1
|
Bahl A, Pandey S, Rakshit R, Kant S, Tripathi D. Infection-induced trained immunity: a twist in paradigm of innate host defense and generation of immunological memory. Infect Immun 2025; 93:e0047224. [PMID: 39655962 DOI: 10.1128/iai.00472-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
In contrast to adaptive immunity, which relies on memory T and B cells for long-term pathogen-specific responses, trained immunity involves the enhancement of innate immune responses through cellular reprogramming. Experimental evidence from animal models and human studies supports the concept of trained immunity and its potential therapeutic applications in the development of personalized medicine. However, there remains a huge gap in understanding the mechanisms, identifying specific microbial triggers responsible for the induction of trained immunity. This underscores the importance of investigating the potential role of trained immunity in redefining host defense and highlights future research directions. This minireview will provide a comprehensive summary of the new paradigm of trained immunity or innate memory pathways. It will shed light on infection-induced pathways through non-specific stimulation within macrophages and natural killer cells, which will be further elaborated in multiple disease perspectives caused by infectious agents such as bacteria, fungi, and viruses. The article further elaborates on the biochemical and cellular basis of trained immunity and its impact on disease status during recurrent exposures. The review concludes with a perspective segment discussing potential therapeutic benefits, limitations, and future challenges in this area of study. The review also sheds light upon potential risks involved in the induction of trained immunity.
Collapse
Affiliation(s)
- Aayush Bahl
- Microbial Pathogenesis and Microbiome Lab, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Saurabh Pandey
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, Delhi, India
| | - Roopshali Rakshit
- Microbial Pathogenesis and Microbiome Lab, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Sashi Kant
- Bacterial Pathogenesis, Boehringer Ingelheim Animal Health USA Inc, Ames, Iowa, USA
| | - Deeksha Tripathi
- Microbial Pathogenesis and Microbiome Lab, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
2
|
Nakayama Y, Masuda Y, Shimizu R, Konishi M. Neudesin, a secretory protein, attenuates activation of lipopolysaccharide-stimulated macrophages by suppressing the Jak/Stat1/iNOS pathway. Life Sci 2024; 358:123185. [PMID: 39490522 DOI: 10.1016/j.lfs.2024.123185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/06/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
AIMS Neudesin, a heme-binding protein previously identified for its neurotrophic activity, has been implicated in various physiological and pathological processes, including immune regulation. However, its role in inflammatory macrophages remains unclear. Herein, we investigated the function of neudesin in the regulation of inflammatory macrophages. MAIN METHODS In vitro experiments were performed in bone marrow-derived macrophages (BMDMs). In vivo experiments were conducted on neudesin knockout mice with a murine endotoxic shock model. KEY FINDINGS We observed that neudesin deficiency led to elevated expression of Nos2/iNOS and increased nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated BMDMs. Further, we found that neudesin, via the ERK/MAPK signaling pathway, promotes the proteasome-mediated degradation of Stat1, resulting in suppression of NO production. Furthermore, neudesin-deficient mice exhibited higher mortality rates following LPS administration, accompanied by increased Nos2/iNOS expression and nitrated proteins in the heart, compared to that in wildtype mice. Treatment with an iNOS inhibitor drastically improved the survival rate of neudesin-deficient mice, highlighting the significance of neudesin-mediated iNOS signaling in modulating immune responses and preventing excessive inflammation. SIGNIFICANCE Our findings suggest that neudesin acts as an anti-inflammatory cytokine, suppressing NO production in inflammatory macrophages, underscoring its potential as a therapeutic target for immune-related disorders.
