1
|
Kirti, Sharma AK, Yashavarddhan MH, Kumar R, Shaw P, Kalonia A, Shukla SK. Exosomes: A new perspective for radiation combined injury as biomarker and therapeutics. Tissue Cell 2024; 91:102563. [PMID: 39270512 DOI: 10.1016/j.tice.2024.102563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Radiation Combined Injuries (RCI) pose formidable public health risks, particularly in the context of nuclear incidents, necessitating specialized treatments and development of biomarkers. RCI encompasses instances where ionizing radiation exposure coincides with burns, wounds, or trauma. However, the limited understanding of cellular responses hinders progress in developing effective therapies. This article underscores the pivotal role of exosomes, nano-sized particles (30-120 nm) actively secreted by cells, in addressing the intricate challenges posed by RCI. Exosomes serve as vehicles for the transportation of bioactive molecules, including proteins, lipids, and miRNA, thereby facilitating processes critical to radiotherapy, burn injury, and wound healing. Exosomes hold significant promise for the transformation of RCI management by reducing inflammation, promoting wound healing, managing sepsis, altering immunological responses, and modulating signal transduction pathways. Moreover, exosomes are also being explored as biomarker for various diseases and stress conditions including radiation exposure and associated injuries. This comprehensive review highlights the burgeoning potential of exosomes in advancing the management of RCI, thereby enhancing public health preparedness and response.
Collapse
Affiliation(s)
- Kirti
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Ajay Kumar Sharma
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India.
| | - M H Yashavarddhan
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Rishav Kumar
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Priyanka Shaw
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Aman Kalonia
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Sandeep Kumar Shukla
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India.
| |
Collapse
|
2
|
Szatmári T, Balázs K, Csordás IB, Sáfrány G, Lumniczky K. Effect of radiotherapy on the DNA cargo and cellular uptake mechanisms of extracellular vesicles. Strahlenther Onkol 2023; 199:1191-1213. [PMID: 37347291 DOI: 10.1007/s00066-023-02098-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/01/2023] [Indexed: 06/23/2023]
Abstract
In the past decades, plenty of evidence has gathered pointing to the role of extracellular vesicles (EVs) secreted by irradiated cells in the development of radiation-induced non-targeted effects. EVs are complex natural structures composed of a phospholipid bilayer which are secreted by virtually all cells and carry bioactive molecules. They can travel certain distances in the body before being taken up by recipient cells. In this review we discuss the role and fate of EVs in tumor cells and highlight the importance of DNA specimens in EVs cargo in the context of radiotherapy. The effect of EVs depends on their cargo, which reflects physiological and pathological conditions of donor cell types, but also depends on the mode of EV uptake and mechanisms involved in the route of EV internalization. While the secretion and cargo of EVs from irradiated cells has been extensively studied in recent years, their uptake is much less understood. In this review, we will focus on recent knowledge regarding the EV uptake of cancer cells and the effect of radiation in this process.
Collapse
Affiliation(s)
- Tünde Szatmári
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary.
| | - Katalin Balázs
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary
| | - Ilona Barbara Csordás
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary
| | - Géza Sáfrány
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary
| | - Katalin Lumniczky
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary
| |
Collapse
|
3
|
Chen YT, Liao WR, Wang HT, Chen HW, Chen SF. Targeted protein quantitation in human body fluids by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:2379-2403. [PMID: 35702881 DOI: 10.1002/mas.21788] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/11/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Human body fluids (biofluids) contain various proteins, some of which reflect individuals' physiological conditions or predict diseases. Therefore, the analysis of biofluids can provide substantial information on novel biomarkers for clinical diagnosis and prognosis. In the past decades, mass spectrometry (MS)-based technologies have been developed as proteomic strategies not only for the identification of protein biomarkers but also for biomarker verification/validation in body fluids for clinical applications. The main advantage of targeted MS-based methodologies is the accurate and specific simultaneous quantitation of multiple biomarkers with high sensitivity. Here, we review MS-based methodologies that are currently used for the targeted quantitation of protein components in human body fluids, especially in plasma, urine, cerebrospinal fluid, and saliva. In addition, the currently used MS-based methodologies are summarized with a specific focus on applicable clinical sample types, MS configurations, and acquisition modes.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Molecular and Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wan-Rou Liao
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Hsueh-Ting Wang
- Instrumentation Center, National Taiwan Normal University, Taipei, Taiwan
| | - Hsiao-Wei Chen
- Molecular and Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Sung-Fang Chen
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
- Instrumentation Center, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
4
|
Hay BN, Akinlaja MO, Baker TC, Houfani AA, Stacey RG, Foster LJ. Integration of data-independent acquisition (DIA) with co-fractionation mass spectrometry (CF-MS) to enhance interactome mapping capabilities. Proteomics 2023; 23:e2200278. [PMID: 37144656 DOI: 10.1002/pmic.202200278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 05/06/2023]
Abstract
Proteomics technologies are continually advancing, providing opportunities to develop stronger and more robust protein interaction networks (PINs). In part, this is due to the ever-growing number of high-throughput proteomics methods that are available. This review discusses how data-independent acquisition (DIA) and co-fractionation mass spectrometry (CF-MS) can be integrated to enhance interactome mapping abilities. Furthermore, integrating these two techniques can improve data quality and network generation through extended protein coverage, less missing data, and reduced noise. CF-DIA-MS shows promise in expanding our knowledge of interactomes, notably for non-model organisms (NMOs). CF-MS is a valuable technique on its own, but upon the integration of DIA, the potential to develop robust PINs increases, offering a unique approach for researchers to gain an in-depth understanding into the dynamics of numerous biological processes.
