoran Peng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Hongbo Yang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Kai Guo
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Juzhong Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Dang HQ, Nguyen CT, Pham HV, Tran LD, Nguyen CD, Truong DVM, Hoang TTK, Van Chau T. The institutional experience of the implementing 4DCT in NSCLC radiotherapy planning. Rep Pract Oncol Radiother 2023; 28:445-453. [PMID: 37795228 PMCID: PMC10547414 DOI: 10.5603/rpor.a2023.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/20/2023] [Indexed: 10/06/2023] Open
Abstract
Background The study was to evaluate the effectiveness of dose distribution of four-dimensional computed tomography (4DCT) simulation. Materials and methods The gross tumor volume (GTV) and clinical target volume (CTV) were contoured in all 10 respiratory phases of 4DCT in 30 patients with non-small cell lung cancer (NSCLC). Both 3D and 4D treatment plans were made individually for each patient using the planning volume (PTV). The PTV3D was taken from a single CTV plus the recommended margin, and the PTV4D was taken from the 4D internal target volume, including all 10 CTVs plus the setup margins. Results The mean PTV was 460 ± 179 (69-820) cm3 for 3DCT and 401 ± 167 (127-854) cm3 for 4DCT (p = 0.0018). The dose distribution (DD) of organs at risk, especially the lungs, was lower for the 4DCT simulation. The V5%, V10%, and V20% of the total lung dose for 4DCT were significantly lower for the 3DCT. However, lung V30% the heart, esophagus, and spinal cord were not significantly different. In addition, the conformity index and the dose heterogeneity index of the PTV were not significantly different. The normal tissue complication probability (NTCP) of the lung and heart was significantly lower for 4DCT than for 3DCT. Conclusions The 4DCT simulation gives better results on the NTCP. The organs at risk, especially the lungs, receive a significantly lower DD compared with the 3DCT. The conformity index (CI), heterogeneity index (HI) and the DD to the heart, spinal cord, and esophagus were not significantly different between the two techniques.
Collapse
Affiliation(s)
- Huy Quang Dang
- Vietnam National University Ho Chi Minh City University of Science, Ho Chi Minh City, Viet Nam
- Oncology and Nuclear Medicine, Military Hospital 175, Ho Chi Minh City, Viet Nam
| | - Cong Thanh Nguyen
- Oncology and Nuclear Medicine, Military Hospital 175, Ho Chi Minh City, Viet Nam
| | - Hoat Viet Pham
- Oncology and Nuclear Medicine, Military Hospital 175, Ho Chi Minh City, Viet Nam
| | - Linh Duc Tran
- Oncology and Nuclear Medicine, Military Hospital 175, Ho Chi Minh City, Viet Nam
| | - Cong Duc Nguyen
- Oncology and Nuclear Medicine, Military Hospital 175, Ho Chi Minh City, Viet Nam
| | - Dung Vu Manh Truong
- Oncology and Nuclear Medicine, Military Hospital 175, Ho Chi Minh City, Viet Nam
| | - Trang Thi Kieu Hoang
- Vietnam National University Ho Chi Minh City University of Science, Ho Chi Minh City, Viet Nam
| | - Tao Van Chau
- Vietnam National University Ho Chi Minh City University of Science, Ho Chi Minh City, Viet Nam
| |
Collapse
|
6
|
Keyt LK, Atwood T, Bruggeman A, Mundt AJ, Feld GK, Krummen DE, Ho G. Successful Noninvasive 12-Lead ECG Mapping-Guided Radiotherapy of Inaccessible Ventricular Tachycardia Substrate Due to Mechanical Valves. JACC Case Rep 2023; 15:101870. [PMID: 37283824 PMCID: PMC10240275 DOI: 10.1016/j.jaccas.2023.101870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/21/2023] [Accepted: 04/13/2023] [Indexed: 06/08/2023]
Abstract
In patients presenting with refractory ventricular tachycardia (VT) and aortic and mitral mechanical prosthetic valves, traditional catheter ablation is challenging. We describe a case in which a novel noninvasive computational electrocardiogram mapping algorithm localized VT sources originating from substrate near the mechanical valves, in which stereotactic ablative radiotherapy eliminated VT in 1.5-year follow-up. (Level of Difficulty: Advanced.).
Collapse
Affiliation(s)
- Lucas K. Keyt
- Department of Medicine, Division of Cardiology, University of California-San Diego, La Jolla, California, USA
| | - Todd Atwood
- Department of Radiation Medicine and Applied Sciences, University of California-San Diego, La Jolla, California, USA
| | - Andrew Bruggeman
- Department of Radiation Medicine and Applied Sciences, University of California-San Diego, La Jolla, California, USA
| | - Arno J. Mundt
- Department of Radiation Medicine and Applied Sciences, University of California-San Diego, La Jolla, California, USA
| | - Gregory K. Feld
- Department of Medicine, Division of Cardiology, University of California-San Diego, La Jolla, California, USA
| | - David E. Krummen
- Department of Medicine, Division of Cardiology, University of California-San Diego, La Jolla, California, USA
| | - Gordon Ho
- Department of Medicine, Division of Cardiology, University of California-San Diego, La Jolla, California, USA
| |
Collapse
|
7
|
Regnery S, de Colle C, Eze C, Corradini S, Thieke C, Sedlaczek O, Schlemmer HP, Dinkel J, Seith F, Kopp-Schneider A, Gillmann C, Renkamp CK, Landry G, Thorwarth D, Zips D, Belka C, Jäkel O, Debus J, Hörner-Rieber J. Pulmonary magnetic resonance-guided online adaptive radiotherapy of locally advanced: the PUMA trial. Radiat Oncol 2023; 18:74. [PMID: 37143154 PMCID: PMC10161406 DOI: 10.1186/s13014-023-02258-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Patients with locally-advanced non-small-cell lung cancer (LA-NSCLC) are often ineligible for surgery, so that definitive chemoradiotherapy (CRT) represents the treatment of choice. Nevertheless, long-term tumor control is often not achieved. Intensification of radiotherapy (RT) to improve locoregional tumor control is limited by the detrimental effect of higher radiation exposure of thoracic organs-at-risk (OAR). This narrow therapeutic ratio may be expanded by exploiting the advantages of magnetic resonance (MR) linear accelerators, mainly the online adaptation of the treatment plan to the current anatomy based on daily acquired MR images. However, MR-guidance is both labor-intensive and increases treatment times, which raises the question of its clinical feasibility to treat LA-NSCLC. Therefore, the PUMA trial was designed as a prospective, multicenter phase I trial to demonstrate the clinical feasibility of MR-guided online adaptive RT in LA-NSCLC. METHODS Thirty patients with LA-NSCLC in stage III A-C will be accrued at three German university hospitals to receive MR-guided online adaptive RT at two different MR-linac systems (MRIdian Linac®, View Ray Inc. and Elekta Unity®, Elekta AB) with concurrent chemotherapy. Conventionally fractioned RT with isotoxic dose escalation up to 70 Gy is applied. Online plan adaptation is performed once weekly or in case of major anatomical changes. Patients are followed-up by thoracic CT- and MR-imaging for 24 months after treatment. The primary endpoint is twofold: (1) successfully completed online adapted fractions, (2) on-table time. Main secondary endpoints include adaptation frequency, toxicity, local tumor control, progression-free and overall survival. DISCUSSION PUMA aims to demonstrate the clinical feasibility of MR-guided online adaptive RT of LA-NSCLC. If successful, PUMA will be followed by a clinical phase II trial that further investigates the clinical benefits of this approach. Moreover, PUMA is part of a large multidisciplinary project to develop MR-guidance techniques. TRIAL REGISTRATION ClinicalTrials.gov: NCT05237453 .
Collapse
Affiliation(s)
- Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chiara de Colle
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Chukwuka Eze
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Christian Thieke
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Oliver Sedlaczek
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Julien Dinkel
- Department of Radiology, LMU Munich, Munich, Germany
| | - Ferdinand Seith
- Department of Radiology, University Hospital Tübingen, Tübingen, Germany
| | | | - Clarissa Gillmann
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - C Katharina Renkamp
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Oliver Jäkel
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany.
- National Center for Tumor diseases (NCT), Heidelberg, Germany.
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
8
|
Regnery S, Katsigiannopulos E, Hoegen P, Weykamp F, Sandrini E, Held T, Deng M, Eichkorn T, Buchele C, Rippke C, Renkamp CK, König L, Lang K, Thomas M, Winter H, Adeberg S, Klüter S, Debus J, Hörner-Rieber J. To fly or not to fly: Stereotactic MR-guided adaptive radiotherapy effectively treats ultracentral lung tumors with favorable long-term outcomes. Lung Cancer 2023; 179:107175. [PMID: 36965207 DOI: 10.1016/j.lungcan.2023.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 03/27/2023]
Abstract
BACKGROUND Stereotactic radiotherapy of ultracentral lung tumors (ULT) is challenging as it may cause overdoses to sensitive mediastinal organs with severe complications. We aimed to describe long-term outcomes after stereotactic magnetic resonance (MR)-guided online adaptive radiotherapy (SMART) as an innovative treatment of ULT. PATIENTS & METHODS We analyzed 36 patients that received SMART to 40 tumors between 02/2020 - 08/2021 inside prospective databases. ULT were defined by planning target volume (PTV) overlap with the proximal bronchial tree or esophagus. We calculated Kaplan Meier estimates for overall survival (OS) and progression-free survival (PFS), and competing risk estimates for the incidence of tumor progression and treatment-related toxicities. ULT patients (N = 16) were compared to non-ULT patients (N = 20). RESULTS Baseline characteristics were similar between ULT and non-ULT, but ULT were larger (median PTV: ULT 54.7 cm3, non-ULT 19.2 cm3). Median follow-up was 23.6 months. ULT and non-ULT showed a similar OS (2-years: ULT 67%, non-ULT 60%, p = 0.7) and PFS (2-years: ULT 37%, non-ULT 34%, p = 0.73). Progressions occurred mainly at distant sites (2-year incidence of distant progression: ULT 63%, non-ULT 61%, p = 0.77), while local tumor control was favorable (2-year incidence of local progression: ULT 7%, non-ULT 0%, p = 0.22). Treatment of ULT led to significantly more toxicities ≥ grade (G) 2 (ULT: 9 (56%), non-ULT: 1 (5%), p = 0.002). Most toxicities were moderate (G2). Two ULT patients developed high-grade toxicities: 1) esophagitis G3 and bronchial bleeding G4 after VEGF treatment, 2) bronchial bleeding G3. Estimated incidence of high-grade toxicities was 19% (3-48%) in ULT, and no treatment-related death occurred. CONCLUSION Our small series supports SMART as potentially effective treatment of ULT. SMART with careful fractionation could reduce severe complications, but treatment of ULT remains a high-risk procedure and needs careful benefit-risk-assessment.
