1
|
Wiedemann J, Paruchuru SK, den Boef LE, Brouwer U, Silljé HHW, Schouten EM, Dickinson MG, van Goethem MJ, Coppes RP, van Luijk P. Sparing of the Heart Facilitates Recovery From Cardiopulmonary Side Effects After Thoracic Irradiation. Int J Radiat Oncol Biol Phys 2024:S0360-3016(24)03178-X. [PMID: 39151832 DOI: 10.1016/j.ijrobp.2024.07.2330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024]
Abstract
PURPOSE When irradiating thoracic tumors, dose to the heart or lung has been associated with survival. We previously showed in a rat model that in addition to known side effects such as pericarditis, pneumonitis and fibrosis, heart and/or lung irradiation also impaired diastolic function and increased pulmonary artery pressure. Simultaneous irradiation of both organs strongly intensified these effects. However, the long-term consequences of these interactions are not yet known. Therefore, here, we investigated the long-term effects of combined heart and lung irradiation. METHODS AND MATERIALS Different regions of the rat thorax containing the heart and/or 50% of the lungs were irradiated with protons. Respiratory rate (RR) was measured biweekly as an overall parameter for cardiopulmonary function. Echocardiography of the heart was performed at 8, 26, and 42 weeks after irradiation. Tissue remodeling and vascular changes were assessed using Masson trichrome and Verhoeff-stained lung and left ventricle tissue collected at 8 and 42 weeks after irradiation. RESULTS During the entire experimental period RR was consistently increased after combined heart/lung irradiation. This coincided with persistent effects on lung vasculature and reduced right-ventricle (RV) contraction. In contrast, recovery of RR, pulmonary remodeling and RV contraction was observed after sparing of the heart. These corresponding temporal patterns suggest that the reduction of RV function is related to vascular remodeling in the lung. CONCLUSIONS Combined irradiation of lung and heart leads to an intensified, persistent reduction of cardiopulmonary function. Recovery of the pulmonary vasculature and RV function requires heart sparing.
Collapse
Affiliation(s)
- Julia Wiedemann
- Departments of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sai K Paruchuru
- Departments of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lisette E den Boef
- Departments of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Uilke Brouwer
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elisabeth M Schouten
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Michael G Dickinson
- Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Marc-Jan van Goethem
- Departments of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Robert P Coppes
- Departments of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter van Luijk
- Departments of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
2
|
Li W, Lu X, Jiang L, Wang X. Radioprotective effect of polyvinylpyrrolidone modified selenium nanoparticles and its antioxidation mechanism in vitro and in vivo. Front Bioeng Biotechnol 2024; 12:1392339. [PMID: 38962664 PMCID: PMC11220155 DOI: 10.3389/fbioe.2024.1392339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/29/2024] [Indexed: 07/05/2024] Open
Abstract
Objective Polyvinylpyrrolidone (PVP) is a commonly used biomedical polymer material with good water solubility, biocompatibility, low immunogenicity, and low toxicity. The aim of this study is to investigate the antioxidant mechanism and clinical potential of PVP modified selenium nanoparticles (PVP-Se NPs) as a new radioprotective agent. Methods A laser particle size analyzer and transmission electron microscope were used to characterize PVP-Se nanoparticles prepared by chemical reduction. Human umbilical vein endothelial cells (HUVECs) were used to evaluate the radiation protective effects of PVP-Se NPs. SD rats were employed as an in vivo model to identify the most effective concentration of PVP-Se NPs and assess their potential radioprotective properties. Western blot (WB) was used to detect the expression of nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling proteins in human umbilical vein endothelial cells (HUVECs) and rat liver and kidney tissues. Results PVP-Se NPs could reduce the oxidative stress injury and inflammatory response caused by X-ray irradiation in HUVECs and rats, and inhibit cell apoptosis by modulating NF-κB and MAPK signaling pathways. PVP-Se NPs could increase HUVECs viability, reduce apoptosis, inhibit inflammatory factors IL-1β, IL-6 and TNF-α, improve the survival rate of rats, promote antioxidant enzyme activities in cells and rats, reduce malondialdehyde concentration in serum, and reduce the expression of inflammatory factors such as IL-1β, IL-6 and TNF-α in cell supernatant and liver and kidney tissues. PVP-Se NPs could significantly reduce the phosphorylation levels of NF-κB and MAPK pathway-associated proteins in HUVECs and rat liver and kidney tissues (p < 0.05). Conclusion PVP-Se NPs can protect against radiation-induced oxidative damage by modulating NF-kB and MAPK pathways, providing a theoretical basis and experimental data for their use as an effective radioprotective agent.
Collapse
Affiliation(s)
- Wei Li
- School of Nuclear Science and Technology, Hengyang, China
- The Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Xianzhou Lu
- The Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Liangjun Jiang
- The Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Xiangjiang Wang
- School of Nuclear Science and Technology, Hengyang, China
- Hunan Provincial Key Laboratory of Emergency Safety Operation Technology and Equipment for Nuclear Facilities, Hengyang, China
| |
Collapse
|
3
|
Trzebanski S, Kim JS, Larossi N, Raanan A, Kancheva D, Bastos J, Haddad M, Solomon A, Sivan E, Aizik D, Kralova JS, Gross-Vered M, Boura-Halfon S, Lapidot T, Alon R, Movahedi K, Jung S. Classical monocyte ontogeny dictates their functions and fates as tissue macrophages. Immunity 2024; 57:1225-1242.e6. [PMID: 38749446 DOI: 10.1016/j.immuni.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/29/2023] [Accepted: 04/18/2024] [Indexed: 06/14/2024]
Abstract
Classical monocytes (CMs) are ephemeral myeloid immune cells that circulate in the blood. Emerging evidence suggests that CMs can have distinct ontogeny and originate from either granulocyte-monocyte- or monocyte-dendritic-cell progenitors (GMPs or MDPs). Here, we report surface markers that allowed segregation of murine GMP- and MDP-derived CMs, i.e., GMP-Mo and MDP-Mo, as well as their functional characterization, including fate definition following adoptive cell transfer. GMP-Mo and MDP-Mo yielded an equal increase in homeostatic CM progeny, such as blood-resident non-classical monocytes and gut macrophages; however, these cells differentially seeded various other selected tissues, including the dura mater and lung. Specifically, GMP-Mo and MDP-Mo differentiated into distinct interstitial lung macrophages, linking CM dichotomy to previously reported pulmonary macrophage heterogeneity. Collectively, we provide evidence for the existence of two functionally distinct CM subsets in the mouse that differentially contribute to peripheral tissue macrophage populations in homeostasis and following challenge.
Collapse
Affiliation(s)
- Sébastien Trzebanski
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jung-Seok Kim
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Niss Larossi
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ayala Raanan
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Daliya Kancheva
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jonathan Bastos
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Montaser Haddad
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Aryeh Solomon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ehud Sivan
- MICC Cell Observatory Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dan Aizik
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Mor Gross-Vered
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sigalit Boura-Halfon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tsvee Lapidot
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ronen Alon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kiavash Movahedi
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Steffen Jung
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
4
|
Kondelaji MHR, Sharma GP, Jagtap J, Shafiee S, Hansen C, Gasperetti T, Frei A, Veley D, Narayanan J, Fish BL, Parchur AK, Ibrahim ESH, Medhora M, Himburg HA, Joshi A. 2 nd Window NIR Imaging of Radiation Injury Mitigation Provided by Reduced Notch-Dll4 Expression on Vasculature. Mol Imaging Biol 2024; 26:124-137. [PMID: 37530966 PMCID: PMC11188939 DOI: 10.1007/s11307-023-01840-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
PURPOSE Vascular endothelium plays a central role in the pathogenesis of acute and chronic radiation injuries, yet the mechanisms which promote sustained endothelial dysfunction and contribute to late responding organ failure are unclear. We employed 2nd window (> 1100 nm emission) Near-Infrared (NIR) imaging using indocyanine green (ICG) to track and define the role of the notch ligand Delta-like ligand 4 (Dll4) in mediating vascular injury in two late-responding radiosensitive organs: the lung and kidney. PROCEDURES Consomic strains of female Salt Sensitive or SS (Dll4-high) and SS with 3rd chromosome inherited from Brown Norway, SS.BN3 (Dll4-low) rats at ages 11-12 weeks were used to demonstrate the impact of reduced Dll4 expression on long-term vascular integrity, renal function, and survival following high-dose 13 Gy partial body irradiation at 42- and 90 days post-radiation. 2nd window dynamic NIR fluorescence imaging with ICG was analyzed with physiology-based pharmacokinetic modeling and confirmed with assays of endothelial Dll4 expression to assess the role of endogenous Dll4 expression on radiation injury protection. RESULTS We show that SS.BN3 (Dll4-low) rats are relatively protected from vascular permeability disruption compared to the SS (Dll4-high) strain. We further demonstrated that SS.BN3 (Dll4-low) rats have reduced radiation induced loss of CD31+ vascular endothelial cells, and increased Dll4 vascular expression is correlated with vascular dysfunction. CONCLUSIONS Together, these data suggest Dll4 plays a key role in pathogenesis of radiation-induced vascular injury to the lung and kidney.
Collapse
Affiliation(s)
| | - Guru Prasad Sharma
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jaidip Jagtap
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Shayan Shafiee
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christopher Hansen
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anne Frei
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Dana Veley
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jayashree Narayanan
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Abdul K Parchur
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - El-Sayed H Ibrahim
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Heather A Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Amit Joshi
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
5
|
Biomarkers to Predict Lethal Radiation Injury to the Rat Lung. Int J Mol Sci 2023; 24:ijms24065627. [PMID: 36982722 PMCID: PMC10053311 DOI: 10.3390/ijms24065627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/25/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Currently, there are no biomarkers to predict lethal lung injury by radiation. Since it is not ethical to irradiate humans, animal models must be used to identify biomarkers. Injury to the female WAG/RijCmcr rat has been well-characterized after exposure to eight doses of whole thorax irradiation: 0-, 5-, 10-, 11-, 12-, 13-, 14- and 15-Gy. End points such as SPECT imaging of the lung using molecular probes, measurement of circulating blood cells and specific miRNA have been shown to change after radiation. Our goal was to use these changes to predict lethal lung injury in the rat model, 2 weeks post-irradiation, before any symptoms manifest and after which a countermeasure can be given to enhance survival. SPECT imaging with 99mTc-MAA identified a decrease in perfusion in the lung after irradiation. A decrease in circulating white blood cells and an increase in five specific miRNAs in whole blood were also tested. Univariate analyses were then conducted on the combined dataset. The results indicated that a combination of percent change in lymphocytes and monocytes, as well as pulmonary perfusion volume could predict survival from radiation to the lungs with 88.5% accuracy (95% confidence intervals of 77.8, 95.3) with a p-value of < 0.0001 versus no information rate. This study is one of the first to report a set of minimally invasive endpoints to predict lethal radiation injury in female rats. Lung-specific injury can be visualized by 99mTc-MAA as early as 2 weeks after radiation.
Collapse
|
6
|
Kerns SL, Williams JP, Marples B. Modeling normal bladder injury after radiation therapy. Int J Radiat Biol 2023; 99:1046-1054. [PMID: 36854008 PMCID: PMC10330568 DOI: 10.1080/09553002.2023.2182000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 03/02/2023]
Abstract
PURPOSE For decades, Dr. John Moulder has been a leading radiation biologist and one of the few who consistently supported the study of normal tissue responses to radiation. His meticulous modeling and collaborations across the field have offered a prime example of how research can be taken from the bench to the bedside and back, with the ultimate goal of providing benefit to patients. Much of the focus of John's work was on mitigating damage to the kidney, whether as the result of accidental or deliberate clinical exposures. Following in his footsteps, we offer here a brief overview of work conducted in the field of radiation-induced bladder injury. We then describe our own preclinical experimental studies which originated as a response to reports from a clinical genome-wide association study (GWAS) investigating genomic biomarkers of normal tissue toxicity in prostate cancer patients treated with radiotherapy. In particular, we discuss the use of Renin-Angiotensin System (RAS) inhibitors as modulators of injury, agents championed by the Moulder group, and how RAS inhibitors are associated with a reduction in some measures of toxicity. Using a murine model, along with precise CT-image guided irradiation of the bladder using single and fractionated dosing regimens, we have been able to demonstrate radiation-induced functional injury to the bladder and mitigation of this functional damage by an inhibitor of angiotensin-converting enzyme targeting the RAS, an experimental approach akin to that used by the Moulder group. We consider our scientific trajectory as a bedside-to-bench approach because the observation was made clinically and investigated in a preclinical model; this experimental approach aligns with the exemplary career of Dr. John Moulder. CONCLUSIONS Despite the differences in functional endpoints, recent findings indicate a commonality between bladder late effects and the work in kidney pioneered by Dr. John Moulder. We offer evidence that targeting the RAS pathway may provide a targetable pathway to reducing late bladder toxicity.
Collapse
Affiliation(s)
- Sarah L. Kerns
- Department of Department of Radiation Oncology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jacqueline P. Williams
- Departments of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Departments of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Brian Marples
- Departments of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
7
|
Prasanna PGS, Aryankalayil M, Citrin DE, Coleman CN. Radiation-induced pulmonary fibrosis: roles of therapy-induced senescence and microRNAs. Int J Radiat Biol 2023:1-10. [PMID: 36763093 DOI: 10.1080/09553002.2023.2177768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
PURPOSE Progressive, irreversible radiation-induced pulmonary fibrosis (RIPF) is a clinically significant intermediate- to a late-occurring side effect of radiotherapy. Known mechanisms of RIPF include oxidative stress-induced activation of TGF-β with activation of SMAD signaling, TNF-α elaboration, and activation of the Angiotensin Converting Enzyme (ACE) mediated production of angiotensin II with resulting activation of profibrotic cytokine signaling and vasoconstriction. The pioneering work of John Moulder, to whom this paper is dedicated, and several of his colleagues demonstrated that inhibiting the conversion of ACE with drugs such as Captopril, Enalapril, and Losartan can ameliorate radiation fibrosis in various tissues. While this work led several groups to probe mechanism-based pharmacological mitigation of RIPF, in this article, we explore and discuss the roles of microRNAs (miRNA) and therapy-induced senescence (TIS) in the pathogenesis of and potential biomarkers for RIPF. CONCLUSION Our analysis of the published literature in the last decade on RIPF, miRNA, and TIS identifies TIS as a mechanism in the onset and progression of RIPF, which is regulated through several miRNAs. This work may lead to the discovery and development of the next generation of miRNA therapeutics and/or the repurposing of approved pharmaceutical agents and the development of early biomarker panels to predict RIPF.