Collapse
Affiliation(s)
- Brenna N Hay
- Michael Smith Laboratories and Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Mopelola O Akinlaja
- Michael Smith Laboratories and Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Teesha C Baker
- Michael Smith Laboratories and Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Aicha Asma Houfani
- Michael Smith Laboratories and Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - R Greg Stacey
- Michael Smith Laboratories and Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Leonard J Foster
- Michael Smith Laboratories and Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Singh VK, Srivastava M, Seed TM. Protein biomarkers for radiation injury and testing of medical countermeasure efficacy: promises, pitfalls, and future directions. Expert Rev Proteomics 2023; 20:221-246. [PMID: 37752078 DOI: 10.1080/14789450.2023.2263652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION Radiological/nuclear accidents, hostile military activity, or terrorist strikes have the potential to expose a large number of civilians and military personnel to high doses of radiation resulting in the development of acute radiation syndrome and delayed effects of exposure. Thus, there is an urgent need for sensitive and specific assays to assess the levels of radiation exposure to individuals. Such radiation exposures are expected to alter primary cellular proteomic processes, resulting in multifaceted biological responses. AREAS COVERED This article covers the application of proteomics, a promising and fast developing technology based on quantitative and qualitative measurements of protein molecules for possible rapid measurement of radiation exposure levels. Recent advancements in high-resolution chromatography, mass spectrometry, high-throughput, and bioinformatics have resulted in comprehensive (relative quantitation) and precise (absolute quantitation) approaches for the discovery and accuracy of key protein biomarkers of radiation exposure. Such proteome biomarkers might prove useful for assessing radiation exposure levels as well as for extrapolating the pharmaceutical dose of countermeasures for humans based on efficacy data generated using animal models. EXPERT OPINION The field of proteomics promises to be a valuable asset in evaluating levels of radiation exposure and characterizing radiation injury biomarkers.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Meera Srivastava
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | |
Collapse
|
6
|
Zhao Z, Vaidyanathan S, Bhanja P, Gamage S, Saha S, McKinney C, Choi J, Park S, Pahattuge T, Wijerathne H, Jackson JM, Huppert ML, Witek MA, Soper SA. In-plane Extended Nano-coulter Counter (XnCC) for the Label-free Electrical Detection of Biological Particles. ELECTROANAL 2022; 34:1961-1975. [PMID: 37539083 PMCID: PMC10399599 DOI: 10.1002/elan.202200091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022]
Abstract
We report an in-plane extended nanopore Coulter counter (XnCC) chip fabricated in a thermoplastic via imprinting. The fabrication of the sensor utilized both photolithography and focused ion beam milling to make the microfluidic network and the in-plane pore sensor, respectively, in Si from which UV resin stamps were generated followed by thermal imprinting to produce the final device in the appropriate plastic (cyclic olefin polymer, COP). As an example of the utility of this in-plane extended nanopore sensor, we enumerated SARS-CoV-2 viral particles (VPs) affinity-selected from saliva and extracellular vesicles (EVs) affinity-selected from plasma samples secured from mouse models exposed to different ionizing radiation doses.
Collapse
Affiliation(s)
- Zheng Zhao
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045
| | - Swarnagowri Vaidyanathan
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045
| | - Payel Bhanja
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160
| | - Sachindra Gamage
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045
| | - Subhrajit Saha
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160
| | - Collin McKinney
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045
- CRITCL, The University of North Carolina, Chapel Hill, NC
| | - Junseo Choi
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045
- CRITCL, The University of North Carolina, Chapel Hill, NC
| | - Sunggook Park
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045
- CRITCL, The University of North Carolina, Chapel Hill, NC
| | - Thilanga Pahattuge
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045
| | - Harshani Wijerathne
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045
| | - Joshua M Jackson
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045
| | - Mateusz L Huppert
- Department of Industrial and Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803
| | - Małgorzata A Witek
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045
| | - Steven A Soper
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045
- BioFluidica, Inc., San Diego, CA
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66045
| |
Collapse
|
7
|
Mitchell MI, Ma J, Carter CL, Loudig O. Circulating Exosome Cargoes Contain Functionally Diverse Cancer Biomarkers: From Biogenesis and Function to Purification and Potential Translational Utility. Cancers (Basel) 2022; 14:3350. [PMID: 35884411 PMCID: PMC9318395 DOI: 10.3390/cancers14143350] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022] Open
Abstract
Although diagnostic and therapeutic treatments of cancer have tremendously improved over the past two decades, the indolent nature of its symptoms has made early detection challenging. Thus, inter-disciplinary (genomic, transcriptomic, proteomic, and lipidomic) research efforts have been focused on the non-invasive identification of unique "silver bullet" cancer biomarkers for the design of ultra-sensitive molecular diagnostic assays. Circulating tumor biomarkers, such as CTCs and ctDNAs, which are released by tumors in the circulation, have already demonstrated their clinical utility for the non-invasive detection of certain solid tumors. Considering that exosomes are actively produced by all cells, including tumor cells, and can be found in the circulation, they have been extensively assessed for their potential as a source of circulating cell-specific biomarkers. Exosomes are particularly appealing because they represent a stable and encapsulated reservoir of active biological compounds that may be useful for the non-invasive detection of cancer. T biogenesis of these extracellular vesicles is profoundly altered during carcinogenesis, but because they harbor unique or uniquely combined surface proteins, cancer biomarker studies have been focused on their purification from biofluids, for the analysis of their RNA, DNA, protein, and lipid cargoes. In this review, we evaluate the biogenesis of normal and cancer exosomes, provide extensive information on the state of the art, the current purification methods, and the technologies employed for genomic, transcriptomic, proteomic, and lipidomic evaluation of their cargoes. Our thorough examination of the literature highlights the current limitations and promising future of exosomes as a liquid biopsy for the identification of circulating tumor biomarkers.