Collapse
Affiliation(s)
- Yoshiaki Nakayama
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan.
| | - Yuki Masuda
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan.
| | - Ryohei Shimizu
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan; Department of Molecular Pharmaceutics, Hoshi University, Tokyo, Japan.
| | - Morichika Konishi
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan.
| |
Collapse
|
3
|
89Zr anti-CD44 immuno-PET monitors CD44 expression on splenic myeloid cells and HT29 colon cancer cells. Sci Rep 2021; 11:3876. [PMID: 33594192 PMCID: PMC7887231 DOI: 10.1038/s41598-021-83496-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/02/2021] [Indexed: 12/18/2022] Open
Abstract
CD44 is a cell-surface glycoprotein involved in cell–cell interaction, adhesion, and migration. CD44 is found on colon cancer cells and on immune cells. Previous studies of 89Zr PET imaging of CD44 have relied on an anti-human antibody (Ab), which can influence biodistribution in murine models. In this study, we used an Ab that cross-reacts with both human and mouse origin CD44 of all isoforms to unveil the type of leukocyte responsible for high splenic anti-CD44 uptake and investigate how its regulation can influence tumor immuno-PET. The Ab was site-specifically labeled with 89Zr-deferoxamine on cysteine residues. 89Zr-anti-CD44 demonstrated high-specific binding to HT29 human colon cancer cells and monocytic cells that showed CD44 expression. When 89Zr-anti-CD44 was administered to Balb/C nude mice, there was remarkably high splenic uptake but low SNU-C5 tumor uptake (1.2 ± 0.7%ID/g). Among cells isolated from Balb/C mouse spleen, there was greater CD44 expression on CD11b positive myeloid cells than lymphocytes. In cultured monocytic and macrophage cells, LPS stimulation upregulated CD44 expression and increased 89Zr-anti-CD44 binding. Similarly, normal Balb/C mice that underwent lipopolysaccharide (LPS) stimulation showed a significant upregulation of CD44 expression on splenic myeloid cells. Furthermore, LPS treatment stimulated a 2.44-fold increase of 89Zr-anti-CD44 accumulation in the spleen, which was attributable to splenic myeloid cells. Finally, in Balb/C nude mice bearing HT29 tumors, we injected 89Zr-anti-CD44 with greater Ab doses to reduce binding to splenic cells. The results showed lower spleen uptake and improved tumor uptake (2.9 ± 1.3%ID/g) with a total of 300 μg of Ab dose, and further reduction of spleen uptake and greater tumor uptake (5.7 ± 0.0%ID/g) with 700 μg Ab dose. Thus, using an 89Zr labeled Ab that cross-reacts with both human and mouse CD44, we demonstrate that CD44 immuno-PET has the capacity to monitor CD44 regulation on splenic myeloid cells and may also be useful for imaging colon tumors.
Collapse
|
4
|
Hou J, Liu HY, Diao H, Yu H. The truncated human beta-defensin 118 can modulate lipopolysaccharide mediated inflammatory response in RAW264.7 macrophages. Peptides 2021; 136:170438. [PMID: 33181266 DOI: 10.1016/j.peptides.2020.170438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/29/2022]
Abstract
The family of human β-defensins consists of small cysteine-rich peptides, which are receiving significant attention due to their antimicrobial activity. The N-terminal cysteine motif of β-defensin is considered to contribute to its biological activity. Human β-defensin 118 (DEFB 118) is a particular anion β-defensin expressed predominantly in the male reproductive tract, but its physiological activity has not yet been revealed. In order to verify the potential role of the N-terminal domain of DEFB118 peptide in the regulation of infection, the truncated β-defensin core region of DEFB118 peptide was expressed with IMPACT-pTWIN1 system in Escherichia coli. Herein, the purified homogeneous DEFB118 peptide was identified by mass spectrometry and circular dichroism spectroscopy. The in vitro experiments revealed that DEFB118 peptide exhibited prominent LPS-binding potency (KD: 2.94 nM). Moreover, the DEFB118 core peptide significantly inhibited the mRNA level of LPS-induced inflammatory cytokines including IL-α, IL-1β, IL-6 and TNF-α in RAW264.7 cells, and correspondingly decreased secretion of IL-6 and TNF-α. We concluded that strong binding of DEFB118 to LPS might prevent LPS from binding to its receptor, and hence inhibited cytokines secretion. The results of this study may be a benefit to elucidate the immune protection of DEFB118 in the male reproductive tract.