Collapse
Affiliation(s)
- Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Efthimios Katsigiannopulos
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Philipp Hoegen
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Fabian Weykamp
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Elisabetta Sandrini
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Thomas Held
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Maximilian Deng
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Tanja Eichkorn
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Carolin Buchele
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Carolin Rippke
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - C Katharina Renkamp
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Kristin Lang
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Michael Thomas
- National Center for Tumor Diseases (NCT), Heidelberg, Germany; Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Roentgenstrasse 1, 69126 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Hauke Winter
- National Center for Tumor Diseases (NCT), Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany; Department of Thoracic Surgery, Thoraxklinik at Heidelberg University Hospital, Roentgenstrasse 1, 69126 Heidelberg, Germany
| | - Sebastian Adeberg
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
9
|
Savanović M, Štrbac B, Jaroš D, Loi M, Huguet F, Foulquier JN. Quantification of Lung Tumor Motion and Optimization of Treatment. J Biomed Phys Eng 2023; 13:65-76. [PMID: 36818005 PMCID: PMC9923245 DOI: 10.31661/jbpe.v0i0.2102-1278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/18/2021] [Indexed: 02/02/2023]
Abstract
Background Mobility of lung tumors is induced by respiration and causes inadequate dose coverage. Objective This study quantified lung tumor motion, velocity, and stability for small (≤5 cm) and large (>5 cm) tumors to adapt radiation therapy techniques for lung cancer patients. Material and Methods In this retrospective study, 70 patients with lung cancer were included that 50 and 20 patients had a small and large gross tumor volume (GTV). To quantify the tumor motion and velocity in the upper lobe (UL) and lower lobe (LL) for the central region (CR) and a peripheral region (PR), the GTV was contoured in all ten respiratory phases, using 4D-CT. Results The amplitude of tumor motion was greater in the LL, with motion in the superior-inferior (SI) direction compared to the UL, with an elliptical motion for small and large tumors. Tumor motion was greater in the CR, rather than in the PR, by 63% and 49% in the UL compared to 50% and 38% in the LL, for the left and right lung. The maximum tumor velocity for a small GTV was 44.1 mm/s in the LL (CR), decreased to 4 mm/s for both ULs (PR), and a large GTV ranged from 0.4 to 9.4 mm/s. Conclusion The tumor motion and velocity depend on the tumor localization and the greater motion was in the CR for both lobes due to heart contribution. The tumor velocity and stability can help select the best technique for motion management during radiation therapy.
Collapse
Affiliation(s)
- Milovan Savanović
- Faculty of Medicine, University of Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
- Department of Radiation Oncology, Tenon Hospital, APHP, Sorbonne University, 75020 Paris, France
| | - Bojan Štrbac
- MATER Private Hospital, Department of Physics, Eccles Street, Dublin 7, Ireland
| | - Dražan Jaroš
- Center for Radiotherapy, International Medical Centers, Affidea, 78000 Banja Luka, Bosnia, and Herzegovina
- Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia, and Herzegovina
| | - Mauro Loi
- Department of Radiation Oncology, Tenon Hospital, APHP, Sorbonne University, 75020 Paris, France
| | - Florence Huguet
- Department of Radiation Oncology, Tenon Hospital, APHP, Sorbonne University, 75020 Paris, France
| | - Jean-Noël Foulquier
- Department of Radiation Oncology, Tenon Hospital, APHP, Sorbonne University, 75020 Paris, France
| |
Collapse
|
10
|
Mega S, Fiore M, Carpenito M, Novembre ML, Miele M, Trodella LE, Grigioni F, Ippolito E, Ramella S. Early GLS changes detection after chemoradiation in locally advanced non-small cell lung cancer (NSCLC). LA RADIOLOGIA MEDICA 2022; 127:1355-1363. [PMID: 36208384 DOI: 10.1007/s11547-022-01557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/05/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE Chemoradiation is the standard treatment in patients with locally advanced non-small-cell lung cancer (LA-NSCLC), and thanks to the recent combination with immunotherapy, median survival has unexpectedly improved. This study aims to evaluate early changes in cardiac function after chemoradiotherapy (CRT) in LA-NSCLC by multimodal use of advanced imaging techniques. MATERIALS AND METHODS This is a prospective, observational cohort study. At the beginning of combined treatment, screening tests including blood samples, electrocardiogram (ECG), echocardiographic examination (TTE), and cardiac magnetic resonance were performed in all patients with LA-NSCLC. ECG and cardiac marker assays were performed weekly during treatment. ECG and TTE were performed at month 1 (M1) and month 3 (M3) after the end of CRT. RESULTS This preliminary analysis included thirty-four patients with a mean age of 69.5 years. The median follow-up was 27.8 months. 62% of patients were in stage IIIA. Radiation therapy was delivered with a median total dose of 60 Gy with conventional fractionation. All patients were treated with concurrent CRT, and 65% of cases were platinum-based therapy. Global longitudinal strain (GLS) and ejection fraction (EF) progressively decreased from baseline to M1 and M3. There was a strong correlation between GLS and EF reduction (at M1: p = 0.034; at M3: p = 0.018). Cardiac arrhythmias occurred in eight patients (23.5%) at a mean follow-up of 15.8 months after CRT. CONCLUSIONS Reduction in GLS is an early sign occurring after the end of CRT for LA-NSCLC. Future studies are needed to identify variables that can increase the risk of cardiac events in this patient population to implement adequate damage prevention strategies.
Collapse
Affiliation(s)
- Simona Mega
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Michele Fiore
- Department of Radiation Oncology, Campus Bio-Medico University of Rome, Rome, Italy
| | - Myriam Carpenito
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.
| | - Maria Laura Novembre
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Marianna Miele
- Department of Radiation Oncology, Campus Bio-Medico University of Rome, Rome, Italy
| | - Luca Eolo Trodella
- Department of Radiation Oncology, Campus Bio-Medico University of Rome, Rome, Italy
| | - Francesco Grigioni
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Edy Ippolito
- Department of Radiation Oncology, Campus Bio-Medico University of Rome, Rome, Italy
| | - Sara Ramella
- Department of Radiation Oncology, Campus Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|
11
|
Liu XC, Zhou PK. Tissue Reactions and Mechanism in Cardiovascular Diseases Induced by Radiation. Int J Mol Sci 2022; 23:ijms232314786. [PMID: 36499111 PMCID: PMC9738833 DOI: 10.3390/ijms232314786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The long-term survival rate of cancer patients has been increasing as a result of advances in treatments and precise medical management. The evidence has accumulated that the incidence and mortality of non-cancer diseases have increased along with the increase in survival time and long-term survival rate of cancer patients after radiotherapy. The risk of cardiovascular disease as a radiation late effect of tissue damage reactions is becoming a critical challenge and attracts great concern. Epidemiological research and clinical trials have clearly shown the close association between the development of cardiovascular disease in long-term cancer survivors and radiation exposure. Experimental biological data also strongly supports the above statement. Cardiovascular diseases can occur decades post-irradiation, and from initiation and development to illness, there is a complicated process, including direct and indirect damage of endothelial cells by radiation, acute vasculitis with neutrophil invasion, endothelial dysfunction, altered permeability, tissue reactions, capillary-like network loss, and activation of coagulator mechanisms, fibrosis, and atherosclerosis. We summarize the most recent literature on the tissue reactions and mechanisms that contribute to the development of radiation-induced cardiovascular diseases (RICVD) and provide biological knowledge for building preventative strategies.
Collapse
|
12
|
Practical usefulness of partial-range 4-dimensional computed tomography in the simulation process of lung stereotactic body radiation therapy. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Koutroumpakis E, Deswal A, Yusuf SW, Abe JI, Nead KT, Potter AS, Liao Z, Lin SH, Palaskas NL. Radiation-Induced Cardiovascular Disease: Mechanisms, Prevention, and Treatment. Curr Oncol Rep 2022; 24:543-553. [PMID: 35192118 DOI: 10.1007/s11912-022-01238-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Despite the advancements of modern radiotherapy, radiation-induced cardiovascular disease (RICVD) remains a common cause of morbidity and mortality among cancer survivors. RECENT FINDINGS Proposed pathogenetic mechanisms of RICVD include endothelial cell damage with accelerated atherosclerosis, pro-thrombotic alterations in the coagulation pathway as well as inflammation and fibrosis of the myocardial, pericardial, valvular, and conduction tissues. Prevention of RICVD can be achieved by minimizing the exposure of the cardiovascular system to radiation, by treatment of underlying cardiovascular risk factors and cardiovascular disease, and possibly by prophylactic pharmacotherapy post exposure. Herein we summarize current knowledge on the mechanisms underlying the pathogenesis of RICVD and propose prevention and treatment strategies.
Collapse
Affiliation(s)
- Efstratios Koutroumpakis
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Syed Wamique Yusuf
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Jun-Ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Kevin T Nead
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adam S Potter
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.,Division of Cardiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Zhongxing Liao
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicolas L Palaskas
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| |
Collapse
|
14
|
Regnery S, Buchele C, Weykamp F, Pohl M, Hoegen P, Eichkorn T, Held T, Ristau J, Rippke C, König L, Thomas M, Winter H, Adeberg S, Debus J, Klüter S, Hörner-Rieber J. Adaptive MR-Guided Stereotactic Radiotherapy is Beneficial for Ablative Treatment of Lung Tumors in High-Risk Locations. Front Oncol 2022; 11:757031. [PMID: 35087746 PMCID: PMC8789303 DOI: 10.3389/fonc.2021.757031] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To explore the benefit of adaptive magnetic resonance-guided stereotactic body radiotherapy (MRgSBRT) for treatment of lung tumors in different locations with a focus on ultracentral lung tumors (ULT). PATIENTS & METHODS A prospective cohort of 21 patients with 23 primary and secondary lung tumors was analyzed. Tumors were located peripherally (N = 10), centrally (N = 2) and ultracentrally (N = 11, planning target volume (PTV) overlap with proximal bronchi, esophagus and/or pulmonary artery). All patients received MRgSBRT with gated dose delivery and risk-adapted fractionation. Before each fraction, the baseline plan was recalculated on the anatomy of the day (predicted plan). Plan adaptation was performed in 154/165 fractions (93.3%). Comparison of dose characteristics between predicted and adapted plans employed descriptive statistics and Bayesian linear multilevel models. The posterior distributions resulting from the Bayesian models are presented by the mean together with the corresponding 95% compatibility interval (CI). RESULTS Plan adaptation decreased the proportion of fractions with violated planning objectives from 94% (predicted plans) to 17% (adapted plans). In most cases, inadequate PTV coverage was remedied (predicted: 86%, adapted: 13%), corresponding to a moderate increase of PTV coverage (mean +6.3%, 95% CI: [5.3-7.4%]) and biologically effective PTV doses (BED10) (BEDmin: +9.0 Gy [6.7-11.3 Gy], BEDmean: +1.4 Gy [0.8-2.1 Gy]). This benefit was smaller in larger tumors (-0.1%/10 cm³ PTV [-0.2 to -0.02%/10 cm³ PTV]) and ULT (-2.0% [-3.1 to -0.9%]). Occurrence of exceeded maximum doses inside the PTV (predicted: 21%, adapted: 4%) and violations of OAR constraints (predicted: 12%, adapted: 1%, OR: 0.14 [0.04-0.44]) was effectively reduced. OAR constraint violations almost exclusively occurred if the PTV had touched the corresponding OAR in the baseline plan (18/19, 95%). CONCLUSION Adaptive MRgSBRT is highly recommendable for ablative treatment of lung tumors whose PTV initially contacts a sensitive OAR, such as ULT. Here, plan adaptation protects the OAR while maintaining best-possible PTV coverage.