Collapse
Affiliation(s)
- Megan I Mitchell
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Claire L Carter
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| |
Collapse
|
8
|
Dai S, Wen Y, Luo P, Ma L, Liu Y, Ai J, Shi C. Therapeutic implications of exosomes in the treatment of radiation injury. BURNS & TRAUMA 2022; 10:tkab043. [PMID: 35071650 PMCID: PMC8778593 DOI: 10.1093/burnst/tkab043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/11/2021] [Indexed: 12/28/2022]
Abstract
Radiotherapy is one of the main cancer treatments, but it may damage normal tissue and cause various side effects. At present, radioprotective agents used in clinics have side effects such as nausea, vomiting, diarrhea and hypotension, which limit their clinical application. It has been found that exosomes play an indispensable role in radiation injury. Exosomes are lipid bilayer vesicles that carry various bioactive substances, such as proteins, lipids and microRNA (miRNA), that play a key role in cell-to-cell communication and affect tissue injury and repair. In addition, studies have shown that radiation can increase the uptake of exosomes in cells and affect the composition and secretion of exosomes. Here, we review the existing studies and discuss the effects of radiation on exosomes and the role of exosomes in radiation injury, aiming to provide new insights for the treatment of radiation injury.
Collapse
Affiliation(s)
| | | | | | | | | | - Junhua Ai
- Correspondence. Junhua Ai, ; Chunmeng Shi,
| | | |
Collapse
|
9
|
Noor Z, Paramasivan S, Ghodasara P, Chemonges S, Gupta R, Kopp S, Mills PC, Ranganathan S, Satake N, Sadowski P. Leveraging homologies for cross-species plasma proteomics in ungulates using data-independent acquisition. J Proteomics 2022; 250:104384. [PMID: 34601153 DOI: 10.1016/j.jprot.2021.104384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 08/27/2021] [Accepted: 09/17/2021] [Indexed: 12/23/2022]
Abstract
The collection of blood plasma is minimally invasive, and the fluid is a rich source of proteins for biomarker studies in both humans and animals. Plasma protein analysis by mass spectrometry (MS) can be challenging, though modern data acquisition strategies, such as sequential window acquisition of all theoretical fragment ion spectra (SWATH), enable reproducible quantitation of hundreds of proteins in non-depleted plasma from humans and laboratory model animals. Although there is strong potential to enhance veterinary and translational research, SWATH-based plasma proteomics in non-laboratory animals is virtually non-existent. One limitation to date is the lack of comprehensively annotated genomes to aid protein identification. The current study established plasma peptide spectral repositories for sheep and cattle that enabled quantification of over 200 proteins in non-depleted plasma using SWATH approach. Moreover, bioinformatics pipeline was developed to leverage inter-species homologies to enhance the depth of baseline libraries and plasma protein quantification in bovids. Finally, the practical utility of using bovid libraries for SWATH data extraction in taxonomically related non-domestic ungulate species (giraffe) has been demonstrated. SIGNIFICANCE: Ability to quickly generate comprehensive spectral libraries is limiting the applicability of data-independent acquisition, such as SWATH, to study proteomes of non-laboratory animals. We describe an approach to obtain relatively shallow foundational plasma repositories from domestic ruminants and employ homology searches to increase the depth of data, which we subsequently extend to unsequenced ungulates using SWATH method. When applied to cross-species proteomics, the number of proteins quantified by our approach far exceeds what is traditionally used in plasma protein tests.
Collapse
Affiliation(s)
- Zainab Noor
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Selvam Paramasivan
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia; Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, Australia
| | - Priya Ghodasara
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia; Veterinary Medicine, The University of Saskatchewan, Saskatchewan, SK, Canada
| | - Saul Chemonges
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia; Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, Australia
| | - Rajesh Gupta
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, Australia
| | - Steven Kopp
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Paul C Mills
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Shoba Ranganathan
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Nana Satake
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia; School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Pawel Sadowski
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
10
|
He C, Li L, Wang L, Meng W, Hao Y, Zhu G. Exosome-mediated cellular crosstalk within the tumor microenvironment upon irradiation. Cancer Biol Med 2021; 18:21-33. [PMID: 33628582 PMCID: PMC7877182 DOI: 10.20892/j.issn.2095-3941.2020.0150] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy is one of the most effective treatment methods for various solid tumors. Bidirectional signal transduction between cancer cells and stromal cells within the irradiated microenvironment is important in cancer development and treatment responsiveness. Exosomes, initially considered as “garbage bins” for unwanted from cells, are now understood to perform a variety of functions in interactions within the tumor microenvironment. Exosome-mediated regulation processes are rebuilt under the irradiation stimuli, because the exosome production, uptake, and contents are markedly modified by irradiation. In turn, irradiation-modified exosomes may modulate the cell response to irradiation through feedback regulation. Here, we review current knowledge and discuss the roles of exosome-mediated interactions between cells under radiotherapy conditions.
Collapse
Affiliation(s)
- Chuanshi He
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China
| | - Ling Li
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China
| | - Linlin Wang
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China
| | - Wanrong Meng
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China
| | - Yaying Hao
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China
| | - Guiquan Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Shukla SK, Sharma AK, Bajaj S, Yashavarddhan MH. Radiation proteome: a clue to protection, carcinogenesis, and drug development. Drug Discov Today 2020; 26:525-531. [PMID: 33137481 DOI: 10.1016/j.drudis.2020.10.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/29/2020] [Accepted: 10/26/2020] [Indexed: 02/04/2023]
Affiliation(s)
- Sandeep Kumar Shukla
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Lucknow road, Timarpur, Delhi, 110054, India.