Collapse
Affiliation(s)
- Jing Hou
- Department of Biology, Lishui University, Lishui City 323000, China
| | - Hai-Yan Liu
- Department of Biology, Lishui University, Lishui City 323000, China.
| | - Hua Diao
- NPFPC Key Laboratory of Contraceptives and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China
| | - Heguo Yu
- NPFPC Key Laboratory of Contraceptives and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China
| |
Collapse
|
5
|
Dagvadorj J, Mikulska-Ruminska K, Tumurkhuu G, Ratsimandresy RA, Carriere J, Andres AM, Marek-Iannucci S, Song Y, Chen S, Lane M, Dorfleutner A, Gottlieb RA, Stehlik C, Cassel S, Sutterwala FS, Bahar I, Crother TR, Arditi M. Recruitment of pro-IL-1α to mitochondrial cardiolipin, via shared LC3 binding domain, inhibits mitophagy and drives maximal NLRP3 activation. Proc Natl Acad Sci U S A 2021; 118:e2015632118. [PMID: 33361152 PMCID: PMC7817159 DOI: 10.1073/pnas.2015632118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The balance between NLRP3 inflammasome activation and mitophagy is essential for homeostasis and cellular health, but this relationship remains poorly understood. Here we found that interleukin-1α (IL-1α)-deficient macrophages have reduced caspase-1 activity and diminished IL-1β release, concurrent with reduced mitochondrial damage, suggesting a role for IL-1α in regulating this balance. LPS priming of macrophages induced pro-IL-1α translocation to mitochondria, where it directly interacted with mitochondrial cardiolipin (CL). Computational modeling revealed a likely CL binding motif in pro-IL-1α, similar to that found in LC3b. Thus, binding of pro-IL-1α to CL in activated macrophages may interrupt CL-LC3b-dependent mitophagy, leading to enhanced Nlrp3 inflammasome activation and more robust IL-1β production. Mutation of pro-IL-1α residues predicted to be involved in CL binding resulted in reduced pro-IL-1α-CL interaction, a reduction in NLRP3 inflammasome activity, and increased mitophagy. These data identify a function for pro-IL-1α in regulating mitophagy and the potency of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Jargalsaikhan Dagvadorj
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Karolina Mikulska-Ruminska
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213
- Institute of Physics, Faculty of Physics Astronomy and Informatics, Nicolaus Copernicus University in Toruń, 87-100 Torun, Poland
| | - Gantsetseg Tumurkhuu
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | | | - Jessica Carriere
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Allen M Andres
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Stefanie Marek-Iannucci
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Yang Song
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Shuang Chen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Pediatrics. David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Malcolm Lane
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Andrea Dorfleutner
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Roberta A Gottlieb
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Christian Stehlik
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Suzanne Cassel
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Fayyaz S Sutterwala
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213;
| | - Timothy R Crother
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048;
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Pediatrics. David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Moshe Arditi
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048;
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Pediatrics. David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| |
Collapse
|
6
|
Sin WX, Yeong JPS, Lim TJF, Su IH, Connolly JE, Chin KC. IRF-7 Mediates Type I IFN Responses in Endotoxin-Challenged Mice. Front Immunol 2020; 11:640. [PMID: 32373120 PMCID: PMC7176903 DOI: 10.3389/fimmu.2020.00640] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/20/2020] [Indexed: 01/23/2023] Open
Abstract
IRF-7 mediates robust production of type I IFN via MyD88 of the TLR9 pathway in plasmacytoid dendritic cells (pDCs). Previous in vitro studies using bone marrow-derived dendritic cells lacking either Irf7 or Irf3 have demonstrated that only IRF-3 is required for IFN-β production in the TLR4 pathway. Here, we show that IRF-7 is essential for both type I IFN induction and IL-1β responses via TLR4 in mice. Mice lacking Irf7 were defective in production of both IFN-β and IL-1β, an IFN-β-induced pro-inflammatory cytokine, after LPS challenge. IFN-β production in response to LPS was impaired in IRF-7-deficient macrophages, but not dendritic cells. Unlike pDCs, IRF-7 is activated by the TRIF-, but not MyD88-, dependent pathway via TBK-1 in macrophages after LPS stimulation. Like pDCs, resting macrophages constitutively expressed IRF-7 protein. This basal IRF-7 protein was completely abolished in either Ifnar1 -/- or Stat1 -/- macrophages, which corresponded with the loss of LPS-stimulated IFN-β induction in these macrophages. These findings demonstrate that macrophage IRF-7 is critical for LPS-induced type I IFN responses, which in turn facilitate IL-1β production in mice.