Collapse
Affiliation(s)
- Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany.,National Center for Tumor diseases, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Carolin Buchele
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany
| | - Fabian Weykamp
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany.,National Center for Tumor diseases, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Moritz Pohl
- Institute of Medical Biometry, University of Heidelberg, Heidelberg, Germany
| | - Philipp Hoegen
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany.,National Center for Tumor diseases, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Tanja Eichkorn
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany.,National Center for Tumor diseases, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Held
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany.,National Center for Tumor diseases, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jonas Ristau
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany.,National Center for Tumor diseases, Heidelberg, Germany
| | - Carolin Rippke
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany.,National Center for Tumor diseases, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Thomas
- National Center for Tumor diseases, Heidelberg, Germany.,Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany.,Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research, Heidelberg, Germany
| | - Hauke Winter
- National Center for Tumor diseases, Heidelberg, Germany.,Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research, Heidelberg, Germany.,Department of Thoracic Surgery, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Sebastian Adeberg
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany.,National Center for Tumor diseases, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany.,National Center for Tumor diseases, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany.,National Center for Tumor diseases, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
15
|
Absolute dose measurements for lung gated delivery stereotactic body radiation therapy. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Szkitsak J, Werner R, Fernolendt S, Schwarz A, Ott OJ, Fietkau R, Hofmann C, Bert C. First clinical evaluation of breathing controlled four-dimensional computed tomography imaging. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2021; 20:56-61. [PMID: 34786496 PMCID: PMC8578040 DOI: 10.1016/j.phro.2021.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/25/2022]
Abstract
Background and Purpose Four-dimensional computed tomography (4DCT) has become an essential part of radiotherapy planning but is often affected by artifacts. A new breathing controlled 4DCT (i4DCT) algorithm has been introduced. This study aims to present the first clinical data and to evaluate the achieved image quality, projection data coverage and beam-on time. Material & Methods The analysis included i4DCT data for 129 scans of patients with thoracic tumors. Projection data coverage and beam-on time were evaluated. Additionally, image quality was exemplarily discussed and rated by ten clinical experts with a 5-score-scale for 30 patients with large variations in their breathing pattern (‘challenging subgroup’). Rated images were reconstructed amplitude- and phase-based. Results Expert scoring revealed that 78% (amplitude-based) and 63% (phase-based) of the challenging subgroup were artifact-free (rating ≥4). For the entire cohort, average beam-on time per couch position was 4.9 ± 1.6 s. For the challenging subgroup, time increased slightly but not significantly compared to the remaining patients (5.1 s vs. 4.9 s; p = 0.64). Median projection data coverage was 93% and 94% for inhalation and exhalation, respectively, for the entire cohort. The comparison for the subgroup and the remaining patients revealed a small but significant decrease of the median coverage values for the challenging cases (inhalation: 90% vs. 94%, p = 0.02; exhalation: 93% vs. 94%, p = 0.02). Conclusions This first clinical evaluation of i4DCT shows very promising results in terms of image quality and projection data coverage. The results agree with and support the results of previous i4DCT phantom studies.
Collapse
Affiliation(s)
- Juliane Szkitsak
- Department of Radiation Oncology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany.,Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - René Werner
- University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Susanne Fernolendt
- Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.,Siemens Healthcare GmbH, 91301 Forchheim, Germany
| | - Annette Schwarz
- Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.,Siemens Healthcare GmbH, 91301 Forchheim, Germany
| | - Oliver J Ott
- Department of Radiation Oncology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany.,Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany.,Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | | | - Christoph Bert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany.,Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
17
|
Potential Morbidity Reduction for Lung Stereotactic Body Radiation Therapy Using Respiratory Gating. Cancers (Basel) 2021; 13:cancers13205092. [PMID: 34680240 PMCID: PMC8533802 DOI: 10.3390/cancers13205092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Lung stereotactic body radiotherapy (SBRT) is the standard of care for early-stage lung cancer and oligometastases. For SBRT, motion has to be considered to avoid misdosage. Respiratory phase gating, meaning to irradiate the target volume only in a predefined gating motion phase window, can be applied to mitigate motion-induced effects. The aim of this study was to exploit the clinical benefit of gating for lung SBRT. For the majority of 14 lung tumor patients and various gating windows, we could prove a reduced dose to normal tissue by gating simulation. A normal tissue complication probability (NTCP) model analysis revealed a major reduction of normal tissue toxicity for moderate gating window sizes. The most beneficial effect of gating was found for those patients with the highest prior toxicity risk. The presented results are useful for personalized risk assessment prior to treatment and may help to select patients and optimal gating windows. Abstract We investigated the potential of respiratory gating to mitigate the motion-caused misdosage in lung stereotactic body radiotherapy (SBRT). For fourteen patients with lung tumors, we investigated treatment plans for a gating window (GW) including three breathing phases around the maximum exhalation phase, GW40–60. For a subset of six patients, we also assessed a preceding three-phase GW20–40 and six-phase GW20–70. We analyzed the target volume, lung, esophagus, and heart doses. Using normal tissue complication probability (NTCP) models, we estimated radiation pneumonitis and esophagitis risks. Compared to plans without gating, GW40–60 significantly reduced doses to organs at risk without impairing the tumor doses. On average, the mean lung dose decreased by 0.6 Gy (p < 0.001), treated lung V20Gy by 2.4% (p = 0.003), esophageal dose to 5cc by 2.0 Gy (p = 0.003), and maximum heart dose by 3.2 Gy (p = 0.009). The model-estimated mean risks of 11% for pneumonitis and 12% for esophagitis without gating decreased upon GW40–60 to 7% and 9%, respectively. For the highest-risk patient, gating reduced the pneumonitis risk from 43% to 32%. Gating is most beneficial for patients with high-toxicity risks. Pre-treatment toxicity risk assessment may help optimize patient selection for gating, as well as GW selection for individual patients.
Collapse
|
18
|
Ho G, Atwood TF, Bruggeman AR, Moore KL, McVeigh E, Villongco CT, Han FT, Hsu JC, Hoffmayer KS, Raissi F, Lin GY, Schricker A, Woods CE, Cheung JP, Taira AV, McCulloch A, Birgersdotter-Green U, Feld GK, Mundt AJ, Krummen DE. Computational ECG mapping and respiratory gating to optimize stereotactic ablative radiotherapy workflow for refractory ventricular tachycardia. Heart Rhythm O2 2021; 2:511-520. [PMID: 34667967 PMCID: PMC8505208 DOI: 10.1016/j.hroo.2021.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Stereotactic ablative radiotherapy (SAbR) is an emerging therapy for refractory ventricular tachycardia (VT). However, the current workflow is complicated, and the precision and safety in patients with significant cardiorespiratory motion and VT targets near the stomach may be suboptimal. OBJECTIVE We hypothesized that automated 12-lead electrocardiogram (ECG) mapping and respiratory-gated therapy may improve the ease and precision of SAbR planning and facilitate safe radiation delivery in patients with refractory VT. METHODS Consecutive patients with refractory VT were studied at 2 hospitals. VT exit sites were localized using a 3-D computational ECG algorithm noninvasively and compared to available prior invasive mapping. Radiotherapy (25 Gy) was delivered at end-expiration when cardiac respiratory motion was ≥0.6 cm or targets were ≤2 cm from the stomach. RESULTS In 6 patients (ejection fraction 29% ± 13%), 4.2 ± 2.3 VT morphologies per patient were mapped. Overall, 7 out of 7 computational ECG mappings (100%) colocalized to the identical cardiac segment when prior invasive electrophysiology study was available. Respiratory gating was associated with smaller planning target volumes compared to nongated volumes (71 ± 7 vs 153 ± 35 cc, P < .01). In 2 patients with inferior wall VT targets close to the stomach (6 mm proximity) or significant respiratory motion (22 mm excursion), no GI complications were observed at 9- and 12-month follow-up. Implantable cardioverter-defibrillator shocks decreased from 23 ± 12 shocks/patient to 0.67 ± 1.0 (P < .001) post-SAbR at 6.0 ± 4.9 months follow-up. CONCLUSIONS A workflow including computational ECG mapping and protocol-guided respiratory gating is feasible, is safe, and may improve the ease of SAbR planning. Studies to validate this workflow in larger populations are required.
Collapse
Affiliation(s)
- Gordon Ho
- Department of Medicine-Cardiology, University of California San Diego, La Jolla, California
| | - Todd F. Atwood
- Department of Radiation Medicine, University of California San Diego, La Jolla, California
| | - Andrew R. Bruggeman
- Department of Radiation Medicine, University of California San Diego, La Jolla, California
| | - Kevin L. Moore
- Department of Radiation Medicine, University of California San Diego, La Jolla, California
| | - Elliot McVeigh
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | | | - Frederick T. Han
- Department of Medicine-Cardiology, University of California San Diego, La Jolla, California
| | - Jonathan C. Hsu
- Department of Medicine-Cardiology, University of California San Diego, La Jolla, California
| | - Kurt S. Hoffmayer
- Department of Medicine-Cardiology, University of California San Diego, La Jolla, California
| | - Farshad Raissi
- Department of Medicine-Cardiology, University of California San Diego, La Jolla, California
| | - Grace Y. Lin
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Amir Schricker
- Department of Cardiac Electrophysiology, Mills-Peninsula Medical Center, Sutter Health, Burlingame, California
| | - Christopher E. Woods
- Department of Cardiac Electrophysiology, Mills-Peninsula Medical Center, Sutter Health, Burlingame, California
| | - Joey P. Cheung
- Department of Radiation Oncology, Mills-Peninsula Medical Center, Sutter Health, Burlingame, California
| | - Al V. Taira
- Department of Radiation Oncology, Mills-Peninsula Medical Center, Sutter Health, Burlingame, California
| | - Andrew McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | | | - Gregory K. Feld
- Department of Medicine-Cardiology, University of California San Diego, La Jolla, California
| | - Arno J. Mundt
- Department of Radiation Medicine, University of California San Diego, La Jolla, California
| | - David E. Krummen
- Department of Medicine-Cardiology, University of California San Diego, La Jolla, California
| |
Collapse
|
19
|
Savanović M, Jaroš D, Foulquier JN. Comparison of Phase-Gated and Amplitude-Gated Dose Delivery to a Moving Target using Gafchromic EBT3 Film. J Med Phys 2021; 46:73-79. [PMID: 34566286 PMCID: PMC8415247 DOI: 10.4103/jmp.jmp_81_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction: This study compared phase-gated and amplitude-gated dose deliveries to the moving gross tumor volume (GTV) in lung stereotactic body radiation therapy (SBRT) using Gafchromic External Beam Therapy (EBT3) dosimetry film. Materials and Methods: Eighty treatment plans using two techniques (40 phase gated and 40 amplitude gated) were delivered using dynamic conformal arc therapy (DCAT). The GTV motion, breathing amplitude, and period were taken from 40 lung SBRT patients who performed regular breathing. These parameters were re-simulated using a modified Varian breathing mini phantom. The dosimetric accuracy of the phase- and amplitude-gated treatment plans was analyzed using Gafchromic EBT3 dosimetry film. The treatment delivery efficacy was analyzed for gantry rotation, number of monitor unit (MU), and target position per triggering window. The time required to deliver the phase- and amplitude-gated treatment techniques was also evaluated. Results: The mean dose (range) per fraction was 16.11 ± 0.91 Gy (13.04–17.50 Gy) versus 16.26 ± 0.83 Gy (13.82–17.99 Gy) (P < 0.0001) for phase- and amplitude-gated delivery. The greater difference in the gamma passing rate was 1.2% ±0.4% in the amplitude-gated compared to the phase gated. The gantry rotation per triggering time (tt) was 2° ±1° (1.2°–3°) versus 5° ±1° (3°–6°) (P < 0.0001) and MU per tt was 10 ± 3 MU (6–13 MU) versus 24 ± 7 MU (12–32 MU) (P < 0.0001), for phase- versus amplitude-gated techniques. A 90 beam interruption in the phase-gated technique impacted the treatment delivery efficacy, increasing the treatment delivery time in the phase gated for 1664 ± 202 s 1353–1942 s) compared to 36 interruptions in the amplitude gated 823 ± 79 s (712–926 s) (P < 0.0001). Conclusion: Amplitude-gated DCAT allows for better dosimetric accuracy over phase-gated treatment patients with regular breathing patterns.