Collapse
Affiliation(s)
- Pataje G S Prasanna
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, Bethesda, MD, USA
| | | | - Deborah E Citrin
- Radiation Oncology Branch, The National Cancer Institute, Bethesda, MD, USA
| | - C Norman Coleman
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, Bethesda, MD, USA.,Radiation Oncology Branch, The National Cancer Institute, Bethesda, MD, USA.,Department of Health and Human Services, Administration for Strategic Preparedness and Response, Washington, DC, USA
| |
Collapse
|
8
|
Sharma GP, Himburg HA. Organ-Specific Endothelial Dysfunction Following Total Body Irradiation Exposure. TOXICS 2022; 10:toxics10120747. [PMID: 36548580 PMCID: PMC9781710 DOI: 10.3390/toxics10120747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 05/14/2023]
Abstract
As the single cell lining of the heart and all blood vessels, the vascular endothelium serves a critical role in maintaining homeostasis via control of vascular tone, immune cell recruitment, and macromolecular transit. For victims of acute high-dose radiation exposure, damage to the vascular endothelium may exacerbate the pathogenesis of acute and delayed multi-organ radiation toxicities. While commonalities exist between radiation-induced endothelial dysfunction in radiosensitive organs, the vascular endothelium is known to be highly heterogeneous as it is required to serve tissue and organ specific roles. In keeping with its organ and tissue specific functionality, the molecular and cellular response of the endothelium to radiation injury varies by organ. Therefore, in the development of medical countermeasures for multi-organ injury, it is necessary to consider organ and tissue-specific endothelial responses to both injury and candidate mitigators. The purpose of this review is to summarize the pathogenesis of endothelial dysfunction following total or near total body irradiation exposure at the level of individual radiosensitive organs.
Collapse
Affiliation(s)
- Guru Prasad Sharma
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Heather A. Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: ; Tel.: +1-(414)-955-4676
| |
Collapse
|
9
|
Mostaghimi S, Mehrvar S, Foomani FH, Narayanan J, Fish B, Camara AKS, Medhora M, Ranji M. Vascular regression in the kidney: changes in 3D vessel structure with time post-irradiation. BIOMEDICAL OPTICS EXPRESS 2022; 13:4338-4352. [PMID: 36032582 PMCID: PMC9408260 DOI: 10.1364/boe.464426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Though angiogenesis has been investigated in depth, vascular regression and rarefaction remain poorly understood. Regression of renal vasculature accompanies many pathological states such as diabetes, hypertension, atherosclerosis, and radiotherapy. Radiation decreases microvessel density in multiple organs, though the mechanism is not known. By using a whole animal (rat) model with a single dose of partial body irradiation to the kidney, changes in the volume of renal vasculature were recorded at two time points, 60 and 90 days after exposure. Next, a novel vascular and metabolic imaging (VMI) technique was used to computationally assess 3D vessel diameter, volume, branch depth, and density over multiple levels of branching down to 70 µm. Four groups of rats were studied, of which two groups received a single dose of 12.5 Gy X-rays. The kidneys were harvested after 60 or 90 days from one irradiated and one non-irradiated group at each time point. Measurements of the 3D vasculature showed that by day-90 post-radiation, when renal function is known to deteriorate, total vessel volume, vessel density, maximum branch depth, and the number of terminal points in the kidneys decreased by 55%, 57%, 28%, and 53%, respectively. Decreases in the same parameters were not statistically significant at 60 days post-irradiation. Smaller vessels with internal diameters of 70-450 µm as well as large vessels of diameter 451-850 µm, both decreased by 90 days post-radiation. Vascular regression in the lungs of the same strain of irradiated rats has been reported to occur before 60 days supporting the hypothesis that this process is regulated in an organ-specific manner and occurs by a concurrent decrease in luminal diameters of small as well as large blood vessels.
Collapse
Affiliation(s)
- Soudeh Mostaghimi
- Department of Biomedical Engineering at University of California, Irvine, CA 92697, USA
| | | | - Farnaz H. Foomani
- Department of Electrical Engineering and Computer Science at University of Wisconsin, Milwaukee, WI 53211, USA
| | - Jayashree Narayanan
- Department of Radiation Oncology and Cardiovascular Research Center at Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian Fish
- Department of Radiation Oncology and Cardiovascular Research Center at Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Amadou K. S. Camara
- Department of Anesthesiology and Cardiovascular Research Center at Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Meetha Medhora
- Department of Radiation Oncology and Cardiovascular Research Center at Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Contributed equally
| | - Mahsa Ranji
- Department of Electrical Engineering and Computer Science at Florida Atlantic University, Boca Raton, FL 33431, USA
- Contributed equally
| |
Collapse
|
10
|
Wiedemann J, Coppes RP, van Luijk P. Radiation-induced cardiac side-effects: The lung as target for interacting damage and intervention. Front Oncol 2022; 12:931023. [PMID: 35936724 PMCID: PMC9354542 DOI: 10.3389/fonc.2022.931023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Radiotherapy is part of the treatment for many thoracic cancers. During this treatment heart and lung tissue can often receive considerable doses of radiation. Doses to the heart can potentially lead to cardiac effects such as pericarditis and myocardial fibrosis. Common side effects after lung irradiation are pneumonitis and pulmonary fibrosis. It has also been shown that lung irradiation has effects on cardiac function. In a rat model lung irradiation caused remodeling of the pulmonary vasculature increasing resistance of the pulmonary vascular bed, leading to enhanced pulmonary artery pressure, right ventricle hypertrophy and reduced right ventricle performance. Even more pronounced effects are observed when both, lung and heart are irradiated. The effects observed after lung irradiation show striking similarities with symptoms of pulmonary arterial hypertension. In particular, the vascular remodeling in lung tissue seems to have similar underlying features. Here, we discuss the similarities and differences of vascular remodeling observed after thoracic irradiation compared to those in pulmonary arterial hypertension patients and research models. We will also assess how this knowledge of similarities could potentially be translated into interventions which would be beneficial for patients treated for thoracic tumors, where dose to lung tissue is often unavoidable.
Collapse
Affiliation(s)
- Julia Wiedemann
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Robert P. Coppes
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Peter van Luijk
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: Peter van Luijk,
| |
Collapse
|
11
|
Sharma GP, Fish BL, Frei AC, Narayanan J, Gasperetti T, Scholler D, Pierce L, Szalewski N, Blue N, Medhora M, Himburg HA. Pharmacological ACE-inhibition Mitigates Radiation-Induced Pneumonitis by Suppressing ACE-expressing Lung Myeloid Cells. Int J Radiat Oncol Biol Phys 2022; 113:177-191. [PMID: 35093482 PMCID: PMC9018504 DOI: 10.1016/j.ijrobp.2022.01.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE Radiation-induced lung injury is a major dose-limiting toxicity for thoracic radiotherapy patients. In experimental models, treatment with angiotensin converting enzyme (ACE) inhibitors mitigates radiation pneumonitis; however, the mechanism of action is not well understood. Here, we evaluate the direct role of ACE inhibition on lung immune cells. METHODS AND MATERIALS ACE expression and activity were determined in the lung immune cell compartment of irradiated adult rats following either high dose fractionated radiation therapy (RT) to the right lung (5 fractions x 9 Gy) or a single dose of 13.5 Gy partial body irradiation (PBI). Mitigation of radiation-induced pneumonitis with the ACE-inhibitor lisinopril was evaluated in the 13.5 Gy rat PBI model. During pneumonitis, we characterized inflammation and immune cell content in the lungs and bronchoalveolar lavage fluid (BALF). In vitro mechanistic studies were performed using primary human monocytes and the human monocytic THP-1 cell line. RESULTS In both the PBI and fractionated RT models, radiation increased ACE activity in lung immune cells. Treatment with lisinopril improved survival during radiation pneumonitis (p=0.0004). Lisinopril abrogated radiation-induced increases in BALF MCP-1 (CCL2) and MIP-1α cytokine levels (p < 0.0001). Treatment with lisinopril reduced both ACE expression (p=0.006) and frequency of CD45+CD11b+ lung myeloid cells (p=0.004). In vitro, radiation injury acutely increased ACE activity (p=0.045) and reactive oxygen species (ROS) generation (p=0.004) in human monocytes, whereas treatment with lisinopril blocked radiation-induced increases in both ACE and ROS. Interestingly, radiation-induced ROS generation was blocked by pharmacological inhibition of either NADPH oxidase 2 (NOX2) (p=0.012) or the type 1 angiotensin receptor (AGTR1) (p=0.013). CONCLUSIONS These data demonstrate radiation-induced ACE activation within the immune compartment promotes the pathogenesis of radiation pneumonitis, while ACE inhibition suppresses activation of pro-inflammatory immune cell subsets. Mechanistically, our in vitro data demonstrate radiation directly activates the ACE/AGTR1 pathway in immune cells and promotes generation of ROS via Nox2.
Collapse
Affiliation(s)
- Guru Prasad Sharma
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Anne C Frei
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Jayashree Narayanan
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Dana Scholler
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Lauren Pierce
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Nathan Szalewski
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Noah Blue
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Heather A Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin.
| |
Collapse
|
12
|
Gao F, Dong W, Liu P, Narayanan J, Fish BL, Jacobs ER, Medhora M. Molecular Changes in miRNA in Irradiated Rat Kidneys: Role of miR-34a and its Vascular Targets in the Notch Pathway. Radiat Res 2021; 196:611-622. [PMID: 34330145 PMCID: PMC10416360 DOI: 10.1667/rade-20-00078.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/19/2021] [Indexed: 11/03/2022]
Abstract
The mechanism(s) of vascular regression in adult organs remains an unexplored gap. Irradiation to the kidney results in vascular regression and renal failure. The goal of this work was to determine molecular mechanism(s) of radiation-induced vascular regression and its mitigation by the drug lisinopril. Female WAG/RijCmcr rats received either 13 Gy X-ray irradiation, sparing one leg, or no irradiation, the latter serving as age-matched controls. Some irradiated animals received lisinopril. Kidney miRNA-seq was performed 35 days postirradiation, before symptoms of nephropathy. MicroRNA expression profiles were compared with data from humans. MicroRNA targets were predicted using TargetScan and confirmed by qRT-PCR and Western blot. Renal vascular endothelial cell density was evaluated at 100 days to confirm vascular regression. The normal rat kidney microRNA profile resembled that of humans. MiR-34a was increased >7-fold and emerged as the predominant rat microRNA altered by radiation. Expression of Jagged1, a ligand in the Notch pathway of vascular development and a target of miR-34a-5p was decreased by radiation but not in irradiated rats receiving lisinopril. Radiation decreased endothelial cells in the kidneys at 100 days, confirming vascular regression. In conclusion, the results of this study showed that radiation greatly increased miRNA34-a in rat kidneys, while lisinopril mitigated radiation-induced decrease of the Notch ligand, Jagged1, a molecular target of miRNA34-a.
Collapse
Affiliation(s)
- Feng Gao
- Department of Radiation Oncology Medical College of Wisconsin, Wauwatosa, Wisconsin
- Department of College of Dental Medicine - Illinois, Midwestern University, Downers Grove, Illinois
| | - Wei Dong
- Department of Radiation Oncology Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Pengyuan Liu
- Department of Physiology Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Jayashree Narayanan
- Department of Radiation Oncology Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Brian L. Fish
- Department of Radiation Oncology Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Elizabeth R. Jacobs
- Department of Physiology Medical College of Wisconsin, Wauwatosa, Wisconsin
- Department of Pulmonary Medicine Medical College of Wisconsin, Wauwatosa, Wisconsin
- Department of Cardiovascular Center, Medical College of Wisconsin, Wauwatosa, Wisconsin
- Research Service, Department of Veterans Affairs, Zablocki VAMC, Milwaukee, Wisconsin
| | - Meetha Medhora
- Department of Radiation Oncology Medical College of Wisconsin, Wauwatosa, Wisconsin
- Department of Physiology Medical College of Wisconsin, Wauwatosa, Wisconsin
- Department of Pulmonary Medicine Medical College of Wisconsin, Wauwatosa, Wisconsin
- Department of Cardiovascular Center, Medical College of Wisconsin, Wauwatosa, Wisconsin
- Research Service, Department of Veterans Affairs, Zablocki VAMC, Milwaukee, Wisconsin
| |
Collapse
|
13
|
Zalesak-Kravec S, Huang W, Wang P, Yu J, Liu T, Defnet AE, Moise AR, Farese AM, MacVittie TJ, Kane MA. Multi-omic Analysis of Non-human Primate Heart after Partial-body Radiation with Minimal Bone Marrow Sparing. HEALTH PHYSICS 2021; 121:352-371. [PMID: 34546217 PMCID: PMC8554778 DOI: 10.1097/hp.0000000000001478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
ABSTRACT High-dose radiation exposure results in hematopoietic and gastrointestinal acute radiation syndromes followed by delayed effects of acute radiation exposure, which encompasses multiple organs, including heart, kidney, and lung. Here we sought to further characterize the natural history of radiation-induced heart injury via determination of differential protein and metabolite expression in the heart. We quantitatively profiled the proteome and metabolome of left and right ventricle from non-human primates following 12 Gy partial body irradiation with 2.5% bone marrow sparing over a time period of 3 wk. Global proteome profiling identified more than 2,200 unique proteins, with 220 and 286 in the left and right ventricles, respectively, showing significant responses across at least three time points compared to baseline levels. High-throughput targeted metabolomics analyzed a total of 229 metabolites and metabolite combinations, with 18 and 22 in the left and right ventricles, respectively, showing significant responses compared to baseline levels. Bioinformatic analysis performed on metabolomic and proteomic data revealed pathways related to inflammation, energy metabolism, and myocardial remodeling were dysregulated. Additionally, we observed dysregulation of the retinoid homeostasis pathway, including significant post-radiation decreases in retinoic acid, an active metabolite of vitamin A. Significant differences between left and right ventricles in the pathology of radiation-induced injury were identified. This multi-omic study characterizes the natural history and molecular mechanisms of radiation-induced heart injury in NHP exposed to PBI with minimal bone marrow sparing.