Collapse
Affiliation(s)
- Wei-Xiang Sin
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Joe Poh-Sheng Yeong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,Division of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Thomas Jun Feng Lim
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore, Singapore
| | - I-Hsin Su
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore, Singapore
| | - John E Connolly
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| | - Keh-Chuang Chin
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Physiology, NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Frings VG, Müller D, Storz G, Rossi A, Sennefelder H, Adam C, Goebeler M, Groeber-Becker FK, Schmidt M. Improved metal allergen reactivity of artificial skin models by integration of Toll-like receptor 4-positive cells. Contact Dermatitis 2019; 81:254-261. [PMID: 31198997 DOI: 10.1111/cod.13336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/14/2019] [Accepted: 06/12/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Reconstructed human epidermis (RhE) is widely used to replace animal models in order to assess the proinflammatory and allergenic effects of chemicals. Unfortunately, RhE lacks proinflammatory responsiveness for metal haptens, which are the most prevalent human contact allergens, raising concerns about its reliability for predicting skin allergens. OBJECTIVES To investigate whether this limitation of RhE might be attributable to a lack of functional expression of Toll-like receptor 4 (TLR4), which governs proinflammatory sensitivity to nickel and cobalt. MATERIALS AND METHODS RhE, dendritic cell (DC)-containing RhE and full-thickness skin equivalent (FTSE) were compared regarding their proinflammatory responsiveness to metal allergens. RESULTS The incorporation of dermal fibroblasts was sufficient to confer metal sensitivity to RhE. Unlike keratinocytes, normal human fibroblasts expressed high levels of TLR4 mRNA and induced interleukin-8 expression upon stimulation with nickel or cobalt. Consistently, dermal isolates from FTSE expressed considerable amounts of TLR4 mRNA, whereas RhE or epidermis isolated from FTSE, normal human epidermis or inflamed human epidermis failed to express TLR4. Similarly, co-culture with TLR4-positive DCs bestowed RhE with proinflammatory responsiveness to metals. CONCLUSION Our data suggest that FTSE or DC/RhE co-culture models can circumvent the shortcomings of RhE assays, and combine the benefits of complex and monoculture-based test systems in a single assay.
Collapse
Affiliation(s)
- Verena G Frings
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Damaris Müller
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Gabriel Storz
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, Würzburg, Germany
| | - Angela Rossi
- Translational Center for Regenerative Therapies, Fraunhofer Institute for Silicate Research, Würzburg, Germany
| | - Helga Sennefelder
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Christian Adam
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Matthias Goebeler
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Florian K Groeber-Becker
- Translational Center for Regenerative Therapies, Fraunhofer Institute for Silicate Research, Würzburg, Germany.,Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, Würzburg, Germany
| | - Marc Schmidt
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Karaś MA, Turska-Szewczuk A, Janczarek M, Szuster-Ciesielska A. Glycoconjugates of Gram-negative bacteria and parasitic protozoa - are they similar in orchestrating the innate immune response? Innate Immun 2019; 25:73-96. [PMID: 30782045 PMCID: PMC6830889 DOI: 10.1177/1753425918821168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023] Open
Abstract
Innate immunity is an evolutionarily ancient form of host defense that serves to limit infection. The invading microorganisms are detected by the innate immune system through germline-encoded PRRs. Different classes of PRRs, including TLRs and cytoplasmic receptors, recognize distinct microbial components known collectively as PAMPs. Ligation of PAMPs with receptors triggers intracellular signaling cascades, activating defense mechanisms. Despite the fact that Gram-negative bacteria and parasitic protozoa are phylogenetically distant organisms, they express glycoconjugates, namely bacterial LPS and protozoan GPI-anchored glycolipids, which share many structural and functional similarities. By activating/deactivating MAPK signaling and NF-κB, these ligands trigger general pro-/anti-inflammatory responses depending on the related patterns. They also use conservative strategies to subvert cell-autonomous defense systems of specialized immune cells. Signals triggered by Gram-negative bacteria and parasitic protozoa can interfere with host homeostasis and, depending on the type of microorganism, lead to hypersensitivity or silencing of the immune response. Activation of professional immune cells, through a ligand which triggers the opposite effect (antagonist versus agonist) appears to be a promising solution to restoring the immune balance.