| | - Ajay Kumar Sharma
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Lucknow road, Timarpur, Delhi, 110054, India
| | - Sania Bajaj
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Lucknow road, Timarpur, Delhi, 110054, India
| | - M H Yashavarddhan
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow road, Timarpur, Delhi, 110054, India
| |
Collapse
|
12
|
Kultova G, Tichy A, Rehulkova H, Myslivcova-Fucikova A. The hunt for radiation biomarkers: current situation. Int J Radiat Biol 2020; 96:370-382. [PMID: 31829779 DOI: 10.1080/09553002.2020.1704909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose: The possibility of a large-scale acute radiation exposure necessitates the development of new methods that could provide a rapid assessment of the doses received by individuals using high-throughput technologies. There is also a great interest in developing new biomarkers of dose exposure, which could be used in large molecular epidemiological studies in order to correlate estimated doses received and health effects. The goal of this review was to summarize current literature focused on biological dosimetry, namely radiation-responsive biomarkers.Methods: The studies involved in this review were thoroughly selected according to the determined criteria and PRISMA guidelines.Results: We described briefly recent advances in radiation genomics and metabolomics, giving particular emphasis to proteomic analysis. The majority of studies were performed on animal models (rats, mice, and non-human primates). They have provided much beneficial information, but the most relevant tests have been done on human (oncological) patients. By inspecting the radiaiton biodosimetry literate of the last 10 years, we identified a panel of candidate markers for each -omic approach involved.Conslusions: We reviewed different methodological approaches and various biological materials, which can be exploited for dose-effect prediction. The protein biomarkers from human plasma are ideal for this specific purpose. From a plethora of candidate markers, FDXR is a very promising transcriptomic candidate, and importantly this biomarker was also confirmed by some studies at protein level in humans.
Collapse
Affiliation(s)
- Gabriela Kultova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic.,Department of Biology, Faculty of Science, University of Hradec Králové, Hradec Kralove, Czech Republic
| | - Ales Tichy
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Helena Rehulkova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Alena Myslivcova-Fucikova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| |
Collapse
|
13
|
Liu K, Singer E, Cohn W, Micewicz ED, McBride WH, Whitelegge JP, Loo JA. Time-Dependent Measurement of Nrf2-Regulated Antioxidant Response to Ionizing Radiation Toward Identifying Potential Protein Biomarkers for Acute Radiation Injury. Proteomics Clin Appl 2019; 13:e1900035. [PMID: 31419066 PMCID: PMC7213060 DOI: 10.1002/prca.201900035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/16/2019] [Indexed: 01/06/2023]
Abstract
PURPOSE Potential acute exposure to ionizing radiation in nuclear or radiological accidents presents complex mass casualty scenarios that demand prompt triage and treatment decisions. Due to delayed symptoms and varied response of radiation victims, there is an urgent need to develop robust biomarkers to assess the extent of injuries in individuals. EXPERIMENTAL DESIGN The transcription factor Nrf2 is the master of redox homeostasis and there is transcriptional evidence of Nrf2-dependent antioxidant response activation upon radiation. The biomarker potential of Nrf2-dependent downstream target enzymes is investigated by measuring their response in bone marrow extracted from C57Bl/6 and C3H mice of both genders for up to 4 days following 6 Gy total body irradiation using targeted MS. RESULTS Overall, C57Bl/6 mice have a stronger proteomic response than C3H mice. In both strains, male mice have more occurrences of upregulation in antioxidant enzymes than female mice. For C57Bl/6 male mice, three proteins show elevated abundances after radiation exposure: catalase, superoxide dismutase 1, and heme oxygenase 1. Across both strains and genders, glutathione S-transferase Mu 1 is consistently decreased. CONCLUSIONS AND CLINICAL RELEVANCE This study provides the basis for future development of organ-specific protein biomarkers used in diagnostic blood test for radiation injury.
Collapse
Affiliation(s)
- Kate Liu
- Department of Chemistry and Biochemistry, UCLA
| | - Elizabeth Singer
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA
| | - Whitaker Cohn
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA
| | - Ewa D. Micewicz
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA
| | | | - Julian P. Whitelegge
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, UCLA
- Department of Biological Chemistry, David Geffen School of Medicine, Molecular Biology Institute, and UCLA/DOE Institute for Genomics and Proteomics, UCLA
| |
Collapse
|
14
|
Bowers EC, Hassanin AAI, Ramos KS. In vitro models of exosome biology and toxicology: New frontiers in biomedical research. Toxicol In Vitro 2019; 64:104462. [PMID: 31628015 DOI: 10.1016/j.tiv.2019.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/11/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
Abstract
Exosomes are secreted membrane-bound vesicles containing a cargo of curated nucleic acids, proteins, and lipids that can alter gene expression in recipient cells. Toxic agents can alter exosome synthesis and bioactive cargo composition, thus allowing exosomes to serve as biomarkers of exposure and response. While human and animal studies have identified exosome biomarkers of organ toxicity, in vitro models are ideal to examine biological mechanisms of exosome function. Here, we discuss the importance of exosomes in toxicology research and describe applications of in vitro models in advancing our understanding of their role in exposure-associated disease. This discussion of new research frontiers is in commemoration of the invaluable contributions of Dr. Daniel Acosta to the field of in vitro biology and toxicology. Emerging studies have implicated exosomes as mediators of neurodegeneration by shuttling pollutant-induced pathogenic proteins and miRNAs from afflicted neurons to neighboring cells. Exosomes also provide a mechanistic link between inhalation exposures and airway inflammation, remodeling, and systemic effects. Exosomes provide the means for toxic agents to initiate oncogenic transformation and create favorable tumor microenvironments. Furthermore, exosome-mediated drug delivery can alter drug pharmacologic profiles. Expansion in this field using in vitro models is essential to unlock the potential applications of exosome biology in toxicology.
