1
|
Trojani V, Grehn M, Botti A, Balgobind B, Savini A, Boda-Heggemann J, Miszczyk M, Elicin O, Krug D, Andratschke N, Schmidhalter D, van Elmpt W, Bogowicz M, de Areba Iglesias J, Dolla L, Ehrbar S, Fernandez-Velilla E, Fleckenstein J, Granero D, Henzen D, Hurkmans C, Kluge A, Knybel L, Loopeker S, Mirandola A, Richetto V, Sicignano G, Vallet V, van Asselen B, Worm E, Pruvot E, Verhoeff J, Fast M, Iori M, Blanck O. Refining Treatment Planning in STereotactic Arrhythmia Radioablation: Benchmark Results and Consensus Statement From the STOPSTORM.eu Consortium. Int J Radiat Oncol Biol Phys 2024:S0360-3016(24)03171-7. [PMID: 39122095 DOI: 10.1016/j.ijrobp.2024.07.2331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
PURPOSE STereotactic Arrhythmia Radioablation (STAR) showed promising results in patients with refractory ventricular tachycardia. However, clinical data are scarce and heterogeneous. The STOPSTORM.eu consortium was established to investigate and harmonize STAR in Europe. The primary goal of this benchmark study was to investigate current treatment planning practice within the STOPSTORM project as a baseline for future harmonization. METHODS AND MATERIALS Planning target volumes (PTVs) overlapping extracardiac organs-at-risk and/or cardiac substructures were generated for 3 STAR cases. Participating centers were asked to create single-fraction treatment plans with 25 Gy dose prescriptions based on in-house clinical practice. All treatment plans were reviewed by an expert panel and quantitative crowd knowledge-based analysis was performed with independent software using descriptive statistics for International Commission on Radiation Units and Measurements report 91 relevant parameters and crowd dose-volume histograms. Thereafter, treatment planning consensus statements were established using a dual-stage voting process. RESULTS Twenty centers submitted 67 treatment plans for this study. In most plans (75%) intensity modulated arc therapy with 6 MV flattening filter free beams was used. Dose prescription was mainly based on PTV D95% (49%) or D96%-100% (19%). Many participants preferred to spare close extracardiac organs-at-risk (75%) and cardiac substructures (50%) by PTV coverage reduction. PTV D0.035cm3 ranged from 25.5 to 34.6 Gy, demonstrating a large variety of dose inhomogeneity. Estimated treatment times without motion compensation or setup ranged from 2 to 80 minutes. For the consensus statements, a strong agreement was reached for beam technique planning, dose calculation, prescription methods, and trade-offs between target and extracardiac critical structures. No agreement was reached on cardiac substructure dose limitations and on desired dose inhomogeneity in the target. CONCLUSIONS This STOPSTORM multicenter treatment planning benchmark study not only showed strong agreement on several aspects of STAR treatment planning, but also revealed disagreement on others. To standardize and harmonize STAR in the future, consensus statements were established; however, clinical data are urgently needed for actionable guidelines for treatment planning.
Collapse
Affiliation(s)
- Valeria Trojani
- Department of Medical Physics, AUSL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Melanie Grehn
- Department of Radiation Oncology, University Medical Center of Schleswig-Holstein, Kiel, Germany
| | - Andrea Botti
- Department of Medical Physics, AUSL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Brian Balgobind
- Department of Radiation Oncology, Amsterdam UMC, Radiation Oncology, Amsterdam, The Netherlands
| | | | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marcin Miszczyk
- IIIrd Radiotherapy and Chemotherapy Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland; Collegium Medicum - Faculty of Medicine, WSB University, Dąbrowa Górnicza, Poland
| | - Olgun Elicin
- Department of Radiation Oncology and Division of Medical Radiation Physics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - David Krug
- Department of Radiation Oncology, University Medical Center of Schleswig-Holstein, Kiel, Germany
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital of Zurich, Zurich, Switzerland
| | - Daniel Schmidhalter
- Department of Radiation Oncology and Division of Medical Radiation Physics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Wouter van Elmpt
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Marta Bogowicz
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | - Lukasz Dolla
- Radiotherapy Planning Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Stefanie Ehrbar
- Department of Radiation Oncology, University Hospital of Zurich, Zurich, Switzerland
| | | | - Jens Fleckenstein
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Domingo Granero
- Department of Radiation Oncology, Hospital General Valencia, Valencia, Spain
| | - Dominik Henzen
- Department of Radiation Oncology and Division of Medical Radiation Physics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Coen Hurkmans
- Department of Radiation Oncology, Catharina Hospital, Eindhoven, The Netherlands; Department of Electrical Engineering and Department of Applied Physics, Technical University Eindhoven, The Netherlands
| | - Anne Kluge
- Department for Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lukas Knybel
- Department of Oncology, University Hospital and Faculty of Medicine, Ostrava, Czech Republic
| | - Sandy Loopeker
- Department of Radiation Oncology, Amsterdam UMC, Radiation Oncology, Amsterdam, The Netherlands
| | - Alfredo Mirandola
- Radiation Oncology Clinical Department, National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Veronica Richetto
- Medical Physics Unit, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Gianluisa Sicignano
- Department of Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Veronique Vallet
- Department of Radiophysics, Lausanne University Hospital, Lausanne, Switzerland
| | - Bram van Asselen
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Esben Worm
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Etienne Pruvot
- Heart and Vessel Department, Service of Cardiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Joost Verhoeff
- Department of Radiation Oncology, Amsterdam UMC, Radiation Oncology, Amsterdam, The Netherlands; Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martin Fast
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mauro Iori
- Department of Medical Physics, AUSL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center of Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
2
|
Romanazzi I, Di Monaco A, Bonaparte I, Valenti N, Surgo A, Di Guglielmo F, Fiorentino A, Grimaldi M. Noninvasive Mapping System for the Stereotactic Radioablation Treatment of Ventricular Tachycardia: A Case Description. J Cardiovasc Dev Dis 2024; 11:239. [PMID: 39195147 DOI: 10.3390/jcdd11080239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
OBJECTIVES Sustained monomorphic ventricular tachycardia (SMVT) is a life-threatening condition that is often observed in patients with structural heart disease. Catheter ablation (CA) ablation is an effective and well-established treatment for the scar-related ventricular tachycardias (VTs). Sometimes, due to patient fragility or contraindications to CA, a noninvasive procedure is required. In these cases, VT ablation with stereotactic arrhythmia radioablation (STAR) for SMVTs supported by the CardioInsight mapping system seems to be a promising and effective noninvasive approach. METHODS AND RESULTS We report a case of a 55-year-old male smoker and heavy alcohol consumer who developed ischemic heart disease and frequent refractory SMVT relative to antiarrhythmic drugs. Catheter ablation was not practicable due to the presence of an apical thrombosis in the left ventricle. The CardioInsightTM system (Cardioinsight Technologies Inc., Cleveland, OH, USA) was useful for noninvasively mapping the VTs, identifying two target areas on the septum and anterior wall of the left ventricle. A personalized STAR treatment plan was carefully designed, and it was delivered in a few minutes. During follow-up, a significant reduction in the arrhythmia burden was documented. CONCLUSIONS Stereotactic arrhythmia radioablation supported by the CardioInsight system could be an alternative treatment for VTs when catheter ablation is not possible. Larger studies are needed to investigate this technique.
Collapse
Affiliation(s)
- Imma Romanazzi
- Department of Cardiology, General Regional Hospital "F. Miulli", Acquaviva Delle Fonti, 70021 Bari, Italy
| | - Antonio Di Monaco
- Department of Cardiology, General Regional Hospital "F. Miulli", Acquaviva Delle Fonti, 70021 Bari, Italy
| | - Ilaria Bonaparte
- Department of Radiation Oncology, General Regional Hospital "F. Miulli", Acquaviva Delle Fonti, 70021 Bari, Italy
| | - Noemi Valenti
- Department of Cardiology, General Regional Hospital "F. Miulli", Acquaviva Delle Fonti, 70021 Bari, Italy
| | - Alessia Surgo
- Department of Radiation Oncology, General Regional Hospital "F. Miulli", Acquaviva Delle Fonti, 70021 Bari, Italy
| | - Fiorella Di Guglielmo
- Department of Radiation Oncology, General Regional Hospital "F. Miulli", Acquaviva Delle Fonti, 70021 Bari, Italy
| | - Alba Fiorentino
- Department of Radiation Oncology, General Regional Hospital "F. Miulli", Acquaviva Delle Fonti, 70021 Bari, Italy
- Department of Medicine, LUM University, 70010 Casamassima, Italy
| | - Massimo Grimaldi
- Department of Cardiology, General Regional Hospital "F. Miulli", Acquaviva Delle Fonti, 70021 Bari, Italy
| |
Collapse
|
3
|
Liulu X, Balaji P, Barber J, De Silva K, Murray T, Hickey A, Campbell T, Harris J, Gee H, Ahern V, Kumar S, Hau E, Qian PC. Radiation therapy for ventricular arrhythmias. J Med Imaging Radiat Oncol 2024. [PMID: 38698577 DOI: 10.1111/1754-9485.13662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
Ventricular arrhythmias (VA) can be life-threatening arrhythmias that result in significant morbidity and mortality. Catheter ablation (CA) is an invasive treatment modality that can be effective in the treatment of VA where medications fail. Recurrence occurs commonly following CA due to an inability to deliver lesions of adequate depth to cauterise the electrical circuits that drive VA or reach areas of scar responsible for VA. Stereotactic body radiotherapy is a non-invasive treatment modality that allows volumetric delivery of energy to treat circuits that cannot be reached by CA. It overcomes the weaknesses of CA and has been successfully utilised in small clinical trials to treat refractory VA. This article summarises the current evidence for this novel treatment modality and the steps that will be required to bring it to the forefront of VA treatment.
Collapse
Affiliation(s)
- Xingzhou Liulu
- Cardiology Department, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Poornima Balaji
- Cardiology Department, Westmead Hospital, University of Sydney, Sydney, New South Wales, Australia
- Westmead Applied Research Centre, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Jeffrey Barber
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Kasun De Silva
- Cardiology Department, Westmead Hospital, University of Sydney, Sydney, New South Wales, Australia
- Westmead Applied Research Centre, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Tiarne Murray
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, New South Wales, Australia
| | - Andrew Hickey
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, New South Wales, Australia
| | - Timothy Campbell
- Cardiology Department, Westmead Hospital, University of Sydney, Sydney, New South Wales, Australia
- Westmead Applied Research Centre, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Jill Harris
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, New South Wales, Australia
| | - Harriet Gee
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Verity Ahern
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Saurabh Kumar
- Cardiology Department, Westmead Hospital, University of Sydney, Sydney, New South Wales, Australia
- Westmead Applied Research Centre, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Eric Hau
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Blacktown Hematology and Cancer Centre, Blacktown Hospital, Blacktown, New South Wales, Australia
| | - Pierre C Qian
- Cardiology Department, Westmead Hospital, University of Sydney, Sydney, New South Wales, Australia
- Westmead Applied Research Centre, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Poon J, Thompson RB, Deyell MW, Schellenberg D, Kohli K, Thomas S. Left ventricle segment-specific motion assessment for cardiac-gated radiosurgery. Biomed Phys Eng Express 2024; 10:025040. [PMID: 38359447 DOI: 10.1088/2057-1976/ad29a4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/15/2024] [Indexed: 02/17/2024]
Abstract
Purpose.Cardiac radiosurgery is a non-invasive treatment modality for ventricular tachycardia, where a linear accelerator is used to irradiate the arrhythmogenic region within the heart. In this work, cardiac magnetic resonance (CMR) cine images were used to quantify left ventricle (LV) segment-specific motion during the cardiac cycle and to assess potential advantages of cardiac-gated radiosurgery.Methods.CMR breath-hold cine images and LV contour points were analyzed for 50 controls and 50 heart failure patients with reduced ejection fraction (HFrEF, EF < 40%). Contour points were divided into anatomic segments according to the 17-segment model, and each segment was treated as a hypothetical treatment target. The optimum treatment window (one fifth of the cardiac cycle) was determined where segment centroid motion was minimal, then the maximum centroid displacement and treatment area were determined for the full cardiac cycle and for the treatment window. Mean centroid displacement and treatment area reductions with cardiac gating were determined for each of the 17 segments.Results.Full motion segment centroid displacements ranged between 6-14 mm (controls) and 4-11 mm (HFrEF). Full motion treatment areas ranged between 129-715 mm2(controls) and 149-766 mm2(HFrEF). With gating, centroid displacements were reduced to 1 mm (controls and HFrEF), while treatment areas were reduced to 62-349 mm2(controls) and 83-393 mm2(HFrEF). Relative treatment area reduction ranged between 38%-53% (controls) and 26%-48% (HFrEF).Conclusion.This data demonstrates that cardiac cycle motion is an important component of overall target motion and varies depending on the anatomic cardiac segment. Accounting for cardiac cycle motion, through cardiac gating, has the potential to significantly reduce treatment volumes for cardiac radiosurgery.
Collapse
Affiliation(s)
- Justin Poon
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Department of Medical Physics, BC Cancer, Vancouver, British Columbia V5Z 4E6, Canada
| | - Richard B Thompson
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, T6G 2V2, Canada
| | - Marc W Deyell
- Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, BC V6E 1M7, Canada
| | - Devin Schellenberg
- Department of Radiation Oncology, BC Cancer, Surrey, British Columbia V3V 1Z2, Canada
| | - Kirpal Kohli
- Department of Medical Physics, BC Cancer, Surrey, British Columbia V3V 1Z2, Canada
| | - Steven Thomas
- Department of Medical Physics, BC Cancer, Vancouver, British Columbia V5Z 4E6, Canada
| |
Collapse
|
5
|
Stevens RRF, Hazelaar C, Bogowicz M, Ter Bekke RMA, Volders PGA, Verhoeven K, de Ruysscher D, Verhoeff JJC, Fast MF, Mandija S, Cvek J, Knybel L, Dvorak P, Blanck O, van Elmpt W. A Framework for Assessing the Effect of Cardiac and Respiratory Motion for Stereotactic Arrhythmia Radioablation Using a Digital Phantom With a 17-Segment Model: A STOPSTORM.eu Consortium Study. Int J Radiat Oncol Biol Phys 2024; 118:533-542. [PMID: 37652302 DOI: 10.1016/j.ijrobp.2023.08.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
PURPOSE The optimal motion management strategy for patients receiving stereotactic arrhythmia radioablation (STAR) for the treatment of ventricular tachycardia (VT) is not fully known. We developed a framework using a digital phantom to simulate cardiorespiratory motion in combination with different motion management strategies to gain insight into the effect of cardiorespiratory motion on STAR. METHODS AND MATERIALS The 4-dimensional (4D) extended cardiac-torso (XCAT) phantom was expanded with the 17-segment left ventricular (LV) model, which allowed placement of STAR targets in standardized ventricular regions. Cardiac- and respiratory-binned 4D computed tomography (CT) scans were simulated for free-breathing, reduced free-breathing, respiratory-gating, and breath-hold scenarios. Respiratory motion of the heart was set to population-averaged values of patients with VT: 6, 2, and 1 mm in the superior-inferior, posterior-anterior, and left-right direction, respectively. Cardiac contraction was adjusted by reducing LV ejection fraction to 35%. Target displacement was evaluated for all segments using envelopes encompassing the cardiorespiratory motion. Envelopes incorporating only the diastole plus respiratory motion were created to simulate the scenario where cardiac motion is not fully captured on 4D respiratory CT scans used for radiation therapy planning. RESULTS The average volume of the 17 segments was 6 cm3 (1-9 cm3). Cardiac contraction-relaxation resulted in maximum segment (centroid) motion of 4, 6, and 3.5 mm in the superior-inferior, posterior-anterior, and left-right direction, respectively. Cardiac contraction-relaxation resulted in a motion envelope increase of 49% (24%-79%) compared with individual segment volumes, whereas envelopes increased by 126% (79%-167%) if respiratory motion also was considered. Envelopes incorporating only the diastole and respiration motion covered on average 68% to 75% of the motion envelope. CONCLUSIONS The developed LV-segmental XCAT framework showed that free-wall regions display the most cardiorespiratory displacement. Our framework supports the optimization of STAR by evaluating the effect of (cardio)respiratory motion and motion management strategies for patients with VT.