Collapse
Affiliation(s)
- Stephanie Zalesak-Kravec
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Weiliang Huang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Pengcheng Wang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Jianshi Yu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Tian Liu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Amy E. Defnet
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Alexander R. Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON, Canada; Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| |
Collapse
|
14
|
Aqeel M, Medhora M, Gore E, Borkenhagen J, Klawikowski S, Eastwood D, Banerjee A, Jacobs ER. Evaluation of Radiation-induced Pleural Effusions after Radiotherapy to Support Development of Animal Models of Radiation Pneumonitis. HEALTH PHYSICS 2021; 121:434-443. [PMID: 34546223 PMCID: PMC8500166 DOI: 10.1097/hp.0000000000001462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
ABSTRACT Not all animal models develop radiation-induced pleural effusions (RIPEs) as a form of radiation-induced lung injury (RILI). Such effusions are also not well characterized in humans. The purpose of this study is to identify occurrences of RIPE in humans, provide justification for development of relevant animal models, and further characterize its risk factors in cancer patients. We also aim to identify dose thresholds for cardiopulmonary toxicity in humans to shed light on possible pathogenic mechanisms for RIPEs. We carried out a retrospective review of medical records of 96 cancer patients receiving thoracic irradiation (TRT) at our institution. Fifty-three (53%) patients developed a new pleural effusion post TRT; 18 (19%) had RIPE; and 67% developed RIPE ipsilateral to the site irradiated. None developed "contralateral only" effusions. Median time to development was 6 mo (IQR; 4-8 mo). Of 18, 8 patients (44%) had concomitant asymptomatic (radiographic only) or symptomatic radiation pneumonitis and pericardial effusion. Dosimetric factors, including combined and ipsilateral mean lung dose (MLD), were significantly associated with increased risk of RIPE. Angiotensin converting enzyme inhibition, steroids, or concurrent chemotherapy did not modify incidence of RIPE. Our results substantiate the occurrence and incidence of RIPEs in humans. In cancer patients, a median time to development of effusions around 6 mo also supports the onset of RIPEs concurrent with radiation pneumonitis. Future work needs to include large populations of cancer survivors in whom delayed RIPEs can be tracked and correlated with cardiovascular changes in the context of injury to multiple organs.
Collapse
Affiliation(s)
- Masooma Aqeel
- Current Affiliation: Section of Pulmonary & Critical
Care Medicine, Department of Medicine, Aga Khan University, Karachi, Pakistan.
Formerly at Division of Pulmonary Medicine, Department of Medicine, Froedtert
Hospital & Medical College of Wisconsin, Milwaukee, WI, United States
| | - Meetha Medhora
- Division of Pulmonary Medicine, Department of Medicine,
Froedtert Hospital & Medical College of Wisconsin, Milwaukee, WI, United
States
- Department of Radiation Oncology, Froedtert Hospital &
Medical College of Wisconsin, Milwaukee, WI, United States
- Research Service, Department of Veteran’s Affairs,
Clement J. Zablocki VA Medical Center, Milwaukee, WI, United States
| | - Elizabeth Gore
- Department of Radiation Oncology, Froedtert Hospital &
Medical College of Wisconsin, Milwaukee, WI, United States
- Research Service, Department of Veteran’s Affairs,
Clement J. Zablocki VA Medical Center, Milwaukee, WI, United States
| | - Jenna Borkenhagen
- Department of Radiation Oncology, Froedtert Hospital &
Medical College of Wisconsin, Milwaukee, WI, United States
| | - Slade Klawikowski
- Department of Radiation Oncology, Froedtert Hospital &
Medical College of Wisconsin, Milwaukee, WI, United States
| | - Daniel Eastwood
- Department of Biostatistics, Medical College of Wisconsin,
Milwaukee, WI, United States
| | - Anjishnu Banerjee
- Department of Biostatistics, Medical College of Wisconsin,
Milwaukee, WI, United States
| | - Elizabeth R. Jacobs
- Division of Pulmonary Medicine, Department of Medicine,
Froedtert Hospital & Medical College of Wisconsin, Milwaukee, WI, United
States
- Research Service, Department of Veteran’s Affairs,
Clement J. Zablocki VA Medical Center, Milwaukee, WI, United States
| |
Collapse
|
15
|
Mehrvar S, Mostaghimi S, Camara AKS, Foomani FH, Narayanan J, Fish B, Medhora M, Ranji M. Three-dimensional vascular and metabolic imaging using inverted autofluorescence. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210064R. [PMID: 34240589 PMCID: PMC8265174 DOI: 10.1117/1.jbo.26.7.076002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/15/2021] [Indexed: 05/27/2023]
Abstract
SIGNIFICANCE Three-dimensional (3D) vascular and metabolic imaging (VMI) of whole organs in rodents provides critical and important (patho)physiological information in studying animal models of vascular network. AIM Autofluorescence metabolic imaging has been used to evaluate mitochondrial metabolites such as nicotinamide adenine dinucleotide (NADH) and flavine adenine dinucleotide (FAD). Leveraging these autofluorescence images of whole organs of rodents, we have developed a 3D vascular segmentation technique to delineate the anatomy of the vasculature as well as mitochondrial metabolic distribution. APPROACH By measuring fluorescence from naturally occurring mitochondrial metabolites combined with light-absorbing properties of hemoglobin, we detected the 3D structure of the vascular tree of rodent lungs, kidneys, hearts, and livers using VMI. For lung VMI, an exogenous fluorescent dye was injected into the trachea for inflation and to separate the airways, confirming no overlap between the segmented vessels and airways. RESULTS The kidney vasculature from genetically engineered rats expressing endothelial-specific red fluorescent protein TdTomato confirmed a significant overlap with VMI. This approach abided by the "minimum work" hypothesis of the vascular network fitting to Murray's law. Finally, the vascular segmentation approach confirmed the vascular regression in rats, induced by ionizing radiation. CONCLUSIONS Simultaneous vascular and metabolic information extracted from the VMI provides quantitative diagnostic markers without the confounding effects of vascular stains, fillers, or contrast agents.
Collapse
Affiliation(s)
- Shima Mehrvar
- University of Wisconsin–Milwaukee, Biophotonics Laboratory, Department of Electrical Engineering, Milwaukee, Wisconsin, United States
| | - Soudeh Mostaghimi
- University of Wisconsin–Milwaukee, Biophotonics Laboratory, Department of Electrical Engineering, Milwaukee, Wisconsin, United States
| | - Amadou K. S. Camara
- Medical College of Wisconsin, Department of Physiology, Milwaukee, Wisconsin, United States
- Medical College of Wisconsin, Cardiovascular Research Center, Department of Anesthesiology, Milwaukee, Wisconsin, United States
| | - Farnaz H. Foomani
- University of Wisconsin–Milwaukee, Biophotonics Laboratory, Department of Electrical Engineering, Milwaukee, Wisconsin, United States
| | - Jayashree Narayanan
- Medical College of Wisconsin, Department of Physiology, Milwaukee, Wisconsin, United States
- Medical College of Wisconsin, Cardiovascular Research Center, Department of Radiation Oncology, Milwaukee, Wisconsin, United States
| | - Brian Fish
- Medical College of Wisconsin, Department of Physiology, Milwaukee, Wisconsin, United States
- Medical College of Wisconsin, Cardiovascular Research Center, Department of Radiation Oncology, Milwaukee, Wisconsin, United States
| | - Meetha Medhora
- Medical College of Wisconsin, Department of Physiology, Milwaukee, Wisconsin, United States
- Medical College of Wisconsin, Cardiovascular Research Center, Department of Radiation Oncology, Milwaukee, Wisconsin, United States
| | - Mahsa Ranji
- Florida Atlantic University, Department of Computer and Electrical Engineering and Computer Science, Boca Raton, Florida, United States
| |
Collapse
|
16
|
Medhora M, Phadnis P, Narayanan J, Gasperetti T, Zielonka J, Moulder JE, Fish BL, Szabo A. Radiation Increases Bioavailability of Lisinopril, a Mitigator of Radiation-Induced Toxicities. Front Pharmacol 2021; 12:646076. [PMID: 33986677 PMCID: PMC8111401 DOI: 10.3389/fphar.2021.646076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/24/2021] [Indexed: 11/25/2022] Open
Abstract
There are no FDA-approved drugs to mitigate the delayed effects of radiation exposure that may occur after a radiological attack or nuclear accident. To date, angiotensin-converting enzyme inhibitors are one of the most successful candidates for mitigation of hematopoietic, lung, kidney, and brain injuries in rodent models and may mitigate delayed radiation injuries after radiotherapy. Rat models of partial body irradiation sparing part of one hind leg (leg-out PBI) have been developed to simultaneously expose multiple organs to high doses of ionizing radiation and avoid lethal hematological toxicity to study the late effects of radiation. Exposures between 9 and 14 Gy damage the gut and bone marrow (acute radiation syndrome), followed by delayed injuries to the lung, heart, and kidney. The goal of the current study is to compare the pharmacokinetics (PK) of a lead angiotensin converting enzyme (ACE) inhibitor, lisinopril, in irradiated vs. nonirradiated rats, as a step toward licensure by the FDA. Methods: Female WAG/RijCmcr rats were irradiated with 12.5–13 Gy leg-out PBI. At day 35 after irradiation, during a latent period for injury, irradiated and nonirradiated siblings received a single gavage (0.3 mg, 0.6 mg) or intravenous injection (0.06 mg) of lisinopril. Plasma, urine, lung, liver and kidney levels of lisinopril were measured at different times. PK modeling (R package) was performed to track distribution of lisinopril in different compartments. Results: A two-compartment (central plasma and periphery) PK model best fit lisinopril measurements, with two additional components, the gavage and urine. The absorption and renal clearance rates were similar between nonirradiated and irradiated animals (respectively: ratios 0.883, p = 0.527; 0.943, p = 0.605). Inter-compartmental clearance (from plasma to periphery) for the irradiated rats was lower than for the nonirradiated rats (ratio 0.615, p = 0.003), while the bioavailability of the drug was 33% higher (ratio = 1.326, p < 0.001). Interpretation: Since receptors for lisinopril are present in endothelial cells lining blood vessels, and radiation induces vascular regression, it is possible that less lisinopril remains bound in irradiated rats, increasing circulating levels of the drug. However, this study cannot rule out changes in total amount of lisinopril absorbed or excreted long-term, after irradiation in rats.
Collapse
Affiliation(s)
- Meetha Medhora
- Department of Radiation Oncology, Medical College of WI, Milwaukee, WI, United States.,Department of Medicine, Medical College of WI, Milwaukee, WI, United States.,Department of Physiology, Medical College of WI, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of WI, Milwaukee, WI, United States.,Research Service, Department of Veterans Affairs, Zablocki VAMC, Milwaukee, WI, United States
| | | | - Jayashree Narayanan
- Department of Radiation Oncology, Medical College of WI, Milwaukee, WI, United States
| | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of WI, Milwaukee, WI, United States
| | - Jacek Zielonka
- Department of Biophysics, Medical College of WI, Milwaukee, WI, United States.,Cancer Center Redox and Bioenergetics Shared Resource, Medical College of WI, Milwaukee, WI, United States
| | - John E Moulder
- Department of Radiation Oncology, Medical College of WI, Milwaukee, WI, United States
| | - Brian L Fish
- Department of Radiation Oncology, Medical College of WI, Milwaukee, WI, United States
| | - Aniko Szabo
- Institute for Health and Equity, Division of Biostatistics, Medical College of WI, Milwaukee, WI, United States
| |
Collapse
|
17
|
Miwa H, Sakao S, Sanada TJ, Suzuki H, Hata A, Shiina Y, Kobayashi T, Kato F, Nishimura R, Tanabe N, Voelkel N, Yoshino I, Tatsumi K. Cell Tracking Suggests Pathophysiological and Therapeutic Role of Bone Marrow Cells in Sugen5416/Hypoxia Rat Model of Pulmonary Arterial Hypertension. Can J Cardiol 2021; 37:913-923. [PMID: 33609715 DOI: 10.1016/j.cjca.2021.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The mechanism of vascular remodelling in pulmonary arterial hypertension (PAH) remains unclear. Hence, defining the origin of cells constituting intractable vascular lesions in PAH is expected to facilitate therapeutic progress. Herein, we aimed to evaluate the origin of intractable vascular lesions in PAH rodent models via bone marrow (BM) and orthotopic lung transplantation (LT). METHODS To trace BM-derived cells, we prepared chimeric rats transplanted with BM cells from green fluorescent protein (GFP) transgenic rats. Male rats were transplanted with lungs obtained from female rats and vice versa. Pulmonary hypertension was induced in the transplanted rats via Sugen5416 treatment and subsequent chronic hypoxia (Su/Hx). RESULTS In the chimeric Su/Hx models, GFP-positive cells were observed in the pulmonary vascular area. Moreover, the right ventricular systolic pressure was significantly lower compared with wild-type Su/Hx rats without BM transplantation (P = 0.009). PAH suppression was also observed in rats that received allograft transplanted BM transplantation. In male rats that received LT and Su/Hx, BM-derived cells carrying the Y chromosome were also detected in neointimal occlusive lesions of the transplanted lungs received from female rats. CONCLUSIONS BM-derived cells participate in pulmonary vascular remodelling in the Su/Hx rat model, whereas BM transplantation may contribute to suppression of development of PAH.