Collapse
Affiliation(s)
- Milovan Savanović
- Faculty of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, Paris, France.,Department of Radiation Oncology, Tenon Hospital, APHP, Sorbonne University, Paris, France
| | - Dražan Jaroš
- Center for Radiation Therapy, International Medical Centers, Affidea, Banja Luka, Bosnia and Herzegovina
| | | |
Collapse
|
20
|
Finazzi T, Schneiders FL, Senan S. Developments in radiation techniques for thoracic malignancies. Eur Respir Rev 2021; 30:200224. [PMID: 33952599 PMCID: PMC9488563 DOI: 10.1183/16000617.0224-2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/27/2020] [Indexed: 12/25/2022] Open
Abstract
Radiation therapy is a cornerstone of modern lung cancer treatment alongside surgery, chemotherapy, immunotherapy and targeted therapies. Advances in radiotherapy techniques have enhanced the accuracy of radiation delivery, which has contributed to the evolution of radiation therapy into a guideline-recommended treatment in both early-stage and locally advanced nonsmall cell lung cancer. Furthermore, although radiotherapy has long been used for palliation of disease in advanced lung cancer, it is increasingly having a role as a locally ablative treatment in patients with oligometastatic disease.This review provides an overview of recent developments in radiation techniques, particularly for non-radiation oncologists who are involved in the care of lung cancer patients. Technical advances are discussed, and findings of recent clinical trials are highlighted, all of which have led to a changing perception of the role of radiation therapy in multidisciplinary care.
Collapse
Affiliation(s)
- Tobias Finazzi
- Clinic of Radiotherapy and Radiation Oncology, University Hospital Basel, Basel, Switzerland
| | - Famke L Schneiders
- Dept of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Suresh Senan
- Dept of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Respiratory gating in patients with lung carcinoma undergoing radiotherapy. JOURNAL OF RADIOTHERAPY IN PRACTICE 2021. [DOI: 10.1017/s1460396921000352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Aim:
This study aims to compare the gating signals of patients with lung cancer recorded during the planning computed tomography scan with the ones recorded during treatment fractions. The results provide insights into how representative the respiratory signals from the planning scan are for radiation dose partitioning.
Materials and methods:
The amplitude and frequency of the respiratory signals of 29 patients with lung carcinoma were analysed and compared with the amplitude and frequency of those recorded during their planning scans. Moreover, a cross-correlation analysis was performed between the difference between the planning scan and fractions and features from the planning scan.
Results:
Two patients showed significantly different amplitude and frequency during treatment fractions compared to those from the planning scan. These patients showed low variances in frequency and amplitude during the different fractions. The difference between planning scan and fractions is correlated with the variances within the planning scan.
Findings:
Respiratory signals can differ between the planning scan and the fractions. In this case, a new planning scan may be beneficial. The respiratory signals from the planning scan may be predictive of whether the planning scan will be representative and usable as a control measure during radiotherapy fractions.
Collapse
|
22
|
Lee P, Loo BW, Biswas T, Ding GX, El Naqa IM, Jackson A, Kong FM, LaCouture T, Miften M, Solberg T, Tome WA, Tai A, Yorke E, Li XA. Local Control After Stereotactic Body Radiation Therapy for Stage I Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2021; 110:160-171. [PMID: 30954520 PMCID: PMC9446070 DOI: 10.1016/j.ijrobp.2019.03.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/06/2019] [Accepted: 03/27/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Numerous dose and fractionation schedules have been used to treat medically inoperable stage I non-small cell lung cancer (NSCLC) with stereotactic body radiation therapy (SBRT) or stereotactic ablative radiation therapy. We evaluated published experiences with SBRT to determine local control (LC) rates as a function of SBRT dose. METHODS AND MATERIALS One hundred sixty published articles reporting LC rates after SBRT for stage I NSCLC were identified. Quality of the series was assessed by evaluating the number of patients in the study, homogeneity of the dose regimen, length of follow-up time, and reporting of LC. Clinical data including 1, 2, 3, and 5-year tumor control probabilities for stages T1, T2, and combined T1 and T2 as a function of the biological effective dose were fitted to the linear quadratic, universal survival curve, and regrowth models. RESULTS Forty-six studies met inclusion criteria. As measured by the goodness of fit χ2/ndf, with ndf as the number of degrees of freedom, none of the models were ideal fits for the data. Of the 3 models, the regrowth model provides the best fit to the clinical data. For the regrowth model, the fitting yielded an α-to-β ratio of approximately 25 Gy for T1 tumors, 19 Gy for T2 tumors, and 21 Gy for T1 and T2 combined. To achieve the maximal LC rate, the predicted physical dose schemes when prescribed at the periphery of the planning target volume are 43 ± 1 Gy in 3 fractions, 47 ± 1 Gy in 4 fractions, and 50 ± 1 Gy in 5 fractions for combined T1 and T2 tumors. CONCLUSIONS Early-stage NSCLC is radioresponsive when treated with SBRT or stereotactic ablative radiation therapy. A steep dose-response relationship exists with high rates of durable LC when physical doses of 43-50 Gy are delivered in 3 to 5 fractions.
Collapse
Affiliation(s)
- Percy Lee
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California.
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Tithi Biswas
- Department of Radiation Oncology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - George X Ding
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Issam M El Naqa
- Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Andrew Jackson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Feng-Ming Kong
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Tamara LaCouture
- Department of Radiation Oncology, Jefferson Health New Jersey, Sewell, New Jersey
| | - Moyed Miften
- Department of Radiation Oncology, Colorado University School of Medicine, Aurora, Colorado
| | - Timothy Solberg
- Department of Radiation Oncology, University of California at San Francisco, San Francisco, California
| | - Wolfgang A Tome
- Department of Radiation Oncology, Albert Einstein College of Medicine, New York, New York
| | - An Tai
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ellen Yorke
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
23
|
Koutroumpakis E, Palaskas NL, Lin SH, Abe JI, Liao Z, Banchs J, Deswal A, Yusuf SW. Modern Radiotherapy and Risk of Cardiotoxicity. Chemotherapy 2020; 65:65-76. [PMID: 33049738 DOI: 10.1159/000510573] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022]
Abstract
Despite the advancements of modern radiotherapy, radiation-induced heart disease remains a common cause of morbidity and mortality amongst cancer survivors. This review outlines the basic mechanism, clinical presentation, risk stratification, early detection, possible mitigation, and treatment of this condition.
Collapse
Affiliation(s)
- Efstratios Koutroumpakis
- Division of Cardiovascular Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Nicolas L Palaskas
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven H Lin
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jun-Ichi Abe
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhongxing Liao
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jose Banchs
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anita Deswal
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Syed Wamique Yusuf
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA,
| |
Collapse
|
24
|
Patel M, Colvin T, Kirkland RS, Marcrom S, Dobelbower M, Spencer SA, Boggs DH, Popple R, Shen S, Wei B, McDonald A. Reduced Margin Stereotactic Body Radiation Therapy for Early Stage Non-Small Cell Lung Cancers. Cureus 2020; 12:e8618. [PMID: 32676253 PMCID: PMC7362592 DOI: 10.7759/cureus.8618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Purpose Our study reports the clinical outcomes of patients treated with 5-mm isotropic margin, fiducial-guided stereotactic body radiation therapy (SBRT) for early stage non-small cell lung cancer (NSCLC). We also sought to assess the effect of histological subtype on local control. Methods We retrospectively reviewed the charts of all patients treated with SBRT for NSCLC between 2007 and 2017 at our institution. All patients who had implanted fiducial markers, planning target volume (PTV) margins of 5 mm or less, early stage disease (T1-T2, N0), and at least one follow-up CT were included in this analysis. Estimates of local control were generated using the Kaplan-Meier method, and differences between survival curves were assessed using the log-rank test. Results A total of 152 patients met the inclusion criteria for this analysis, with a median follow-up of 27.9 months. Patients received 54 Gy in three fractions for peripheral tumors and 48-52.5 Gy in four to five fractions for central tumors. NSCLC histology was adenocarcinoma in 69 (45.4%) cases, squamous cell carcinoma in 65 (42.8%) cases, and other or non-subtyped in 18 (11.8%) cases. Across the entire cohort, the two-year estimate of local control was 95.1%. When histology was considered, the two-year estimate of local control among patients with adenocarcinoma was 95.6% as compared with 85.0% for patients with other subtypes (p=0.044). Conclusions Fiducial-guided, isotropic 5-mm PTV margin for thoracic SBRT did not compromise local control compared with historical standards. In this series, patients with adenocarcinoma experienced improved local control compared with squamous cell carcinoma.
Collapse
Affiliation(s)
- Mayank Patel
- Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, USA
| | - Tyler Colvin
- Internal Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, USA
| | | | - Samuel Marcrom
- Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, USA
| | - Michael Dobelbower
- Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, USA
| | - Sharon A Spencer
- Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, USA
| | - Drexell H Boggs
- Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, USA
| | - Richard Popple
- Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, USA
| | - Sui Shen
- Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, USA
| | - Benjamin Wei
- Cardiothoracic Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, USA
| | - Andrew McDonald
- Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, USA
| |
Collapse
|
25
|
Tomida T, Konno M, Urikura A, Yoshida T, Yasui K, Hanmura M. Wedged field using the half-field method with a flattening filter-free photon beam. Radiol Phys Technol 2020; 13:201-209. [DOI: 10.1007/s12194-020-00561-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 11/25/2022]
|
26
|
Finazzi T, Palacios MA, Haasbeek CJ, Admiraal MA, Spoelstra FO, Bruynzeel AM, Slotman BJ, Lagerwaard FJ, Senan S. Stereotactic MR-guided adaptive radiation therapy for peripheral lung tumors. Radiother Oncol 2020; 144:46-52. [DOI: 10.1016/j.radonc.2019.10.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/25/2019] [Accepted: 10/18/2019] [Indexed: 12/22/2022]
|
27
|
Abstract
Image guidance has been playing a decisive role throughout the history of radiotherapy, but developments in 3D-and 4D imaging data acquisition using computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) have significantly boosted the precision of conformal radiotherapy. An overarching aim of radiotherapy is conforming the treatment dose to the tumor in order to optimally limit a high radiation dose outside the target. Stereotactic, intensity modulated, and adaptive radiotherapy are all largely based on appropriately using imaging information both before and during treatment delivery using on-board imaging devices. While pretreatment imaging for planning has reached a very high level in the past two decades, the next step will be to further refine and accelerate imaging during treatment delivery, resulting in adaptation of the dose fluence during a patient’s treatment in various scenarios, some of which are discussed in this article.