Collapse
Affiliation(s)
- Raoul R F Stevens
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands.
| | - Colien Hazelaar
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Marta Bogowicz
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Rachel M A Ter Bekke
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Paul G A Volders
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Karolien Verhoeven
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Dirk de Ruysscher
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Joost J C Verhoeff
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martin F Fast
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stefano Mandija
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jakub Cvek
- Department of Oncology, University Hospital and Faculty of Medicine, Ostrava, Czech Republic
| | - Lukas Knybel
- Department of Oncology, University Hospital and Faculty of Medicine, Ostrava, Czech Republic
| | - Pavel Dvorak
- Department of Oncology, University Hospital and Faculty of Medicine, Ostrava, Czech Republic
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Wouter van Elmpt
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
6
|
Thariat J, Little MP, Zablotska LB, Samson P, O’Banion MK, Leuraud K, Bergom C, Girault G, Azimzadeh O, Bouffler S, Hamada N. Radiotherapy for non-cancer diseases: benefits and long-term risks. Int J Radiat Biol 2024; 100:505-526. [PMID: 38180039 PMCID: PMC11039429 DOI: 10.1080/09553002.2023.2295966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
PURPOSE The discovery of X-rays was followed by a variety of attempts to treat infectious diseases and various other non-cancer diseases with ionizing radiation, in addition to cancer. There has been a recent resurgence of interest in the use of such radiotherapy for non-cancer diseases. Non-cancer diseases for which use of radiotherapy has currently been proposed include refractory ventricular tachycardia, neurodegenerative diseases (e.g. Alzheimer's disease and dementia), and Coronavirus Disease 2019 (COVID-19) pneumonia, all with ongoing clinical studies that deliver radiation doses of 0.5-25 Gy in a single fraction or in multiple daily fractions. In addition to such non-cancer effects, historical indications predominantly used in some countries (e.g. Germany) include osteoarthritis and degenerative diseases of the bones and joints. This narrative review gives an overview of the biological rationale and ongoing preclinical and clinical studies for radiotherapy proposed for various non-cancer diseases, discusses the plausibility of the proposed biological rationale, and considers the long-term radiation risks of cancer and non-cancer diseases. CONCLUSIONS A growing body of evidence has suggested that radiation represents a double-edged sword, not only for cancer, but also for non-cancer diseases. At present, clinical evidence has shown some beneficial effects of radiotherapy for ventricular tachycardia, but there is little or no such evidence of radiotherapy for other newly proposed non-cancer diseases (e.g. Alzheimer's disease, COVID-19 pneumonia). Patients with ventricular tachycardia and COVID-19 pneumonia have thus far been treated with radiotherapy when they are an urgent life threat with no efficient alternative treatment, but some survivors may encounter a paradoxical situation where patients were rescued by radiotherapy but then get harmed by radiotherapy. Further studies are needed to justify the clinical use of radiotherapy for non-cancer diseases, and optimize dose to diseased tissue while minimizing dose to healthy tissue.
Collapse
Affiliation(s)
- Juliette Thariat
- Department of Radiation Oncology, Comprehensive Cancer Centre François Baclesse, Caen, France
- Laboratoire de Physique Corpusculaire IN2P3, ENSICAEN/CNRS UMR 6534, Normandie Université, Caen, France
| | - Mark P. Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Lydia B. Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Pamela Samson
- Department of Radiation Oncology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - M. Kerry O’Banion
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Klervi Leuraud
- Research Department on Biological and Health Effects of Ionizing Radiation (SESANE), Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Carmen Bergom
- Department of Radiation Oncology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Cardio-Oncology Center of Excellence, Washington University, St. Louis, Missouri, USA
| | - Gilles Girault
- Comprehensive Cancer Centre François Baclesse, Medical Library, Caen, France
| | - Omid Azimzadeh
- Federal Office for Radiation Protection (BfS), Section Radiation Biology, Neuherberg, Germany
| | - Simon Bouffler
- Radiation Protection Sciences Division, UK Health Security Agency (UKHSA), Chilton, Didcot, UK
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Abiko, Chiba, Japan
| |
Collapse
|
7
|
Balgobind BV, Visser J, Grehn M, Marquard Knap M, de Ruysscher D, Levis M, Alcantara P, Boda-Heggemann J, Both M, Cozzi S, Cvek J, Dieleman EMT, Elicin O, Giaj-Levra N, Jumeau R, Krug D, Algara López M, Mayinger M, Mehrhof F, Miszczyk M, Pérez-Calatayud MJ, van der Pol LHG, van der Toorn PP, Vitolo V, Postema PG, Pruvot E, Verhoeff JC, Blanck O. Refining critical structure contouring in STereotactic Arrhythmia Radioablation (STAR): Benchmark results and consensus guidelines from the STOPSTORM.eu consortium. Radiother Oncol 2023; 189:109949. [PMID: 37827279 DOI: 10.1016/j.radonc.2023.109949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/05/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND AND PURPOSE In patients with recurrent ventricular tachycardia (VT), STereotactic Arrhythmia Radioablation (STAR) shows promising results. The STOPSTORM.eu consortium was established to investigate and harmonise STAR treatment in Europe. The primary goals of this benchmark study were to standardise contouring of organs at risk (OAR) for STAR, including detailed substructures of the heart, and accredit each participating centre. MATERIALS AND METHODS Centres within the STOPSTORM.eu consortium were asked to delineate 31 OAR in three STAR cases. Delineation was reviewed by the consortium expert panel and after a dedicated workshop feedback and accreditation was provided to all participants. Further quantitative analysis was performed by calculating DICE similarity coefficients (DSC), median distance to agreement (MDA), and 95th percentile distance to agreement (HD95). RESULTS Twenty centres participated in this study. Based on DSC, MDA and HD95, the delineations of well-known OAR in radiotherapy were similar, such as lungs (median DSC = 0.96, median MDA = 0.1 mm and median HD95 = 1.1 mm) and aorta (median DSC = 0.90, median MDA = 0.1 mm and median HD95 = 1.5 mm). Some centres did not include the gastro-oesophageal junction, leading to differences in stomach and oesophagus delineations. For cardiac substructures, such as chambers (median DSC = 0.83, median MDA = 0.2 mm and median HD95 = 0.5 mm), valves (median DSC = 0.16, median MDA = 4.6 mm and median HD95 = 16.0 mm), coronary arteries (median DSC = 0.4, median MDA = 0.7 mm and median HD95 = 8.3 mm) and the sinoatrial and atrioventricular nodes (median DSC = 0.29, median MDA = 4.4 mm and median HD95 = 11.4 mm), deviations between centres occurred more frequently. After the dedicated workshop all centres were accredited and contouring consensus guidelines for STAR were established. CONCLUSION This STOPSTORM multi-centre critical structure contouring benchmark study showed high agreement for standard radiotherapy OAR. However, for cardiac substructures larger disagreement in contouring occurred, which may have significant impact on STAR treatment planning and dosimetry evaluation. To standardize OAR contouring, consensus guidelines for critical structure contouring in STAR were established.
Collapse
Affiliation(s)
- Brian V Balgobind
- Department of Radiation Oncology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands.
| | - Jorrit Visser
- Department of Radiation Oncology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Melanie Grehn
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | - Dirk de Ruysscher
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University, Maastricht, the Netherlands
| | - Mario Levis
- Department of Oncology, University of Torino, Torino, Italy
| | - Pino Alcantara
- Department of Radiation Oncology, Hospital Clínico San Carlos, Faculty of Medicine, University Complutense of Madrid, Madrid, Spain
| | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marcus Both
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Salvatore Cozzi
- Radiation Oncology Unit, Azienda USL-IRCCS, Reggio Emilia, Italy; Radiation Oncology Department, Centre Léon Bérard, Lyon, France
| | - Jakub Cvek
- Department of Oncology, University Hospital and Faculty of Medicine, Ostrava, Czech Republic
| | - Edith M T Dieleman
- Department of Radiation Oncology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Olgun Elicin
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Niccolò Giaj-Levra
- Department of Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Raphaël Jumeau
- Department of Radio-Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - David Krug
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Manuel Algara López
- Department of Radiotherapy, Hospital del Mar, Universitat Pompeu Fabra, Barcelona, Spain
| | - Michael Mayinger
- Department of Radiation Oncology, University Hospital of Zurich, Zurich, Switzerland
| | - Felix Mehrhof
- Department for Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marcin Miszczyk
- IIIrd Radiotherapy and Chemotherapy Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | | | - Luuk H G van der Pol
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Viviana Vitolo
- Radiation Oncology Clinical Department, National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Pieter G Postema
- Department of Cardiology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Etienne Pruvot
- Heart and Vessel Department, Service of Cardiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Joost C Verhoeff
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
8
|
Wang CY, Ho LT, Lin LY, Chan HM, Chen HY, Yu TL, Huang YS, Kuo SH, Lee WJ, Chen JLY. Noninvasive cardiac radioablation for ventricular tachycardia: dosimetric comparison between linear accelerator- and robotic CyberKnife-based radiosurgery systems. Radiat Oncol 2023; 18:187. [PMID: 37950307 PMCID: PMC10638803 DOI: 10.1186/s13014-023-02370-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Few dosimetric comparisons have been published between linear accelerator (LA)-based systems and CyberKnife (CK)-based robotic radiosurgery systems for cardiac radio-ablation in ventricular tachycardia. This study aimed to compare the dosimetry of noninvasive cardiac radio-ablation deliverable on LA with that on CK. METHODS Thirteen patients who underwent noninvasive cardiac radio-ablation by LA were included. The prescribed dose was 25 Gy in 1 fraction, and the average planning target volume was 49.8 ± 31.0 cm3 (range, 14.4-93.7 cm3). CK plans were generated for comparison. RESULTS Both the CK and LA plans accomplished appropriate dose coverage and normal tissue sparing. Compared with the LA plans, the CK plans achieved significantly lower gradient indices (3.12 ± 0.71 vs. 3.48 ± 0.55, p = 0.031) and gradient measures (1.00 ± 0.29 cm vs. 1.17 ± 0.29 cm, p < 0.001). They had similar equivalent conformity indices (CK vs. LA: 0.84 ± 0.08 vs. 0.87 ± 0.07, p = 0.093) and maximum doses 2 cm from the planning target volume (PTV) in any direction (CK vs. LA: 50.8 ± 9.9% vs. 53.1 ± 5.3%, p = 0.423). The dosimetric advantages of CK were more prominent in patients with a PTV of ≤ 50 cm3 or a spherical PTV. In patients with a PTV of > 50 cm3 or a non-spherical PTV, the LA and CK plans were similar regarding dosimetric parameters. CK plans involved more beams (232.2 ± 110.8 beams vs. 10.0 ± 1.7 arcs) and longer treatment times (119.2 ± 43.3 min vs. 22.4 ± 1.6 min, p = 0.007). CONCLUSIONS Both CK and LA are ideal modalities for noninvasive cardiac radio-ablation. Upfront treatment should be considered based on clinical intent.
Collapse
Affiliation(s)
- Ching-Yu Wang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Ting Ho
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Lian-Yu Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Hsing-Min Chan
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hung-Yi Chen
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tung-Lin Yu
- Department of Radiation Oncology, Fu-Jen Catholic University Hospital, Taipei, Taiwan
| | - Yu-Sen Huang
- Department of Medical Imaging, National Taiwan University Hospital, No. 7, Chung-Shan S. Rd., Taipei, 100, Taiwan
- Department of Radiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sung-Hsin Kuo
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Radiation Oncology, National Taiwan University Cancer Center, No. 57, Ln. 155, Sec. 3, Keelung Rd., Taipei, 106, Taiwan
| | - Wen-Jeng Lee
- Department of Medical Imaging, National Taiwan University Hospital, No. 7, Chung-Shan S. Rd., Taipei, 100, Taiwan.
- Department of Radiology, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Jenny Ling-Yu Chen
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Radiation Oncology, National Taiwan University Cancer Center, No. 57, Ln. 155, Sec. 3, Keelung Rd., Taipei, 106, Taiwan.
- Department of Radiology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
9
|
Stevens RRF, Hazelaar C, Fast MF, Mandija S, Grehn M, Cvek J, Knybel L, Dvorak P, Pruvot E, Verhoeff JJC, Blanck O, van Elmpt W. Stereotactic Arrhythmia Radioablation (STAR): Assessment of cardiac and respiratory heart motion in ventricular tachycardia patients - A STOPSTORM.eu consortium review. Radiother Oncol 2023; 188:109844. [PMID: 37543057 DOI: 10.1016/j.radonc.2023.109844] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
AIM To identify the optimal STereotactic Arrhythmia Radioablation (STAR) strategy for individual patients, cardiorespiratory motion of the target volume in combination with different treatment methodologies needs to be evaluated. However, an authoritative overview of the amount of cardiorespiratory motion in ventricular tachycardia (VT) patients is missing. METHODS In this STOPSTORM consortium study, we performed a literature review to gain insight into cardiorespiratory motion of target volumes for STAR. Motion data and target volumes were extracted and summarized. RESULTS Out of the 232 studies screened, 56 provided data on cardiorespiratory motion, of which 8 provided motion amplitudes in VT patients (n = 94) and 10 described (cardiac/cardiorespiratory) internal target volumes (ITVs) obtained in VT patients (n = 59). Average cardiac motion of target volumes was < 5 mm in all directions, with maximum values of 8.0, 5.2 and 6.5 mm in Superior-Inferior (SI), Left-Right (LR), Anterior-Posterior (AP) direction, respectively. Cardiorespiratory motion of cardiac (sub)structures showed average motion between 5-8 mm in the SI direction, whereas, LR and AP motions were comparable to the cardiac motion of the target volumes. Cardiorespiratory ITVs were on average 120-284% of the gross target volume. Healthy subjects showed average cardiorespiratory motion of 10-17 mm in SI and 2.4-7 mm in the AP direction. CONCLUSION This review suggests that despite growing numbers of patients being treated, detailed data on cardiorespiratory motion for STAR is still limited. Moreover, data comparison between studies is difficult due to inconsistency in parameters reported. Cardiorespiratory motion is highly patient-specific even under motion-compensation techniques. Therefore, individual motion management strategies during imaging, planning, and treatment for STAR are highly recommended.
Collapse
Affiliation(s)
- Raoul R F Stevens
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| | - Colien Hazelaar
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Martin F Fast
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Stefano Mandija
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Melanie Grehn
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jakub Cvek
- Department of Oncology, University Hospital and Faculty of Medicine, Ostrava, Czech Republic
| | - Lukas Knybel
- Department of Oncology, University Hospital and Faculty of Medicine, Ostrava, Czech Republic
| | - Pavel Dvorak
- Department of Oncology, University Hospital and Faculty of Medicine, Ostrava, Czech Republic
| | - Etienne Pruvot
- Heart and Vessel Department, Service of Cardiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Joost J C Verhoeff
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Wouter van Elmpt
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| |
Collapse
|
10
|
Oh S, Liu EH, Trombetta MG, Shaw GC, Thosani AJ, Biederman RW, Mickus TJ, Lee D, Wegner RE, Colonias A, Sohn JW. A target definition based on electroanatomic maps for stereotactic arrhythmia radioablation. Phys Med 2023; 115:103160. [PMID: 37847954 DOI: 10.1016/j.ejmp.2023.103160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023] Open
Abstract
PURPOSE Identifying the target region is critical for successfully treating ventricular tachycardia (VT) with single fraction stereotactic arrhythmia radioablation (STAR). We report the feasibility of target definition based on direct co-registration of electroanatomic maps (EAM) and radioablation planning images. MATERIALS AND METHODS The EAM consists of 3D cardiac anatomy representation with electrical activity at endocardium and is acquired by a cardiac electrophysiologist (CEP) during electrophysiology study. The CEP generates an EAM using a 3D cardiac mapping system anticipating radioablation planning. Our in-house software read these non-DICOM EAMs, registered them to a planning image set, and converted them to DICOM structure files. The EAM based target volume was finalized based on a consensus of CEPs, radiation oncologists and medical physicists, then expanded to ITV and PTV. The simulation, planning, and treatment is performed with a standard STAR technique: a single fraction of 25 Gy using volumetric-modulated arc therapy or dynamic conformal arc therapy depending on the target shape. RESULTS Seven patients with refractory VT were treated by defining the target based on registering EAMs on the planning images. Dice similarity indices between reference map and reference contours after registration were 0.814 ± 0.053 and 0.575 ± 0.199 for LV and LA/RV, respectively. CONCLUSIONS The quality of the transferred EAMs on the MR/CT images was sufficient to localize the treatment region. Five of 7 patients demonstrated a dramatic reduction in VT events after 6 weeks. Longer follow-up is required to determine the true safety and efficacy of this therapy using EAM-based direct registration method.