Collapse
Affiliation(s)
- Emma C Bowers
- Department of Medicine, University of Arizona College of Medicine, Tucson, AZ 85721, USA.
| | - Abeer A I Hassanin
- Department of Medicine, University of Arizona College of Medicine, Tucson, AZ 85721, USA; Department of Animal Wealth Development, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Kenneth S Ramos
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona College of Medicine, Tucson, AZ 85721, USA; Division of Clinical Decision Support and Data Analytics, University of Arizona College of Medicine, Phoenix, AZ 85004, USA.
| |
Collapse
|
15
|
Taraboletti A, Goudarzi M, Kabir A, Moon BH, Laiakis EC, Lacombe J, Ake P, Shoishiro S, Brenner D, Fornace AJ, Zenhausern F. Fabric Phase Sorptive Extraction-A Metabolomic Preprocessing Approach for Ionizing Radiation Exposure Assessment. J Proteome Res 2019; 18:3020-3031. [PMID: 31090424 PMCID: PMC7437658 DOI: 10.1021/acs.jproteome.9b00142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The modern application of mass spectrometry-based metabolomics to the field of radiation assessment and biodosimetry has allowed for the development of prompt biomarker screenings for radiation exposure. Our previous work on radiation assessment, in easily accessible biofluids (such as urine, blood, saliva), has revealed unique metabolic perturbations in response to radiation quality, dose, and dose rate. Nevertheless, the employment of swift injury assessment in the case of a radiological disaster still remains a challenge as current sample processing can be time consuming and cause sample degradation. To address these concerns, we report a metabolomics workflow using a mass spectrometry-compatible fabric phase sorptive extraction (FPSE) technique. FPSE employs a matrix coated with sol-gel poly(caprolactone-b-dimethylsiloxane-b-caprolactone) that binds both polar and nonpolar metabolites in whole blood, eliminating serum processing steps. We confirm that the FPSE preparation technique combined with liquid chromatography-mass spectrometry can distinguish radiation exposure markers such as taurine, carnitine, arachidonic acid, α-linolenic acid, and oleic acid found 24 h after 8 Gy irradiation. We also note the effect of different membrane fibers on both metabolite extraction efficiency and the temporal stabilization of metabolites in whole blood at room temperature. These findings suggest that the FPSE approach could work in future technology to triage irradiated individuals accurately, via biomarker screening, by providing a novel method to stabilize biofluids between collection and sample analysis.
Collapse
Affiliation(s)
- Alexandra Taraboletti
- Department of Oncology, Georgetown University Medical Center, Georgetown University, 3800 Reservoir Road Northwest, Washington, District of Columbia 20057, United States
| | - Maryam Goudarzi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Georgetown University, 3800 Reservoir Road Northwest, Washington, District of Columbia 20057, United States
- Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195, United States
| | - Abuzar Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, 11200 Southwest Eighth Street, Miami, Florida 33199, United States
| | - Bo-Hyun Moon
- Department of Oncology, Georgetown University Medical Center, Georgetown University, 3800 Reservoir Road Northwest, Washington, District of Columbia 20057, United States
| | - Evagelia C. Laiakis
- Department of Oncology, Georgetown University Medical Center, Georgetown University, 3800 Reservoir Road Northwest, Washington, District of Columbia 20057, United States
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Georgetown University, 3800 Reservoir Road Northwest, Washington, District of Columbia 20057, United States
| | - Jerome Lacombe
- Center for Applied NanoBiosience and Medicine, University of Arizona, 475 North Fifth Street, Phoenix, Arizona 85004, United States
| | - Pelagie Ake
- Department of Oncology, Georgetown University Medical Center, Georgetown University, 3800 Reservoir Road Northwest, Washington, District of Columbia 20057, United States
| | - Sueoka Shoishiro
- Center for Applied NanoBiosience and Medicine, University of Arizona, 475 North Fifth Street, Phoenix, Arizona 85004, United States
| | - David Brenner
- Center for Radiological Research, Columbia University, 630 West 168th Street, New York, New York 10032, United States
| | - Albert J. Fornace
- Department of Oncology, Georgetown University Medical Center, Georgetown University, 3800 Reservoir Road Northwest, Washington, District of Columbia 20057, United States
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Georgetown University, 3800 Reservoir Road Northwest, Washington, District of Columbia 20057, United States
| | - Frederic Zenhausern
- Center for Applied NanoBiosience and Medicine, University of Arizona, 475 North Fifth Street, Phoenix, Arizona 85004, United States
- Translational Genomics Research Institute, 445 North Fifth Street, Phoenix, Arizona 85004, United States
- Department of Basic Medical Sciences, College of Medicine Phoenix, 425 North Fifth Street, Phoenix, Arizona 85004, United States
| |
Collapse
|
16
|
Cheema AK, Hinzman CP, Mehta KY, Hanlon BK, Garcia M, Fatanmi OO, Singh VK. Plasma Derived Exosomal Biomarkers of Exposure to Ionizing Radiation in Nonhuman Primates. Int J Mol Sci 2018; 19:ijms19113427. [PMID: 30388807 PMCID: PMC6274965 DOI: 10.3390/ijms19113427] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/12/2018] [Accepted: 10/30/2018] [Indexed: 12/18/2022] Open
Abstract
Exposure to ionizing radiation induces a cascade of molecular events that ultimately impact endogenous metabolism. Qualitative and quantitative characterization of metabolomic profiles is a pragmatic approach to studying the risks of radiation exposure since it provides a phenotypic readout. Studies were conducted in irradiated nonhuman primates (NHP) to investigate metabolic changes in plasma and plasma-derived exosomes. Specifically, rhesus macaques (Macaca mulatta) were exposed to cobalt-60 gamma-radiation and plasma samples were collected prior to and after exposure to 5.8 Gy or 6.5 Gy radiation. Exosomes were isolated using ultracentrifugation and analyzed by untargeted profiling via ultra-performance liquid chromatography mass spectrometry (UPLC-MS) based metabolomic and lipidomic analyses, with the goal of identifying a molecular signature of irradiation. The enrichment of an exosomal fraction was confirmed using quantitative ELISA. Plasma profiling showed markers of dyslipidemia, inflammation and oxidative stress post-irradiation. Exosomal profiling, on the other hand, enabled detection and identification of low abundance metabolites that comprise exosomal cargo which would otherwise get obscured with plasma profiling. We discovered enrichment of different classes of metabolites including N-acyl-amino acids, Fatty Acid ester of Hydroxyl Fatty Acids (FAHFA’s), glycolipids and triglycerides as compared to the plasma metabolome composition with implications in mediation of systemic response to radiation induced stress signaling.