Collapse
|
28
|
Jang SS, Park SY, Cho EY, Yang PS, Huh GJ, Yang YJ. Influence of tumor characteristics on correction differences between cone-beam computed tomography-guided patient setup strategies in stereotactic body radiation therapy for lung cancer. Thorac Cancer 2019; 11:311-319. [PMID: 31802637 PMCID: PMC6996988 DOI: 10.1111/1759-7714.13261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND To evaluate the correction differences between vertebra and tumor matching as cone-beam computed tomography (CBCT)-guided setup strategies in lung stereotactic body radiation therapy (SBRT), and the correlations with tumor characteristics such as size, mobility, and location. METHODS The manual registrations for 33 lung tumors treated with SBRT were retrospectively performed by matching thoracic vertebrae for vertebra matching and then by matching CBCT-visualized tumors within the internal target volume obtained from a four-dimensional CT dataset for tumor matching. RESULTS The mean correction difference between the two matching methods during the SBRT fractions was larger in the anterior-posterior direction (2.7 mm) than in the superior-inferior (2.1 mm) and left-right (1.4 mm) directions, with differences of less than 5 mm in 90% of the total 134 CBCT fractions. The X-axis and direct distances from the central axis to the tumor had significant correlations with the correction differences in all three directions, while the mobility-related parameters were correlated only in the superior-inferior direction. The absolute differences in lung-dose parameters after applying the margins (3.4-6.5 mm) required for the setup errors from vertebra matching relative to tumor matching were mild, with values of 1.95 Gy for the mean lung dose and 3.9% for V20. CONCLUSION The setup differences between vertebra and tumor matching in the CBCT-guided setup without rotation correction were increased in tumors located long distances from the central axis. The additional safety margins of 3.4-6.5 mm were required for the setup errors from vertebra matching. KEY POINTS Significant findings of the study The correction difference between the vertebra and tumor matching as CBCT-guided setup strategies was the largest in the anterior-posterior direction and significantly correlated with the X-axis and direct distances from the central axis to the tumor. What this study adds Setup differences between vertebra and tumor matching in the CBCT-guided setup were increased in tumors located long distances from the central axis. The additional safety margins of 3.4-6.5 mm were required for the setup errors from vertebra matching.
Collapse
Affiliation(s)
- Seong Soon Jang
- Department of Radiation Oncology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Suk Young Park
- Department of Internal Medicine, Daejeon St. Mary's Hospital, Daejeon, Republic of Korea
| | - Eun Youn Cho
- Department of Radiation Oncology, Daejeon St. Mary's Hospital, Daejeon, Republic of Korea
| | - Po Song Yang
- Department of Radiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Gil Ja Huh
- Department of Radiation Oncology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young Jun Yang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
29
|
|
30
|
Santos AMC, Shepherd J. An affordable custom phantom for measurement of linac time delay in gated treatments with irregular breathing. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2019; 42:863-869. [PMID: 31396857 DOI: 10.1007/s13246-019-00785-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/24/2019] [Indexed: 10/26/2022]
Abstract
Respiratory gated treatments are now common in order to reduce tumour motion uncertainties due to breathing. One issue associated with gated treatments is the time delay between the gating system and the linear accelerator. In this study we develop and characterise an affordable phantom to be used in routine and patient specific quality assurance (QA) of the Varian Real-Time Position Management™ (RPM) system. A photodiode has been incorporated into the phantom in order to estimate the time delay. A commercial Quasar phantom was customised to incorporate two stepper motors which independently control an anterior-posterior abdomen/thorax moving plate, and an inferior-superior moving lung insert. A photodiode placed in the path of the radiation is used to measure when beam on/off occurs. Two Arduino microcontroller boards have been utilised to control the motors, read the photodiode and write to an SD card. The measured beam on/off, correlated to the known positions of the phantom is compared to the gate window for RPM. The time delay was measured for sinusoidal movements with a period of 7.50 s and 3.75 s, and for three patient breathing traces. For the sinusoidal movements, time delays of 150 ± 34 ms and 39 ± 34 ms were measured, for 7.50 s and 3.75 s periods, respectively. In the case of the patients' breathing traces time delays of 135 ± 26 ms, 137 ± 34 ms and 129 ± 28 ms were measured. An affordable motion phantom has been developed for routine and patient specific QA of respiratory gating systems. It is capable of reproducing a patient's breathing waveform and performing time delay measurements with a photodiode. Results indicate a time delay of the order of 0.1-0.2 s for the RPM system.
Collapse
Affiliation(s)
- Alexandre M Caraça Santos
- Department of Medical Physics, Royal Adelaide Hospital, Adelaide, Australia. .,School of Physical Sciences, University of Adelaide, Adelaide, Australia.
| | - Justin Shepherd
- Department of Medical Physics, Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
31
|
Modalities and techniques used for stereotactic radiotherapy, intensity-modulated radiotherapy, and image-guided radiotherapy: A 2018 survey by the Japan Society of Medical Physics. Phys Med 2019; 64:182-187. [PMID: 31515018 DOI: 10.1016/j.ejmp.2019.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/04/2019] [Accepted: 07/14/2019] [Indexed: 02/02/2023] Open
Abstract
Over the last several decades, there have been great advances in radiotherapy with the development of new technologies and modalities, and radiotherapy trends have changed rapidly. To comprehend the current state of radiotherapy in Japan, the QA/QC 2016-2017 Committee of the Japan Society of Medical Physics set up an intensity-modulated radiotherapy/image-guided radiotherapy (IMRT/IGRT) working group and performed a Web-based survey to show the current status of radiotherapy in Japan. The Web-based questionnaire, developed using Google Forms, contained 42 items: 7 on stereotactic radiotherapy implementation, 4 on IMRT, 24 on IGRT, and 7 on respiratory motion management. The survey was conducted from 17 January to 9 March of 2018; in total, 335 institutions provided data. The results show that volumetric modulated arc therapy was used at a level comparable to that of static gantry IMRT. For IGRT, machine-integrated computed tomography (CT), including kilovoltage or megavoltage cone-beam CT and megavoltage CT, was used at many institutions in conjunction with target-based image registration. For respiratory motion management, breath holding was the most commonly used technique. Our hope is that multi-institutional surveys such as this one will be conducted periodically to elucidate the current status of radiotherapy and emerging developments in this field. If our questionnaire was distributed worldwide, in the same format, then global trends in radiotherapy could be better understood.
Collapse
|
32
|
Selection of patient for gated treatment based on the information from 4DCT imaging in stereotactic body radiotherapy of non-small cell lung cancer. JOURNAL OF RADIOTHERAPY IN PRACTICE 2019. [DOI: 10.1017/s1460396918000614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractPurposeStereotactic body radiotherapy (SBRT) is widely used for the treatment of stage-I non-small cell lung cancer (NSCLC). Patient-specific motion correlated with 4DCT could be essential for hypofractionated SBRT. All patients undergoing SBRT do not require motion management during the dose delivery. The objective of this study was to evaluate which patient may benefit from Gated SBRT.Materials and methodsTreatment planning of 20 patients of stage-I NSCLC was analysed. Conventional and 4DCT scans were taken. Internal target volume as well as planning target volume (ITV and PTV) were determined in the CT data sets. PTVall phases created using 4DCT data sets and PTV15mm created using conventional CT data were compared. Also, ITVall phases were compared with ITV created from maximum intensity projections (ITVMIP). Suitability of patients for motion management-based treatment delivery was also evaluated.ResultsThe average ITVMIP to ITVall phases ratio is 1·06 indicating good agreement between them. Based on the ratio of intensity projections, 9 out of 17 patients were found suitable for our existing gated treatment.Conclusion4D CT is the main requirement in SBRT to identify the patients who can benefit from motion management during the dose delivery.
Collapse
|
33
|
Rouabhi O, Gross B, Bayouth J, Xia J. The Dosimetric and Temporal Effects of Respiratory-Gated, High-Dose-Rate Radiation Therapy in Patients With Lung Cancer. Technol Cancer Res Treat 2019; 18:1533033818816072. [PMID: 30803374 PMCID: PMC6313263 DOI: 10.1177/1533033818816072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose: To evaluate the dosimetric and temporal effects of high-dose-rate respiratory-gated
radiation therapy in patients with lung cancer. Methods: Treatment plans from 5 patients with lung cancer (3 nongated and 2 gated at 80EX-80IN)
were retrospectively evaluated. Prescription dose for these patients varied from 8 to 18
Gy/fraction with 3 to 5 treatment fractions. Using the same treatment planning criteria,
4 new treatment plans, corresponding to 4 gating windows (20EX-20IN, 40EX-40IN,
60EX-60IN, and 80EX-80IN), were generated for each patient. Mean tumor dose, mean lung
dose, and lung V20 were used to assess the dosimetric effects. A MATLAB algorithm was
developed to compute treatment time. Results: Mean lung dose and lung V20 were on average reduced between −16.1% to −6.0% and −20.0%
to −7.2%, respectively, for gated plans when compared to the corresponding nongated
plans, and between −5.8% to −4.2% and −7.0% to −5.4%, respectively, for plans with
smaller gating windows when compared to the corresponding plans gated at 80EX-80IN.
Treatment delivery times of gated plans using high-dose rate were reduced on average
between −19.7% (−0.10 min/100 MU) and −27.2% (−0.13 min/100 MU) for original nongated
plans and −15.6% (−0.15 min/100 MU) and −20.3% (−0.19 min/100 MU) for original
80EX-80IN-gated plans. Conclusion: Respiratory-gated radiation therapy in patients with lung cancer can reduce lung dose
while maintaining tumor dose. Because treatment delivery during gated therapy is
discontinuous, total treatment time may be prolonged. However, this increase in
treatment time can be offset by increasing the dose delivery rate. Estimation of
treatment time may be helpful in selecting patients for respiratory gating and choosing
appropriate gating windows.
Collapse
Affiliation(s)
- Ouided Rouabhi
- 1 Department of Radiation Oncology, University of Iowa, Iowa, IA, USA
| | - Brandie Gross
- 1 Department of Radiation Oncology, University of Iowa, Iowa, IA, USA
| | - John Bayouth
- 1 Department of Radiation Oncology, University of Iowa, Iowa, IA, USA.,2 Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Junyi Xia
- 1 Department of Radiation Oncology, University of Iowa, Iowa, IA, USA
| |
Collapse
|
34
|
Ranjbar M, Sabouri P, Repetto C, Sawant A. A novel deformable lung phantom with programably variable external and internal correlation. Med Phys 2019; 46:1995-2005. [PMID: 30919974 DOI: 10.1002/mp.13507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Lung motion phantoms used to validate radiotherapy motion management strategies have fairly simplistic designs that do not adequately capture complex phenomena observed in human respiration such as external and internal deformation, variable hysteresis and variable correlation between different parts of the thoracic anatomy. These limitations make reliable evaluation of sophisticated motion management techniques quite challenging. In this work, we present the design and implementation of a programmable, externally and internally deformable lung motion phantom that allows for a reproducible change in external-internal and internal-internal correlation of embedded markers. METHODS An in-house-designed lung module, made from natural latex foam was inserted inside the outer shell of a commercially available lung phantom (RSD, Long Beach, CA, USA). Radiopaque markers were placed on the external surface and embedded into the lung module. Two independently programmable high-precision linear motion actuators were used to generate primarily anterior-posterior (AP) and primarily superior-inferior (SI) motion in a reproducible fashion in order to enable (a) variable correlation between the displacement of interior volume and the exterior surface, (b) independent changes in the amplitude of the AP and SI motions, and (c) variable hysteresis. The ability of the phantom to produce complex and variable motion accurately and reproducibly was evaluated by programming the two actuators with mathematical and patient-recorded lung tumor motion traces, and recording the trajectories of various markers using kV fluoroscopy. As an example application, the phantom was used to evaluate the performance of lung motion models constructed from kV fluoroscopy and 4DCT images. RESULTS The phantom exhibited a high degree of reproducibility and marker motion ranges were reproducible to within 0.5 mm. Variable correlation was observed between the displacements of internal-internal and internal-external markers. The SI and AP components of motion of a specific marker had a correlation parameter that varied from -11 to 17. Monitoring a region of interest on the phantom's surface to estimate internal marker motion led to considerably lower uncertainties than when a single point was monitored. CONCLUSIONS We successfully designed and implemented a programmable, externally and internally deformable lung motion phantom that allows for a reproducible change in external-internal and internal-internal correlation of embedded markers.