Collapse
Affiliation(s)
- Seungjong Oh
- Division of Radiation Oncology, Cancer Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA, USA; Drexel University College of Medicine: Pittsburgh Campus, Pittsburgh, PA, USA.
| | - Emerson H Liu
- Division of Cardiac Electrophysiology, Cardiovascular Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA, USA
| | - Mark G Trombetta
- Division of Radiation Oncology, Cancer Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA, USA; Drexel University College of Medicine: Pittsburgh Campus, Pittsburgh, PA, USA
| | - George C Shaw
- Drexel University College of Medicine: Pittsburgh Campus, Pittsburgh, PA, USA; Division of Cardiac Electrophysiology, Cardiovascular Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA, USA
| | - Amit J Thosani
- Division of Cardiac Electrophysiology, Cardiovascular Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA, USA
| | - Robert W Biederman
- Division of Cardiology, West Virginia University, Morgantown, WV, USA; Division of Cardiology, Roper/Saint Francis Hospital, Charleston, SC, USA; Division of Cardiology, Medical University of South Carolina, Charleston, SC, USA
| | - Timothy J Mickus
- Department of Radiology, Allegheny Health Network, Pittsburgh, PA, USA
| | - Danny Lee
- Division of Radiation Oncology, Cancer Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA, USA; Drexel University College of Medicine: Pittsburgh Campus, Pittsburgh, PA, USA
| | - Rodney E Wegner
- Division of Radiation Oncology, Cancer Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA, USA
| | - Athanasios Colonias
- Division of Radiation Oncology, Cancer Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA, USA; Drexel University College of Medicine: Pittsburgh Campus, Pittsburgh, PA, USA
| | - Jason W Sohn
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
11
|
Fast MF, Lydiard S, Boda-Heggemann J, Tanadini-Lang S, Muren LP, Clark CH, Blanck O. Precision requirements in stereotactic arrhythmia radioablation for ventricular tachycardia. Phys Imaging Radiat Oncol 2023; 28:100508. [PMID: 38026083 PMCID: PMC10679852 DOI: 10.1016/j.phro.2023.100508] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Affiliation(s)
- Martin F Fast
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Germany
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Switzerland
| | - Ludvig P Muren
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Catharine H Clark
- Radiotherapy Physics, University College London Hospital, 250 Euston Rd, London NW1 2PG, UK
- Department of Medical Physics and Bioengineering, University College London, Malet Place, London WC1E 6BT, UK
- Medical Physics Dept, National Physical Laboratory, Hampton Rd, London TW11 0PX, UK
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Arnold-Heller-Strasse 3, Kiel 24105, Germany
| |
Collapse
|
12
|
Krug D, Zaman A, Eidinger L, Grehn M, Boda-Heggemann J, Rudic B, Mehrhof F, Boldt LH, Hohmann S, Merten R, Buergy D, Fleckenstein J, Kluge A, Rogge A, Both M, Rades D, Tilz RR, Olbrich D, König IR, Siebert FA, Schweikard A, Vonthein R, Bonnemeier H, Dunst J, Blanck O. Radiosurgery for ventricular tachycardia (RAVENTA): interim analysis of a multicenter multiplatform feasibility trial. Strahlenther Onkol 2023:10.1007/s00066-023-02091-9. [PMID: 37285038 DOI: 10.1007/s00066-023-02091-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/23/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Single-session cardiac stereotactic radiation therapy (SBRT) has demonstrated promising results for patients with refractory ventricular tachycardia (VT). However, the full safety profile of this novel treatment remains unknown and very limited data from prospective clinical multicenter trials are available. METHODS The prospective multicenter multiplatform RAVENTA (radiosurgery for ventricular tachycardia) study assesses high-precision image-guided cardiac SBRT with 25 Gy delivered to the VT substrate determined by high-definition endocardial and/or epicardial electrophysiological mapping in patients with refractory VT ineligible for catheter ablation and an implanted cardioverter defibrillator (ICD). Primary endpoint is the feasibility of full-dose application and procedural safety (defined as an incidence of serious [grade ≥ 3] treatment-related complications ≤ 5% within 30 days after therapy). Secondary endpoints comprise VT burden, ICD interventions, treatment-related toxicity, and quality of life. We present the results of a protocol-defined interim analysis. RESULTS Between 10/2019 and 12/2021, a total of five patients were included at three university medical centers. In all cases, the treatment was carried out without complications. There were no serious potentially treatment-related adverse events and no deterioration of left ventricular ejection fraction upon echocardiography. Three patients had a decrease in VT episodes during follow-up. One patient underwent subsequent catheter ablation for a new VT with different morphology. One patient with local VT recurrence died 6 weeks after treatment in cardiogenic shock. CONCLUSION The interim analysis of the RAVENTA trial demonstrates early initial feasibility of this new treatment without serious complications within 30 days after treatment in five patients. Recruitment will continue as planned and the study has been expanded to further university medical centers. TRIAL REGISTRATION NUMBER NCT03867747 (clinicaltrials.gov). Registered March 8, 2019. Study start: October 1, 2019.
Collapse
Affiliation(s)
- David Krug
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus L, 24105, Kiel, Germany.
| | - Adrian Zaman
- Klinik für Innere Medizin III, Kardiologie, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Lina Eidinger
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus L, 24105, Kiel, Germany
- Klinik für Innere Medizin III, Kardiologie, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Melanie Grehn
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus L, 24105, Kiel, Germany
| | - Judit Boda-Heggemann
- Universitätsmedizin Mannheim, Klinik für Strahlentherapie und Radioonkologie, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany
| | - Boris Rudic
- Universitätsmedizin Mannheim, Medizinische Klinik I, Abteilung für Elektrophysiologie und Rhythmologie, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany
| | - Felix Mehrhof
- Klinik für Radioonkologie und Strahlentherapie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Leif-Hendrik Boldt
- Medizinische Klinik mit Schwerpunkt Kardiologie (CVK), Abteilung für Elektrophysiologie und Rhythmologie, Charité Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Stephan Hohmann
- Hannover Herzrhythmus Centrum, Klinik für Kardiologie und Angiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Roland Merten
- Klinik für Strahlentherapie und Spezielle Onkologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Daniel Buergy
- Universitätsmedizin Mannheim, Klinik für Strahlentherapie und Radioonkologie, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany
| | - Jens Fleckenstein
- Universitätsmedizin Mannheim, Klinik für Strahlentherapie und Radioonkologie, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany
| | - Anne Kluge
- Klinik für Radioonkologie und Strahlentherapie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Annette Rogge
- Klinisches Ethikkomitee, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Marcus Both
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Dirk Rades
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Roland Richard Tilz
- Klinik für Rhythmologie, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Denise Olbrich
- Zentrum für Klinische Studien, Universität zu Lübeck, Lübeck, Germany
| | - Inke R König
- Institut für Medizinische Biometrie und Statistik, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Frank-Andre Siebert
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus L, 24105, Kiel, Germany
| | - Achim Schweikard
- Institut für Robotik und Kognitive Systeme, Universität zu Lübeck, Lübeck, Germany
| | - Reinhard Vonthein
- Institut für Medizinische Biometrie und Statistik, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Hendrik Bonnemeier
- Klinik für Innere Medizin III, Kardiologie, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
- Klinik für Kardiologie, Helios Klinik Cuxhaven, Cuxhaven, Germany
| | - Jürgen Dunst
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus L, 24105, Kiel, Germany
| | - Oliver Blanck
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus L, 24105, Kiel, Germany
| |
Collapse
|
13
|
Grehn M, Mandija S, Miszczyk M, Krug D, Tomasik B, Stickney KE, Alcantara P, Alongi F, Anselmino M, Aranda RS, Balgobind BV, Boda-Heggemann J, Boldt LH, Bottoni N, Cvek J, Elicin O, De Ferrari GM, Hassink RJ, Hazelaar C, Hindricks G, Hurkmans C, Iotti C, Jadczyk T, Jiravsky O, Jumeau R, Kristiansen SB, Levis M, López MA, Martí-Almor J, Mehrhof F, Møller DS, Molon G, Ouss A, Peichl P, Plasek J, Postema PG, Quesada A, Reichlin T, Rordorf R, Rudic B, Saguner AM, ter Bekke RMA, Torrecilla JL, Troost EGC, Vitolo V, Andratschke N, Zeppenfeld K, Blamek S, Fast M, de Panfilis L, Blanck O, Pruvot E, Verhoeff JJC. STereotactic Arrhythmia Radioablation (STAR): the Standardized Treatment and Outcome Platform for Stereotactic Therapy Of Re-entrant tachycardia by a Multidisciplinary consortium (STOPSTORM.eu) and review of current patterns of STAR practice in Europe. Europace 2023; 25:1284-1295. [PMID: 36879464 PMCID: PMC10105846 DOI: 10.1093/europace/euac238] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/18/2022] [Indexed: 03/08/2023] Open
Abstract
The EU Horizon 2020 Framework-funded Standardized Treatment and Outcome Platform for Stereotactic Therapy Of Re-entrant tachycardia by a Multidisciplinary (STOPSTORM) consortium has been established as a large research network for investigating STereotactic Arrhythmia Radioablation (STAR) for ventricular tachycardia (VT). The aim is to provide a pooled treatment database to evaluate patterns of practice and outcomes of STAR and finally to harmonize STAR within Europe. The consortium comprises 31 clinical and research institutions. The project is divided into nine work packages (WPs): (i) observational cohort; (ii) standardization and harmonization of target delineation; (iii) harmonized prospective cohort; (iv) quality assurance (QA); (v) analysis and evaluation; (vi, ix) ethics and regulations; and (vii, viii) project coordination and dissemination. To provide a review of current clinical STAR practice in Europe, a comprehensive questionnaire was performed at project start. The STOPSTORM Institutions' experience in VT catheter ablation (83% ≥ 20 ann.) and stereotactic body radiotherapy (59% > 200 ann.) was adequate, and 84 STAR treatments were performed until project launch, while 8/22 centres already recruited VT patients in national clinical trials. The majority currently base their target definition on mapping during VT (96%) and/or pace mapping (75%), reduced voltage areas (63%), or late ventricular potentials (75%) during sinus rhythm. The majority currently apply a single-fraction dose of 25 Gy while planning techniques and dose prescription methods vary greatly. The current clinical STAR practice in the STOPSTORM consortium highlights potential areas of optimization and harmonization for substrate mapping, target delineation, motion management, dosimetry, and QA, which will be addressed in the various WPs.
Collapse
Affiliation(s)
- Melanie Grehn
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Arnold-Heller-Strasse 3, Kiel 24105, Germany
| | - Stefano Mandija
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands
| | - Marcin Miszczyk
- IIIrd Radiotherapy and Chemotherapy Department, Maria Skłodowska-Curie National Research Institute of Oncology, Ul. Wybrzeze Armii Krajowej, Gliwice 44102, Poland
| | - David Krug
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Arnold-Heller-Strasse 3, Kiel 24105, Germany
| | - Bartłomiej Tomasik
- Department of Radiotherapy, Maria Skłodowska-Curie National Research Institute of Oncology, Ul. Wybrzeze Armii Krajowej, Gliwice 44102, Poland
- Department of Oncology and Radiotherapy, Faculty of Medicine, Medical University of Gdansk, M. Sklodowskiel-Curie 3a, Gdansk 80210, Poland
| | - Kristine E Stickney
- Research Support Office, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands
| | - Pino Alcantara
- Department of Radiation Oncology, Hospital Clínico San Carlos, Faculty of Medicine, University Complutense of Madrid, Profesor Martin Lagos, Madrid 28040, Spain
| | - Filippo Alongi
- Department of Advanced Radiation Oncology, IRCCS Sacro Cuore Don Calabria Hospital, University of Brescia, Via San Zeno in Monte 23, Verona 37129, Italy
| | - Matteo Anselmino
- Division of Cardiology, Cardiovascular and Thoracic Department, ‘Città della Salute e della Scienza’ Hospital, Via Giuseppe Verdi 8, Torino 10124, Italy
- Department of Medical Sciences, University of Turin, Via Verdi 8, Torino 10124, Italy
| | - Ricardo Salgado Aranda
- Electrophysiology Unit, Department of Cardiology, Hospital Clínico San Carlos Madrid, Professor Martin Lagos, Madrid 28040, Spain
| | - Brian V Balgobind
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, Amsterdam 1105AZ, The Netherlands
| | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany
| | - Leif-Hendrik Boldt
- Department of Rhythmology, Charité—University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Nicola Bottoni
- Cardiology Arrhythmology Center, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, Reggio Emilia 42100, Italy
| | - Jakub Cvek
- Department of Oncology, University Hospital and Faculty of Medicine, Listopadu 1790, Ostrava Poruba 70852, Czech Republic
| | - Olgun Elicin
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, Bern 3010, Switzerland
| | - Gaetano Maria De Ferrari
- Division of Cardiology, Cardiovascular and Thoracic Department, ‘Città della Salute e della Scienza’ Hospital, Via Giuseppe Verdi 8, Torino 10124, Italy
| | - Rutger J Hassink
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands
| | - Colien Hazelaar
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, P. Debyelaan 25, Maastricht 6229 HX, The Netherlands
| | - Gerhard Hindricks
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Struempellstrasse 39, Leipzig 04289, Germany
| | - Coen Hurkmans
- Department of Radiation Oncology, Catharina Hospital, Michelangelolaan 2, Eindhoven 5623 EJ, The Netherlands
| | - Cinzia Iotti
- Radiation Oncology Unit, Clinical Cancer Centre, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, Reggio Emilia 42100, Italy
| | - Tomasz Jadczyk
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia, Ul. Poniatowskiego 15, Katowice 40055, Poland
- Interventional Cardiac Electrophysiology Group, International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Otakar Jiravsky
- Cardiocenter, Hospital Agel Trinec Podlesi and Masaryk University, Konska 453, Trinec 73961, Czech Republic
| | - Raphaël Jumeau
- Department of Radio-Oncology, Lausanne University Hospital, Rue du Bugnon 21, Lausanne 1011, Switzerland
| | - Steen Buus Kristiansen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus 8200, Denmark
| | - Mario Levis
- Department of Oncology, University of Torino, Via Giuseppe Verdi 8, Torino 10124, Italy
| | - Manuel Algara López
- Department of Radiation Oncology, Hospital del Mar, Universitat Pompeu Fabra, Institut Hospital del Mar d'Investigacions Mèdiques, Paseo Maritim 25-29, Barcelona 08003, Spain
| | - Julio Martí-Almor
- Department of Cardiology, Hospital del Mar, Universitat Pompeu Fabra, Institut Hospital del Mar d'Investigacions Mèdiques, Paseo Maritim 25-29, Barcelona 08003, Spain
| | - Felix Mehrhof
- Department for Radiation Oncology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ditte Sloth Møller
- Department of Oncology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus 8200, Denmark
| | - Giulio Molon
- Department of Cardiology, IRCCS Sacro Cuore Don Calabria Hospital, Via San Zeno in Monte 23, Verona 37129, Italy
| | - Alexandre Ouss
- Department of Cardiology, Catharina Hospital, Michelangelolaan 2, Eindhoven 5623 EJ, The Netherlands
| | - Petr Peichl
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Videnska 9, Prague 14000, Czech Republic
| | - Jiri Plasek
- Department of Cardiovascular Medicine, University Hospital Ostrava, Listopadu 1790. Ostrava Poruba 70852, Czech Republic
| | - Pieter G Postema
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, Amsterdam 1105AZ, The Netherlands
| | - Aurelio Quesada
- Arrhythmia Unit, Department of Cardiology, Consorcio Hospital General Universitario de Valencia, Av Tres Cruces 2, Valencia 46014, Spain
| | - Tobias Reichlin
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, Bern 3010, Switzerland
| | - Roberto Rordorf
- Cardiac Intensive Care Unit, Arrhythmia and Electrophysiology and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Camillo Golgi Avenue 5, Pavia 27100, Italy
| | - Boris Rudic
- Department of Medicine I, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany
| | - Ardan M Saguner
- Arrhythmia Unit, Department of Cardiology, University Hospital Zurich, Ramistrasse 71, Zurich 8006, Switzerland
| | - Rachel M A ter Bekke
- Department of Cardiology, Maastricht University Medical Center, P. Debyelaan 25, Maastricht 6229 HX, The Netherlands
| | - José López Torrecilla
- Department of Radiation Oncology, Hospital General Valencia, Av Tres Cruces 2, Valencia 46014, Spain
| | - Esther G C Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus. Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Fetscherstrasse 74, Dresden 01307, Germany
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, Dresden 01328, Germany
| | - Viviana Vitolo
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Strada Campeggi 53, Pavia PV27100, Italy
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital of Zurich, Ramistrasse 71, Zurich 8006, Switzerland
| | - Katja Zeppenfeld
- Unit of Clinical Electrophysiology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Slawomir Blamek
- Department of Radiotherapy, Maria Skłodowska-Curie National Research Institute of Oncology, Ul. Wybrzeze Armii Krajowej, Gliwice 44102, Poland
| | - Martin Fast
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands
| | - Ludovica de Panfilis
- Bioethics Unit, Azienda Unità Sanitaria Locale—IRCCS, Via Amendola 2, Reggio Emilia 42100, Italy
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Arnold-Heller-Strasse 3, Kiel 24105, Germany
| | - Etienne Pruvot
- Heart and Vessel Department, Service of Cardiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 21, Lausanne 1011, Switzerland
| | - Joost J C Verhoeff
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands
| |
Collapse
|
14
|
Harms J, Schreibmann E, Mccall NS, Lloyd MS, Higgins KA, Castillo R. Cardiac motion and its dosimetric impact during radioablation for refractory ventricular tachycardia. J Appl Clin Med Phys 2023:e13925. [PMID: 36747376 DOI: 10.1002/acm2.13925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/09/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Cardiac radioablation (CR) is a noninvasive treatment option for patients with refractory ventricular tachycardia (VT) during which high doses of radiation, typically 25 Gy, are delivered to myocardial scar. In this study, we investigate motion from cardiac cycle and evaluate the dosimetric impact in a cohort of patients treated with CR. METHODS This retrospective study included eight patients treated at our institution who had respiratory-correlated and ECG-gated 4DCT scans acquired within 2 weeks of CR. Deformable image registration was applied between maximum systole (SYS) and diastole (DIAS) CTs to assess cardiac motion. The average respiratory-correlated CT (AVGresp ) was deformably registered to the average cardiac (AVGcardiac ), SYS, and DIAS CTs, and contours were propagated using the deformation vector fields (DVFs). Finally, the original treatment plan was recalculated on the deformed AVGresp CT for dosimetric assessment. RESULTS Motion magnitudes were measured as the mean (SD) value over the DVFs within each structure. Displacement during the cardiac cycle for all chambers was 1.4 (0.9) mm medially/laterally (ML), 1.6 (1.0) mm anteriorly/posteriorly (AP), and 3.0 (2.8) mm superiorly/inferiorly (SI). Displacement for the 12 distinct clinical target volumes (CTVs) was 1.7 (1.5) mm ML, 2.4 (1.1) mm AP, and 2.1 (1.5) SI. Displacements between the AVGresp and AVGcardiac scans were 4.2 (2.0) mm SI and 5.8 (1.4) mm total. Dose recalculations showed that cardiac motion may impact dosimetry, with dose to 95% of the CTV dropping from 27.0 (1.3) Gy on the AVGresp to 20.5 (7.1) Gy as estimated on the AVGcardiac . CONCLUSIONS Cardiac CTV motion in this patient cohort is on average below 3 mm, location-dependent, and when not accounted for in treatment planning may impact target coverage. Further study is needed to assess the impact of cardiac motion on clinical outcomes.