Collapse
Affiliation(s)
- Magdalena A Karaś
- Department of Genetics and Microbiology, Maria Curie–Skłodowska
University, Lublin, Poland
| | - Anna Turska-Szewczuk
- Department of Genetics and Microbiology, Maria Curie–Skłodowska
University, Lublin, Poland
| | - Monika Janczarek
- Department of Genetics and Microbiology, Maria Curie–Skłodowska
University, Lublin, Poland
| | | |
Collapse
|
9
|
Youssef M, Ibrahim A, Akashi K, Hossain MS. PUFA-Plasmalogens Attenuate the LPS-Induced Nitric Oxide Production by Inhibiting the NF-kB, p38 MAPK and JNK Pathways in Microglial Cells. Neuroscience 2018; 397:18-30. [PMID: 30496826 DOI: 10.1016/j.neuroscience.2018.11.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 12/29/2022]
Abstract
The special lipids plasmalogens (Pls) were reported to be reduced in the neurodegenerative brains such as Alzheimer's disease where a marked increase of glial activation is often observed. We previously found that a reduction of brain Pls can enhance the glial activation in murine brains. However, the detailed role of Pls in the prevention of glial activation was mostly elusive. Here we report that the Pls, extracted from scallop (sPls), significantly inhibited the inducible form of nitric oxide synthase (NOS2) and the production of NO in LPS (lipopolysaccharide)-activated microglial cells. We also observed that the polyunsaturated docosahexaenoic acid (DHA)-containing Pls but not the monounsaturated oleic acid-containing Pls attenuated the NOS2 induction. In addition, sPls blocked the activation of nuclear factor (NF)-kB and mitogen-activated protein kinases (MAPKs) e.g., JNK and p38 MAPK, thereby attenuated the nuclear translocation of NF-kB subunit, p65, and activator protein-1 (AP-1) proteins (c-Fos and c-Jun). Interestingly, LPS treatments suppressed the expression of Pls synthesizing enzymes, glycerone phosphate O-acyltransferase (GNPAT) and alkylglycerone phosphate synthase (AGPS) in the microglial cells by the p38MAPK and JNK pathways. Furthermore, the knockdown of GNPAT and AGPS genes by sh-RNAs accelerated the LPS-induced activation of p38MAPK and JNK, resulting in the increased production of NO. These findings suggested that a decrease of brain Pls can activate the NF-kB, p38MAPK and JNK pathways to induce a prolonged microglial activation which may downplay the neuroprotective events in the brains of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mohammed Youssef
- Department of Neuroinflammation and Brain Fatigue Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582 Japan; Department of Animal Physiology, Veterinary Medicine Faculty, South Valley University, Qena 83523 Egypt
| | - Ahmed Ibrahim
- Department of Poultry Diseases, Veterinary Medicine Faculty, South Valley University, Qena 83523 Egypt
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Md Shamim Hossain
- Department of Neuroinflammation and Brain Fatigue Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582 Japan.
| |
Collapse
|
10
|
Protective Effect of Dexamethasone on Lipopolysaccharide-Induced Inhibition of Contractile Function of Isolated Lymphatic Vessels and Nodes. Bull Exp Biol Med 2018; 165:602-605. [PMID: 30225707 DOI: 10.1007/s10517-018-4222-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Indexed: 10/28/2022]
Abstract
LPS has an inhibitory effect on contractile activity of bovine mesenteric lymphatic vessels and nodes and causes a pronounced decrease in the tone and phase contractions. The selective inhibitor of inducible NO synthase, 1400W, and cyclooxygenase-2 selective inhibitor, dynastat, significantly attenuated the inhibitory effect of LPS. Dexamethasone interferes with the inhibitory effect of LPS on bovine lymphatic vessels and nodes. It was concluded that LPS stimulates expression of inducible NO synthase and cyclooxygenase-2 in endothelial and smooth muscle cells of lymphatic vessels and nodes. Dexamethasone has a pronounced protective effect on the contractile function of lymphatic vessels and nodes affected by LPS and suppresses the expression of inducible NO synthase and cyclooxygenase-2.