Collapse
Affiliation(s)
- Maida Ranjbar
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Pouya Sabouri
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Carlo Repetto
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Amit Sawant
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
35
|
Tian S, Switchenko JM, Cassidy RJ, Escott CE, Castillo R, Patel PR, Curran WJ, Higgins KA. Predictors of pneumonitis-free survival following lung stereotactic body radiation therapy. Transl Lung Cancer Res 2019; 8:15-23. [PMID: 30788231 DOI: 10.21037/tlcr.2018.10.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Radiation pneumonitis is a common toxicity following lung stereotactic body radiation therapy (SBRT). We explored whether motion management technique, in conjunction with patient and treatment characteristics, is a predictor of radiation pneumonitis-free survival (PNFS). Methods A single institution multi-center lung SBRT database was retrospectively reviewed. PNFS was defined as time to earliest onset of radiation pneumonitis or last clinical follow-up. Patients were simulated using a 4-dimensional approach, and those with 1 cm or greater tumor motion were selected for respiratory-gated treatment. Real-time Position Management and phase-based gating were employed. Univariate and multivariable Cox proportional hazard models were fit for relevant covariates to determine the impact of free-breathing versus respiratory-gated treatment on PNFS. Results The initial treatment courses of 208 patients were included, with a median follow-up length of 23 months. The median age at treatment was 71 years. About 91.8% of patient had early stage (T1-2) non-small cell lung cancer and were treated with common regimens including 10 Gy ×5, 12 Gy ×4 and 18 Gy ×3; 26.4% underwent respiratory-gated SBRT. The overall rate of grade 3 or higher radiation pneumonitis was 10.1%. PNFS was not significantly different between patients treated with respiratory-gated versus free-breathing SBRT (HR =0.88; P=0.707); tumor location and fractionation were predictors of PNFS in the multivariate setting. Conclusions The method of motion management does not appear to impact PNFS when the tolerance for tumor displacement is 1 cm or less for free-breathing treatment planning and delivery. This approach may be appropriate when selecting patients for respiratory gating.
Collapse
Affiliation(s)
- Sibo Tian
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Jeffrey M Switchenko
- Department of Biostatistics and Bioinformatics, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Richard J Cassidy
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Chase E Escott
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Richard Castillo
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Pretesh R Patel
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Walter J Curran
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Kristin A Higgins
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
36
|
Prunaretty J, Boisselier P, Aillères N, Riou O, Simeon S, Bedos L, Azria D, Fenoglietto P. Tracking, gating, free-breathing, which technique to use for lung stereotactic treatments? A dosimetric comparison. Rep Pract Oncol Radiother 2019; 24:97-104. [PMID: 30532657 PMCID: PMC6261085 DOI: 10.1016/j.rpor.2018.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/04/2018] [Accepted: 11/10/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The management of breath-induced tumor motion is a major challenge for lung stereotactic body radiation therapy (SBRT). Three techniques are currently available for these treatments: tracking (T), gating (G) and free-breathing (FB). AIM To evaluate the dosimetric differences between these three treatment techniques for lung SBRT. MATERIALS AND METHODS Pretreatment 4DCT data were acquired for 10 patients and sorted into 10 phases of a breathing cycle, such as 0% and 50% phases defined respectively as the inhalation and exhalation maximum. GTVph, PTVph (=GTVph + 3 mm) and the ipsilateral lung were contoured on each phase.For the tracking technique, 9 fixed fields were adjusted to each PTVph for the 10 phases. The gating technique was studied with 3 exhalation phases (40%, 50% and 60%). For the free-breathing technique, ITVFB was created from a sum of all GTVph and a 3 mm margin was added to define a PTVFB. Fields were adjusted to PTVFB and dose distributions were calculated on the average intensity projection (AIP) CT. Then, the beam arrangement with the same monitor units was planned on each CT phase.The 3 modalities were evaluated using DVHs of each GTVph, the homogeneity index and the volume of the ipsilateral lung receiving 20 Gy (V 20Gy). RESULTS The FB system improved the target coverage by increasing D mean (75.87(T)-76.08(G)-77.49(FB)Gy). Target coverage was slightly more homogeneous, too (HI: 0.17(T and G)-0.15(FB)). But the lung was better protected with the tracking system (V 20Gy: 3.82(T)-4.96(G)-6.34(FB)%). CONCLUSIONS Every technique provides plans with a good target coverage and lung protection. While irradiation with free-breathing increases doses to GTV, irradiation with the tracking technique spares better the lung but can dramatically increase the treatment complexity.
Collapse
|
37
|
Aridgides P, Nsouli T, Chaudhari R, Kincaid R, Rosenbaum PF, Tanny S, Mix M, Bogart J. Clinical outcomes following advanced respiratory motion management (respiratory gating or dynamic tumor tracking) with stereotactic body radiation therapy for stage I non-small-cell lung cancer. LUNG CANCER-TARGETS AND THERAPY 2018; 9:103-110. [PMID: 30464667 PMCID: PMC6223331 DOI: 10.2147/lctt.s175168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Purpose To report the outcomes of stereotactic body radiation therapy (SBRT) for stage I non-small-cell lung cancer (NSCLC) according to respiratory motion management method. Methods Patients with stage I NSCLC who received SBRT from 2007 to 2015 were reviewed. Computed tomography (CT) simulation with four-dimensional CT was performed for respiratory motion assessment. Tumor motion >1 cm in the craniocaudal direction was selectively treated with advanced respiratory management: either respiratory gating to a pre-specified portion of the respiratory cycle or dynamic tracking of an implanted fiducial marker. Comparisons were made with internal target volume approach, which treated all phases of respiratory motion. Results Of 297 patients treated with SBRT at our institution, 51 underwent advanced respiratory management (48 with respiratory gating and three with tumor tracking) and 246 underwent all-phase treatment. Groups were similarly balanced with regard to mean age (P=0.242), tumor size (P=0.315), and histology (P=0.715). Tumor location in the lower lung lobes, as compared to middle or upper lobes, was more common in those treated with advanced respiratory management (78.4%) compared to all-phase treatment (25.6%, P<.0001). There were 17 local recurrences in the treated lesions. Kaplan-Meier analyses showed that there were no differences with regard to mean time to local failure (91.5 vs 98.8 months, P=0.56), mean time to any failure (73.2 vs 78.7 months, P=0.73), or median overall survival (43.3 vs 45.5 months, P=0.56) between patients who underwent advanced respiratory motion management and all-phase treatment. Conclusion SBRT with advanced respiratory management (the majority with respiratory gating) showed similar efficacy to all-phase treatment approach for stage I NSCLC.
Collapse
Affiliation(s)
- Paul Aridgides
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY 13210, USA,
| | - Tamara Nsouli
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY 13210, USA,
| | - Rishabh Chaudhari
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY 13210, USA,
| | - Russell Kincaid
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY 13210, USA,
| | - Paula F Rosenbaum
- Department of Public Health and Preventive Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Sean Tanny
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY 13210, USA,
| | - Michael Mix
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY 13210, USA,
| | - Jeffrey Bogart
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY 13210, USA,
| |
Collapse
|
38
|
Shimizu Y, Takamatsu S, Yamamoto K, Maeda Y, Sasaki M, Tamamura H, Bou S, Kumano T, Gabata T. Segmental analysis of respiratory liver motion in patients with and without a history of abdominal surgery. Jpn J Radiol 2018; 36:511-518. [DOI: 10.1007/s11604-018-0750-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/04/2018] [Indexed: 10/28/2022]
|
39
|
Shahzadeh S, Gholami S, Aghamiri SMR, Mahani H, Nabavi M, Kalantari F. Evaluation of normal lung tissue complication probability in gated and conventional radiotherapy using the 4D XCAT digital phantom. Comput Biol Med 2018; 97:21-29. [PMID: 29684782 DOI: 10.1016/j.compbiomed.2018.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE The present study was conducted to investigate normal lung tissue complication probability in gated and conventional radiotherapy (RT) as a function of diaphragm motion, lesion size, and its location using 4D-XCAT digital phantom in a simulation study. MATERIALS AND METHODS Different time series of 3D-CT images were generated using the 4D-XCAT digital phantom. The binary data obtained from this phantom were then converted to the digital imaging and communication in medicine (DICOM) format using an in-house MATLAB-based program to be compatible with our treatment planning system (TPS). The 3D-TPS with superposition computational algorithm was used to generate conventional and gated plans. Treatment plans were generated for 36 different XCAT phantom configurations. These included four diaphragm motions of 20, 25, 30 and 35 mm, three lesion sizes of 3, 4, and 5 cm in diameter and each tumor was placed in four different lung locations (right lower lobe, right upper lobe, left lower lobe and left upper lobe). The complication of normal lung tissue was assessed in terms of mean lung dose (MLD), the lung volume receiving ≥20 Gy (V20), and normal tissue complication probability (NTCP). RESULTS The results showed that the gated RT yields superior outcomes in terms of normal tissue complication compared to the conventional RT. For all cases, the gated radiation therapy technique reduced the mean dose, V20, and NTCP of lung tissue by up to 5.53 Gy, 13.38%, and 23.89%, respectively. CONCLUSIONS The results of this study showed that the gated RT provides significant advantages in terms of the normal lung tissue complication, compared to the conventional RT, especially for the lesions near the diaphragm.
Collapse
Affiliation(s)
- Sara Shahzadeh
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran, Iran
| | - Somayeh Gholami
- Radiotherapy Oncology Research Centre, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Hojjat Mahani
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Science, Tehran, Iran; Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Mansoure Nabavi
- Radiotherapy Oncology Research Centre, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faraz Kalantari
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
40
|
Shibata S, Takamatsu S, Yamamoto K, Mizuhata M, Bou S, Sato Y, Kawamura M, Asahi S, Tameshige Y, Maeda Y, Sasaki M, Kumano T, Kobayashi S, Tamamura H, Gabata T. Proton Beam Therapy without Fiducial Markers Using Four-Dimensional CT Planning for Large Hepatocellular Carcinomas. Cancers (Basel) 2018; 10:E71. [PMID: 29538310 PMCID: PMC5876646 DOI: 10.3390/cancers10030071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 02/06/2023] Open
Abstract
We evaluated the effectiveness and toxicity of proton beam therapy (PBT) for hepatocellular carcinomas (HCC) >5 cm without fiducial markers using four-dimensional CT (4D-CT) planning. The subjects were 29 patients treated at our hospital between March 2011 and March 2015. The median total dose was 76 Cobalt Gray Equivalents (CGE) in 20 fractions (range; 66-80.5 CGE in 10-32 fractions). Therapy was delivered with end-expiratory phase gating. An internal target volume (ITV) margin was added through the analysis of respiratory movement with 4D-CT. Patient age ranged from 38 to 87 years (median, 71 years). Twenty-four patients were Child-Pugh class A and five patients were class B. Tumor size ranged from 5.0 to 13.9 cm (median, 6.9 cm). The follow-up period ranged from 2 to 72 months (median; 27 months). All patients completed PBT according to the treatment protocol without grade 4 (CTCAE v4.03 (draft v5.0)) or higher adverse effects. The two-year local tumor control (LTC), progression-free survival (PFS), and overall survival (OS) rates were 95%, 22%, and 61%, respectively. The LTC was not inferior to that of previous reports using fiducial markers. Respiratory-gated PBT with 4D-CT planning without fiducial markers is a less invasive and equally effective treatment for large HCCs as PBT with fiducial markers.