Collapse
Affiliation(s)
- Joseph Harms
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Eduard Schreibmann
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Neal S Mccall
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Michael S Lloyd
- Section of Clinical Cardiac Electrophysiology, Emory University, Atlanta, Georgia, USA
| | - Kristin A Higgins
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Richard Castillo
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| |
Collapse
|
15
|
STereotactic Arrhythmia Radioablation: current status of the art. The old world and the new world connected. JOURNAL OF RADIOTHERAPY IN PRACTICE 2023. [DOI: 10.1017/s1460396922000401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Aras D, Çetin EHÖ, Ozturk HF, Ozdemir E, Kara M, Ekizler FA, Ozeke O, Ozcan F, Korkmaz A, Kervan U, Turhan N, Coskun N, Tezcan Y, Huang H, Aksu T, Topaloglu S. Stereotactic body radioablation therapy as an immediate and early term antiarrhythmic palliative therapeutic choice in patients with refractory ventricular tachycardia. J Interv Card Electrophysiol 2023; 66:135-143. [PMID: 36040658 PMCID: PMC9424800 DOI: 10.1007/s10840-022-01352-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/16/2022] [Indexed: 10/27/2022]
Abstract
BACKGROUND Stereotactic body radioablation therapy (SBRT) has recently been introduced with the ability to provide ablative energy noninvasively to arrhythmogenic substrate while reducing damage to normal cardiac tissue nearby and minimizing patients' procedural risk. There is still debate regarding whether SBRT has a predominant effect in the early or late period after the procedure. We sought to assess the time course of SBRT's efficacy as well as the value of using a blanking period following a SBRT session. METHODS Eight patients (mean age 58 ± 14 years) underwent eight SBRT sessions for refractory ventricular tachycardia (VT). SBRT was given using a linear accelerator device with a total dose of 25 Gy to the targeted area. RESULTS During a median follow-up of 8 months, all patients demonstrated VT recurrences; however, implantable cardioverter-defibrillator (ICD) and anti-tachycardia pacing therapies were significantly reduced with SBRT (8.46 to 0.83/per month, p = 0.047; 18.50 to 3.29/per month, p = 0.036, respectively). While analyzing the temporal SBRT outcomes, the 2 weeks to 3 months period demonstrated the most favorable outcomes. After 6 months, one patient was ICD therapy-free and the remaining patients demonstrated VT episodes. CONCLUSIONS Our findings showed that the SBRT was associated with a marked reduction in the burden of VT and ICD interventions especially during first 3 months. Although SBRT does not seem to succeed complete termination of VT in long-term period, our findings support the strategy that SBRT can be utilized for immediate antiarrhythmic palliation in critically ill patients with otherwise untreatable refractory VT and electrical storm.
Collapse
Affiliation(s)
- Dursun Aras
- grid.411781.a0000 0004 0471 9346Department of Cardiology, Istanbul Medipol University, Istanbul, Turkey
| | - Elif Hande Özcan Çetin
- Department of Cardiology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Huseyin Furkan Ozturk
- grid.449874.20000 0004 0454 9762Department of Radiation Oncology, Ankara Yildirim Beyazit University, Ankara City Hospital, Ankara, Turkey
| | - Elif Ozdemir
- grid.449874.20000 0004 0454 9762Department of Nuclear Medicine, Ankara Yildirim Beyazit University, Ankara City Hospital, Ankara, Turkey
| | - Meryem Kara
- Department of Cardiology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Firdevs Aysenur Ekizler
- Department of Cardiology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Ozcan Ozeke
- Department of Cardiology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Firat Ozcan
- Department of Cardiology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Ahmet Korkmaz
- Department of Cardiology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Umit Kervan
- Department of Cardiovascular Surgery, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Nesrin Turhan
- Department of Pathology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Nazim Coskun
- Department of Nuclear Medicine, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Yilmaz Tezcan
- grid.449874.20000 0004 0454 9762Department of Radiation Oncology, Ankara Yildirim Beyazit University, Ankara City Hospital, Ankara, Turkey
| | - Henry Huang
- grid.262743.60000000107058297Department of Cardiology, Rush Medical College, Chicago, IL USA
| | - Tolga Aksu
- Department of Cardiology, Yeditepe University Istanbul, Istanbul, Turkey, 34100.
| | - Serkan Topaloglu
- Department of Cardiology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
17
|
CArdiac and REspiratory adaptive Computed Tomography (CARE-CT): a proof-of-concept digital phantom study. Phys Eng Sci Med 2022; 45:1257-1271. [PMID: 36434201 DOI: 10.1007/s13246-022-01193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/20/2022] [Indexed: 11/27/2022]
Abstract
Current respiratory 4DCT imaging for high-dose rate thoracic radiotherapy treatments are negatively affected by the complex interaction of cardiac and respiratory motion. We propose an imaging method to reduce artifacts caused by thoracic motion, CArdiac and REspiratory adaptive CT (CARE-CT), that monitors respiratory motion and ECG signals in real-time, triggering CT acquisition during combined cardiac and respiratory bins. Using a digital phantom, conventional 4DCT and CARE-CT acquisitions for nineteen patient-measured physiological traces were simulated. Ten respiratory bins were acquired for conventional 4DCT scans and ten respiratory bins during cardiac diastole were acquired for CARE-CT scans. Image artifacts were quantified for 10 common thoracic organs at risk (OAR) substructures using the differential normalized cross correlation between axial slices (ΔNCC), mean squared error (MSE) and sensitivity. For all images, on average, CARE-CT improved the ΔNCC for 18/19 and the MSE and sensitivity for all patient traces. The ΔNCC was reduced for all cardiac OARs (mean reduction 21%). The MSE was reduced for all OARs (mean reduction 36%). In the digital phantom study, the average scan time was increased from 1.8 ± 0.4 min to 7.5 ± 2.2 min with a reduction in average beam on time from 98 ± 28 s to 45 s using CARE-CT compared to conventional 4DCT. The proof-of-concept study indicates the potential for CARE-CT to image the thorax in real-time during the cardiac and respiratory cycle simultaneously, to reduce image artifacts for common thoracic OARs.
Collapse
|
18
|
Huang SH, Wu YW, Shueng PW, Wang SY, Tsai MC, Liu YH, Chuang WP, Lin HH, Tien HJ, Yeh HP, Hsieh CH. Case report: Stereotactic body radiation therapy with 12 Gy for silencing refractory ventricular tachycardia. Front Cardiovasc Med 2022; 9:973105. [PMID: 36407435 PMCID: PMC9669661 DOI: 10.3389/fcvm.2022.973105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/17/2022] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Encouraging results have been reported for the treatment of ventricular tachycardia (VT) with stereotactic body radiation therapy (SBRT) with 25 Gy. SBRT with 12 Gy for refractory VT was designed to reduce long-term cardiac toxicity. METHODS Stereotactic body radiation therapy-VT simulation, planning, and treatment were performed using standard techniques. A patient was treated with a marginal dose of 12 Gy in a single fraction to the planning target volume (PTV). The goal was for at least ≥ 95% of the PTV to be covered by at least 95% of 12 Gy radiation. RESULTS From April 2021 through June 2022, a patient with refractory VT underwent treatment. The volume for PTV was 65.8 cm3. The mean radiation dose administered to the heart (the heart volume excluding the PTV) was 2.2 Gy. No acute or late toxicity was observed after SBRT. Six months after SBRT, the patient experienced new monomorphic right ventricular outflow tract (RVOT) VT. Interestingly, the substrate of the left ventricular basal to middle posteroseptal wall before SBRT was turned into scar zones with a local voltage < 0.5 mV. Catheter ablation to treat RVOT VT was performed, and the situation remains stable to date. CONCLUSION This study reports the first patient with refractory VT successfully treated with 12.0 Gy SBRT, suggesting that 12 Gy is a potential dose to treat refractory VT. Further investigations and enrollment of more patients are warranted to assess the long-term efficacy and side effects of this treatment.
Collapse
Affiliation(s)
- Shan-Hui Huang
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yen-Wen Wu
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Department of Nuclear Medicine Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Pei-Wei Shueng
- School of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Shan-Ying Wang
- Department of Nuclear Medicine Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Meng-Chieh Tsai
- Division of Radiology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yuan-Hung Liu
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Department of Electronic Engineering, Asia Eastern University of Science and Technology, New Taipei City, Taiwan
| | - Wen-Po Chuang
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Heng-Hsu Lin
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Hui-Ju Tien
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Hsin-Pei Yeh
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chen-Hsi Hsieh
- School of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- School of Medicine, Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Head and Neck Cancer Surveillance and Research Group, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| |
Collapse
|
19
|
Reis CQM, Robar JL. Evaluation of the feasibility of cardiac gating for SBRT of ventricular tachycardia based on real-time ECG signal acquisition. J Appl Clin Med Phys 2022; 24:e13814. [PMID: 36286619 PMCID: PMC9924123 DOI: 10.1002/acm2.13814] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/10/2022] [Accepted: 09/30/2022] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To investigate the feasibility of cardiac synchronized gating in stereotactic body radiation therapy (SBRT) of ventricular tachycardia (VT) using a real-time electrocardiogram (ECG) signal acquisition. METHODS AND MATERIALS Stability of beam characteristics during simulated ECG gating was examined by developing a microcontroller interface to a Varian Clinac iX linear accelerator allowing gating at frequencies and duty cycles relevant to cardiac rhythm. Delivery accuracy was evaluated by measuring dose linearity with an ionization chamber, and flatness and symmetry with a two-dimensional detector array, for different gating windows within typical human cardiac cycle periods. To establish a practical method of gating based on actual ECG signals, an AD8232 Heart Monitor board was used to acquire the ECG signal and synchronize the beam delivery. Real-time cardiac gated delivery measurements were performed for a single 10 × 10 cm2 field and for a VT-SBRT plan using intensity-modulated radiation therapy (IMRT). RESULTS AND DISCUSSION Dose per monitor unit (MU) values were found to be linear within most gating windows investigated with maximum differences relative to non-gated delivery of <2% for gating windows ≥200 ms and for >10 MUs. Beam profiles for both gated and non-gated modes were also found to agree with maximum differences of 0.5% relative to central axis dose for all sets of beam-on/beam-off combinations. Comparison of dose distributions for intensity-modulated SBRT plans between non-gating and cardiac gating modes provided a gamma passing rate of 97.2% for a 2% 2 mm tolerance. CONCLUSIONS Beam output is stable with respect to linearity, flatness, and symmetry for gating windows within cardiac cycle periods. Agreement between dose distributions for VT-SBRT using IMRT in non-gated and cardiac cycle gated delivery modes shows that the proposed methodology is feasible. Technically, gating for delivery of SBRT for VT is possible with regard to beam stability.
Collapse
Affiliation(s)
- Cristiano Q. M. Reis
- Department of Radiation OncologyDalhousie UniversityHalifaxNova ScotiaCanada,Department of Medical PhysicsNova Scotia HealthHalifaxNova ScotiaCanada,Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - James L. Robar
- Department of Radiation OncologyDalhousie UniversityHalifaxNova ScotiaCanada,Department of Medical PhysicsNova Scotia HealthHalifaxNova ScotiaCanada,Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
20
|
Herrera Siklody C, Pruvot E, Pascale P, Le Bloa M, Teres C, Domenichini G, Porretta A, Bourhis J, Schiappacasse L. Refractory ventricular tachycardia treated by a second session of stereotactic arrhythmia radioablation. Clin Transl Radiat Oncol 2022; 37:89-93. [PMID: 36118122 PMCID: PMC9478870 DOI: 10.1016/j.ctro.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/05/2022] Open
Abstract
Arrhythmia radioablation (STAR) is effective in refractory ventricular tachycardia. We report the first cases of successful re-irradiation of arrhythmogenic substrate. No radiation toxicity was observed after the second STAR. Caution is advised as data on early and late toxicities remain scarce.
Purpose Stereotactic arrhythmia radioablation (STAR) is an effective treatment for refractory ventricular tachycardia (VT), but recurrences after STAR were recently published. Herein, we report two cases of successful re-irradiation of the arrhythmogenic substrate. Cases We present two cases of re-irradiation after recurrence of a previously treated VT with radioablation at a dose of 20 Gy. The VT exit was localized on the border zone of the irradiated volume, which responded positively to re-irradiation at follow-up. Conclusion These two cases show the technical feasibility of re-irradiation to control recurrent VT after a first STAR.
Collapse
|
21
|
Piccolo C, Vigorito S, Rondi E, Piperno G, Ferrari A, Pepa M, Riva G, Durante S, Conte E, Catto V, Andreini D, Carbucicchio C, Jereczek-Fossa BA, Pompilio G, Orecchia R, Cattani F. Phantom study of stereotactic radioablation for ventricular tachycardia (STRA-MI-VT) using Cyberknife Synchrony Respiratory Tracking System with a single fiducial marker. Phys Med 2022; 100:135-141. [PMID: 35816942 DOI: 10.1016/j.ejmp.2022.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Within the STRA-MI-VT phase Ib/II trial (NCT04066517), the aim of this phantom study was to explore the feasibility of Cyberknife treatments on cardiac lesions by tracking as a single marker the lead tip of an implantable cardioverter defibrillator. The residual displacement of the lesion during the tracking was studied, planning margins were found and the dosimetric accuracy of the treatment was checked. MATERIALS AND METHODS A lead was inserted into a phantom (EasyCube phantom, Sun Nuclear Co, USA) and then placed on the translating ExacTrac Gating System (BrainLAB AG, Germany). The phantom was rotated, a virtual lesion was identified and its displacement during the tracking was studied. Two plans were compared, calculated on the unrotated volume and on the envelope of the unrotated and the rotated volumes. The plans were delivered using the Cyberknife System (Accuray Inc, USA) and their dosimetric accuracy verified by gamma analysis with gafchromic films. RESULTS The residual margin increases enhancing the distance between the lead and the lesion. It is 4 mm for distance 0 cm and 5 mm for distance 5 cm. The coverage is reduced by 3.8% (interquartile range 2.5%-4.7%) when the dose is prescribed on the unrotated volume. All treatment plans are accurate and 3% 3 mm gamma analysis results are greater than 94%. CONCLUSIONS Results showed that tracking with a single marker is feasible considering adequate residual planning margins. The volumes could be further reduced by using additional markers, for example by placing them on the patient's skin.