Collapse
Affiliation(s)
- Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA.
| | - Charles P Hinzman
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA.
| | - Khyati Y Mehta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.
| | - Briana K Hanlon
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, USUHS, Bethesda, MD 20814, USA.
- Armed Forces Radiobiology Research Institute, USUHS, Bethesda, MD 20814, USA.
| | - Melissa Garcia
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, USUHS, Bethesda, MD 20814, USA.
- Armed Forces Radiobiology Research Institute, USUHS, Bethesda, MD 20814, USA.
| | - Oluseyi O Fatanmi
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, USUHS, Bethesda, MD 20814, USA.
- Armed Forces Radiobiology Research Institute, USUHS, Bethesda, MD 20814, USA.
| | - Vijay K Singh
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, USUHS, Bethesda, MD 20814, USA.
- Armed Forces Radiobiology Research Institute, USUHS, Bethesda, MD 20814, USA.
| |
Collapse
|
17
|
Chutipongtanate S, Greis KD. Multiplex Biomarker Screening Assay for Urinary Extracellular Vesicles Study: A Targeted Label-Free Proteomic Approach. Sci Rep 2018; 8:15039. [PMID: 30301925 PMCID: PMC6177456 DOI: 10.1038/s41598-018-33280-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/26/2018] [Indexed: 12/18/2022] Open
Abstract
The recent advance in targeted label-free proteomics, SWATH-MS, can provide consistent protein detection and reproducible protein quantitation, which is a considerable advantage for biomarker study of urinary extracellular vesicles. We developed a SWATH-MS workflow with a curated spectral library of 1,145 targets. Application of the workflow across nine replicates of three sample types (exosome-like vesicles (ELVs), microvesicles (MVs) and urine proteins (UPs)) resulted in the quantitation of 888 proteins at FDR <1%. The median-coefficient of variation of the 888 proteins in the ELV sample was 7.7%, indicating excellent reproducibility. Data analysis showed common exosome markers, (i.e. CD9, CD63, ALIX, TSG101 and HSP70) were enriched in urinary ELVs as compared to MVs and UPs. The use of a multiplex biomarker screening assay focused on ELVs was investigated, and perspectives in future applications are discussed.
Collapse
Affiliation(s)
- Somchai Chutipongtanate
- UC Proteomics Laboratory, Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States.
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| | - Kenneth D Greis
- UC Proteomics Laboratory, Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States.
| |
Collapse
|
18
|
Ludwig C, Gillet L, Rosenberger G, Amon S, Collins BC, Aebersold R. Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol Syst Biol 2018; 14:e8126. [PMID: 30104418 PMCID: PMC6088389 DOI: 10.15252/msb.20178126] [Citation(s) in RCA: 625] [Impact Index Per Article: 104.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 01/16/2023] Open
Abstract
Many research questions in fields such as personalized medicine, drug screens or systems biology depend on obtaining consistent and quantitatively accurate proteomics data from many samples. SWATH-MS is a specific variant of data-independent acquisition (DIA) methods and is emerging as a technology that combines deep proteome coverage capabilities with quantitative consistency and accuracy. In a SWATH-MS measurement, all ionized peptides of a given sample that fall within a specified mass range are fragmented in a systematic and unbiased fashion using rather large precursor isolation windows. To analyse SWATH-MS data, a strategy based on peptide-centric scoring has been established, which typically requires prior knowledge about the chromatographic and mass spectrometric behaviour of peptides of interest in the form of spectral libraries and peptide query parameters. This tutorial provides guidelines on how to set up and plan a SWATH-MS experiment, how to perform the mass spectrometric measurement and how to analyse SWATH-MS data using peptide-centric scoring. Furthermore, concepts on how to improve SWATH-MS data acquisition, potential trade-offs of parameter settings and alternative data analysis strategies are discussed.