Collapse
Affiliation(s)
- Satoshi Shibata
- Proton Therapy Center, Fukui Prefectural Hospital, Fukui 910-8526, Japan.
| | - Shigeyuki Takamatsu
- Proton Therapy Center, Fukui Prefectural Hospital, Fukui 910-8526, Japan.
- Department of Radiotherapy, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan.
| | - Kazutaka Yamamoto
- Proton Therapy Center, Fukui Prefectural Hospital, Fukui 910-8526, Japan.
| | - Miu Mizuhata
- Proton Therapy Center, Fukui Prefectural Hospital, Fukui 910-8526, Japan.
| | - Sayuri Bou
- Proton Therapy Center, Fukui Prefectural Hospital, Fukui 910-8526, Japan.
| | - Yoshitaka Sato
- Proton Therapy Center, Fukui Prefectural Hospital, Fukui 910-8526, Japan.
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Hospital, Nagoya, Aichi 466-8560, Japan.
| | - Satoko Asahi
- Department of Radiology, University of Fukui Hospital, Eiheiji, Fukui 910-1193, Japan.
| | - Yuji Tameshige
- Proton Therapy Center, Fukui Prefectural Hospital, Fukui 910-8526, Japan.
| | - Yoshikazu Maeda
- Proton Therapy Center, Fukui Prefectural Hospital, Fukui 910-8526, Japan.
| | - Makoto Sasaki
- Proton Therapy Center, Fukui Prefectural Hospital, Fukui 910-8526, Japan.
| | - Tomoyasu Kumano
- Department of Radiotherapy, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan.
| | - Satoshi Kobayashi
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8641, Japan.
| | - Hiroyasu Tamamura
- Proton Therapy Center, Fukui Prefectural Hospital, Fukui 910-8526, Japan.
| | - Toshifumi Gabata
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8641, Japan.
| |
Collapse
|
41
|
Nakayama M, Nishimura H, Mayahara H, Nakamura M, Uehara K, Tsudou S, Harada A, Akasaka H, Sasaki R. Clinical log data analysis for assessing the accuracy of the CyberKnife fiducial-free lung tumor tracking system. Pract Radiat Oncol 2018; 8:e63-e70. [DOI: 10.1016/j.prro.2017.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/11/2017] [Accepted: 10/27/2017] [Indexed: 11/30/2022]
|
42
|
O'Connell D, Thomas DH, Lamb JM, Lewis JH, Dou T, Sieren JP, Saylor M, Hofmann C, Hoffman EA, Lee PP, Low DA. Dependence of subject-specific parameters for a fast helical CT respiratory motion model on breathing rate: an animal study. Phys Med Biol 2018; 63:04NT04. [PMID: 29360098 DOI: 10.1088/1361-6560/aaaa15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To determine if the parameters relating lung tissue displacement to a breathing surrogate signal in a previously published respiratory motion model vary with the rate of breathing during image acquisition. An anesthetized pig was imaged using multiple fast helical scans to sample the breathing cycle with simultaneous surrogate monitoring. Three datasets were collected while the animal was mechanically ventilated with different respiratory rates: 12 bpm (breaths per minute), 17 bpm, and 24 bpm. Three sets of motion model parameters describing the correspondences between surrogate signals and tissue displacements were determined. The model error was calculated individually for each dataset, as well asfor pairs of parameters and surrogate signals from different experiments. The values of one model parameter, a vector field denoted [Formula: see text] which related tissue displacement to surrogate amplitude, determined for each experiment were compared. The mean model error of the three datasets was 1.00 ± 0.36 mm with a 95th percentile value of 1.69 mm. The mean error computed from all combinations of parameters and surrogate signals from different datasets was 1.14 ± 0.42 mm with a 95th percentile of 1.95 mm. The mean difference in [Formula: see text] over all pairs of experiments was 4.7% ± 5.4%, and the 95th percentile was 16.8%. The mean angle between pairs of [Formula: see text] was 5.0 ± 4.0 degrees, with a 95th percentile of 13.2 mm. The motion model parameters were largely unaffected by changes in the breathing rate during image acquisition. The mean error associated with mismatched sets of parameters and surrogate signals was 0.14 mm greater than the error achieved when using parameters and surrogate signals acquired with the same breathing rate, while maximum respiratory motion was 23.23 mm on average.
Collapse
Affiliation(s)
- Dylan O'Connell
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA 90095, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pollock S, Tse R, Martin D, McLean L, Pham M, Tait D, Estoesta R, Whittington G, Turley J, Kearney C, Cho G, Hill R, Pickard S, Aston P, Makhija K, O'Brien R, Keall P. Impact of audiovisual biofeedback on interfraction respiratory motion reproducibility in liver cancer stereotactic body radiotherapy. J Med Imaging Radiat Oncol 2018; 62:133-139. [PMID: 29405637 DOI: 10.1111/1754-9485.12702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 11/28/2017] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Irregular breathing motion exacerbates uncertainties throughout a course of radiation therapy. Breathing guidance has demonstrated to improve breathing motion consistency. This was the first clinical implementation of audiovisual biofeedback (AVB) breathing guidance over a course of liver stereotactic body radiotherapy (SBRT) investigating interfraction reproducibility. METHODS Five liver cancer patients underwent a screening procedure prior to CT sim during which patients underwent breathing conditions (i) AVB, or (ii) free breathing (FB). Whichever breathing condition was more regular was utilised for the patient's subsequent course of SBRT. Respiratory motion was obtained from the Varian respiratory position monitoring (RPM) system (Varian Medical Systems). Breathing motion reproducibility was assessed by the variance of displacement across 10 phase-based respiratory bins over each patient's course of SBRT. RESULTS The screening procedure yielded the decision to utilise AVB for three patients and FB for two patients. Over the course of SBRT, AVB significantly improved the relative interfraction motion by 32%, from 22% displacement difference for FB patients to 15% difference for AVB patients. Further to this, AVB facilitated sub-millimetre interfraction reproducibility for two AVB patients. CONCLUSION There was significantly less interfraction motion with AVB than FB. These findings demonstrate that AVB is potentially a valuable tool in ensuring reproducible interfraction motion.
Collapse
Affiliation(s)
- Sean Pollock
- Sydney Medical School - Central, University of Sydney, Sydney, New South Wales, Australia
| | - Regina Tse
- Department of Radiation Oncology, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
| | - Darren Martin
- Department of Radiation Oncology, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
| | - Lisa McLean
- Department of Radiation Oncology, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
| | - Melissa Pham
- Department of Radiation Oncology, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
| | - David Tait
- Department of Radiation Oncology, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
| | - Reuben Estoesta
- Department of Radiation Oncology, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
| | - Grant Whittington
- Department of Radiation Oncology, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
| | - Jessica Turley
- Department of Radiation Oncology, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
| | - Christopher Kearney
- Department of Radiation Oncology, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
| | - Gwi Cho
- Department of Radiation Oncology, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
| | - Robin Hill
- Department of Radiation Oncology, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia.,Institute of Medical Physics, School of Physics, University of Sydney, New South Wales, Australia
| | - Sheila Pickard
- Department of Radiation Oncology, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
| | - Paul Aston
- Department of Radiation Oncology, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
| | - Kuldeep Makhija
- Sydney Medical School - Central, University of Sydney, Sydney, New South Wales, Australia
| | - Ricky O'Brien
- Sydney Medical School - Central, University of Sydney, Sydney, New South Wales, Australia
| | - Paul Keall
- Sydney Medical School - Central, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
44
|
Luo H, Ge H, Cui Y, Zhang J, Fan R, Zheng A, Zheng X, Sun Y. Systemic Inflammation Biomarkers Predict Survival in Patients of Early Stage Non-Small Cell Lung Cancer Treated With Stereotactic Ablative Radiotherapy - A Single Center Experience. J Cancer 2018; 9:182-188. [PMID: 29290784 PMCID: PMC5743726 DOI: 10.7150/jca.21703] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022] Open
Abstract
Background: Increasing evidence indicates a relationship between systemic inflammation and survival following treatment in various tumors. However, the correlation of systematic inflammation with survival after stereotactic ablative radiotherapy (SABR) in early stage non-small cell lung cancer (NSCLC) has not been well established. Patients and methods: We retrospectively analyzed patients with newly diagnosed early stage NSCLC treated with SABR in a single institution from 2011 to 2015. The neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), and lymphocyte- monocyte ratio (LMR) were calculated as systemic inflammation biomarkers. Overall survival (OS) was the first end-point. Receiver operating characteristic (ROC) was used to determine cut-off points for OS. Univariate and multivariate Cox proportional hazards regression were used to investigate the potential factors associated with OS. Results: In the 63 patients who were eligible for analysis. The median follow up after SBRT was 29.5 months (range 8-67 months) while the 3-year OS was 74.2%. Based on ROC analysis, optimal cut-off values of NLR, PLR, and LMR were 2.06, 199.55 and 4.0, respectively. Significant survival benefit was found in the NLR ≤2.06 group (p=0.028), PLR≤199.55 group (p=0.001), and LMR˃4.0 group (p=0.046). Univariate analysis indicated that low NLR (p=0.011), low PLR (p=0.003), and high LMR (p=0.014) were correlated with improved survival. Multivariate analysis indicated that high PLR (p=0.033) and low LMR (p=0.046) were independent prognostic factors for poor survival. Conclusions: In patients of early stage NSCLC who received SABR, pretreatment NLR, PLR, and LMR could be considered useful prognostic indicators of OS. These metrics may provide reliable and convenient predictors to identify patients who would benefit from SABR.
Collapse
Affiliation(s)
- Hui Luo
- Division of Graduate, The Second Clinical Medical School and the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingying Cui
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiangong Zhang
- Division of Scientific Research and Education, The Affiliated Cancer Hospital of Zhengzhou university, Zhengzhou, China
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Anping Zheng
- Department of Radiation Oncology, Anyang Cancer Hospital, Anyang, China
| | - Xiaoli Zheng
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanan Sun
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
45
|
O’Connell D, Thomas DH, Dou TH, Aliotta E, Lewis JH, Lamb JM, Lee P, Low DA. Adaptive weighted median filtering for reduced blurring when fusing co-registered fast helical CT images. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa889d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
46
|
Comparison of lung tumor motion measured using a model-based 4DCT technique and a commercial protocol. Pract Radiat Oncol 2017; 8:e175-e183. [PMID: 29429921 DOI: 10.1016/j.prro.2017.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/28/2017] [Accepted: 11/08/2017] [Indexed: 11/22/2022]
Abstract
PURPOSE To compare lung tumor motion measured with a model-based technique to commercial 4-dimensional computed tomography (4DCT) scans and describe a workflow for using model-based 4DCT as a clinical simulation protocol. METHODS AND MATERIALS Twenty patients were imaged using a model-based technique and commercial 4DCT. Tumor motion was measured on each commercial 4DCT dataset and was calculated on model-based datasets for 3 breathing amplitude percentile intervals: 5th to 85th, 5th to 95th, and 0th to 100th. Internal target volumes (ITVs) were defined on the 4DCT and 5th to 85th interval datasets and compared using Dice similarity. Images were evaluated for noise and rated by 2 radiation oncologists for artifacts. RESULTS Mean differences in tumor motion magnitude between commercial and model-based images were 0.47 ± 3.0, 1.63 ± 3.17, and 5.16 ± 4.90 mm for the 5th to 85th, 5th to 95th, and 0th to 100th amplitude intervals, respectively. Dice coefficients between ITVs defined on commercial and 5th to 85th model-based images had a mean value of 0.77 ± 0.09. Single standard deviation image noise was 11.6 ± 9.6 HU in the liver and 6.8 ± 4.7 HU in the aorta for the model-based images compared with 57.7 ± 30 and 33.7 ± 15.4 for commercial 4DCT. Mean model error within the ITV regions was 1.71 ± 0.81 mm. Model-based images exhibited reduced presence of artifacts at the tumor compared with commercial images. CONCLUSION Tumor motion measured with the model-based technique using the 5th to 85th percentile breathing amplitude interval corresponded more closely to commercial 4DCT than the 5th to 95th or 0th to 100th intervals, which showed greater motion on average. The model-based technique tended to display increased tumor motion when breathing amplitude intervals wider than 5th to 85th were used because of the influence of unusually deep inhalations. These results suggest that care must be taken in selecting the appropriate interval during image generation when using model-based 4DCT methods.