Collapse
Affiliation(s)
- C Piccolo
- Unit of Medical Physics, IEO European Institute of Oncology, IRCCS, Milan, Italy.
| | - S Vigorito
- Unit of Medical Physics, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - E Rondi
- Unit of Medical Physics, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - G Piperno
- Division of Radiation Oncology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - A Ferrari
- Division of Radiation Oncology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - M Pepa
- Division of Radiation Oncology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - G Riva
- Division of Radiation Oncology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - S Durante
- Division of Radiation Oncology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - E Conte
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - V Catto
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, Milan, Italy
| | - D Andreini
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - C Carbucicchio
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - B A Jereczek-Fossa
- Division of Radiation Oncology, IEO European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - G Pompilio
- Scientific Directorate, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - R Orecchia
- Scientific Directorate, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - F Cattani
- Unit of Medical Physics, IEO European Institute of Oncology, IRCCS, Milan, Italy
| |
Collapse
|
22
|
Kluge A, Ehrbar S, Grehn M, Fleckenstein J, Baus WW, Siebert FA, Schweikard A, Andratschke N, Mayinger MC, Boda-Heggemann J, Buergy D, Celik E, Krug D, Kovacs B, Saguner AM, Rudic B, Bergengruen P, Boldt LH, Stauber A, Zaman A, Bonnemeier H, Dunst J, Budach V, Blanck O, Mehrhof F. Treatment Planning for Cardiac Radioablation: Multicenter Multiplatform Benchmarking for the XXX Trial. Int J Radiat Oncol Biol Phys 2022; 114:360-372. [PMID: 35716847 DOI: 10.1016/j.ijrobp.2022.06.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/15/2022] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Cardiac radioablation is a novel treatment option for patients with refractory ventricular tachycardia (VT) unsuitable for catheter ablation. The quality of treatment planning depends on dose specifications, platform capabilities, and experience of the treating staff. To harmonize the treatment planning, benchmarking of this process is necessary for multicenter clinical studies such as the XXX trial. METHODS AND MATERIALS Planning computed tomography data and consensus structures from three patients were sent to five academic centers for independent plan development using a variety of platforms and techniques with the XXX study protocol serving as guideline. Three-dimensional dose distributions and treatment plan details were collected and analyzed. In addition, an objective relative plan quality ranking system for VT treatments was established. RESULTS For each case, three coplanar volumetric modulated arc (VMAT) plans for C-arm linear accelerators (LINAC) and three non-coplanar treatment plans for robotic arm LINAC were generated. All plans were suitable for clinical applications with minor deviations from study guidelines in most centers. Eleven of 18 treatment plans showed maximal one minor deviation each for target and cardiac substructures. However, dose-volume histograms showed substantial differences: in one case, the PTV≥30Gy ranged from 0.0% to 79.9% and the RIVA V14Gy ranged from 4.0% to 45.4%. Overall, the VMAT plans had steeper dose gradients in the high dose region, while the plans for the robotic arm LINAC had smaller low dose regions. Thereby, VMAT plans required only about half as many monitor units, resulting in shorter delivery times, possibly an important factor in treatment outcome. CONCLUSIONS Cardiac radioablation is feasible with robotic arm and C-arm LINAC systems with comparable plan quality. Although cross-center training and best practice guidelines have been provided, further recommendations, especially for cardiac substructures, and ranking of dose guidelines will be helpful to optimize cardiac radioablation outcomes.
Collapse
Affiliation(s)
- Anne Kluge
- Klinik für Radioonkologie und Strahlentherapie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefanie Ehrbar
- Klinik für Radio-Onkologie, UniversitätsSpital Zürich, University of Zurich, Zürich, CH
| | - Melanie Grehn
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jens Fleckenstein
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolfgang W Baus
- Department of Radiation Oncology and Cyberknife Center, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Frank-Andre Siebert
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Achim Schweikard
- University of Lübeck, Institute for Robotic and Cognitive Systems, Lübeck, Germany
| | - Nicolaus Andratschke
- Klinik für Radio-Onkologie, UniversitätsSpital Zürich, University of Zurich, Zürich, CH
| | - Michael C Mayinger
- Klinik für Radio-Onkologie, UniversitätsSpital Zürich, University of Zurich, Zürich, CH
| | - Judit Boda-Heggemann
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Buergy
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Eren Celik
- Department of Radiation Oncology and Cyberknife Center, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David Krug
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Boldizsar Kovacs
- Universitäres Herzzentrum, Klinik für Kardiologie, UniversitätsSpital Zürich, University of Zurich, Zürich, CH
| | - Ardan M Saguner
- Universitäres Herzzentrum, Klinik für Kardiologie, UniversitätsSpital Zürich, University of Zurich, Zürich, CH
| | - Boris Rudic
- Medizinische Klinik, Universitätsmedizin Mannheim and German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Paula Bergengruen
- Klinik für Radioonkologie und Strahlentherapie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Leif-Hendrik Boldt
- Med. Klinik m.S. Kardiologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Annina Stauber
- Department of Radiation Oncology and Cyberknife Center, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Adrian Zaman
- Klinik für Innere Medizin III, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Hendrik Bonnemeier
- Klinik für Innere Medizin III, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Jürgen Dunst
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Volker Budach
- Klinik für Radioonkologie und Strahlentherapie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Felix Mehrhof
- Klinik für Radioonkologie und Strahlentherapie, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
23
|
Bellec J, Rigal L, Hervouin A, Martins R, Lederlin M, Jaksic N, Castelli J, Benali K, de Crevoisier R, Simon A. Cardiac radioablation for ventricular tachycardia: Which approach for incorporating cardiorespiratory motions into the planning target volume? Phys Med 2022; 95:16-24. [DOI: 10.1016/j.ejmp.2022.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 10/19/2022] Open
|
24
|
Li H, Dong L, Bert C, Chang J, Flampouri S, Jee KW, Lin L, Moyers M, Mori S, Rottmann J, Tryggestad E, Vedam S. Report of AAPM Task Group 290: Respiratory motion management for particle therapy. Med Phys 2022; 49:e50-e81. [PMID: 35066871 PMCID: PMC9306777 DOI: 10.1002/mp.15470] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022] Open
Abstract
Dose uncertainty induced by respiratory motion remains a major concern for treating thoracic and abdominal lesions using particle beams. This Task Group report reviews the impact of tumor motion and dosimetric considerations in particle radiotherapy, current motion‐management techniques, and limitations for different particle‐beam delivery modes (i.e., passive scattering, uniform scanning, and pencil‐beam scanning). Furthermore, the report provides guidance and risk analysis for quality assurance of the motion‐management procedures to ensure consistency and accuracy, and discusses future development and emerging motion‐management strategies. This report supplements previously published AAPM report TG76, and considers aspects of motion management that are crucial to the accurate and safe delivery of particle‐beam therapy. To that end, this report produces general recommendations for commissioning and facility‐specific dosimetric characterization, motion assessment, treatment planning, active and passive motion‐management techniques, image guidance and related decision‐making, monitoring throughout therapy, and recommendations for vendors. Key among these recommendations are that: (1) facilities should perform thorough planning studies (using retrospective data) and develop standard operating procedures that address all aspects of therapy for any treatment site involving respiratory motion; (2) a risk‐based methodology should be adopted for quality management and ongoing process improvement.
Collapse
Affiliation(s)
- Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoph Bert
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Joe Chang
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stella Flampouri
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Kyung-Wook Jee
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Liyong Lin
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Michael Moyers
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Shinichiro Mori
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Joerg Rottmann
- Center for Proton Therapy, Proton Therapy Singapore, Proton Therapy Pte Ltd, Singapore
| | - Erik Tryggestad
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Sastry Vedam
- Department of Radiation Oncology, University of Maryland, Baltimore, USA
| |
Collapse
|
25
|
Akdag O, Mandija S, van Lier AL, Borman PT, Schakel T, Alberts E, van der Heide O, Hassink RJ, Verhoeff JJ, Mohamed Hoesein FA, Raaymakers BW, Fast MF. Feasibility of cardiac-synchronized quantitative T1 and T2 mapping on a hybrid 1.5 Tesla magnetic resonance imaging and linear accelerator system. Phys Imaging Radiat Oncol 2022; 21:153-159. [PMID: 35287380 PMCID: PMC8917300 DOI: 10.1016/j.phro.2022.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 11/30/2022] Open
Abstract
Background and Purpose Materials and methods Results Conclusions
Collapse
Affiliation(s)
- Osman Akdag
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Corresponding author.
| | - Stefano Mandija
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Computational Imaging Group for MR Diagnostics and Therapy, Center for Image Sciences, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Astrid L.H.M.W. van Lier
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Pim T.S. Borman
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Tim Schakel
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Eveline Alberts
- Philips Healthcare, Veenpluis 6 5684 PC Best, The Netherlands
| | - Oscar van der Heide
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Computational Imaging Group for MR Diagnostics and Therapy, Center for Image Sciences, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Rutger J. Hassink
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Joost J.C. Verhoeff
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Firdaus A.A. Mohamed Hoesein
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Bas W. Raaymakers
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Martin F. Fast
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Corresponding author.
| |
Collapse
|
26
|
Darma A, Bertagnolli L, Weber A, Dinov B, Torri F, Lurz JA, Shamloo AS, Dagres N, Bollmann A, Hindricks G, Arya A. Epicardial ablation of ventricular tachycardia in patients with structural heart disease: a single-centre experience over 12 years. Europace 2021; 23:1980-1988. [PMID: 34405874 DOI: 10.1093/europace/euab194] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/09/2021] [Indexed: 11/14/2022] Open
Abstract
AIMS Epicardial ablation has risen to an essential part of the treatment of ventricular tachycardias (VTs). In this study, we report the efficacy, risks, and current trends of epicardial ablation in structural heart disease as reported in a tertiary single centre over a 12-year period. METHODS AND RESULTS Two hundred and thirty-six patients referred for VT ablation underwent a successful epicardial access and were included in the analysis (89% non-ischaemic cardiomyopathy, 90% males, mean age 60 years, mean left ventricular ejection fraction 38.4%). After performing epicardial ablation the clinical VTs were eliminated in 87% of the patients and 71% of the cohort achieved freedom from VT during 22-month follow-up. Twelve patients (5%) suffered major procedure-related complications. Until the end of follow-up 47 (20%) patients died, 9 (4%) underwent a left ventricular assist device implantation and 10 (4%) patients received a heart transplantation. Antiarrhythmic drugs at baseline and during follow-up were independent predictors of VT recurrence. Atrial fibrillation, renal dysfunction, worse New York Heart Association class, and antiarrhythmic drugs at follow-up were associated with worse survival in our cohort. CONCLUSION In this large tertiary single-centre experience, percutaneous epicardial access was feasible in the large majority of the cohort with acceptably low complications rates. A combined endo-/epicardial approach resulted in 87% acute and 71% long-term success. Further studies are needed to clarify the role of routine combined endo-/epicardial ablation in these complex cardiomyopathies.
Collapse
Affiliation(s)
- Angeliki Darma
- Department of Cardiac Electrophysiology, Heart Center University Leipzig, Struempellstrasse 39, 04289 Leipzig, Germany
| | - Livio Bertagnolli
- Department of Cardiac Electrophysiology, Heart Center University Leipzig, Struempellstrasse 39, 04289 Leipzig, Germany
| | - Alexander Weber
- Department for Cardiology, KMG Güstrow Hospital, Güstrow, Germany
| | - Borislav Dinov
- Department of Cardiac Electrophysiology, Heart Center University Leipzig, Struempellstrasse 39, 04289 Leipzig, Germany
| | - Federica Torri
- Department of Cardiac Electrophysiology, Heart Center University Leipzig, Struempellstrasse 39, 04289 Leipzig, Germany
| | - Julia Anna Lurz
- Department of Cardiac Electrophysiology, Heart Center University Leipzig, Struempellstrasse 39, 04289 Leipzig, Germany
| | - Alireza Sepehri Shamloo
- Department of Cardiac Electrophysiology, Heart Center University Leipzig, Struempellstrasse 39, 04289 Leipzig, Germany
| | - Nikolaos Dagres
- Department of Cardiac Electrophysiology, Heart Center University Leipzig, Struempellstrasse 39, 04289 Leipzig, Germany
| | - Andreas Bollmann
- Department of Cardiac Electrophysiology, Heart Center University Leipzig, Struempellstrasse 39, 04289 Leipzig, Germany
| | - Gerhard Hindricks
- Department of Cardiac Electrophysiology, Heart Center University Leipzig, Struempellstrasse 39, 04289 Leipzig, Germany
| | - Arash Arya
- Department of Cardiac Electrophysiology, Heart Center University Leipzig, Struempellstrasse 39, 04289 Leipzig, Germany
| |
Collapse
|
27
|
Q. M. Reis C, Little B, Lee MacDonald R, Syme A, Thomas CG, Robar JL. SBRT of ventricular tachycardia using 4pi optimized trajectories. J Appl Clin Med Phys 2021; 22:72-86. [PMID: 34679247 PMCID: PMC8664144 DOI: 10.1002/acm2.13454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/05/2021] [Accepted: 10/03/2021] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To investigate the possible advantages of using 4pi-optimized arc trajectories in stereotactic body radiation therapy of ventricular tachycardia (VT-SBRT) to minimize exposure of healthy tissues. METHODS AND MATERIALS Thorax computed tomography (CT) data for 15 patients were used for contouring organs at risk (OARs) and defining realistic planning target volumes (PTVs). A conventional trajectory plan, defined as two full coplanar arcs was compared to an optimized-trajectory plan provided by a 4pi algorithm that penalizes geometric overlap of PTV and OARs in the beam's-eye-view. A single fraction of 25 Gy was prescribed to the PTV in both plans and a comparison of dose sparing to OARs was performed based on comparisons of maximum, mean, and median dose. RESULTS A significant average reduction in maximum dose was observed for esophagus (18%), spinal cord (26%), and trachea (22%) when using 4pi-optimized trajectories. Mean doses were also found to decrease for esophagus (19%), spinal cord (33%), skin (18%), liver (59%), lungs (19%), trachea (43%), aorta (11%), inferior vena cava (25%), superior vena cava (33%), and pulmonary trunk (26%). A median dose reduction was observed for esophagus (40%), spinal cord (48%), skin (36%), liver (72%), lungs (41%), stomach (45%), trachea (53%), aorta (45%), superior vena cava (38%), pulmonary veins (32%), and pulmonary trunk (39%). No significant difference was observed for maximum dose (p = 0.650) and homogeneity index (p = 0.156) for the PTV. Average values of conformity number were 0.86 ± 0.05 and 0.77 ± 0.09 for the conventional and 4pi optimized plans respectively. CONCLUSIONS 4pi optimized trajectories provided significant reduction to mean and median doses to cardiac structures close to the target but did not decrease maximum dose. Significant improvement in maximum, mean and median doses for noncardiac OARs makes 4pi optimized trajectories a suitable delivery technique for treating VT.
Collapse
Affiliation(s)
- Cristiano Q. M. Reis
- Department of Radiation OncologyDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Medical PhysicsScotia Health Authority, NovaHalifaxNova ScotiaCanada
- Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Radiation Oncology, London Regional Cancer ProgramLondon Health Sciences Centre790 Commissioners Road EastLondonONN6A 4L6Canada
| | - Brian Little
- Department of Radiation OncologyDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Medical PhysicsScotia Health Authority, NovaHalifaxNova ScotiaCanada
- Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
- Adaptiiv Medical Technologies Inc405‐1344 Summer Street Halifax, NS B3H 0A8Canada
| | - Robert Lee MacDonald
- Department of Radiation OncologyDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Medical PhysicsScotia Health Authority, NovaHalifaxNova ScotiaCanada
- Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - Alasdair Syme
- Department of Radiation OncologyDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Medical PhysicsScotia Health Authority, NovaHalifaxNova ScotiaCanada
- Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
- Beatrice Hunter Cancer Research InstituteHalifaxNova ScotiaCanada
| | - Christopher G. Thomas
- Department of Radiation OncologyDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Medical PhysicsScotia Health Authority, NovaHalifaxNova ScotiaCanada
- Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
- Beatrice Hunter Cancer Research InstituteHalifaxNova ScotiaCanada
- Department of RadiologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - James L. Robar
- Department of Radiation OncologyDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Medical PhysicsScotia Health Authority, NovaHalifaxNova ScotiaCanada
- Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
28
|
Lee J, Bates M, Shepherd E, Riley S, Henshaw M, Metherall P, Daniel J, Blower A, Scoones D, Wilkinson M, Richmond N, Robinson C, Cuculich P, Hugo G, Seller N, McStay R, Child N, Thornley A, Kelland N, Atherton P, Peedell C, Hatton M. Cardiac stereotactic ablative radiotherapy for control of refractory ventricular tachycardia: initial UK multicentre experience. Open Heart 2021; 8:openhrt-2021-001770. [PMID: 34815300 PMCID: PMC8611439 DOI: 10.1136/openhrt-2021-001770] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/01/2021] [Indexed: 12/25/2022] Open
Abstract
Background Options for patients with ventricular tachycardia (VT) refractory to antiarrhythmic drugs and/or catheter ablation remain limited. Stereotactic radiotherapy has been described as a novel treatment option. Methods Seven patients with recurrent refractory VT, deemed high risk for either first time or redo invasive catheter ablation, were treated across three UK centres with non-invasive cardiac stereotactic ablative radiotherapy (SABR). Prior catheter ablation data and non-invasive mapping were combined with cross-sectional imaging to generate radiotherapy plans with aim to deliver a single 25 Gy treatment. Shared planning and treatment guidelines and prospective peer review were used. Results Acute suppression of VT was seen in all seven patients. For five patients with at least 6 months follow-up, overall reduction in VT burden was 85%. No high-grade radiotherapy treatment-related side effects were documented. Three deaths (two early, one late) occurred due to heart failure. Conclusions Cardiac SABR showed reasonable VT suppression in a high-risk population where conventional treatment had failed.