Collapse
Affiliation(s)
- Hideki Miwa
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Seiichiro Sakao
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Takayuki Jujo Sanada
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hidemi Suzuki
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Hata
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuki Shiina
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takayuki Kobayashi
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Fumiaki Kato
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Rintaro Nishimura
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Nobuhiro Tanabe
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Norbert Voelkel
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Ichiro Yoshino
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
18
|
Jagtap J, Audi S, Razeghi-Kondelaji MH, Fish BL, Hansen C, Narayan J, Gao F, Sharma G, Parchur AK, Banerjee A, Bergom C, Medhora M, Joshi A. A rapid dynamic in vivo near-infrared fluorescence imaging assay to track lung vascular permeability after acute radiation injury. Am J Physiol Lung Cell Mol Physiol 2021; 320:L436-L450. [PMID: 33404364 DOI: 10.1152/ajplung.00066.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
To develop a dynamic in vivo near-infrared (NIR) fluorescence imaging assay to quantify sequential changes in lung vascular permeability-surface area product (PS) in rodents. Dynamic NIR imaging methods for determining lung vascular permeability-surface area product were developed and tested on non-irradiated and 13 Gy irradiated rats with/without treatment with lisinopril, a radiation mitigator. A physiologically-based pharmacokinetic (PBPK) model of indocyanine green (ICG) pulmonary disposition was applied to in vivo imaging data and PS was estimated. In vivo results were validated by five accepted assays: ex vivo perfused lung imaging, endothelial filtration coefficient (Kf) measurement, pulmonary vascular resistance measurement, Evan's blue dye uptake, and histopathology. A PBPK model-derived measure of lung vascular permeability-surface area product increased from 2.60 ± 0.40 [CL: 2.42-2.78] mL/min in the non-irradiated group to 6.94 ± 8.25 [CL: 3.56-10.31] mL/min in 13 Gy group after 42 days. Lisinopril treatment lowered PS in the 13 Gy group to 4.76 ± 6.17 [CL: 2.12-7.40] mL/min. A much higher up to 5× change in PS values was observed in rats exhibiting severe radiation injury. Ex vivo Kf (mL/min/cm H2O/g dry lung weight), a measure of pulmonary vascular permeability, showed similar trends in lungs of irradiated rats (0.164 ± 0.081 [CL: 0.11-0.22]) as compared to non-irradiated controls (0.022 ± 0.003 [CL: 0.019-0.025]), with reduction to 0.070 ± 0.035 [CL: 0.045-0.096] for irradiated rats treated with lisinopril. Similar trends were observed for ex vivo pulmonary vascular resistance, Evan's blue uptake, and histopathology. Our results suggest that whole body dynamic NIR fluorescence imaging can replace current assays, which are all terminal. The imaging accurately tracks changes in PS and changes in lung interstitial transport in vivo in response to radiation injury.
Collapse
Affiliation(s)
- Jaidip Jagtap
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Said Audi
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin
| | | | - Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Christopher Hansen
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jayashree Narayan
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Feng Gao
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Gayatri Sharma
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Abdul K Parchur
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anjishnu Banerjee
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Carmen Bergom
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pulmonary Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Amit Joshi
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
19
|
Beach TA, Groves AM, Williams JP, Finkelstein JN. Modeling radiation-induced lung injury: lessons learned from whole thorax irradiation. Int J Radiat Biol 2020; 96:129-144. [PMID: 30359147 PMCID: PMC6483900 DOI: 10.1080/09553002.2018.1532619] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/25/2022]
Abstract
Models of thoracic irradiation have been developed as clinicians and scientists have attempted to decipher the events that led up to the pulmonary toxicity seen in human subjects following radiation treatment. The most common model is that of whole thorax irradiation (WTI), applied in a single dose. Mice, particularly the C57BL/6J strain, has been frequently used in these investigations, and has greatly informed our current understanding of the initiation and progression of radiation-induced lung injury (RILI). In this review, we highlight the sequential progression and dynamic nature of RILI, focusing primarily on the vast array of information that has been gleaned from the murine model. Ample evidence indicates a wide array of biological responses that can be seen following irradiation, including DNA damage, oxidative stress, cellular senescence and inflammation, all triggered by the initial exposure to ionizing radiation (IR) and heterogeneously maintained throughout the temporal progression of injury, which manifests as acute pneumonitis and later fibrosis. It appears that the early responses of specific cell types may promote further injury, disrupting the microenvironment and preventing a return to homeostasis, although the exact mechanisms driving these responses remains somewhat unclear. Attempts to either prevent or treat RILI in preclinical models have shown some success by targeting these disparate radiobiological processes. As our understanding of the dynamic cellular responses to radiation improves through the use of such models, so does the likelihood of preventing or treating RILI.
Collapse
Affiliation(s)
- Tyler A. Beach
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642
- These authors contributed equally to this publication
| | - Angela M. Groves
- Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
- These authors contributed equally to this publication
| | - Jacqueline P. Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY 14642
| | - Jacob N. Finkelstein
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642
- Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| |
Collapse
|
20
|
Gao Y, Li X, Gao J, Zhang Z, Feng Y, Nie J, Zhu W, Zhang S, Cao J. Metabolomic Analysis of Radiation-Induced Lung Injury in Rats: The Potential Radioprotective Role of Taurine. Dose Response 2019; 17:1559325819883479. [PMID: 31700502 PMCID: PMC6823985 DOI: 10.1177/1559325819883479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022] Open
Abstract
Radiation-induced lung injury is a major dose-limiting toxicity that occurs due to thoracic radiotherapy. Metabolomics is a powerful quantitative measurement of low-molecular-weight metabolites in response to environmental disturbances. However, the metabolomic profiles of radiation-induced lung injury have not been reported yet. In this study, male Sprague-Dawley rats were subjected to a single dose of 10 or 20 Gy irradiation to the right lung. One week after radiation, the obvious morphological alteration of lung tissues after radiation was observed by hematoxylin and eosin staining through a transmission electron microscope. We then analyzed the metabolites and related pathways of radiation-induced lung injury by gas chromatography-mass spectrometry, and a total of 453 metabolites were identified. Compared to the nonirradiated left lung, 19 metabolites (8 upregulated and 11 downregulated) showed a significant difference in 10 Gy irradiated lung tissues, including mucic acid, methyl-β-d-galactopyranoside, quinoline-4-carboxylic acid, and pyridoxine. There were 31 differential metabolites (16 upregulated and 15 downregulated) between 20 Gy irradiated and nonirradiated lung tissues, including taurine, piperine, 1,2,4-benzenetriol, and lactamide. The Kyoto Encyclopedia of Genes and Genomes-based pathway analysis enriched 32 metabolic pathways between the irradiated and nonirradiated lung tissues, including pyrimidine metabolism, ATP-binding cassette transporters, aminoacyl-tRNA biosynthesis, and β-alanine metabolism. Among the dysregulated metabolites, we found that taurine promoted clonogenic survival and reduced radiation-induced necrosis in human embryonic lung fibroblast (HELF) cells. This study provides evidence indicating that radiation induces metabolic alterations of the lung. These findings significantly advance our understanding of the pathophysiology of radiation-induced lung injury from the perspective of metabolism.
Collapse
Affiliation(s)
- Yiying Gao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- Sichuan Center for Disease Control and Prevention, Sichuan, China
| | - Xugang Li
- Anshan Cancer Hospital, Anshan, China
| | | | | | - Yang Feng
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jihua Nie
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Wei Zhu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Shuyu Zhang
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
- The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
| | - Jianping Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
21
|
Jacobs ER, Narayanan J, Fish BL, Gao F, Harmann LM, Bergom C, Gasperetti T, Strande JL, Medhora M. Cardiac Remodeling and Reversible Pulmonary Hypertension During Pneumonitis in Rats after 13-Gy Partial-Body Irradiation with Minimal Bone Marrow Sparing: Effect of Lisinopril. HEALTH PHYSICS 2019; 116:558-565. [PMID: 30624347 PMCID: PMC6384144 DOI: 10.1097/hp.0000000000000919] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Total-body irradiation causes acute and delayed toxicity to hematopoietic, pulmonary, cardiac, gastrointestinal, renal, and other organ systems. Angiotensin-converting enzyme inhibitors mitigate many of the delayed injuries to these systems. The purpose of this study was to define echocardiographic features in rats at two times after irradiation, the first before lethal radiation pneumonitis (50 d) and the second after recovery from pneumonitis but before lethal radiation nephropathy (100 d), and to determine the actions of the angiotensin-converting enzyme inhibitor lisinopril. Four groups of female WAG/RijCmcr rats at 11-12 wk of age were studied: nonirradiated, nonirradiated plus lisinopril, 13-Gy partial-body irradiation sparing one hind leg (leg-out partial-body irradiation), and 13-Gy leg-out partial-body irradiation plus lisinopril. Lisinopril was started 7 d after radiation. Echocardiograms were obtained at 50 and 100 d, and cardiac histology was assessed after 100 d. Irradiation without lisinopril demonstrated echocardiographic transient pulmonary hypertension by 50 d which was largely resolved by 100 d in survivors. Irradiated rats given lisinopril showed no increase in pulmonary artery pressures at 50 d but exhibited left ventricular remodeling. By 100 d these rats showed some signs of pulmonary hypertension. Lisinopril alone had no impact on echocardiographic end points at either time point in nonirradiated rats. Mild increases in mast cells and fibrosis in the heart were observed after 100 d following 13-Gy leg-out partial-body irradiation. These data demonstrate irradiation-induced pulmonary hypertension which was reversed in survivors of pneumonitis. Lisinopril modified cardiovascular remodeling to enhance survival in this model from 41% to 86% (p = 0.0013).
Collapse
Affiliation(s)
- Elizabeth R. Jacobs
- Department of Pulmonary Medicine, Zablocki VAMC, Milwaukee
- Department of Physiology, Zablocki VAMC, Milwaukee
- Cardiovascular Center, Medical College of Wisconsin, Zablocki VAMC, Milwaukee
- Research Service, Department of Veterans Affairs, Zablocki VAMC, Milwaukee
| | | | - Brian L. Fish
- Department of Radiation Oncology, Zablocki VAMC, Milwaukee
| | - Feng Gao
- Department of Radiation Oncology, Zablocki VAMC, Milwaukee
| | - Leanne M. Harmann
- Department of Cardiology, Zablocki VAMC, Milwaukee
- Cardiovascular Center, Medical College of Wisconsin, Zablocki VAMC, Milwaukee
| | - Carmen Bergom
- Department of Radiation Oncology, Zablocki VAMC, Milwaukee
| | | | - Jennifer L. Strande
- Department of Cardiology, Zablocki VAMC, Milwaukee
- Cardiovascular Center, Medical College of Wisconsin, Zablocki VAMC, Milwaukee
| | - Meetha Medhora
- Department of Radiation Oncology, Zablocki VAMC, Milwaukee
- Department of Pulmonary Medicine, Zablocki VAMC, Milwaukee
- Department of Physiology, Zablocki VAMC, Milwaukee
- Cardiovascular Center, Medical College of Wisconsin, Zablocki VAMC, Milwaukee
- Research Service, Department of Veterans Affairs, Zablocki VAMC, Milwaukee
| |
Collapse
|
22
|
Fish BL, MacVittie TJ, Szabo A, Moulder JE, Medhora M. WAG/RijCmcr rat models for injuries to multiple organs by single high dose ionizing radiation: similarities to nonhuman primates (NHP). Int J Radiat Biol 2019; 96:81-92. [PMID: 30575429 DOI: 10.1080/09553002.2018.1554921] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Purpose: Defined animal models are needed to pursue the FDA Animal Rule for approval of medical countermeasure for radiation injuries. This study compares WAG/RijCmcr rat and nonhuman primate (NHP) models for acute radiation syndrome (ARS) and delayed effects of acute radiation exposure (DEARE).Materials and methods: Irradiation models include total body irradiation, partial body irradiation with bone marrow sparing and whole thorax lung irradiations. Organ-specific sequelae of radiation injuries were compared using dose-response relationships.Results and conclusions: Rats and NHP manifest similar organ dysfunctions after radiation, starting with acute gastrointestinal (GI-ARS) and hematopoietic (H-ARS) syndromes followed by lung, heart and kidney toxicities. Humans also manifest these sequelae. Latencies for injury were earlier in rats than in NHP. After whole thorax lung irradiations (WTLI) up to 13 Gy, there was recovery of lung function from pneumonitis in rats. This has not been evaluated in NHP. The latency, incidence, severity and progression of radiation pneumonitis was not influenced by early multi-organ injury from ARS in rats or NHP. Rats developed more severe radiation nephropathy than NHP, and also progressed more rapidly. Dosimetry, anesthesia, environment, supportive care, euthanasia criteria etc., may account for the alterations in radiation sensitivity observed between species.
Collapse
Affiliation(s)
- Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA.,Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| | - Thomas J MacVittie
- Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD, USA.,Charles River Laboratories, Durham, NC, USA
| | - Aniko Szabo
- Division of Biostatistics, Medical College of Wisconsin (MCW), Milwaukee, WI, USA
| | - John E Moulder
- Department of Radiation Oncology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA.,Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA.,Department of Pulmonary Medicine, Medical College of Wisconsin (MCW), Milwaukee, WI, USA.,Department of Physiology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA.,Cardiovascular Research Center, Medical College of Wisconsin (MCW), Milwaukee, WI, USA.,Cancer Center, Medical College of Wisconsin (MCW), Milwaukee, WI, USA
| |
Collapse
|
23
|
Zhou C, Moustafa MR, Cao L, Kriegsmann M, Winter M, Schwager C, Jones B, Wang S, Bäuerle T, Zhou PK, Schnölzer M, Weichert W, Debus J, Abdollahi A. Modeling and multiscale characterization of the quantitative imaging based fibrosis index reveals pathophysiological, transcriptome and proteomic correlates of lung fibrosis induced by fractionated irradiation. Int J Cancer 2019; 144:3160-3173. [PMID: 30536712 PMCID: PMC6590477 DOI: 10.1002/ijc.32059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 12/24/2022]
Abstract
Pulmonary fibrosis represents a leading cause of morbidity and mortality worldwide. Therapy induced lung fibrosis constitutes a pivotal dose‐limiting side effect of radiotherapy and other anticancer agents. We aimed to develop objective criteria for assessment of fibrosis and discover pathophysiological and molecular correlates of lung fibrosis as a function of fractionated whole thoracic irradiation. Dose–response series of fractionated irradiation was utilized to develop a non‐invasive and quantitative measure for the degree of fibrosis – the fibrosis index (FI). The correlation of FI with histopathology, blood‐gas, transcriptome and proteome responses of the lung tissue was analyzed. Macrophages infiltration and polarization was assessed by immunohistochemistry. Fibrosis development followed a slow kinetic with maximum lung fibrosis levels detected at 24‐week post radiation insult. FI favorably correlated with radiation dose and surrogates of lung fibrosis i.e., enhanced pro‐inflammatory response, tissue remodeling and extracellular matrix deposition. The loss of lung architecture correlated with decreased epithelial marker, loss of microvascular integrity with decreased endothelial and elevated mesenchymal markers. Lung fibrosis was further attributed to a switch of the inflammatory state toward a macrophage/T‐helper cell type 2‐like (M2/Th2) polarized phenotype. Together, the multiscale characterization of FI in radiation‐induced lung fibrosis (RILF) model identified pathophysiological, transcriptional and proteomic correlates of fibrosis. Pathological immune response and endothelial/epithelial to mesenchymal transition were discovered as critical events governing lung tissue remodeling. FI will be instrumental for deciphering the molecular mechanisms governing lung fibrosis and discovery of novel targets for treatment of this devastating disease with an unmet medical need. What's new? The development of fibrosis scar tissue in the lungs is a dose‐limiting effect of radiotherapy for thoracic malignancies. Molecular mechanisms driving radiation‐induced lung fibrosis (RILF), however, remain unclear. In this study, a fibrosis index (FI) was devised to quantitatively detect spatial and temporal kinetics of lung fibrosis development. Multi‐scale characterization of FI uncovered mechanisms governing lung fibrosis, including perturbation of immune balance and microvascular integrity. Radiation dose and FI were correlated with an inflammatory switch toward a macrophage/T‐helper cell type 2‐like polarized phenotype. The findings open the way for further mechanistic study and the discovery of therapeutic targets for RILF.