Collapse
|
47
|
Hu CY, Li JB, Wang JZ, Wang W, Li FX, Guo YL. Comparison of gross tumor volume of primary oesophageal cancer based on contrast-enhanced three-dimensional, four-dimensional, and cone beam computed tomography. Oncotarget 2017; 8:95577-95585. [PMID: 29221150 PMCID: PMC5707044 DOI: 10.18632/oncotarget.21520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/19/2017] [Indexed: 12/02/2022] Open
Abstract
Background To explore motion information included in 3DCT, 4DCT and CBCT by comparing volumetric and positional differences of GTV. Results Independent of tumor location, significant differences were observed among volumes [IGTV10 > (IGTVCBCT or IGTVMIP) > (GTV3D or GTV4D50)]. The underestimations or overestimations between IGTV10 and IGTVCBCT were larger than those between IGTV10 and IGTVMIP (p < 0.001–0.011; p < 0.001–0.023). For upper oesophageal tumors, GTV4D50/IGTVCBCT negatively correlated with motion vector (r = –0.756, p = 0.011). In AP direction, the centroid coordinates of IGTVCBCT differed from GTV3D, GTV4D50, IGTVMIP and IGTV10 (p = 0.006, 0.013, 0.038, and 0.010). For middle oesophageal tumors, IGTV10/IGTVCBCT positively correlated with motion vector (r = 0.695, p = 0.006). The centroid coordinates of IGTVCBCT differed from those of IGTV10 (p = 0.046) in AP direction. For distal oesophageal tumors, the centroid coordinates of IGTVCBCT showed significant differences to those of IGTVMIP (p = 0.042) in LR direction. For both middle and distal tumors, the degrees of associations of IGTV10 outside IGTVCBCT significantly correlated with the motion vector (r = 0.540, p = 0.046; r = 0.678, p = 0.031). Materials and Methods Thirty-four oesophageal cancer patients underwent 3DCT, 4DCT and CBCT. GTV3D, GTV4D50, internal GTVMIP (IGTVMIP) and IGTVCBCT were delineated on 3DCT, 4DCT50, 4DCTMIP and CBCT. GTVs from 10 respiratory phases were combined to produce GTV10. Differences in volume, position for different targets, correlation between volume ratio and motion vector were evaluated. The motion vector was the spatial moving of the target centroid position. Conclusions IGTVCBCT encompasses more motion information than GTV3D and GTV4D50 for upper oesophageal tumors, but slightly less than IGTV10 for middle and distal oesophageal tumors. IGTVCBCT incorporated similar motion information to IGTVMIP. However, motion information encompassed in CBCT and MIP cannot replace each other.
Collapse
Affiliation(s)
- Chao-Yue Hu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong Province, China.,Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Jian-Bin Li
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Jin-Zhi Wang
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Wei Wang
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Feng-Xiang Li
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Yan-Luan Guo
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| |
Collapse
|
48
|
De Ruysscher D, Faivre-Finn C, Moeller D, Nestle U, Hurkmans CW, Le Péchoux C, Belderbos J, Guckenberger M, Senan S. European Organization for Research and Treatment of Cancer (EORTC) recommendations for planning and delivery of high-dose, high precision radiotherapy for lung cancer. Radiother Oncol 2017; 124:1-10. [PMID: 28666551 DOI: 10.1016/j.radonc.2017.06.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/25/2017] [Accepted: 06/05/2017] [Indexed: 12/23/2022]
Abstract
PURPOSE To update literature-based recommendations for techniques used in high-precision thoracic radiotherapy for lung cancer, in both routine practice and clinical trials. METHODS A literature search was performed to identify published articles that were considered clinically relevant and practical to use. Recommendations were categorised under the following headings: patient positioning and immobilisation, Tumour and nodal changes, CT and FDG-PET imaging, target volumes definition, radiotherapy treatment planning and treatment delivery. An adapted grading of evidence from the Infectious Disease Society of America, and for models the TRIPOD criteria, were used. RESULTS Recommendations were identified for each of the above categories. CONCLUSION Recommendations for the clinical implementation of high-precision conformal radiotherapy and stereotactic body radiotherapy for lung tumours were identified from the literature. Techniques that were considered investigational at present are highlighted.
Collapse
Affiliation(s)
- Dirk De Ruysscher
- Maastricht University Medical Center+, Department of Radiation Oncology (Maastro Clinic), GROW Research Institute, The Netherlands; KU Leuven, Radiation Oncology, Belgium.
| | - Corinne Faivre-Finn
- Division of Cancer Sciences University of Manchester, Christie NHS Foundation Trust, UK
| | - Ditte Moeller
- Aarhus University Hospital, Department of Oncology, Denmark
| | - Ursula Nestle
- Freiburg University Medical Center (DKTK partner site), Department of Radiation Oncology, Germany; Department of Radiation Oncology, Kliniken Maria Hilf, Moenchengladbach, Germany
| | - Coen W Hurkmans
- Catharina Hospital, Department of Radiation Oncology, Eindhoven, The Netherlands
| | | | - José Belderbos
- Netherlands Cancer Institute, Department of Radiation Oncology, Amsterdam, The Netherlands
| | | | - Suresh Senan
- VU University Medical Center, Department of Radiation Oncology, Amsterdam, The Netherlands
| |
Collapse
|
49
|
Ahmed N, Venkataraman S, Johnson K, Sutherland K, Loewen SK. Does Motion Assessment With 4-Dimensional Computed Tomographic Imaging for Non-Small Cell Lung Cancer Radiotherapy Improve Target Volume Coverage? CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2017; 11:1179554917698461. [PMID: 28469512 PMCID: PMC5395259 DOI: 10.1177/1179554917698461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 02/12/2017] [Indexed: 12/25/2022]
Abstract
Introduction: Modern radiotherapy with 4-dimensional computed tomographic (4D-CT) image acquisition for non–small cell lung cancer (NSCLC) captures respiratory-mediated tumor motion to provide more accurate target delineation. This study compares conventional 3-dimensional (3D) conformal radiotherapy (3DCRT) plans generated with standard helical free-breathing CT (FBCT) with plans generated on 4D-CT contoured volumes to determine whether target volume coverage is affected. Materials and methods: Fifteen patients with stage I to IV NSCLC were enrolled in the study. Free-breathing CT and 4D-CT data sets were acquired at the same simulation session and with the same immobilization. Gross tumor volume (GTV) for primary and/or nodal disease was contoured on FBCT (GTV_3D). The 3DCRT plans were obtained, and the patients were treated according to our institution’s standard protocol using FBCT imaging. Gross tumor volume was contoured on 4D-CT for primary and/or nodal disease on all 10 respiratory phases and merged to create internal gross tumor volume (IGTV)_4D. Clinical target volume margin was 5 mm in both plans, whereas planning tumor volume (PTV) expansion was 1 cm axially and 1.5 cm superior/inferior for FBCT-based plans to incorporate setup errors and an estimate of respiratory-mediated tumor motion vs 8 mm isotropic margin for setup error only in all 4D-CT plans. The 3DCRT plans generated from the FBCT scan were copied on the 4D-CT data set with the same beam parameters. GTV_3D, IGTV_4D, PTV, and dose volume histogram from both data sets were analyzed and compared. Dice coefficient evaluated PTV similarity between FBCT and 4D-CT data sets. Results: In total, 14 of the 15 patients were analyzed. One patient was excluded as there was no measurable GTV. Mean GTV_3D was 115.3 cm3 and mean IGTV_4D was 152.5 cm3 (P = .001). Mean PTV_3D was 530.0 cm3 and PTV_4D was 499.8 cm3 (P = .40). Both gross primary and nodal disease analyzed separately were larger on 4D compared with FBCT. D95 (95% isodose line) covered 98% of PTV_3D and 88% of PTV_4D (P = .003). Mean dice coefficient of PTV_3D and PTV_4D was 84%. Mean lung V20 was 24.0% for the 3D-based plans and 22.7% for the 4D-based plans (P = .057). Mean heart V40 was 12.1% for the 3D-based plans and 12.7% for the 4D-based plans (P = .53). Mean spinal cord Dmax was 2517 and 2435 cGy for 3D-based and 4D-based plans, respectively (P = .019). Mean esophageal dose was 1580 and 1435 cGy for 3D and 4D plans, respectively (P = .13). Conclusions: IGTV_4D was significantly larger than GTV_3D for both primary and nodal disease combined or separately. Mean PTV_3D was larger than PTV_4D, but the difference was not statistically significant. The PTV_4D coverage with 95% isodose line was inferior, indicating the importance of incorporating the true size and shape of the target volume. Relatively less dose was delivered to spinal cord and esophagus with plans based on 4D data set. Dice coefficient analysis for degree of similarity revealed that 16% of PTVs from both data sets did not overlap, indicating different anatomical positions of the PTV due to tumor/nodal motion during a respiratory cycle. All patients with lung cancer planned for radical radiotherapy should have 4D-CT simulation to ensure accurate coverage of the target volumes.
Collapse
Affiliation(s)
- Naseer Ahmed
- Department of Radiation Oncology, CancerCare Manitoba, Winnipeg, MB, Canada.,Department of Radiology, University of Manitoba, Winnipeg, MB, Canada
| | - Sankar Venkataraman
- Department of Radiation Oncology, CancerCare Manitoba, Winnipeg, MB, Canada.,Department of Radiology, University of Manitoba, Winnipeg, MB, Canada
| | - Kate Johnson
- Department of Radiation Oncology, CancerCare Manitoba, Winnipeg, MB, Canada.,Department of Radiology, University of Manitoba, Winnipeg, MB, Canada
| | - Keith Sutherland
- Department of Radiation Oncology, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Shaun K Loewen
- Division of Radiation Oncology, Department of Radiation Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
50
|
Ohta A, Kaidu M, Tanabe S, Utsunomiya S, Sasamoto R, Maruyama K, Tanaka K, Saito H, Nakano T, Shioi M, Takahashi H, Kushima N, Abe E, Aoyama H. Respiratory gating and multifield technique radiotherapy for esophageal cancer. Jpn J Radiol 2017; 35:95-100. [DOI: 10.1007/s11604-016-0606-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/08/2016] [Indexed: 12/25/2022]
|