Collapse
Affiliation(s)
- Justin Lee
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Matthew Bates
- Department of Cardiology, South Tees Hospital NHS Foundation Trust, Middlesbrough, UK
| | - Ewen Shepherd
- Department of Cardiology, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Stephen Riley
- Weston Park Cancer Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Michael Henshaw
- Weston Park Cancer Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Peter Metherall
- 3D Lab, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Jim Daniel
- Department of Oncology, South Tees Hospitals NHS Foundation Trust, Middlesbrough, UK
| | - Alison Blower
- Department of Oncology, South Tees Hospitals NHS Foundation Trust, Middlesbrough, UK
| | - David Scoones
- Department of Pathology, South Tees Hospital NHS Foundation Trust, Middlesbrough, UK
| | - Michele Wilkinson
- Northern Centre for Cancer Care, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Neil Richmond
- Northern Centre for Cancer Care, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Clifford Robinson
- Center for Noninvasive Cardiac Radioablation, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Phillip Cuculich
- Center for Noninvasive Cardiac Radioablation, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Geoffrey Hugo
- Center for Noninvasive Cardiac Radioablation, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Neil Seller
- Department of Cardiology, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ruth McStay
- Department of Radiology, Newcastle NHS Hospitals Foundation Trust, Newcastle Upon Tyne, UK
| | - Nicholas Child
- Department of Cardiology, South Tees Hospital NHS Foundation Trust, Middlesbrough, UK
| | - Andrew Thornley
- Department of Cardiology, South Tees Hospital NHS Foundation Trust, Middlesbrough, UK
| | - Nicholas Kelland
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Philip Atherton
- Northern Centre for Cancer Care, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Clive Peedell
- Department of Oncology, South Tees Hospitals NHS Foundation Trust, Middlesbrough, UK
| | - Matthew Hatton
- Weston Park Cancer Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
29
|
Chalkia M, Kouloulias V, Tousoulis D, Deftereos S, Tsiachris D, Vrachatis D, Platoni K. Stereotactic Arrhythmia Radioablation as a Novel Treatment Approach for Cardiac Arrhythmias: Facts and Limitations. Biomedicines 2021; 9:1461. [PMID: 34680578 PMCID: PMC8533522 DOI: 10.3390/biomedicines9101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/29/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
Stereotactic ablative radiotherapy (SABR) is highly focused radiation therapy that targets well-demarcated, limited-volume malignant or benign tumors with high accuracy and precision using image guidance. Stereotactic arrhythmia radioablation (STAR) applies SABR to treat cardiac arrhythmias, including ventricular tachycardia (VT) and atrial fibrillation (AF), and has recently been a focus in research. Clinical studies have demonstrated electrophysiologic conduction blockade and histologic fibrosis after STAR, which provides a proof of principle for its potential for treating arrhythmias. This review will present the basic STAR principles, available clinical study outcomes, and how the technique has evolved since the first pre-clinical study. In addition to the clinical workflow, focus will be given on the process for stereotactic radiotherapy Quality Assurance (QA) tests, as well as the need for establishing a standardized QA protocol. Future implications and potential courses of research will also be discussed.
Collapse
Affiliation(s)
- Marina Chalkia
- Radiotherapy Unit, Second Department of Radiology, School of Medicine, Rimini 1, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (V.K.); (K.P.)
| | - Vassilis Kouloulias
- Radiotherapy Unit, Second Department of Radiology, School of Medicine, Rimini 1, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (V.K.); (K.P.)
| | - Dimitris Tousoulis
- First Department of Cardiology, ‘Hippokration’ General Hospital, Vasilissis Sofias 114, 115 27 Athens, Greece;
| | - Spyridon Deftereos
- Second Department of Cardiology, “Attikon” University Hospital, School of Medicine, Rimini 1, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (S.D.); (D.V.)
| | | | - Dimitrios Vrachatis
- Second Department of Cardiology, “Attikon” University Hospital, School of Medicine, Rimini 1, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (S.D.); (D.V.)
| | - Kalliopi Platoni
- Radiotherapy Unit, Second Department of Radiology, School of Medicine, Rimini 1, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (V.K.); (K.P.)
| |
Collapse
|
30
|
Ramia P, Ollaik F, Hilal L, Jalbout W, AlJaroudi W, Al Ahmad A, Sfeir P, Jurjus A, Refaat M, Youssef B. Stereotactic Radiosurgery for Atrioventricular Node Ablation in Swine: A Study on Efficacy and Dosimetric Evaluation of Organs at Risk. Cureus 2021; 13:e18785. [PMID: 34804652 PMCID: PMC8592376 DOI: 10.7759/cureus.18785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 11/07/2022] Open
Abstract
Introduction Stereotactic radiosurgery (SRS) delivered to arrhythmogenic foci within the heart is a promising treatment modality. We dosimetrically evaluated the radiation dose to the organs at risk of four swine that were successfully treated with linear-accelerator-based SRS for atrioventricular (AV) node ablation. Materials and methods Single-chamber pacemakers were implanted in four large white breed swine. Cardiac computed tomography simulation scans were performed to localize the AV node and organs at risk. SRS (35-40 Gy) was delivered to the AV node, and the pigs were followed up with pacemaker interrogations. One-sample t-tests were used to evaluate Dmax of great vessels, esophagus, and chest wall as compared to known normal tissue constraints as per RTOG 0631 and AAPM Task Group 101. Results All pigs had disturbances of AV conduction with progressive transition into complete heart block. Macroscopic and microscopic evaluation showed fibrosis in the AV node but did not reveal any changes in non-nodal cardiac tissue or vessels. The mean Dmax±SD (p-value) of the chest wall (14.7±3.3 (0.02)), esophagus (10.7±1.1 (<0.01)) superior vena cava (3.3±4.1 (<0.01)), right pulmonary artery (16.1±6.4 (<0.01)), right pulmonary vein (15.7± 5 (<0.01)), left pulmonary artery (11.1±1.7 (<0.01)) and left pulmonary vein (14.1±2.6 (<0.01)), and the inferior vena cava (33.68±1.6 (0.026)) were significantly below the normal tissue constraint cutoffs. Mean±SD (p-value) of the ascending aorta (19.4±16.1 (0.12)) was not significantly different than normal tissue constraint cutoffs. One swine model treated at 40 Gy had small area of hotspot in the ascending aorta (40.65 (0.4 cc)). Conclusion We have demonstrated in our swine models that SRS using 35-40 Gy can be done without exceeding known human normal tissue constraints to the chest wall, esophagus, and great vessels.
Collapse
Affiliation(s)
- Paul Ramia
- Radiation Oncology, American University of Beirut, Beirut, LBN
| | - Farah Ollaik
- Radiation Oncology, American University of Beirut, Beirut, LBN
| | - Lara Hilal
- Radiation Oncology, American University of Beirut, Beirut, LBN
| | - Wassim Jalbout
- Radiation Oncology, American University of Beirut, Beirut, LBN
| | | | - Amin Al Ahmad
- Cardiology, Texas Cardiac Arrhythmia Institute, St David's Medical Center, Austin, USA
| | - Pierre Sfeir
- Cardiothoracic Surgery, American University of Beirut, Beirut, LBN
| | - Abdo Jurjus
- Anatomy, American University of Beirut, Beirut, LBN
| | - Marwan Refaat
- Cardiovascular Disease, American University of Beirut, Beirut, LBN
| | - Bassem Youssef
- Radiation Oncology, American University of Beirut, Beirut, LBN
| |
Collapse
|
31
|
Zhang DM, Szymanski J, Bergom C, Cuculich PS, Robinson CG, Schwarz JK, Rentschler SL. Leveraging Radiobiology for Arrhythmia Management: A New Treatment Paradigm? Clin Oncol (R Coll Radiol) 2021; 33:723-734. [PMID: 34535357 DOI: 10.1016/j.clon.2021.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/04/2021] [Accepted: 09/01/2021] [Indexed: 01/01/2023]
Abstract
Radiation therapy is a well-established approach for safely and non-invasively treating solid tumours and benign diseases with high precision and accuracy. Cardiac radiation therapy has recently emerged as a non-invasive treatment option for the management of refractory ventricular tachycardia. Here we summarise existing clinical and preclinical literature surrounding cardiac radiobiology and discuss how these studies may inform basic and translational research, as well as clinical treatment paradigms in the management of arrhythmias.
Collapse
Affiliation(s)
- D M Zhang
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA
| | - J Szymanski
- Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA
| | - C Bergom
- Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA
| | - P S Cuculich
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA; Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA
| | - C G Robinson
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA; Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA
| | - J K Schwarz
- Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA
| | - S L Rentschler
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA; Department of Biomedical Engineering, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA; Department of Developmental Biology, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA.
| |
Collapse
|
32
|
Hindley N, Lydiard S, Shieh CC, Keall P. Proof-of-concept for x-ray based real-time image guidance during cardiac radioablation. Phys Med Biol 2021; 66. [PMID: 34315136 DOI: 10.1088/1361-6560/ac1834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/27/2021] [Indexed: 11/11/2022]
Abstract
Cardiac radioablation offers non-invasive treatments for refractory arrhythmias. However, treatment delivery for this technique remains challenging. In this paper, we introduce the first method for real-time image guidance during cardiac radioablation for refractory atrial fibrillation on a standard linear accelerator. Our proposed method utilizes direct diaphragm tracking on intrafraction images to estimate the respiratory component of cardiac substructure motion. We compare this method to treatment scenarios without real-time image guidance using the 4D-XCAT digital phantom. Pre-treatment and intrafraction imaging was simulated for 8 phantoms with unique anatomies programmed using cardiorespiratory motion from healthy volunteers. As every voxel in the 4D-XCAT phantom is labelled precisely according to the corresponding anatomical structure, this provided ground-truth for quantitative evaluation. Tracking performance was compared to the ground-truth for simulations with and without real-time image guidance using the left atrium as an exemplar target. Differences in target volume size, mean volumetric coverage, minimum volumetric coverage and geometric error were recorded for each simulation. We observed that differences in target volume size were statistically significant (p < 0.001) across treatment scenarios and that real-time image guidance enabled reductions in target volume size ranging from 11% to 24%. Differences in mean and minimum volumetric coverage were statistically insignificant (bothp = 0.35) while differences in geometric error were statistically significant (p = 0.039). The results of this study provide proof-of-concept for x-ray based real-time image guidance during cardiac radioablation.
Collapse
Affiliation(s)
| | - Suzanne Lydiard
- ACRF Image X Institute, University of Sydney, Sydney, Australia.,Ingham Institute for Applied Medical Research, Liverpool, Australia
| | - Chun-Chien Shieh
- ACRF Image X Institute, University of Sydney, Sydney, Australia.,Sydney Neuroimaging Analysis Centre, University of Sydney, Sydney, Australia
| | - Paul Keall
- ACRF Image X Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
33
|
Krug D, Blanck O, Andratschke N, Guckenberger M, Jumeau R, Mehrhof F, Boda-Heggemann J, Seidensaal K, Dunst J, Pruvot E, Scholz E, Saguner AM, Rudic B, Boldt LH, Bonnemeier H. Recommendations regarding cardiac stereotactic body radiotherapy for treatment refractory ventricular tachycardia. Heart Rhythm 2021; 18:2137-2145. [PMID: 34380072 DOI: 10.1016/j.hrthm.2021.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Ventricular tachycardia (VT) is a potentially lethal complication of structural heart disease. Despite optimal management, a subgroup of patients continue to suffer from recurrent VT. Recently, cardiac stereotactic body radiotherapy (CSBRT) has been introduced as a treatment option in patients with VT refractory to antiarrhythmic drugs and catheter ablation. OBJECTIVE The purpose of this study was to establish an expert consensus regarding the conduct and use of CSBRT for refractory VT. METHODS We conducted a modified Delphi process. Thirteen experts from institutions from Germany and Switzerland participated in the modified Delphi process. Statements regarding the following topics were generated: treatment setting, institutional expertise and technical requirements, patient selection, target volume definition, and monitoring during and after CSBRT. Agreement was rated on a 5-point Likert scale. Cutoffs for agreement were defined in analogy to the RAND methodology. RESULTS There was strong agreement regarding the experimental status of the procedure and the preference for treatment in clinical trials. CSBRT should be conducted at specialized centers with a strong expertise in the management of patients with ventricular arrhythmias and in stereotactic body radiotherapy for moving targets. CSBRT should be restricted to patients with refractory VT with optimal antiarrhythmic medication who underwent prior catheter ablation or have contraindications. Target volume delineation for CSBRT is complex. Therefore, interdisciplinary processes that should include cardiology/electrophysiology and radiation oncology as well as medical physics, radiology, and nuclear medicine are needed. Optimal follow-up is required. CONCLUSION Prospective trials and pooled registries are needed to gain further insight into this promising treatment option for patients with refractory VT.
Collapse
Affiliation(s)
- David Krug
- Department of Radiation Oncology, University Hospital Schleswig-Holstein, Kiel, Germany.
| | - Oliver Blanck
- Department of Radiation Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | | | - Raphael Jumeau
- Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Radiation Oncology Institute, Hirslanden Clinique Bois-Cerf, Lausanne, Switzerland
| | - Felix Mehrhof
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Katharina Seidensaal
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jürgen Dunst
- Department of Radiation Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Etienne Pruvot
- Heart and Vessel Department, Service of Cardiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Eberhard Scholz
- Department of Cardiology, Heidelberg Center for Heart Rhythm Disorders (HCR), University of Heidelberg, Heidelberg, Germany
| | - Ardan M Saguner
- Department of Cardiology, University Heart Center Zurich, Zurich, Switzerland
| | - Boris Rudic
- Department of Internal Medicine I, Section for Electrophysiology und Rhythmology, University Medical Center Mannheim, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Leif-Hendrik Boldt
- Department of Internal Medicine and Cardiology, Charité University Medicine Berlin-Campus Virchow Klinikum, Berlin, Germany
| | - Hendrik Bonnemeier
- Department of Internal Medicine III, Section for Electrophysiology und Rhythmology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
34
|
Hardcastle N, Cook O, Ray X, Moore A, Moore KL, Pryor D, Rossi A, Foroudi F, Kron T, Siva S. Personalising treatment plan quality review with knowledge-based planning in the TROG 15.03 trial for stereotactic ablative body radiotherapy in primary kidney cancer. Radiat Oncol 2021; 16:142. [PMID: 34344402 PMCID: PMC8330099 DOI: 10.1186/s13014-021-01820-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/12/2021] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Quality assurance (QA) of treatment plans in clinical trials improves protocol compliance and patient outcomes. Retrospective use of knowledge-based-planning (KBP) in clinical trials has demonstrated improved treatment plan quality and consistency. We report the results of prospective use of KBP for real-time QA of treatment plan quality in the TROG 15.03 FASTRACK II trial, which evaluates efficacy of stereotactic ablative body radiotherapy (SABR) for kidney cancer. METHODS A KBP model was generated based on single institution data. For each patient in the KBP phase (open to the last 31 patients in the trial), the treating centre submitted treatment plans 7 days prior to treatment. A treatment plan was created by using the KBP model, which was compared with the submitted plan for each organ-at-risk (OAR) dose constraint. A report comparing each plan for each OAR constraint was provided to the submitting centre within 24 h of receiving the plan. The centre could then modify the plan based on the KBP report, or continue with the existing plan. RESULTS Real-time feedback using KBP was provided in 24/31 cases. Consistent plan quality was in general achieved between KBP and the submitted plan. KBP review resulted in replan and improvement of OAR dosimetry in two patients. All centres indicated that the feedback was a useful QA check of their treatment plan. CONCLUSION KBP for real-time treatment plan review was feasible for 24/31 cases, and demonstrated ability to improve treatment plan quality in two cases. Challenges include integration of KBP feedback into clinical timelines, interpretation of KBP results with respect to clinical trade-offs, and determination of appropriate plan quality improvement criteria.