Collapse
Affiliation(s)
- Cheng Zhou
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation research in Oncology (NCRO), Heidelberg, Germany.,Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mahmoud R Moustafa
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation research in Oncology (NCRO), Heidelberg, Germany.,Department of Clinical Pathology, Suez Canal University, Ismailia, Egypt
| | - Liji Cao
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark Kriegsmann
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Winter
- Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation research in Oncology (NCRO), Heidelberg, Germany.,Department of Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Schwager
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation research in Oncology (NCRO), Heidelberg, Germany
| | - Bleddyn Jones
- Gray Laboratory, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Shijun Wang
- Department of Pediatric Nephrology, Gastroenterology & Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Tobias Bäuerle
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Ping-Kun Zhou
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Martina Schnölzer
- Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation research in Oncology (NCRO), Heidelberg, Germany.,Department of Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University of Munich (TUM), Munich, Germany
| | - Juergen Debus
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation research in Oncology (NCRO), Heidelberg, Germany
| | - Amir Abdollahi
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation research in Oncology (NCRO), Heidelberg, Germany
| |
Collapse
|
24
|
Zanette B, Stirrat E, Jelveh S, Hope A, Santyr G. Physiological gas exchange mapping of hyperpolarized 129
Xe using spiral-IDEAL and MOXE in a model of regional radiation-induced lung injury. Med Phys 2018; 45:803-816. [DOI: 10.1002/mp.12730] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022] Open
Affiliation(s)
- Brandon Zanette
- Department of Medical Biophysics; University of Toronto, Toronto; 101 College St Toronto ON M5G1L7 Canada
- Translational Medicine Program; Peter Gilgan Centre for Research and Learning; The Hospital for Sick Children; 686 Bay St Toronto ON M5G0A4 Canada
| | - Elaine Stirrat
- Translational Medicine Program; Peter Gilgan Centre for Research and Learning; The Hospital for Sick Children; 686 Bay St Toronto ON M5G0A4 Canada
| | - Salomeh Jelveh
- Radiation Medicine Program; Princess Margaret Cancer Centre; 610 University Ave Toronto ON M5G2M9 Canada
| | - Andrew Hope
- Radiation Medicine Program; Princess Margaret Cancer Centre; 610 University Ave Toronto ON M5G2M9 Canada
- Department of Radiation Oncology; University of Toronto; 149 College St Toronto ON M5T1P5 Canada
| | - Giles Santyr
- Department of Medical Biophysics; University of Toronto, Toronto; 101 College St Toronto ON M5G1L7 Canada
- Translational Medicine Program; Peter Gilgan Centre for Research and Learning; The Hospital for Sick Children; 686 Bay St Toronto ON M5G0A4 Canada
| |
Collapse
|
25
|
Yamagishi T, Kodaka N, Kurose Y, Watanabe K, Nakano C, Kishimoto K, Oshio T, Niitsuma K, Matsuse H. Analysis of predictive parameters for the development of radiation-induced pneumonitis. Ann Thorac Med 2017; 12:252-258. [PMID: 29118857 PMCID: PMC5656943 DOI: 10.4103/atm.atm_355_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
INTRODUCTION: Prevention and effective treatment of radiation-induced pneumonitis (RP) could facilitate greater use of radiation therapy (RT) for lung cancer. The purpose of this study was to determine clinical parameters useful for early prediction of RP. METHODS: Blood sampling, pulmonary function testing, chest computed tomography, and bronchoalveolar lavage (BAL) were performed in patients with pathologically confirmed lung cancer who had completed ≥60 Gy of RT, at baseline, shortly after RT, and at 1 month posttreatment. RESULTS: By 3 months post-RT, 11 patients developed RP (RP group) and the remaining 11 patients did not (NRP group). RT significantly increased total cell counts and alveolar macrophages in BAL of the NRP group, whereas lymphocyte count was increased in both groups. Matrix metallopeptidase-9 (MMP-9) increased and vascular endothelial growth factor decreased significantly in the BAL fluid (BALF) of the RP group following RT. Serum surfactant protein D (SP-D) increased significantly in the NRP group. SP-D in BALF from the RP group increased significantly with a subsequent increase in serum SP-D. Pulmonary dilution decreased similarly in both groups of patients. CONCLUSIONS: Increased SP-D in BALF, rather than that in serum, could be useful biomarkers in predicting RP. The MMP-9 in BALF might play a role in the pathogenesis of RP. Pulmonary dilution test may not be predictive of the development of RP.
Collapse
Affiliation(s)
- Toru Yamagishi
- Department of Internal Medicine, Division of Respiratory Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Norio Kodaka
- Department of Internal Medicine, Division of Respiratory Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Yoshiyuki Kurose
- Department of Internal Medicine, Division of Respiratory Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Kayo Watanabe
- Department of Internal Medicine, Division of Respiratory Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Chihiro Nakano
- Department of Internal Medicine, Division of Respiratory Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Kumiko Kishimoto
- Department of Internal Medicine, Division of Respiratory Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Takeshi Oshio
- Department of Internal Medicine, Division of Respiratory Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Kumiko Niitsuma
- Department of Internal Medicine, Division of Respiratory Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Hiroto Matsuse
- Department of Internal Medicine, Division of Respiratory Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| |
Collapse
|
26
|
Wirsdörfer F, Jendrossek V. Modeling DNA damage-induced pneumopathy in mice: insight from danger signaling cascades. Radiat Oncol 2017; 12:142. [PMID: 28836991 PMCID: PMC5571607 DOI: 10.1186/s13014-017-0865-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/07/2017] [Indexed: 02/08/2023] Open
Abstract
Radiation-induced pneumonitis and fibrosis represent severe and dose-limiting side effects in the radiotherapy of thorax-associated neoplasms leading to decreased quality of life or - as a consequence of treatment with suboptimal radiation doses - to fatal outcomes by local recurrence or metastatic disease. It is assumed that the initial radiation-induced damage to the resident cells triggers a multifaceted damage-signalling cascade in irradiated normal tissues including a multifactorial secretory program. The resulting pro-inflammatory and pro-angiogenic microenvironment triggers a cascade of events that can lead within weeks to a pronounced lung inflammation (pneumonitis) or after months to excessive deposition of extracellular matrix molecules and tissue scarring (pulmonary fibrosis).The use of preclinical in vivo models of DNA damage-induced pneumopathy in genetically modified mice has helped to substantially advance our understanding of molecular mechanisms and signalling molecules that participate in the pathogenesis of radiation-induced adverse late effects in the lung. Herein, murine models of whole thorax irradiation or hemithorax irradiation nicely reproduce the pathogenesis of the human disease with respect to the time course and the clinical symptoms. Alternatively, treatment with the radiomimetic DNA damaging chemotherapeutic drug Bleomycin (BLM) has frequently been used as a surrogate model of radiation-induced lung disease. The advantage of the BLM model is that the symptoms of pneumonitis and fibrosis develop within 1 month.Here we summarize and discuss published data about the role of danger signalling in the response of the lung tissue to DNA damage and its cross-talk with the innate and adaptive immune systems obtained in preclinical studies using immune-deficient inbred mouse strains and genetically modified mice. Interestingly we observed differences in the role of molecules involved in damage sensing (TOLL-like receptors), damage signalling (MyD88) and immune regulation (cytokines, CD73, lymphocytes) for the pathogenesis and progression of DNA damage-induced pneumopathy between the models of pneumopathy induced by whole thorax irradiation or treatment with the radiomimetic drug BLM. These findings underline the importance to pursue studies in the radiation model(s) if we are to unravel the mechanisms driving radiation-induced adverse late effects.A better understanding of the cross-talk of danger perception and signalling with immune activation and repair mechanisms may allow a modulation of these processes to prevent or treat radiation-induced adverse effects. Vice-versa an improved knowledge of the normal tissue response to injury is also particularly important in view of the increasing interest in combining radiotherapy with immune checkpoint blockade or immunotherapies to avoid exacerbation of radiation-induced normal tissue toxicity.
Collapse
Affiliation(s)
- Florian Wirsdörfer
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Virchowstrasse 173, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Virchowstrasse 173, Essen, Germany.
| |
Collapse
|
27
|
Patsalos A, Pap A, Varga T, Trencsenyi G, Contreras GA, Garai I, Papp Z, Dezso B, Pintye E, Nagy L. In situ macrophage phenotypic transition is affected by altered cellular composition prior to acute sterile muscle injury. J Physiol 2017; 595:5815-5842. [PMID: 28714082 DOI: 10.1113/jp274361] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/23/2017] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS The in situ phenotypic switch of macrophages is delayed in acute injury following irradiation. The combination of bone marrow transplantation and local muscle radiation protection allows for the identification of a myeloid cell contribution to tissue repair. PET-MRI allows monitoring of myeloid cell invasion and metabolism. Altered cellular composition prior to acute sterile injury affects the in situ phenotypic transition of invading myeloid cells to repair macrophages. There is reciprocal intercellular communication between local muscle cell compartments, such as PAX7 positive cells, and recruited macrophages during skeletal muscle regeneration. ABSTRACT Skeletal muscle regeneration is a complex interplay between various cell types including invading macrophages. Their recruitment to damaged tissues upon acute sterile injuries is necessary for clearance of necrotic debris and for coordination of tissue regeneration. This highly dynamic process is characterized by an in situ transition of infiltrating monocytes from an inflammatory (Ly6Chigh ) to a repair (Ly6Clow ) macrophage phenotype. The importance of the macrophage phenotypic shift and the cross-talk of the local muscle tissue with the infiltrating macrophages during tissue regeneration upon injury are not fully understood and their study lacks adequate methodology. Here, using an acute sterile skeletal muscle injury model combined with irradiation, bone marrow transplantation and in vivo imaging, we show that preserved muscle integrity and cell composition prior to the injury is necessary for the repair macrophage phenotypic transition and subsequently for proper and complete tissue regeneration. Importantly, by using a model of in vivo ablation of PAX7 positive cells, we show that this radiosensitive skeletal muscle progenitor pool contributes to macrophage phenotypic transition following acute sterile muscle injury. In addition, local muscle tissue radioprotection by lead shielding during irradiation preserves normal macrophage transition dynamics and subsequently muscle tissue regeneration. Taken together, our data suggest the existence of a more extensive and reciprocal cross-talk between muscle tissue compartments, including satellite cells, and infiltrating myeloid cells upon tissue damage. These interactions shape the macrophage in situ phenotypic shift, which is indispensable for normal muscle tissue repair dynamics.
Collapse
Affiliation(s)
- Andreas Patsalos
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | - Attila Pap
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | - Tamas Varga
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | | | - Gerardo Alvarado Contreras
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Zoltan Papp
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balazs Dezso
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eva Pintye
- Department of Radiotherapy, Institute of Oncology, University of Debrecen, Debrecen, Hungary
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4032, Hungary.,MTA-DE 'Lendület' Immunogenomics Research Group, University of Debrecen, Debrecen, Hungary.,Sanford-Burnham-Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, USA
| |
Collapse
|
28
|
Slezak J, Kura B, Babal P, Barancik M, Ferko M, Frimmel K, Kalocayova B, Kukreja RC, Lazou A, Mezesova L, Okruhlicova L, Ravingerova T, Singal PK, Szeiffova Bacova B, Viczenczova C, Vrbjar N, Tribulova N. Potential markers and metabolic processes involved in the mechanism of radiation-induced heart injury. Can J Physiol Pharmacol 2017; 95:1190-1203. [PMID: 28750189 DOI: 10.1139/cjpp-2017-0121] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Irradiation of normal tissues leads to acute increase in reactive oxygen/nitrogen species that serve as intra- and inter-cellular signaling to alter cell and tissue function. In the case of chest irradiation, it can affect the heart, blood vessels, and lungs, with consequent tissue remodelation and adverse side effects and symptoms. This complex process is orchestrated by a large number of interacting molecular signals, including cytokines, chemokines, and growth factors. Inflammation, endothelial cell dysfunction, thrombogenesis, organ dysfunction, and ultimate failing of the heart occur as a pathological entity - "radiation-induced heart disease" (RIHD) that is major source of morbidity and mortality. The purpose of this review is to bring insights into the basic mechanisms of RIHD that may lead to the identification of targets for intervention in the radiotherapy side effect. Studies of authors also provide knowledge about how to select targeted drugs or biological molecules to modify the progression of radiation damage in the heart. New prospective studies are needed to validate that assessed factors and changes are useful as early markers of cardiac damage.