Collapse
|
11
|
Zhao H, Liu A, Shen L, Xu C, Zhu Z, Yang J, Han X, Bao F, Yang W. Isoforskolin downregulates proinflammatory responses induced by Borrelia burgdorferi basic membrane protein A. Exp Ther Med 2017; 14:5974-5980. [PMID: 29285146 PMCID: PMC5740510 DOI: 10.3892/etm.2017.5300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 08/10/2017] [Indexed: 01/13/2023] Open
Abstract
The plant Coleus forskohlii is distributed primarily in India, Thailand, China, Egypt and Brazil and has a history of use in the treatment of multiple diseases. Isoforskolin (ISOF) is the principle active component of C. forskohlii native to China and has previously been studied for its biological effects. The aim of the present study was to evaluate the effect of ISOF on the proinflammatory responses induced by recombinant Borrelia burgdorferi basic membrane protein A (rBmpA). In in vitro experiments, the proinflammatory effects of rBmpA and the anti-inflammatory function of ISOF were evaluated in murine macrophages, human macrophages and dendritic cells by detecting the transcription and expression of tumor necrosis factor (TNF)-α and interleukin (IL)-6. In in vivo experiments, mean arthritis index and X-ray and histopathological examinations were used to verify the role of ISOF in experimental Lyme arthritis in mice. The results indicated that rBmpA, which induced the transcription and expression of TNF-α and IL-6, activated proinflammatory responses in murine macrophages, human macrophages and dendritic cells. In turn, ISOF downregulated the transcription and expression of TNF-α and IL-6 induced by rBmpA. Additionally, the in vivo experiments demonstrated that ISOF could also inhibit the symptoms of experimental Lyme arthritis. These results suggest that ISOF may have a potential application as an anti-inflammatory agent for the treatment of Lyme arthritis.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Aihua Liu
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China.,Institute for Tropical Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Longqiang Shen
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Cuiping Xu
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Ziwei Zhu
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jiaru Yang
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xinling Han
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Fukai Bao
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China.,Institute for Tropical Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Weimin Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
12
|
Sharma R, Ghasparian A, Robinson JA, McCullough KC. Dendritic Cell Sensing of Hydrophobic Di- and Triacylated Lipopeptides Self-Assembled within Synthetic Virus-like Particles. THE JOURNAL OF IMMUNOLOGY 2017. [PMID: 28630093 DOI: 10.4049/jimmunol.1600521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dendritic cells (DCs) play critical roles in developing immune defenses. One important aspect is interaction with pathogen-associated molecular patterns (PAMPs)/danger-associated molecular patterns, including di- and triacylated lipopeptides. Isolated or synthetic lipopeptides are potent vaccine adjuvants, interacting with cell surface TLR2 heterodimers. In contrast, deep embedment within bacteria cell walls would impair lipopeptide interaction with cell surface TLR2, requiring degradation for PAMP recognition. Accordingly, DC processing in the absence of surface TLR2 ligation was defined using synthetic virus-like particles (SVLPs) carrying hydrophobic TLR2 PAMPs within di- and triacylated lipopeptide cores (P2Cys-SVLPs and P3Cys-SVLPs) compared with SVLPs lacking immunomodulatory lipopeptides. DCs rapidly and efficiently internalized SVLPs, which was dominated by slow endocytic processing via macropinocytosis, although some caveolar endocytosis was implicated. This delivered SVLPs primarily into macropinosomes often interacting with EEA-1+ early endosomes. Although endoplasmic reticulum association was occasionally noted, association with recycling/sorting structures was not observed. Involvement of LysoTracker+ structures slowly increased with time, with SVLPs present in such structures ultimately dominating. Only SVLPs carrying di- and triacylated lipopeptide cores induced DC activation and maturation independently of surface TLR2 ligation. Intracellular recognition of SVLP TLR2 ligands was confirmed by observing SVLPs' association with internal TLR2, which had similar kinetics to SVLP association with LysoTracker. This related to inflammatory cytokine induction by SVLP+ DCs, with adaptive immune response activation ex vivo/in vivo. Importantly, particular DCs, not monocytes, recognized intracellular exposure of the TLR2 PAMPs carried by di- and triacylated SVLP cores, which indicates subset-distinct recognition of functional internal TLR2 ligands. Thus, vaccines carrying hydrophobic TLR2 ligands would interact with particular DCs for efficient induction of specific immunity in the absence of additional adjuvant.