Collapse
Affiliation(s)
- Nicholas Hardcastle
- Physical Sciences, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia. .,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia. .,Department of Oncology, Sir Peter MacCallum, University of Melbourne, Parkville, Australia.
| | - Olivia Cook
- Trans Tasman Radiation Oncology Group, Newcastle, Australia
| | - Xenia Ray
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, USA
| | - Alisha Moore
- Trans Tasman Radiation Oncology Group, Newcastle, Australia
| | - Kevin L Moore
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, USA
| | - David Pryor
- Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane, Australia
| | - Alana Rossi
- Trans Tasman Radiation Oncology Group, Newcastle, Australia
| | - Farshad Foroudi
- Olivia Newton, John Cancer Centre at Austin Health, Heidelberg, Australia
| | - Tomas Kron
- Physical Sciences, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia.,Department of Oncology, Sir Peter MacCallum, University of Melbourne, Parkville, Australia
| | - Shankar Siva
- Department of Oncology, Sir Peter MacCallum, University of Melbourne, Parkville, Australia.,Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
35
|
Evaluation of Motion Compensation Methods for Noninvasive Cardiac Radioablation of Ventricular Tachycardia. Int J Radiat Oncol Biol Phys 2021; 111:1023-1032. [PMID: 34217790 DOI: 10.1016/j.ijrobp.2021.06.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Noninvasive cardiac radioablation is increasingly used for treatment of refractory ventricular tachycardia. Attempts to limit normal tissue exposure are important, including managing motion of the target. An interplay between cardiac and respiratory motion exists for cardiac radioablation, which has not been studied in depth. The objectives of this study were to estimate target motion during abdominal compression free breathing (ACFB) and respiratory gated (RG) deliveries and to investigate the quality of either implanted cardioverter defibrillator lead tip or the diaphragm as a gating surrogate. METHODS AND MATERIALS Eleven patients underwent computed tomography (CT) simulation with an ACFB 4-dimensional CT (r4DCT) and an exhale breath-hold cardiac 4D-CT (c4DCT). The target, implanted cardioverter defibrillator lead tip and diaphragm trajectories were measured for each patient on the r4DCT and c4DCT using rigid registration of each 4D phase to the reference (0%) phase. Motion ranges for ACFB and exhale (40%-60%) RG delivery were estimated from the target trajectories. Surrogate quality was estimated as the correlation with the target motion magnitudes. RESULTS Mean (range) target motion across patients from r4DCT was as follows: left/right (LR), 3.9 (1.7-6.9); anteroposterior (AP), 4.1 (2.2-5.4); and superoinferior (SI), 4.7 (2.2-7.9) mm. Mean (range) target motion from c4DCT was as follows: LR, 3.4 (1.0-4.8); AP, 4.3 (2.6-6.5); and SI, 4.1 (1.4-8.0) mm. For an ACFB, treatment required mean (range) margins to be 4.5 (3.1-6.9) LR, 4.8 (3-6.5) AP, and 5.5 (2.3-8.0) mm SI. For RG, mean (range) internal target volume motion would be 3.6 (1.1-4.8) mm LR, 4.3 (2.6-6.5) mm AP, and 4.2 (2.2-8.0) mm SI. The motion correlations between the surrogates and target showed a high level of interpatient variability. CONCLUSIONS In ACFB patients, a simulated exhale-gated approach did not lead to large projected improvements in margin reduction. Furthermore, the variable correlation between readily available gating surrogates could mitigate any potential advantage to gating and should be evaluated on a patient-specific basis.
Collapse
|
36
|
Ho LT, Chen JLY, Chan HM, Huang YC, Su MY, Kuo SH, Chang YC, Lin JL, Chen WJ, Lee WJ, Lin LY. First Asian population study of stereotactic body radiation therapy for ventricular arrhythmias. Sci Rep 2021; 11:10360. [PMID: 33990651 PMCID: PMC8121933 DOI: 10.1038/s41598-021-89857-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/22/2021] [Indexed: 12/31/2022] Open
Abstract
We report the first Asian series on stereotactic body radiation (SBRT) for refractory ventricular arrhythmia (VA) in Taiwanese patients. Three-dimensional electroanatomic maps, delayed-enhancement magnetic resonance imaging (DE-MRI), and dual-energy computed tomography (CT) were used to identify scar substrates. The main target volume was treated with a single radiation dose of 25 Gy and the margin volume received 20 Gy using simultaneous integrated boost delivered by the Varian TrueBeam system. Efficacy was assessed according to VA events recorded by an implantable cardioverter-defibrillator (ICD) or a 24-h Holter recorder. Pre- and post-radiation therapy imaging studies were performed. From February 2019 to December 2019, seven patients (six men, one woman; mean age, 55 years) were enrolled and treated. One patient died of hepatic failure. In the remaining six patients, at a median follow-up of 14.5 months, the VA burden and ICD shocks significantly decreased (only one patient with one ICD shock after treatment). Increased intensity on DE-MRI might be associated with a lower risk for VA recurrence, whereas dual-energy CT had lower detection sensitivity. No acute or minimal late adverse events occurred. In patients with refractory VA, SBRT is associated with a marked reduction in VA burden and ICD shocks, and DE-MRI might be useful for monitoring treatment effects.
Collapse
Affiliation(s)
- Li-Ting Ho
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, No. 7, Chuang-Shan South Road, Taipei, 100, Taiwan.,Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, No. 7, Chuang-Shan South Road, Taipei, 100, Taiwan
| | - Jenny Ling-Yu Chen
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, No. 7, Chuang-Shan South Road, Taipei, 100, Taiwan.,Department of Radiology, National Taiwan University College of Medicine, No. 7, Chuang-Shan South Road, Taipei, 100, Taiwan
| | - Hsing-Min Chan
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, No. 7, Chuang-Shan South Road, Taipei, 100, Taiwan
| | - Yu-Cheng Huang
- Department of Radiology, National Taiwan University College of Medicine, No. 7, Chuang-Shan South Road, Taipei, 100, Taiwan.,Department of Medical Imaging, National Taiwan University College of Medicine and Hospital, No. 7, Chuang-Shan South Road, Taipei, 100, Taiwan
| | - Mao-Yuan Su
- Department of Medical Imaging, National Taiwan University College of Medicine and Hospital, No. 7, Chuang-Shan South Road, Taipei, 100, Taiwan
| | - Sung-Hsin Kuo
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, No. 7, Chuang-Shan South Road, Taipei, 100, Taiwan
| | - Yeun-Chung Chang
- Department of Radiology, National Taiwan University College of Medicine, No. 7, Chuang-Shan South Road, Taipei, 100, Taiwan.,Department of Medical Imaging, National Taiwan University College of Medicine and Hospital, No. 7, Chuang-Shan South Road, Taipei, 100, Taiwan
| | - Jiunn-Lee Lin
- Cardiovascular Center, Taipei Medical University Shuang Ho Hospital, No. 7, Chuang-Shan South Road, Taipei, 100, Taiwan
| | - Wen-Jone Chen
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, No. 7, Chuang-Shan South Road, Taipei, 100, Taiwan
| | - Wen-Jeng Lee
- Department of Radiology, National Taiwan University College of Medicine, No. 7, Chuang-Shan South Road, Taipei, 100, Taiwan. .,Department of Medical Imaging, National Taiwan University College of Medicine and Hospital, No. 7, Chuang-Shan South Road, Taipei, 100, Taiwan.
| | - Lian-Yu Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, No. 7, Chuang-Shan South Road, Taipei, 100, Taiwan.
| |
Collapse
|
37
|
Ren XY, He PK, Gao XS, Zhao ZL, Zhao B, Bai Y, Liu SW, Li K, Qin SB, Ma MW, Zhou J, Rong Y. Dosimetric feasibility of stereotactic ablative radiotherapy in pulmonary vein isolation for atrial fibrillation using intensity-modulated proton therapy. J Appl Clin Med Phys 2021; 22:79-88. [PMID: 33817981 PMCID: PMC8130224 DOI: 10.1002/acm2.13239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose To evaluate dosimetric properties of intensity‐modulated proton therapy (IMPT) for simulated treatment planning in patients with atrial fibrillation (AF) targeting left atrial‐pulmonary vein junction (LA‐PVJ), in comparison with volumetric‐modulated arc therapy (VMAT) and helical tomotherapy (TOMO). Methods Ten thoracic 4D‐CT scans with respiratory motion and one with cardiac motion were used for the study. Ten respiratory 4D‐CTs were planned with VMAT, TOMO, and IMPT for simulated AF. Targets at the LA‐PVJ were defined as wide‐area circumferential ablation line. A single fraction of 25 Gy was prescribed to all plans. The interplay effects from cardiac motion were evaluated based on the cardiac 4D‐CT scan. Dose‐volume histograms (DVHs) of the ITV and normal tissues were compared. Statistical analysis was evaluated via one‐way Repeated‐Measures ANOVA and Friedman’s test with Bonferroni’s multiple comparisons test. Results The median volume of ITV was 8.72cc. All plans had adequate target coverage (V23.75Gy ≥ 99%). Compared with VMAT and TOMO, IMPT resulted in significantly lower dose of most normal tissues. For VMAT, TOMO, and IMPT plans, Dmean of the whole heart was 5.52 ± 0.90 Gy, 5.89 ± 0.78 Gy, and 3.01 ± 0.57 Gy (P < 0.001), mean dose of pericardium was 4.74 ± 0.76 Gy, 4.98 ± 0.62 Gy, and 2.59 ± 0.44 Gy (P < 0.001), and D0.03cc of left circumflex artery (LCX) was 13.96 ± 5.45 Gy, 14.34 ± 5.91 Gy, and 8.43 ± 7.24 Gy (P < 0.001), respectively. However, no significant advantage for one technique over the others was observed when examining the D0.03cc of esophagus and main bronchi. Conclusions IMPT targeting LA‐PVJ for patients with AF has high potential to reduce dose to surrounding tissues compared to VMAT or TOMO. Motion mitigation techniques are critical for a particle‐therapy approach.
Collapse
Affiliation(s)
- Xue-Ying Ren
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Peng-Kang He
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Xian-Shu Gao
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Zhi-Lei Zhao
- Department of Radiation Oncology, Yizhou International Proton Therapy Medical Center, Hebei, China
| | - Bo Zhao
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Yun Bai
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Si-Wei Liu
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Kang Li
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Shang-Bin Qin
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Ming-Wei Ma
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Jing Zhou
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Yi Rong
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| |
Collapse
|
38
|
Lydiard, PGDip S, Blanck O, Hugo G, O’Brien R, Keall P. A Review of Cardiac Radioablation (CR) for Arrhythmias: Procedures, Technology, and Future Opportunities. Int J Radiat Oncol Biol Phys 2021; 109:783-800. [DOI: 10.1016/j.ijrobp.2020.10.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 10/23/2022]
|
39
|
Glicksman RM, Bhaskaran A, Nanthakumar K, Lindsay P, Coolens C, Conroy L, Letourneau D, Lok BH, Giuliani M, Hope A. Implementation of Cardiac Stereotactic Radiotherapy: From Literature to the Linac. Cureus 2021; 13:e13606. [PMID: 33816005 PMCID: PMC8011471 DOI: 10.7759/cureus.13606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stereotactic radiotherapy (SBRT) has been applied to treat cardiac arrhythmias, but our institution had not yet implemented this technique. Here, we explain how we used implementation science and knowledge translation to provide cardiac SBRT to a critically ill patient with malignancy-associated refractory ventricular tachycardia. We reviewed the critical factors that enabled the implementation of this urgent treatment, such as the context of the implementation, the characteristics of the intervention, and the stakeholders. These principles can be used by other radiation programs to implement novel treatments in urgent settings, where the gold standard process of planning and developing policies and protocols is not possible.
Collapse
Affiliation(s)
- Rachel M Glicksman
- Radiation Medicine Program/Radiation Oncology, Princess Margaret Cancer Centre/University of Toronto, Toronto, CAN
| | - Abhishek Bhaskaran
- The Hull Family Cardiac Fibrillation Management Laboratory, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, CAN
| | - Kumaraswamy Nanthakumar
- The Hull Family Cardiac Fibrillation Management Laboratory, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, CAN
| | - Patricia Lindsay
- Radiation Medicine Program/Radiation Oncology, Princess Margaret Cancer Centre/University of Toronto, Toronto, CAN
| | - Catherine Coolens
- Radiation Medicine Program/Radiation Oncology, Princess Margaret Cancer Centre/University of Toronto, Toronto, CAN
| | - Leigh Conroy
- Radiation Medicine Program/Radiation Oncology, Princess Margaret Cancer Centre/University of Toronto, Toronto, CAN
| | - Daniel Letourneau
- Radiation Medicine Program/Radiation Oncology, Princess Margaret Cancer Centre/University of Toronto, Toronto, CAN
| | - Benjamin H Lok
- Radiation Medicine Program/Radiation Oncology, Princess Margaret Cancer Centre/University of Toronto, Toronto, CAN
| | - Meredith Giuliani
- Radiation Medicine Program/Radiation Oncology, Princess Margaret Cancer Centre/University of Toronto, Toronto, CAN
| | - Andrew Hope
- Radiation Medicine Program/Radiation Oncology, Princess Margaret Cancer Centre/University of Toronto, Toronto, CAN
| |
Collapse
|
40
|
Knybel L, Cvek J, Neuwirth R, Jiravsky O, Hecko J, Penhaker M, Sramko M, Kautzner J. Real-time measurement of ICD lead motion during stereotactic body radiotherapy of ventricular tachycardia. ACTA ACUST UNITED AC 2021; 26:128-137. [PMID: 34046223 DOI: 10.5603/rpor.a2021.0020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 12/18/2020] [Indexed: 11/25/2022]
Abstract
Background Here we aimed to evaluate the respiratory and cardiac-induced motion of a ICD lead used as surrogate in the heart during stereotactic body radiotherapy (SBRT) of ventricular tachycardia (VT). Data provides insight regarding motion and motion variations during treatment. Materials and methods We analyzed the log files of surrogate motion during SBRT of ventricular tachycardia performed in 20 patients. Evaluated parameters included the ICD lead motion amplitudes; intrafraction amplitude variability; correlation error between the ICD lead and external markers; and margin expansion in the superior-inferior (SI), latero-lateral (LL), and anterior-posterior (AP) directions to cover 90% or 95% of all amplitudes. Results In the SI, LL, and AP directions, respectively, the mean motion amplitudes were 5.0 ± 2.6, 3.4. ± 1.9, and 3.1 ± 1.6 mm. The mean intrafraction amplitude variability was 2.6 ± 0.9, 1.9 ± 1.3, and 1.6 ± 0.8 mm in the SI, LL, and AP directions, respectively. The margins required to cover 95% of ICD lead motion amplitudes were 9.5, 6.7, and 5.5 mm in the SI, LL, and AP directions, respectively. The mean correlation error was 2.2 ± 0.9 mm. Conclusions Data from online tracking indicated motion irregularities and correlation errors, necessitating an increased CTV-PTV margin of 3 mm. In 35% of cases, the motion variability exceeded 3 mm in one or more directions. We recommend verifying the correlation between CTV and surrogate individually for every patient, especially for targets with posterobasal localization where we observed the highest difference between the lead and CTV motion.
Collapse
Affiliation(s)
- Lukas Knybel
- Department of Oncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Jakub Cvek
- Department of Oncology, University Hospital Ostrava, Ostrava, Czech Republic
| | | | - Otakar Jiravsky
- Department of Cardiology, Podlesi Hospital, Trinec, Czech Republic
| | - Jan Hecko
- VŠB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Marek Penhaker
- VŠB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Marek Sramko
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Josef Kautzner
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
41
|
Munshi A. Ablative radiosurgery for cardiac arrhythmias - A systematic review. Cancer Radiother 2021; 25:373-379. [PMID: 33589330 DOI: 10.1016/j.canrad.2021.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
Stereotactic body radiotherapy (SBRT) is a high precision technique that is commonly used for malignant lesions in lung, liver, pancreas and spine. Recent reports suggest promise in use of SBRT as a tool in atrial and ventricular cardiac arrhythmias. The present systematic review deals with the use of SBRT technology for this novel indication. A PubMed search was done for articles published between 1990 and 2020. All original articles, case reports, case series of treated patients were included in the analyses. Out of the 55 articles in PubMed search, our search found 1 phase I/II clinical case series, 3 clinical case reports, 3 animal studies and 4 dosimetric studies related to cardiac SBRT for arrythmias. All studies used a uniform cardiac dose of 25Gy. The available preclinical, dosimetric and clinical studies have suggested that SBRT for cardiac arrhythmias could become a potential alternative in suitable patients. Cardiac and radiation oncology community await further data and experience in this modality, including safety and outcomes.