Collapse
Affiliation(s)
- Jan Slezak
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Branislav Kura
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Pavel Babal
- b Institute of Pathology, Medical Faculty of Comenius University, Bratislava, Slovakia
| | - Miroslav Barancik
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Miroslav Ferko
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Karel Frimmel
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Barbora Kalocayova
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Rakesh C Kukreja
- c Division of Cardiology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Antigone Lazou
- d School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Lucia Mezesova
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Ludmila Okruhlicova
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Tanya Ravingerova
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Pawan K Singal
- e University of Manitoba, St. Boniface Research Centre, Winnipeg, MB R2H 2A6, Canada
| | | | - Csilla Viczenczova
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Norbert Vrbjar
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Narcis Tribulova
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| |
Collapse
|
29
|
Klein D, Steens J, Wiesemann A, Schulz F, Kaschani F, Röck K, Yamaguchi M, Wirsdörfer F, Kaiser M, Fischer JW, Stuschke M, Jendrossek V. Mesenchymal Stem Cell Therapy Protects Lungs from Radiation-Induced Endothelial Cell Loss by Restoring Superoxide Dismutase 1 Expression. Antioxid Redox Signal 2017; 26:563-582. [PMID: 27572073 PMCID: PMC5393411 DOI: 10.1089/ars.2016.6748] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS Radiation-induced normal tissue toxicity is closely linked to endothelial cell (EC) damage and dysfunction (acute effects). However, the underlying mechanisms of radiation-induced adverse late effects with respect to the vascular compartment remain elusive, and no causative radioprotective treatment is available to date. RESULTS The importance of injury to EC for radiation-induced late toxicity in lungs after whole thorax irradiation (WTI) was investigated using a mouse model of radiation-induced pneumopathy. We show that WTI induces EC loss as long-term complication, which is accompanied by the development of fibrosis. Adoptive transfer of mesenchymal stem cells (MSCs) either derived from bone marrow or aorta (vascular wall-resident MSCs) in the early phase after irradiation limited the radiation-induced EC loss and fibrosis progression. Furthermore, MSC-derived culture supernatants rescued the radiation-induced reduction in viability and long-term survival of cultured lung EC. We further identified the antioxidant enzyme superoxide dismutase 1 (SOD1) as a MSC-secreted factor. Importantly, MSC treatment restored the radiation-induced reduction of SOD1 levels after WTI. A similar protective effect was achieved by using the SOD-mimetic EUK134, suggesting that MSC-derived SOD1 is involved in the protective action of MSC, presumably through paracrine signaling. INNOVATION In this study, we explored the therapeutic potential of MSC therapy to prevent radiation-induced EC loss (late effect) and identified the protective mechanisms of MSC action. CONCLUSIONS Adoptive transfer of MSCs early after irradiation counteracts radiation-induced vascular damage and EC loss as late adverse effects. The high activity of vascular wall-derived MSCs for radioprotection may be due to their tissue-specific action. Antioxid. Redox Signal. 26, 563-582.
Collapse
Affiliation(s)
- Diana Klein
- 1 Institute of Cell Biology (Cancer Research), University Hospital, University of Duisburg-Essen , Essen, Germany
| | - Jennifer Steens
- 1 Institute of Cell Biology (Cancer Research), University Hospital, University of Duisburg-Essen , Essen, Germany
| | - Alina Wiesemann
- 1 Institute of Cell Biology (Cancer Research), University Hospital, University of Duisburg-Essen , Essen, Germany
| | - Florian Schulz
- 2 Department of Chemical Biology, Faculty of Biology, Center for Medical Biotechnology, University of Duisburg-Essen , Essen, Germany
| | - Farnusch Kaschani
- 2 Department of Chemical Biology, Faculty of Biology, Center for Medical Biotechnology, University of Duisburg-Essen , Essen, Germany
| | - Katharina Röck
- 3 Institute for Pharmacology, University Hospital, Heinrich-Heine-University , Düsseldorf, Germany
| | | | - Florian Wirsdörfer
- 1 Institute of Cell Biology (Cancer Research), University Hospital, University of Duisburg-Essen , Essen, Germany
| | - Markus Kaiser
- 2 Department of Chemical Biology, Faculty of Biology, Center for Medical Biotechnology, University of Duisburg-Essen , Essen, Germany
| | - Jens W Fischer
- 3 Institute for Pharmacology, University Hospital, Heinrich-Heine-University , Düsseldorf, Germany
| | - Martin Stuschke
- 5 Department of Radiotherapy, University of Duisburg-Essen, University Hospital , Essen, Germany
| | - Verena Jendrossek
- 1 Institute of Cell Biology (Cancer Research), University Hospital, University of Duisburg-Essen , Essen, Germany
| |
Collapse
|
30
|
Gao F, Liu P, Narayanan J, Yang M, Fish BL, Liu Y, Liang M, Jacobs ER, Medhora M. Changes in miRNA in the lung and whole blood after whole thorax irradiation in rats. Sci Rep 2017; 7:44132. [PMID: 28303893 PMCID: PMC5355888 DOI: 10.1038/srep44132] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/03/2017] [Indexed: 01/10/2023] Open
Abstract
We used a rat model of whole thorax x-ray irradiation to profile the microRNA (miRNA) in lung and blood up to 4 weeks after radiation. MiRNA from normal and irradiated Wistar rat lungs and whole blood were analyzed by next-generation sequencing and the changes by radiation were identified by differential deRNA-seq 1, 2, 3 and 4 weeks after irradiation. The average total reads/library was 2,703,137 with a mean of 88% mapping to the rat genome. Detailed profiles of 100 of the most abundant miRNA in rat blood and lung are described. We identified upregulation of 4 miRNA, miR-144-5p, miR-144-3p, miR-142-5p and miR-19a-3p in rat blood 2 weeks after radiation that have not previously been shown to be altered after radiation to the lung. Ingenuity Pathway Analysis identified signaling of inflammatory response pathways. These findings will support development of early detection methods, as well as mechanism(s) of injury and mitigation in patients after radiotherapy or radiological accidents.
Collapse
Affiliation(s)
- Feng Gao
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Pengyuan Liu
- Department of Physiology, Medical College of Wisconsin,Milwaukee, WI, USA
| | - Jayashree Narayanan
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Meiying Yang
- Department of Anesthesiology, Medical College of Wisconsin,Milwaukee, WI, USA
| | - Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yong Liu
- Department of Physiology, Medical College of Wisconsin,Milwaukee, WI, USA
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin,Milwaukee, WI, USA
| | - Elizabeth R Jacobs
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Research Service, Department of Veterans Affairs, Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Research Service, Department of Veterans Affairs, Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| |
Collapse
|
31
|
Fish BL, Gao F, Narayanan J, Bergom C, Jacobs ER, Cohen EP, Moulder JE, Orschell CM, Medhora M. Combined Hydration and Antibiotics with Lisinopril to Mitigate Acute and Delayed High-dose Radiation Injuries to Multiple Organs. HEALTH PHYSICS 2016; 111:410-9. [PMID: 27682899 PMCID: PMC5065284 DOI: 10.1097/hp.0000000000000554] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The NIAID Radiation and Nuclear Countermeasures Program is developing medical agents to mitigate the acute and delayed effects of radiation that may occur from a radionuclear attack or accident. To date, most such medical countermeasures have been developed for single organ injuries. Angiotensin converting enzyme (ACE) inhibitors have been used to mitigate radiation-induced lung, skin, brain, and renal injuries in rats. ACE inhibitors have also been reported to decrease normal tissue complication in radiation oncology patients. In the current study, the authors have developed a rat partial-body irradiation (leg-out PBI) model with minimal bone marrow sparing (one leg shielded) that results in acute and late injuries to multiple organs. In this model, the ACE inhibitor lisinopril (at ~24 mg m d started orally in the drinking water at 7 d after irradiation and continued to ≥150 d) mitigated late effects in the lungs and kidneys after 12.5-Gy leg-out PBI. Also in this model, a short course of saline hydration and antibiotics mitigated acute radiation syndrome following doses as high as 13 Gy. Combining this supportive care with the lisinopril regimen mitigated overall morbidity for up to 150 d after 13-Gy leg-out PBI. Furthermore, lisinopril was an effective mitigator in the presence of the growth factor G-CSF (100 μg kg d from days 1-14), which is FDA-approved for use in a radionuclear event. In summary, by combining lisinopril (FDA-approved for other indications) with hydration and antibiotics, acute and delayed radiation injuries in multiple organs were mitigated.
Collapse
Affiliation(s)
- Brian L. Fish
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Feng Gao
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Jayashree Narayanan
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Carmen Bergom
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Elizabeth R. Jacobs
- Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295
| | - Eric P. Cohen
- Department of Medicine, Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - John E. Moulder
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Christie M. Orschell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
- Department of Medicine, Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| |
Collapse
|
32
|
van der Veen SJ, Faber H, Ghobadi G, Brandenburg S, Langendijk JA, Coppes RP, van Luijk P. Decreasing Irradiated Rat Lung Volume Changes Dose-Limiting Toxicity From Early to Late Effects. Int J Radiat Oncol Biol Phys 2015; 94:163-171. [PMID: 26700710 DOI: 10.1016/j.ijrobp.2015.09.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 09/16/2015] [Accepted: 09/21/2015] [Indexed: 12/25/2022]
Abstract
PURPOSE Technological developments in radiation therapy result in smaller irradiated volumes of normal tissue. Because the risk of radiation therapy-induced toxicity generally depends on irradiated volume, changing volume could change the dose-limiting toxicity of a treatment. Recently, in our rat model, we found that early radiation-induced lung dysfunction (RILD) was closely related to irradiated volume dependent vascular remodeling besides inflammation. The exact relationship between early and late RILD is still unknown. Therefore, in this preclinical study we investigated the dose-volume relationship of late RILD, assessed its dependence on early and late pathologies and studied if decreasing irradiated volume changed the dose-limiting toxicity. METHODS AND MATERIALS A volume of 25%, 32%, 50%, 63%, 88%, or 100% of the rat lung was irradiated using protons. Until 26 weeks after irradiation, respiratory rates were measured. Macrovascular remodeling, pulmonary inflammation, and fibrosis were assessed at 26 weeks after irradiation. For all endpoints dose-volume response curves were made. These results were compared to our previously published early lung effects. RESULTS Early vascular remodeling and inflammation correlated significantly with early RILD. Late RILD correlated with inflammation and fibrosis, but not with vascular remodeling. In contrast to the early effects, late vascular remodeling, inflammation and fibrosis showed a primarily dose but not volume dependence. Comparison of respiratory rate increases early and late after irradiation for the different dose-distributions indicated that with decreasing irradiated volumes, the dose-limiting toxicity changed from early to late RILD. CONCLUSIONS In our rat model, different pathologies underlie early and late RILD with different dose-volume dependencies. Consequently, the dose-limiting toxicity changed from early to late dysfunction when the irradiated volume was reduced. In patients, early and late RILD are also due to different pathologies. As such, new radiation techniques reducing irradiated volume might change the dose-limiting toxicity of the radiation therapy treatment.
Collapse
Affiliation(s)
- Sonja J van der Veen
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hette Faber
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ghazaleh Ghobadi
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sytze Brandenburg
- KVI Center for Advanced Radiation Research, University of Groningen, Groningen, The Netherlands
| | - Johannes A Langendijk
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert P Coppes
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter van Luijk
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
33
|
Medhora M, Gao F, Glisch C, Narayanan J, Sharma A, Harmann LM, Lawlor MW, Snyder LA, Fish BL, Down JD, Moulder JE, Strande JL, Jacobs ER. Whole-thorax irradiation induces hypoxic respiratory failure, pleural effusions and cardiac remodeling. JOURNAL OF RADIATION RESEARCH 2015; 56:248-60. [PMID: 25368342 PMCID: PMC4380043 DOI: 10.1093/jrr/rru095] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/11/2014] [Accepted: 09/19/2014] [Indexed: 05/20/2023]
Abstract
To study the mechanisms of death following a single lethal dose of thoracic radiation, WAG/RijCmcr (Wistar) rats were treated with 15 Gy to the whole thorax and followed until they were morbid or sacrificed for invasive assays at 6 weeks. Lung function was assessed by breathing rate and arterial oxygen saturation. Lung structure was evaluated histologically. Cardiac structure and function were examined by echocardiography. The frequency and characteristics of pleural effusions were determined. Morbidity from 15 Gy radiation occurred in all rats 5 to 8 weeks after exposure, coincident with histological pneumonitis. Increases in breathing frequencies peaked at 6 weeks, when profound arterial hypoxia was also recorded. Echocardiography analysis at 6 weeks showed pulmonary hypertension and severe right ventricular enlargement with impaired left ventricular function and cardiac output. Histologic sections of the heart revealed only rare foci of lymphocytic infiltration. Total lung weight more than doubled. Pleural effusions were present in the majority of the irradiated rats and contained elevated protein, but low lactate dehydrogenase, when compared with serum from the same animal. Pleural effusions had a higher percentage of macrophages and large monocytes than neutrophils and contained mast cells that are rarely present in other pathological states. Lethal irradiation to rat lungs leads to hypoxia with infiltration of immune cells, edema and pleural effusion. These changes may contribute to pulmonary vascular and parenchymal injury that result in secondary changes in heart structure and function. We report that conditions resembling congestive heart failure contribute to death during radiation pneumonitis, which indicates new targets for therapy.
Collapse
Affiliation(s)
- Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA Cardiovascular Center, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA Division of Pulmonary Medicine, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA Research Service, Department of Veteran's Affairs, Clement J. Zablocki VA Medical Center, Milwaukee, Wisconsin, USA
| | - Feng Gao
- Department of Radiation Oncology, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Chad Glisch
- Department of Radiation Oncology, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Jayashree Narayanan
- Department of Radiation Oncology, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Ashish Sharma
- Department of Radiation Oncology, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Leanne M Harmann
- Cardiovascular Center, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA Division of Cardiovascular Medicine, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Michael W Lawlor
- Division of Pediatric Pathology, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Laura A Snyder
- Marshfield Laboratories; Wisconsin Veterinary Referral Hospital, Waukesha, Wisconsin, USA
| | - Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Julian D Down
- Harvard-Massachusetts Institute of Technology Division of Health Sciences Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - John E Moulder
- Department of Radiation Oncology, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Jennifer L Strande
- Cardiovascular Center, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA Division of Cardiovascular Medicine, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Elizabeth R Jacobs
- Cardiovascular Center, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA Division of Pulmonary Medicine, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA Research Service, Department of Veteran's Affairs, Clement J. Zablocki VA Medical Center, Milwaukee, Wisconsin, USA
| |
Collapse
|
34
|
Slezak J, Kura B, Ravingerová T, Tribulova N, Okruhlicova L, Barancik M. Mechanisms of cardiac radiation injury and potential preventive approaches. Can J Physiol Pharmacol 2015; 93:737-53. [PMID: 26030720 DOI: 10.1139/cjpp-2015-0006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In addition to cytostatic treatment and surgery, the most common cancer treatment is gamma radiation. Despite sophisticated radiological techniques however, in addition to irradiation of the tumor, irradiation of the surrounding healthy tissue also takes place, which results in various side-effects, depending on the absorbed dose of radiation. Radiation either damages the cell DNA directly, or indirectly via the formation of oxygen radicals that in addition to the DNA damage, react with all cell organelles and interfere with their molecular mechanisms. The main features of radiation injury besides DNA damage is inflammation and increased expression of pro-inflammatory genes and cytokines. Endothelial damage and dysfunction of capillaries and small blood vessels plays a particularly important role in radiation injury. This review is focused on summarizing the currently available data concerning the mechanisms of radiation injury, as well as the effectiveness of various antioxidants, anti-inflammatory cytokines, and cytoprotective substances that may be utilized in preventing, mitigating, or treating the toxic effects of ionizing radiation on the heart.