Collapse
Affiliation(s)
- Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM), Freising, Germany
| | - Ludovic Gillet
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - George Rosenberger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Sabine Amon
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Ben C Collins
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Faculty of Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Padoan A, Basso D, Zambon CF, Prayer-Galetti T, Arrigoni G, Bozzato D, Moz S, Zattoni F, Bellocco R, Plebani M. MALDI-TOF peptidomic analysis of serum and post-prostatic massage urine specimens to identify prostate cancer biomarkers. Clin Proteomics 2018; 15:23. [PMID: 30065622 PMCID: PMC6060548 DOI: 10.1186/s12014-018-9199-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 07/16/2018] [Indexed: 12/25/2022] Open
Abstract
Background Lower urinary tract symptoms (LUTS) and prostate specific antigen-based parameters seem to have only a limited utility for the differential diagnosis of prostate cancer (PCa). MALDI-TOF/MS peptidomic profiling could be a useful diagnostic tool for biomarker discovery, although reproducibility issues have limited its applicability until now. The current study aimed to evaluate a new MALDI-TOF/MS candidate biomarker. Methods Within- and between-subject variability of MALDI-TOF/MS-based peptidomic urine and serum analyses were evaluated in 20 and 15 healthy donors, respectively. Normalizations and approaches for accounting below limit of detection (LOD) values were utilized to enhance reproducibility, while Monte Carlo experiments were performed to verify whether measurement error can be dealt with LOD data. Post-prostatic massage urine and serum samples from 148 LUTS patients were analysed using MALDI-TOF/MS. Regression-calibration and simulation and extrapolation methods were used to derive the unbiased association between peptidomic features and PCa. Results Although the median normalized peptidomic variability was 24.9%, the within- and between-subject variability showed that median normalization, LOD adjustment, and log2 data transformation were the best combination in terms of reliability; in measurement error conditions, intraclass correlation coefficient was a reliable estimate when the LOD/2 was substituted for below LOD values. In the patients studied, 43 peptides were shared by the urine and serum, and several features were found to be associated with PCa. Only few serum features, however, show statistical significance after the multiple testing procedures were completed. Two serum fragmentation patterns corresponded to the complement C4-A. Conclusions MALDI-TOF/MS serum peptidome profiling was more efficacious with respect to post-prostatic massage urine analysis in discriminating PCa. Electronic supplementary material The online version of this article (10.1186/s12014-018-9199-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea Padoan
- 1Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padua, Italy
| | - Daniela Basso
- 1Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padua, Italy
| | | | - Tommaso Prayer-Galetti
- 3Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padua, Italy
| | - Giorgio Arrigoni
- 2Department of Biomedical Sciences, University of Padova, Padua, Italy.,4Proteomic Center, University of Padova, Padua, Italy
| | - Dania Bozzato
- 1Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padua, Italy
| | - Stefania Moz
- 1Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padua, Italy
| | - Filiberto Zattoni
- 3Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padua, Italy
| | - Rino Bellocco
- 5Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milan, Italy.,6Department of Medical Epidemiology and Biostatistics (MEB), Karolinska Institute, Stockholm, Sweden
| | - Mario Plebani
- 1Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padua, Italy
| |
Collapse
|
20
|
Lacombe J, Sima C, Amundson SA, Zenhausern F. Candidate gene biodosimetry markers of exposure to external ionizing radiation in human blood: A systematic review. PLoS One 2018; 13:e0198851. [PMID: 29879226 PMCID: PMC5991767 DOI: 10.1371/journal.pone.0198851] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/25/2018] [Indexed: 12/22/2022] Open
Abstract
Purpose To compile a list of genes that have been reported to be affected by external ionizing radiation (IR) and to assess their performance as candidate biomarkers for individual human radiation dosimetry. Methods Eligible studies were identified through extensive searches of the online databases from 1978 to 2017. Original English-language publications of microarray studies assessing radiation-induced changes in gene expression levels in human blood after external IR were included. Genes identified in at least half of the selected studies were retained for bio-statistical analysis in order to evaluate their diagnostic ability. Results 24 studies met the criteria and were included in this study. Radiation-induced expression of 10,170 unique genes was identified and the 31 genes that have been identified in at least 50% of studies (12/24 studies) were selected for diagnostic power analysis. Twenty-seven genes showed a significant Spearman’s correlation with radiation dose. Individually, TNFSF4, FDXR, MYC, ZMAT3 and GADD45A provided the best discrimination of radiation dose < 2 Gy and dose ≥ 2 Gy according to according to their maximized Youden’s index (0.67, 0.55, 0.55, 0.55 and 0.53 respectively). Moreover, 12 combinations of three genes display an area under the Receiver Operating Curve (ROC) curve (AUC) = 1 reinforcing the concept of biomarker combinations instead of looking for an ideal and unique biomarker. Conclusion Gene expression is a promising approach for radiation dosimetry assessment. A list of robust candidate biomarkers has been identified from analysis of the studies published to date, confirming for example the potential of well-known genes such as FDXR and TNFSF4 or highlighting other promising gene such as ZMAT3. However, heterogeneity in protocols and analysis methods will require additional studies to confirm these results.
Collapse
Affiliation(s)
- Jerome Lacombe
- Center for Applied NanoBioscience and Medicine, University of Arizona, Phoenix, Arizona, United States of America
- * E-mail:
| | - Chao Sima
- Center for Bioinformatics and Genomic Systems Engineering, Texas A&M Engineering Experiment Station, College Station, TX, United States of America
| | - Sally A. Amundson
- Center for Radiological Research, Columbia University Medical Center, New York, NY, United States of America
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, University of Arizona, Phoenix, Arizona, United States of America
- Honor Health Research Institute, Scottsdale, Arizona, United States of America
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| |
Collapse
|
21
|
Szatmári T, Persa E, Kis E, Benedek A, Hargitai R, Sáfrány G, Lumniczky K. Extracellular vesicles mediate low dose ionizing radiation-induced immune and inflammatory responses in the blood. Int J Radiat Biol 2018. [PMID: 29533121 DOI: 10.1080/09553002.2018.1450533] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Radiation-induced bystander effects (RIBE) imply the involvement of complex signaling mechanisms, which can be mediated by extracellular vesicles (EVs). Using an in vivo model, we investigated EV-transmitted RIBE in blood plasma and radiation effects on plasma EV miRNA profiles. MATERIALS AND METHODS C57Bl/6 mice were total-body irradiated with 0.1 and 2 Gy, bone marrow-derived EVs were isolated, and injected systemically into naive, 'bystander' animals. Proteome profiler antibody array membranes were used to detect alterations in plasma, both in directly irradiated and bystander mice. MiRNA profile of plasma EVs was determined by PCR array. RESULTS M-CSF and pentraxin-3 levels were increased in the blood of directly irradiated and bystander mice both after low and high dose irradiations, CXCL16 and lipocalin-2 increased after 2 Gy in directly irradiated and bystander mice, CCL5 and CCL11 changed in bystander mice only. Substantial overlap was found in the cellular pathways regulated by those miRNAs whose level were altered in EVs isolated from the plasma of mice irradiated with 0.1 and 2 Gy. Several of these pathways have already been associated with bystander responses. CONCLUSION Low and high dose effects overlapped both in EV-mediated alterations in signaling pathways leading to RIBE and in their systemic manifestations.