Collapse
Affiliation(s)
- A Munshi
- Department of Radiation Oncology, Manipal Hospitals, Dwarka, New Delhi, India.
| |
Collapse
|
42
|
Sacher F, Gandjbakhch E, Maury P, Jenny C, Khalifa J, Boveda S, Defaye P, Gras D, Klug D, Laurent G, Lellouche N, Mansourati J, Marijon E, Piot O, Taieb J, Cochet H, Maingon P, Pruvot E, Fauchier L. Focus on stereotactic radiotherapy: A new way to treat severe ventricular arrhythmias? Arch Cardiovasc Dis 2021; 114:140-149. [PMID: 33478860 DOI: 10.1016/j.acvd.2020.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Ventricular tachycardia has a significant recurrence rate after ablation for several reasons, including inaccessible substrate. A non-invasive technique to ablate any defined areas of myocardium involved in arrhythmogenesis would be a potentially important therapeutic improvement if shown to be safe and effective. Early feasibility studies of single-fraction stereotactic body radiotherapy have demonstrated encouraging results, but rigorous evaluation and follow-up are required. In this document, the basic concepts of stereotactic body radiotherapy are summarized, before focusing on stereotactic arrhythmia radioablation. We describe the effect of radioablation on cardiac tissue and its interaction with intracardiac devices, depending on the dose. The different clinical studies on ventricular tachycardia radioablation are analysed, with a focus on target identification, which is the key feature of this approach. Our document ends with the indications and requirements for practicing this type of procedure in 2020. Finally, because of the limited number of patients treated so far, we encourage multicentre registries with long-term follow-up.
Collapse
Affiliation(s)
- Frédéric Sacher
- Department of cardiology, IHU Liryc, electrophysiology and heart modelling institute, Bordeaux university hospital (CHU), university of Bordeaux, 33600 Pessac, France.
| | - Estelle Gandjbakhch
- Department of cardiology, La Pitié-Salpétrière university hospital, AP-HP, 75013 Paris, France
| | - Philippe Maury
- Department of cardiology, Toulouse university hospital, 31059 Toulouse, France
| | - Catherine Jenny
- Department of radiotherapy, La Pitié-Salpétrière university hospital, AP-HP, 75013 Paris, France
| | - Jonathan Khalifa
- Departments of radiotherapy and cardiology, Toulouse university hospital, 31059 Toulouse, France
| | - Serge Boveda
- Department of cardiology, clinique Pasteur, 31076 Toulouse, France
| | - Pascal Defaye
- Department of cardiology, Grenoble university hospital, 38700 La Tronche, France
| | - Daniel Gras
- Department of cardiology, nouvelles cliniques nantaises, 44277 Nantes, France
| | - Didier Klug
- Department of cardiology, Lille university hospital, 59000 Lille, France
| | - Gabriel Laurent
- Department of cardiology, Dijon university hospital, 21000 Dijon, France
| | - Nicolas Lellouche
- Department of cardiology, hôpital Henri-Mondor, AP-HP, 94010 Créteil, France
| | - Jacques Mansourati
- Department of cardiology, Brest university hospital, 29609 Brest, France
| | - Eloi Marijon
- Department of cardiology, hôpital européen Georges-Pompidou, AP-HP, 75015 Paris, France
| | - Olivier Piot
- Department of cardiology, centre cardiologique du nord, 93200 Saint-Denis, France
| | - Jerome Taieb
- Department of cardiology, Aix-en-Provence hospital, 13616 Aix-en-Provence, France
| | - Hubert Cochet
- Department of radiology, IHU Liryc, electrophysiology and heart modelling institute, Bordeaux university hospital (CHU), university of Bordeaux, 33600 Pessac, France
| | - Philippe Maingon
- Department of radiotherapy, La Pitié-Salpétrière university hospital, AP-HP, 75013 Paris, France
| | - Etienne Pruvot
- Department of cardiology, CHUV, 1011 Lausanne, Switzerland
| | - Laurent Fauchier
- Department of cardiology, Tours university hospital, 37000 Tours, France
| | | |
Collapse
|
43
|
Ouyang Z, Schoenhagen P, Wazni O, Tchou P, Saliba WI, Suh JH, Xia P. Analysis of cardiac motion without respiratory motion for cardiac stereotactic body radiation therapy. J Appl Clin Med Phys 2020; 21:48-55. [PMID: 32918386 PMCID: PMC7592981 DOI: 10.1002/acm2.13002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/14/2020] [Accepted: 07/21/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose/objective(s) To study the heart motion using cardiac gated computed tomographies (CGCT) to provide guidance on treatment planning margins during cardiac stereotactic body radiation therapy (SBRT). Materials/methods Ten patients were selected for this study, who received CGCT scans that were acquired with intravenous contrast under a voluntary breath‐hold using a dual source CT scanner. For each patient, CGCT images were reconstructed in multiple phases (10%–90%) of the cardiac cycle and the left ventricle (LV), right ventricle (RV), ascending aorta (AAo), ostia of the right coronary artery (O‐RCA), left coronary artery (O‐LCA), and left anterior descending artery (LAD) were contoured at each phase. For these contours, the centroid displacements from their corresponding average positions were measured at each phase in the superior–inferior (SI), medial–lateral (ML), and anterior–posterior (AP). The average volumes as well as the maximum to minimum ratios were analyzed for the LV and RV. Results For the six contoured substructures, more than 90% of the measured displacements were <5 mm. For these patients, the average volumes ranged from 191.25 to 429.51 cc for LV and from 91.76 to 286.88 cc for RV. For each patient, the ratios of maximum to minimum volumes within a cardiac cycle ranged from 1.15 to 1.54 for LV and from 1.34 to 1.84 for RV. Conclusion Based on this study, cardiac motion is variable depending on the specific substructure of the heart but is mostly within 5 mm. Depending on the location (central or peripheral) of the treatment target and treatment purposes, the treatment planning margins for targets and risk volumes should be adjusted accordingly. In the future, we will further assess heart motion and its dosimetric impact.
Collapse
Affiliation(s)
- Zi Ouyang
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Paul Schoenhagen
- Department of Radiology, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Oussama Wazni
- Department of Cardiovascular Medicine, Miller Family Heart & Vascular Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Patrick Tchou
- Department of Cardiovascular Medicine, Miller Family Heart & Vascular Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Walid I Saliba
- Department of Cardiovascular Medicine, Miller Family Heart & Vascular Institute, Cleveland Clinic, Cleveland, OH, USA
| | - John H Suh
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ping Xia
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
44
|
Jumeau R, Ozsahin M, Schwitter J, Elicin O, Reichlin T, Roten L, Andratschke N, Mayinger M, Saguner AM, Steffel J, Blanck O, Vozenin MC, Moeckli R, Zeverino M, Vallet V, Herrera-Siklody C, Pascale P, Bourhis J, Pruvot E. Stereotactic Radiotherapy for the Management of Refractory Ventricular Tachycardia: Promise and Future Directions. Front Cardiovasc Med 2020; 7:108. [PMID: 32671101 PMCID: PMC7329991 DOI: 10.3389/fcvm.2020.00108] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/22/2020] [Indexed: 01/22/2023] Open
Abstract
Ventricular tachycardia (VT) caused by myocardial scaring bears a significant risk of mortality and morbidity. Antiarrhythmic drug therapy (AAD) and catheter ablation remain the cornerstone of VT management, but both treatments have limited efficacy and potential adverse effects. Stereotactic body radiotherapy (SBRT) is routinely used in oncology to treat non-invasively solid tumors with high precision and efficacy. Recently, this technology has been evaluated for the treatment of VT. This review presents the basic underlying principles, proof of concept, and main results of trials and case series that used SBRT for the treatment of VT refractory to AAD and catheter ablation.
Collapse
Affiliation(s)
- Raphael Jumeau
- Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Multidisciplinary Cancer Care Service, Radiation Oncology Unit, Riviera-Chablais Hospital, Rennaz, Switzerland
| | - Mahmut Ozsahin
- Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Juerg Schwitter
- Heart and Vessel Department, Cardiac MR Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Olgun Elicin
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Tobias Reichlin
- Department of Cardiology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Laurent Roten
- Department of Cardiology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich, Zürich, Switzerland
| | - Michael Mayinger
- Department of Radiation Oncology, University Hospital Zurich, Zürich, Switzerland
| | - Ardan M Saguner
- Department of Cardiology, University Heart Center Zurich, Zürich, Switzerland
| | - Jan Steffel
- Department of Cardiology, University Heart Center Zurich, Zürich, Switzerland
| | - Oliver Blanck
- Department of Radiation Oncology and Department of Internal Medicine III, Cardiology, Section for Electrophysiology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Marie-Catherine Vozenin
- Radio-Oncology Research Laboratory, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Raphael Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Michele Zeverino
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Véronique Vallet
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Claudia Herrera-Siklody
- Heart and Vessel Department, Service of Cardiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Patrizio Pascale
- Heart and Vessel Department, Service of Cardiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean Bourhis
- Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Etienne Pruvot
- Heart and Vessel Department, Service of Cardiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
45
|
Poon J, Kohli K, Deyell MW, Schellenberg D, Reinsberg S, Teke T, Thomas S. Technical Note: Cardiac synchronized volumetric modulated arc therapy for stereotactic arrhythmia radioablation - Proof of principle. Med Phys 2020; 47:3567-3572. [PMID: 32415856 DOI: 10.1002/mp.14237] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 05/06/2020] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Ventricular tachycardia (VT) is a rapid, abnormal heart rhythm that can lead to sudden cardiac death. Current treatment options include antiarrhythmic drug therapy and catheter ablation, both of which have only modest efficacy and have potential complications. Cardiac radiosurgery has the potential to be a noninvasive and efficient treatment option for VT. Cardiac motion, however, must be accounted for to ensure accurate dose delivery to the target region. Cardiac synchronized volumetric modulated arc therapy (CSVMAT) aims to minimize the dose delivered to normal tissues by synchronizing beam delivery with a cardiac signal, irradiating only during the quiescent intervals of the cardiac cycle (when heart motion is minimal) and adjusting the beam delivery speed in response to heart rate changes. METHODS A CSVMAT plan was adapted from a conventional VMAT plan and delivered on a Varian TrueBeam linear accelerator. The original VMAT plan was divided into three interleaved CSVMAT phases, each consisting of alternating beam-on and beam-off segments synchronized to a sample heart rate. Trajectory log files were collected for the original VMAT and CSVMAT deliveries and the dose distributions were measured with Gafchromic EBT-XD film. RESULTS Analysis of the trajectory log files showed successful synchronization with the sample cardiac signal. Film analysis comparing the original VMAT and CSVMAT dose distributions returned a gamma passing rate of 99.14% (2%/2 mm tolerance). CONCLUSIONS The film results indicated excellent agreement between the dose distributions of the original and cardiac synchronized beam deliveries. This study demonstrates a proof of principle cardiac synchronization strategy for precise radiation treatment plan delivery and adjustment to a variable heart rate. The cardiac synchronized technique may be advantageous in radioablation for VT.
Collapse
Affiliation(s)
- Justin Poon
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Kirpal Kohli
- Department of Medical Physics, BC Cancer -Surrey, Surrey, BC, V3V 1Z2, Canada
| | - Marc W Deyell
- Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, BC, V6E 1M7, Canada
| | - Devin Schellenberg
- Department of Radiation Oncology, BC Cancer -Surrey, Surrey, British Columbia, V3V 1Z2, Canada
| | - Stefan Reinsberg
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Tony Teke
- Department of Medical Physics, BC Cancer -Kelowna, Kelowna, BC, V1Y 5L3, Canada
| | - Steven Thomas
- Department of Medical Physics, BC Cancer -Vancouver, Vancouver, BC, V5Z 4E6, Canada
| |
Collapse
|
46
|
Blanck O, Buergy D, Vens M, Eidinger L, Zaman A, Krug D, Rudic B, Boda-Heggemann J, Giordano FA, Boldt LH, Mehrhof F, Budach V, Schweikard A, Olbrich D, König IR, Siebert FA, Vonthein R, Dunst J, Bonnemeier H. Radiosurgery for ventricular tachycardia: preclinical and clinical evidence and study design for a German multi-center multi-platform feasibility trial (RAVENTA). Clin Res Cardiol 2020; 109:1319-1332. [PMID: 32306083 PMCID: PMC7588361 DOI: 10.1007/s00392-020-01650-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/08/2020] [Indexed: 12/25/2022]
Abstract
Background Single-session high-dose stereotactic radiotherapy (radiosurgery) is a new treatment option for otherwise untreatable patients suffering from refractory ventricular tachycardia (VT). In the initial single-center case studies and feasibility trials, cardiac radiosurgery has led to significant reductions of VT burden with limited toxicities. However, the full safety profile remains largely unknown. Methods/design In this multi-center, multi-platform clinical feasibility trial which we plan is to assess the initial safety profile of radiosurgery for ventricular tachycardia (RAVENTA). High-precision image-guided single-session radiosurgery with 25 Gy will be delivered to the VT substrate determined by high-definition endocardial electrophysiological mapping. The primary endpoint is safety in terms of successful dose delivery without severe treatment-related side effects in the first 30 days after radiosurgery. Secondary endpoints are the assessment of VT burden, reduction of implantable cardioverter defibrillator (ICD) interventions [shock, anti-tachycardia pacing (ATP)], mid-term side effects and quality-of-life (QoL) in the first year after radiosurgery. The planned sample size is 20 patients with the goal of demonstrating safety and feasibility of cardiac radiosurgery in ≥ 70% of the patients. Quality assurance is provided by initial contouring and planning benchmark studies, joint multi-center treatment decisions, sequential patient safety evaluations, interim analyses, independent monitoring, and a dedicated data and safety monitoring board. Discussion RAVENTA will be the first study to provide the initial robust multi-center multi-platform prospective data on the therapeutic value of cardiac radiosurgery for ventricular tachycardia. Trial registration number NCT03867747 (clinicaltrials.gov). Registered March 8, 2019. The study was initiated on November 18th, 2019, and is currently recruiting patients. Graphic abstract ![]()
Collapse
Affiliation(s)
- Oliver Blanck
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus 50, 24105, Kiel, Germany.
| | - Daniel Buergy
- Klinik für Strahlentherapie und Radioonkologie, Universitätsmedizin Mannheim, Universität Heidelberg, Medizinische Fakultät Mannheim, Mannheim, Germany
| | - Maren Vens
- Universität zu Lübeck, Zentrum für Klinische Studien, Lübeck, Germany.,Institut für Medizinische Biometrie und Statistik, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Lina Eidinger
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus 50, 24105, Kiel, Germany.,Klinik für Innere Medizin III, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Adrian Zaman
- Klinik für Innere Medizin III, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - David Krug
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus 50, 24105, Kiel, Germany
| | - Boris Rudic
- Medizinische Klinik I, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsmedizin Mannheim, Universität Heidelberg, Medizinische Fakultät Mannheim, Mannheim, Germany
| | - Judit Boda-Heggemann
- Klinik für Strahlentherapie und Radioonkologie, Universitätsmedizin Mannheim, Universität Heidelberg, Medizinische Fakultät Mannheim, Mannheim, Germany
| | - Frank A Giordano
- Klinik für Strahlentherapie und Radioonkologie, Universitätsmedizin Mannheim, Universität Heidelberg, Medizinische Fakultät Mannheim, Mannheim, Germany
| | - Leif-Hendrik Boldt
- Medizinische Klinik mit Schwerpunkt Kardiologie (CVK), Abteilung für Elektrophysiologie und Rhythmologie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Mehrhof
- Klinik für Radioonkologie und Strahlentherapie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Volker Budach
- Klinik für Radioonkologie und Strahlentherapie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Achim Schweikard
- Institut für Robotik und Kognitive Systeme, Universität zu Lübeck, Lübeck, Germany
| | - Denise Olbrich
- Universität zu Lübeck, Zentrum für Klinische Studien, Lübeck, Germany
| | - Inke R König
- Institut für Medizinische Biometrie und Statistik, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Frank-Andre Siebert
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus 50, 24105, Kiel, Germany
| | - Reinhard Vonthein
- Institut für Medizinische Biometrie und Statistik, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Jürgen Dunst
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus 50, 24105, Kiel, Germany
| | - Hendrik Bonnemeier
- Klinik für Innere Medizin III, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|