Collapse
Affiliation(s)
- Jan Slezak
- Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic.,Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic
| | - Branislav Kura
- Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic.,Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic
| | - Táňa Ravingerová
- Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic.,Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic
| | - Narcisa Tribulova
- Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic.,Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic
| | - Ludmila Okruhlicova
- Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic.,Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic
| | - Miroslav Barancik
- Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic.,Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic
| |
Collapse
|
35
|
Medhora M, Gao F, Wu Q, Molthen RC, Jacobs ER, Moulder JE, Fish BL. Model development and use of ACE inhibitors for preclinical mitigation of radiation-induced injury to multiple organs. Radiat Res 2014; 182:545-55. [PMID: 25361399 DOI: 10.1667/rr13425.1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The NIH/NIAID initiated a countermeasure program to develop mitigators for radiation-induced injuries from a radiological attack or nuclear accident. We have previously characterized and demonstrated mitigation of single organ injuries, such as radiation pneumonitis, pulmonary fibrosis or nephropathy by angiotensin converting enzyme (ACE) inhibitors. Our current work extends this research to examine the potential for mitigating multiple organ dysfunctions occurring in the same irradiated rats. Using total body irradiation (TBI) followed by bone marrow transplant, we tested four doses of X radiation (11, 11.25, 11.5 and 12 Gy) to develop lethal late effects. We identified three of these doses (11, 11.25 and 11.5 Gy TBI) that were lethal to all irradiated rats by 160 days to test mitigation by ACE inhibitors of injury to the lungs and kidneys. In this study we tested three ACE inhibitors at doses: captopril (88 and 176 mg/m(2)/day), enalapril (18, 24 and 36 mg/m(2)/day) and fosinopril (60 mg/m(2)/day) for mitigation. Our primary end point was survival or criteria for euthanization of morbid animals. Secondary end points included breathing intervals, other assays for lung structure and function and blood urea nitrogen (BUN) to assess renal damage. We found that captopril at 176 mg/m(2)/day increased survival after 11 or 11.5 Gy TBI. Enalapril at 18-36 mg/m(2)/day improved survival at all three doses (TBI). Fosinopril at 60 mg/m(2)/day enhanced survival at a dose of 11 Gy, although no improvement was observed for pneumonitis. These results demonstrate the use of a single countermeasure to mitigate the lethal late effects in the same animal after TBI.
Collapse
|
36
|
Gao F, Fish BL, Szabo A, Schock A, Narayanan J, Jacobs ER, Moulder JE, Lazarova Z, Medhora M. Enhanced survival from radiation pneumonitis by combined irradiation to the skin. Int J Radiat Biol 2014; 90:753-61. [PMID: 24827855 DOI: 10.3109/09553002.2014.922722] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To develop mitigators for combined irradiation to the lung and skin. METHODS Rats were treated with X-rays as follows: (1) 12.5 or 13 Gy whole thorax irradiation (WTI); (2) 30 Gy soft X-rays to 10% area of the skin only; (3) 12.5 or 13 Gy WTI + 30 Gy skin irradiation after 3 hours; (4) 12.5 Gy WTI + skin irradiation and treated with captopril (160 mg/m(2)/day) started after 7 days. Our end points were survival (primary) based on IACUC euthanization criteria and secondary measurements of breathing intervals and skin injury. Lung collagen at 210 days was measured in rats surviving 13 Gy WTI. RESULTS After 12.5 Gy WTI with or without skin irradiation, one rat (12.5 Gy WTI) was euthanized. Survival was less than 10% in rats receiving 13 Gy WTI, but was enhanced when combined with skin irradiation (p < 0.0001). Collagen content was increased at 210 days after 13 Gy WTI vs. 13 Gy WTI + 30 Gy skin irradiation (p < 0.05). Captopril improved radiation-dermatitis after 12.5 Gy WTI + 30 Gy skin irradiation (p = 0.008). CONCLUSIONS Radiation to the skin given 3 h after WTI mitigated morbidity during pneumonitis in rats. Captopril enhanced the rate of healing of radiation-dermatitis after combined irradiations to the thorax and skin.
Collapse
Affiliation(s)
- Feng Gao
- Department of Radiation Oncology
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mata J, Sheng K, Hagspiel K, Ruppert K, Sylvester P, Mugler J, Fernandes C, Guan S, Larner J, Read P. Pulmonary toxicity in a rabbit model of stereotactic lung radiation therapy: efficacy of a radioprotector. Exp Lung Res 2014; 40:308-16. [PMID: 24926529 DOI: 10.3109/01902148.2014.918213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study aimed to assess the efficacy of the radioprotector amifostine in limiting radiation toxicity in a rabbit model of lung stereotactic body radiation therapy (SBRT) by correlating contrast-enhanced magnetic resonance angiography (ce-MRA), computed tomography (CT), and helium-3 (He-3) magnetic resonance imaging (MRI) with histopathology. Multiple MRI techniques were tested to obtain complementing physiologic information. Thirteen rabbits received SBRT to the right lower lobe of the lung. Specifically, 4 received 3 × 11 Gray (Gy), 6 received 3 × 11 Gy and 50 mg/kg of amifostine pre-SRBT, and 3 received 3 × 7, 3 × 9, or 3 × 13 Gy. Imaging was performed at baseline and 4, 8, 12, and 16 weeks post-SBRT. Ce-MRA perfusion difference between lungs in the irradiated group at 16 weeks post-treatment was statistically significant (P = .04) whereas the difference in the irradiated + amifostine group was not (P = .30). Histologically observed low red blood cell (RBC) count and CT hypodensity suggests changes were primarily related to perfusion; however, structural changes, such as increased alveolar size, were also present. No changes in He-3 MRI lung ventilation were observed in either group. Although radiation-induced injury detected in rabbits as CT hypodensity contrasted with increased density observed in humans/rodents, the changes in ce-MRA and CT were still significantly reduced after the addition of amifostine to SBRT. Use of CT and selected MRI techniques helped to pinpoint primary physiologic changes.
Collapse
Affiliation(s)
- Jaime Mata
- 1Departments of Radiology and 2Radiation-Oncology, University of Virginia, Charlottesville, Virginia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gao F, Fish BL, Moulder JE, Jacobs ER, Medhora M. Enalapril mitigates radiation-induced pneumonitis and pulmonary fibrosis if started 35 days after whole-thorax irradiation. Radiat Res 2013; 180:546-52. [PMID: 24131041 DOI: 10.1667/rr13350.1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Victims of a radiological attack or nuclear accident may receive high-dose, heterogeneous exposures from radiation to the chest that lead to lung damage. Our goal is to develop countermeasures to mitigate such injuries. We used WAG/RijCmcr rats receiving 13 Gy to the whole thorax to induce pulmonary fibrosis within 210 days. The angiotensin converting enzyme (ACE) inhibitor enalapril was evaluated as a mitigator of these injuries at two doses (18 and 36 mg/m(2)/day) and 8 schedules: starting at 7, 35, 70, 105 and 140 days and continuing to 210 days or starting at 7 days and stopping at 30, 60 or 90 days after whole-thorax irradiation. The earliest start date at 7 days after irradiation would provide an adequate window of time for triage and dosimetry. Survival after 35 days, as permitted by our Institutional Animal Care and Use Committee (IACUC) was also recorded as a primary end point of pneumonitis. Pulmonary fibrosis was evaluated using the Sircol biochemical assay to measure lung collagen. Our results indicated that a short course of either dose of enalapril from 7-90 days improved survival. However, pulmonary fibrosis was only mitigated by the higher dose of enalapril (36 mg/m(2)/day). The latest effective start date for the drug was 35 days after irradiation. These results indicate that ACE inhibitors can be started at least a month after irradiation for mitigation of pneumonitis and/or pulmonary fibrosis.
Collapse
Affiliation(s)
- Feng Gao
- a Departments of Radiation Oncology
| | | | | | | | | |
Collapse
|
39
|
Jacob RE, Murphy MK, Creim JA, Carson JP. Detecting radiation-induced injury using rapid 3D variogram analysis of CT images of rat lungs. Acad Radiol 2013; 20:1264-71. [PMID: 24029058 DOI: 10.1016/j.acra.2013.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/28/2013] [Accepted: 07/02/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE AND OBJECTIVES To investigate the ability of variogram analysis of octree-decomposed computed tomography (CT) images and volume change maps to detect radiation-induced damage in rat lungs. MATERIALS AND METHODS The lungs of female Sprague-Dawley rats were exposed to one of five absorbed doses (0, 6, 9, 12, or 15 Gy) of gamma radiation from a Co-60 source. At 6 months postexposure, pulmonary function tests were performed and four-dimensional (4D) CT images were acquired using a respiratory-gated microCT scanner. Volume change maps were then calculated from the 4DCT images. Octree decomposition was performed on CT images and volume change maps, and variogram analysis was applied to the decomposed images. Correlations of measured parameters with dose were evaluated. RESULTS The effects of irradiation were not detectable from measured parameters, indicating only mild lung damage. Additionally, there were no significant correlations of pulmonary function results or CT densitometry with radiation dose. However, the variogram analysis did detect a significant correlation with dose in both the CT images (r = -0.57, P = .003) and the volume change maps (r = -0.53, P = .008). CONCLUSION This is the first study to use variogram analysis of lung images to assess pulmonary damage in a model of radiation injury. Results show that this approach is more sensitive to detecting radiation damage than conventional measures such as pulmonary function tests or CT densitometry.
Collapse
|
40
|
Down JD, Medhora M, Jackson IL, Cline JM, Vujaskovic Z. Do variations in mast cell hyperplasia account for differences in radiation-induced lung injury among different mouse strains, rats and nonhuman primates? Radiat Res 2013; 180:216-21. [PMID: 23819595 DOI: 10.1667/rr3245.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The role of mast cell infiltrates in the pathology of radiation damage to the lung has been a subject of continuing investigation over the past four decades. This has been accompanied by a number of proposals as to how mast cells and the secretory products thereof participate in the generation of acute inflammation (pneumonitis) and the chronic process of collagen deposition (fibrosis). An additional pathophysiology examines the possible connection between mast cell hyperplasia and pulmonary hypertension through the release of vasoactive mediators. The timing and magnitude of pneumonitis and fibrosis are known to vary tremendously among different genetic mouse strains and animal species. Therefore, we have systematically compared mast cell numbers in lung sections from nine mouse strains, two rat strains and nonhuman primates (NHP) after whole thorax irradiation (WTI) at doses ranging from 10-15 Gy and at the time of entering respiratory distress. Mice of the BALB/c strain had a dramatic increase in interstitial mast cell numbers, similar to WAG/Rij and August rats, while relatively low levels of mast cell infiltrate were observed in other mouse strains (CBA, C3H, B6, C57L, WHT and TO mice). Enumeration of mast cell number in five NHPs (rhesus macaque), exhibiting severe pneumonitis at 17 weeks after 10 Gy WTI, also indicated a low response shared by the majority of mouse strains. There appeared to be no relationship between the mast cell response and the strain-dependent susceptibility towards pneumonitis or fibrosis. Further investigations are required to explore the possible participation of mast cells in mediating specific vascular responses and whether a genetically diverse mast cell response occurs in humans.
Collapse
Affiliation(s)
- Julian D Down
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.
| | | | | | | | | |
Collapse
|
41
|
Molthen RC, Wu Q, Fish BL, Moulder JE, Jacobs ER, Medhora MM. Mitigation of radiation induced pulmonary vascular injury by delayed treatment with captopril. Respirology 2013; 17:1261-8. [PMID: 22882664 DOI: 10.1111/j.1440-1843.2012.02247.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVE A single dose of 10 Gy radiation to the thorax of rats results in decreased total lung angiotensin-converting enzyme (ACE) activity, pulmonary artery distensibility and distal vascular density while increasing pulmonary vascular resistance (PVR) at 2 months post-exposure. In this study, we evaluate the potential of a renin-angiotensin system (RAS) modulator, the ACE inhibitor captopril, to mitigate this pulmonary vascular damage. METHODS Rats exposed to 10 Gy thorax only irradiation and age-matched controls were studied 2 months after exposure, during the development of radiation pneumonitis. Rats were treated, either immediately or 2 weeks after radiation exposure, with two doses of the ACE inhibitor, captopril, dissolved in their drinking water. To determine pulmonary vascular responses, we measured pulmonary haemodynamics, lung ACE activity, pulmonary arterial distensibility and peripheral vessel density. RESULTS Captopril, given at a vasoactive, but not a lower dose, mitigated radiation-induced pulmonary vascular injury. More importantly, these beneficial effects were observed even if drug therapy was delayed for up to 2 weeks after exposure. CONCLUSIONS Captopril resulted in a reduction in pulmonary vascular injury that supports its use as a radiomitigator after an unexpected radiological event such as a nuclear accident.
Collapse
Affiliation(s)
- Robert C Molthen
- Division of Pulmonary and Critical Care, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Gao F, Narayanan J, Joneikis C, Fish BL, Szabo A, Moulder JE, Molthen RC, Jacobs ER, Rao RN, Medhora M. Enalapril mitigates focal alveolar lesions, a histological marker of late pulmonary injury by radiation to the lung. Radiat Res 2013; 179:465-74. [PMID: 23480564 DOI: 10.1667/rr3127.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The goal of our study was to identify a histological marker for testing countermeasures for mitigation of late radiation injury to the lung. Pulmonary fibrosis is currently the best described "late effect" in survivors of acute radiation pneumonitis. However, robust fibrosis does not develop in some rodent strains for years after a single dose of radiation to the whole thorax. We observed radiation-associated focal alveolar lesions that were rich in giant cells and macrophages containing cholesterol clefts in the lungs of irradiated WAG/RijCmcr rats. These lesions were first observed after pneumonitis, around 21 weeks after receiving a radiation dose of 13 Gy to the thorax but not until 71 weeks in unirradiated rats. The number of cholesterol clefts increased with time after irradiation through 64 weeks of observation, and at 30 weeks after 13 Gy, cholesterol clefts were associated with several indices of deterioration in lung function. The number of cholesterol clefts in irradiated lung sections were reduced by the angiotensin converting enzyme (ACE) inhibitor enalapril (25-42 mg/m²/day) from 18.7 ± 4.2/lung section to 6.8 ± 2.4 (P = 0.029), 5.2 ± 1.9 (P = 0.0051) and 6.7 ± 1.9 (P = 0.029) when the drug was started at 1 week, 5 or 15 weeks after irradiation, respectively, and continued. Similar lesions have been previously observed in the lungs of one strain of irradiated mice and in patients following radiotherapy. We propose that alveolar lesions with cholesterol clefts may be used as a histological marker of the severity of radiation lung injury and to study its mitigation in WAG/RijCmcr rats.