Collapse
Affiliation(s)
- Tünde Szatmári
- a Department of Radiation Medicine, Division of Radiobiology and Radiohygiene , National Public Health Institute , Budapest , Hungary
| | - Eszter Persa
- a Department of Radiation Medicine, Division of Radiobiology and Radiohygiene , National Public Health Institute , Budapest , Hungary
| | - Enikő Kis
- a Department of Radiation Medicine, Division of Radiobiology and Radiohygiene , National Public Health Institute , Budapest , Hungary
| | - Anett Benedek
- a Department of Radiation Medicine, Division of Radiobiology and Radiohygiene , National Public Health Institute , Budapest , Hungary
| | - Rita Hargitai
- a Department of Radiation Medicine, Division of Radiobiology and Radiohygiene , National Public Health Institute , Budapest , Hungary
| | - Géza Sáfrány
- a Department of Radiation Medicine, Division of Radiobiology and Radiohygiene , National Public Health Institute , Budapest , Hungary
| | - Katalin Lumniczky
- a Department of Radiation Medicine, Division of Radiobiology and Radiohygiene , National Public Health Institute , Budapest , Hungary
| |
Collapse
|
22
|
Clinical veterinary proteomics: Techniques and approaches to decipher the animal plasma proteome. Vet J 2017; 230:6-12. [PMID: 29208216 DOI: 10.1016/j.tvjl.2017.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/03/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022]
Abstract
Over the last two decades, technological advancements in the field of proteomics have advanced our understanding of the complex biological systems of living organisms. Techniques based on mass spectrometry (MS) have emerged as powerful tools to contextualise existing genomic information and to create quantitative protein profiles from plasma, tissues or cell lines of various species. Proteomic approaches have been used increasingly in veterinary science to investigate biological processes responsible for growth, reproduction and pathological events. However, the adoption of proteomic approaches by veterinary investigators lags behind that of researchers in the human medical field. Furthermore, in contrast to human proteomics studies, interpretation of veterinary proteomic data is difficult due to the limited protein databases available for many animal species. This review article examines the current use of advanced proteomics techniques for evaluation of animal health and welfare and covers the current status of clinical veterinary proteomics research, including successful protein identification and data interpretation studies. It includes a description of an emerging tool, sequential window acquisition of all theoretical fragment ion mass spectra (SWATH-MS), available on selected mass spectrometry instruments. This newly developed data acquisition technique combines advantages of discovery and targeted proteomics approaches, and thus has the potential to advance the veterinary proteomics field by enhancing identification and reproducibility of proteomics data.
Collapse
|
23
|
Wu D, Ni J, Beretov J, Cozzi P, Willcox M, Wasinger V, Walsh B, Graham P, Li Y. Urinary biomarkers in prostate cancer detection and monitoring progression. Crit Rev Oncol Hematol 2017; 118:15-26. [DOI: 10.1016/j.critrevonc.2017.08.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022] Open
|
24
|
Meyer JG, Schilling B. Clinical applications of quantitative proteomics using targeted and untargeted data-independent acquisition techniques. Expert Rev Proteomics 2017; 14:419-429. [PMID: 28436239 PMCID: PMC5671767 DOI: 10.1080/14789450.2017.1322904] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION While selected/multiple-reaction monitoring (SRM or MRM) is considered the gold standard for quantitative protein measurement, emerging data-independent acquisition (DIA) using high-resolution scans have opened a new dimension of high-throughput, comprehensive quantitative proteomics. These newer methodologies are particularly well suited for discovery of biomarker candidates from human disease samples, and for investigating and understanding human disease pathways. Areas covered: This article reviews the current state of targeted and untargeted DIA mass spectrometry-based proteomic workflows, including SRM, parallel-reaction monitoring (PRM) and untargeted DIA (e.g., SWATH). Corresponding bioinformatics strategies, as well as application in biological and clinical studies are presented. Expert commentary: Nascent application of highly-multiplexed untargeted DIA, such as SWATH, for accurate protein quantification from clinically relevant and disease-related samples shows great potential to comprehensively investigate biomarker candidates and understand disease.
Collapse
Affiliation(s)
- Jesse G Meyer
- a Mass Spectrometry Core , Buck Institute for Research on Aging , Novato , CA , USA
| | - Birgit Schilling
- a Mass Spectrometry Core , Buck Institute for Research on Aging , Novato , CA , USA
| |
Collapse
|
25
|
Anjo SI, Santa C, Manadas B. SWATH-MS as a tool for biomarker discovery: From basic research to clinical applications. Proteomics 2017; 17. [DOI: 10.1002/pmic.201600278] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/05/2017] [Accepted: 01/23/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Sandra Isabel Anjo
- CNC - Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
- Faculty of Sciences and Technology; University of Coimbra; Coimbra Portugal
| | - Cátia Santa
- CNC - Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
- Institute for Interdisciplinary Research (III); University of Coimbra; Coimbra Portugal
| | - Bruno Manadas
- CNC - Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
| |
Collapse
|
26
|
Abstract
Proteomics characterization of biofluids, such as urine and plasma, has been explored for the discovery of predictive, prognostic, and mechanistic biomarkers of diseases and tissue injury. Here we describe comprehensive characterization of protein cargos from cell-derived secreted vesicles (extracellular vesicles or exosome) for biomarker discovery using the mass spectrometry-based technology.
Collapse
Affiliation(s)
- Antonius Koller
- Herbert Irving Comprehensive Cancer Center, Proteomics Shared Resource, Columbia University Medical Center, New York, NY, 10032, USA
| | - Purvi Patel
- Herbert Irving Comprehensive Cancer Center, Proteomics Shared Resource, Columbia University Medical Center, New York, NY, 10032, USA
| | - Jenny Kim Kim
- Herbert Irving Comprehensive Cancer Center, Proteomics Shared Resource, Columbia University Medical Center, New York, NY, 10032, USA
| | - Emily I Chen
- Herbert Irving Comprehensive Cancer Center, Proteomics Shared Resource, Columbia University Medical Center, New York, NY, 10032, USA.
- Department of Pharmacology, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
27
|
|