Collapse
Affiliation(s)
- Feng Gao
- Departments of Radiation Oncology, Marquette University, Milwaukee, Wisconsin, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Iwata M, Madtes DK, Abrams K, Lamm WJE, Glenny RW, Nash RA, Ramakrishnan A, Torok-Storb B. Late infusion of cloned marrow fibroblasts stimulates endogenous recovery from radiation-induced lung injury. PLoS One 2013; 8:e57179. [PMID: 23520463 PMCID: PMC3592849 DOI: 10.1371/journal.pone.0057179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/18/2013] [Indexed: 11/30/2022] Open
Abstract
In the current study, we used a canine model of radiation-induced lung injury to test the effect of a single i.v. infusion of 10×106/kg of marrow fibroblasts on the progression of damage following 15 Gy exposure to the right lung. The fibroblasts, designated DS1 cells, are a cloned population of immortalized cells isolated from a primary culture of marrow stromal cells. DS1 cells were infused at week 5 post-irradiation when lung damage was evident by imaging with high-resolution computed tomography (CT). At 13 weeks post-irradiation we found that 4 out of 5 dogs receiving DS1 cells had significantly improved pulmonary function compared to 0 out of 5 control dogs (p = 0.047, Fisher’s Exact). Pulmonary function was measured as the single breath diffusion capacity-hematocrit (DLCO-Hct), the total inspiratory capacity (IC), and the total lung capacity (TLC), which differed significantly between control and DS1-treated dogs; p = 0.002, p = 0.005, and p = 0.004, respectively. The DS1-treated dogs also had less pneumonitis detected by CT imaging and an increased number of TTF-1 (thyroid transcription factor 1, NKX2-1) positive cells in the bronchioli and alveoli compared to control dogs. Endothelial-like progenitor cells (ELC) of host origin, detected by colony assays, were found in peripheral blood after DS1 cell infusion. ELC numbers peaked one day after infusion, and were not detectable by 7 days. These data suggest that infusion of marrow fibroblasts stimulates mobilization of ELC, which is associated with a reduction in otherwise progressive radiation-induced lung injury. We hypothesize that these two observations are related, specifically that circulating ELC contribute to increased angiogenesis, which facilitates endogenous lung repair.
Collapse
Affiliation(s)
- Mineo Iwata
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - David K. Madtes
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Kraig Abrams
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Wayne J. E. Lamm
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Robb W. Glenny
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| | - Richard A. Nash
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Aravind Ramakrishnan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Beverly Torok-Storb
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
44
|
Gao F, Fish BL, Szabo A, Doctrow SR, Kma L, Molthen RC, Moulder JE, Jacobs ER, Medhora M. Short-term treatment with a SOD/catalase mimetic, EUK-207, mitigates pneumonitis and fibrosis after single-dose total-body or whole-thoracic irradiation. Radiat Res 2012; 178:468-80. [PMID: 23020094 DOI: 10.1667/rr2953.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the event of a radiological accident or terrorist attack, whole- or partial-body exposure can injure the lungs. To simulate such an incident, we used a single fraction of total-body irradiation (TBI) or whole-thoracic irradiation to induce pneumonitis or pulmonary fibrosis, respectively, in a rat model. The superoxide dismutase and catalase mimetic EUK-207 was given by subcutaneous injection (20 mg/kg/day, 5 days per week, once daily) starting at 7 days after irradiation and stopping before pneumonitis developed. After TBI, morbidity and the increase in breathing rates associated with pneumonitis were significantly improved in rats treated with EUK-207 compared to rats receiving irradiation alone. At 42 days after TBI (the peak of pneumonitis) changes in vascular end points including pulmonary hemodynamics ex vivo and relative arterial density in lungs were also mitigated by EUK-207. At 7 months after whole-thoracic irradiation, EUK-207 reduced synthesis of collagen as assessed by the Sircol collagen assay and Masson's trichrome staining. Our results demonstrate promise for EUK-207 as a mitigator of radiation pneumonitis and fibrosis. We also demonstrate for the first time mitigation of multiple vascular injuries in the irradiated lung in vivo by EUK-207.
Collapse
Affiliation(s)
- Feng Gao
- Departments of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Medhora M, Gao F, Fish BL, Jacobs ER, Moulder JE, Szabo A. Dose-modifying factor for captopril for mitigation of radiation injury to normal lung. JOURNAL OF RADIATION RESEARCH 2012; 53:633-40. [PMID: 22843631 PMCID: PMC3393339 DOI: 10.1093/jrr/rrs004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/28/2012] [Indexed: 05/20/2023]
Abstract
Our goal is to develop countermeasures for pulmonary injury following unpredictable events such as radiological terrorism or nuclear accidents. We have previously demonstrated that captopril, an angiotensin converting enzyme (ACE) inhibitor, is more effective than losartan, an angiotensin type-1 receptor blocker, in mitigating radiation-pneumopathy in a relevant rodent model. In the current study we determined the dose modifying factors (DMFs) of captopril for mitigation of parameters of radiation pneumonitis. We used a whole animal model, irradiating 9-10-week-old female rats derived from a Wistar strain (WAG/RijCmcr) with a single dose of irradiation to the thorax of 11, 12, 13, 14 or 15 Gy. Our study develops methodology to measure DMFs for morbidity (survival) as well as physiological endpoints such as lung function, taking into account attrition due to lethal radiation-induced pneumonitis. Captopril delivered in drinking water (140-180 mg/m(2)/day, comparable with that given clinically) and started one week after irradiation has a DMF of 1.07-1.17 for morbidity up to 80 days (survival) and 1.21-1.35 for tachypnea at 42 days (at the peak of pneumonitis) after a single dose of ionizing radiation (X-rays). These encouraging results advance our goals, since DMF measurements are essential for drug labeling and comparison with other mitigators.
Collapse
Affiliation(s)
- Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Williams JP, Jackson IL, Shah JR, Czarniecki CW, Maidment BW, DiCarlo AL. Animal models and medical countermeasures development for radiation-induced lung damage: report from an NIAID Workshop. Radiat Res 2012; 177:e0025-39. [PMID: 22468702 DOI: 10.1667/rrol04.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since 9/11, there have been concerns that terrorists may detonate a radiological or nuclear device in an American city. Aside from several decorporation and blocking agents for use against internal radionuclide contamination, there are currently no medications within the Strategic National Stockpile that are approved to treat the immediate or delayed complications resulting from accidental exposure to radiation. Although the majority of research attention has focused on developing countermeasures that target the bone marrow and gastrointestinal tract, since they represent the most acutely radiosensitive organs, individuals who survive early radiation syndromes will likely suffer late effects in the months that follow. Of particular concern are the delayed effects seen in the lung that play a major role in late mortality seen in radiation-exposed patients and accident victims. To address these concerns, the National Institute of Allergy and Infectious Diseases convened a workshop to discuss pulmonary model development, mechanisms of radiation-induced lung injury, targets for medical countermeasures development, and end points to evaluate treatment efficacy. Other topics covered included guidance on the challenges of developing and licensing drugs and treatments specific to a radiation lung damage indication. This report reviews the data presented, as well as key points from the ensuing discussion.
Collapse
|
47
|
Medhora M, Gao F, Jacobs ER, Moulder JE. Radiation damage to the lung: mitigation by angiotensin-converting enzyme (ACE) inhibitors. Respirology 2012; 17:66-71. [PMID: 22023053 DOI: 10.1111/j.1440-1843.2011.02092.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Concern regarding accidental overexposure to radiation has been raised after the devastating Tohuku earthquake and tsunami which initiated the Fukushima Daiichi nuclear disaster in Japan in March 2011. Radiation exposure is toxic and can be fatal depending on the dose received. Injury to the lung is often reported as part of multi-organ failure in victims of accidental exposures. Doses of radiation >8 Gray to the chest can induce pneumonitis with right ventricular hypertrophy starting after ∼2 months. Higher doses may be followed by pulmonary fibrosis that presents months to years after exposure. Though the exact mechanisms of radiation lung damage are not known, experimental animal models have been widely used to study this injury. Rodent models for pneumonitis and fibrosis exhibit vascular, parenchymal and pleural injuries to the lung. Inflammation is a part of the injuries suggesting involvement of the immune system. Researchers worldwide have tested a number of interventions to prevent or mitigate radiation lung injury. One of the first and most successful class of mitigators are inhibitors of angiotensin-converting enzyme (ACE), an enzyme that is abundant in the lung. These results offer hope that lung injury from radiation accidents may be mitigated, since the ACE inhibitor captopril was effective when started up to 1 week after irradiation.
Collapse
Affiliation(s)
- Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, Wisconsin, USA.
| | | | | | | |
Collapse
|
48
|
Bruhl SR, Sheikh M, Adlakha S, Khouri SJ, Pandya U. Endovascular therapy for radiation-induced pulmonary artery stenosis: A case report and review of the literature. Heart Lung 2012; 41:87-9. [DOI: 10.1016/j.hrtlng.2010.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 11/25/2010] [Accepted: 11/29/2010] [Indexed: 10/18/2022]
|
49
|
Kma L, Gao F, Fish BL, Moulder JE, Jacobs ER, Medhora M. Angiotensin converting enzyme inhibitors mitigate collagen synthesis induced by a single dose of radiation to the whole thorax. JOURNAL OF RADIATION RESEARCH 2012; 53:10-7. [PMID: 22302041 PMCID: PMC3616750 DOI: 10.1269/jrr.11035] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Our long-term goal is to use angiotensin converting enzyme (ACE) inhibitors to mitigate the increase in lung collagen synthesis that is induced by irradiation to the lung, which could result from accidental exposure or radiological terrorism. Rats (WAG/RijCmcr) were given a single dose of 13 Gy (dose rate of 1.43 Gy/min) of X-irradiation to the thorax. Three structurally-different ACE inhibitors, captopril, enalapril and fosinopril were provided in drinking water beginning 1 week after irradiation. Rats that survived acute pneumonitis (at 6-12 weeks) were evaluated monthly for synthesis of lung collagen. Other endpoints included breathing rate, wet to dry lung weight ratio, and analysis of lung structure. Treatment with captopril (145-207 mg/m(2)/day) or enalapril (19-28 mg/m(2)/day), but not fosinopril (19-28 mg/m(2)/day), decreased morbidity from acute pneumonitis. Lung collagen in the surviving irradiated rats was increased over that of controls by 7 months after irradiation. This increase in collagen synthesis was not observed in rats treated with any of the three ACE inhibitors. Analysis of the lung morphology at 7 months supports the efficacy of ACE inhibitors against radiation-induced fibrosis. The effectiveness of fosinopril against fibrosis, but not against acute pneumonitis, suggests that pulmonary fibrosis may not be a simple consequence of injury during acute pneumonitis. In summary, three structurally-different ACE inhibitors mitigate the increase in collagen synthesis 7 months following irradiation of the whole thorax and do so, even when therapy is started one week after irradiation.
Collapse
Affiliation(s)
- Lakhan Kma
- Department of Radiation Oncology, MFRC 4072-76, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
- Pulmonary and Critical Care Division, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
- Department of Biochemistry, North-Eastern Hill University, Shillong-793022, Meghalaya, India
| | - Feng Gao
- Department of Radiation Oncology, MFRC 4072-76, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
- Pulmonary and Critical Care Division, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| | - Brian L. Fish
- Department of Radiation Oncology, MFRC 4072-76, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| | - John E. Moulder
- Department of Radiation Oncology, MFRC 4072-76, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| | - Elizabeth R. Jacobs
- Pulmonary and Critical Care Division, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| | - Meetha Medhora
- Department of Radiation Oncology, MFRC 4072-76, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
- Pulmonary and Critical Care Division, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
- Corresponding author: Phone: 414-456-5612, Fax: 414-456-6459, E-mail:
| |
Collapse
|
50
|
Janssen WJ, Barthel L, Muldrow A, Oberley-Deegan RE, Kearns MT, Jakubzick C, Henson PM. Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury. Am J Respir Crit Care Med 2011; 184:547-60. [PMID: 21471090 DOI: 10.1164/rccm.201011-1891oc] [Citation(s) in RCA: 244] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
RATIONALE During acute lung injury (ALI) the macrophage pool expands markedly as inflammatory monocytes migrate from the circulation to the airspaces. As inflammation resolves, macrophage numbers return to preinjury levels and normal tissue structure and function are restored. OBJECTIVES To determine the fate of resident and recruited macrophages during the resolution of ALI in mice and to elucidate the mechanisms responsible for macrophage removal. METHODS ALI was induced in mice using influenza A (H1N1; PR8) infection and LPS instillation. Dye labeling techniques, bone marrow transplantation, and surface immunophenotyping were used to distinguish resident and recruited macrophages during inflammation and to study the role of Fas in determining macrophage fate during resolving ALI. MEASUREMENTS AND MAIN RESULTS During acute and resolving lung injury from influenza A and LPS, a high proportion of the original resident alveolar macrophages persisted. In contrast, recruited macrophages exhibited robust accumulation in early inflammation, followed by a progressive decline in their number. This decline was mediated by apoptosis with local phagocytic clearance. Recruited macrophages expressed high levels of the death receptor Fas and were rapidly depleted from the airspaces by Fas-activating antibodies. In contrast, macrophage depletion was inhibited in mice treated with Fas-blocking antibodies and in chimeras with Fas-deficient bone marrow. Caspase-8 inhibition prevented macrophage apoptosis and delayed the resolution of ALI. CONCLUSIONS These findings indicate that Fas-induced apoptosis of recruited macrophages is essential for complete resolution of ALI.
Collapse
Affiliation(s)
- William J Janssen
- Division of Pulmonary Medicine, Department of Medicine, National Jewish Health, Denver, Colorado 80206, USA.
| | | | | | | | | | | | | |
Collapse
|