Collapse
Affiliation(s)
- Rajni Sharma
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland
| | - Arin Ghasparian
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland; and.,Virometix AG, 8952 Zurich, Switzerland
| | - John A Robinson
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland; and
| | | |
Collapse
|
13
|
Klaska IP, Muckersie E, Martin-Granados C, Christofi M, Forrester JV. Lipopolysaccharide-primed heterotolerant dendritic cells suppress experimental autoimmune uveoretinitis by multiple mechanisms. Immunology 2016; 150:364-377. [PMID: 27859049 PMCID: PMC5290303 DOI: 10.1111/imm.12691] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/01/2016] [Accepted: 11/08/2016] [Indexed: 12/14/2022] Open
Abstract
Exposure of bone‐marrow‐derived dendritic cells (BMDC) to high‐dose ultrapure lipopolysaccharide for 24 hr (LPS‐primed BMDC) enhances their potency in preventing inter‐photoreceptor retinoid binding protein: complete Freund's adjuvant‐induced experimental autoimmune uveoretinitis (EAU). LPS‐primed BMDC are refractory to further exposure to LPS (= endotoxin tolerance), evidenced here by decreased phosphorylation of TANK‐binding kinase 1, interferon regulatory factor 3 (IRF3), c‐Jun N‐terminal kinase and p38 mitogen‐activated protein kinase as well as impaired nuclear translocation of nuclear factor κB (NF‐κB) and IRF3, resulting in reduced tumour necrosis factor‐α (TNF‐α), interleukin‐6 (IL‐6), IL‐12 and interferon‐β secretion. LPS‐primed BMDC also show reduced surface expression of Toll‐like receptor‐4 and up‐regulation of CD14, followed by increased apoptosis, mediated via nuclear factor of activated T cells (NFATc)‐2 signalling. LPS‐primed BMDC are not only homotolerant to LPS but are heterotolerant to alternative pathogen‐associated molecular pattern ligands, such as mycobacterial protein extract (Mycobacterium tuberculosis). Specifically, while M. tuberculosis protein extract induces secretion of IL‐1β, TNF‐α and IL‐6 in unprimed BMDC, LPS‐primed BMDC fail to secrete these cytokines in response to M. tuberculosis. We propose that LPS priming of BMDC, by exposure to high doses of LPS for 24 hr, stabilizes their tolerogenicity rather than promoting immunogenicity, and does so by multiple mechanisms, namely (i) generation of tolerogenic apoptotic BMDC through CD14:NFATc signalling; (ii) reduction of NF‐κB and IRF3 signalling and downstream pro‐inflammatory cytokine production; and (iii) blockade of inflammasome activation.
Collapse
Affiliation(s)
- Izabela P Klaska
- Institute of Ophthalmology, University College London, London, UK
| | | | | | - Maria Christofi
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - John V Forrester
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.,Lions Eye Institute, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
14
|
Lipopolysaccharide Induces Alveolar Macrophage Necrosis via CD14 and the P2X7 Receptor Leading to Interleukin-1α Release. Immunity 2015; 42:640-53. [PMID: 25862090 DOI: 10.1016/j.immuni.2015.03.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/13/2015] [Accepted: 03/18/2015] [Indexed: 12/13/2022]
Abstract
Acute lung injury (ALI) remains a serious health issue with little improvement in our understanding of the pathophysiology and therapeutic approaches. We investigated the mechanism that lipopolysaccharide (LPS) induces early neutrophil recruitment to lungs and increases pulmonary vascular permeability during ALI. Intratracheal LPS induced release of pro-interleukin-1α (IL-1α) from necrotic alveolar macrophages (AM), which activated endothelial cells (EC) to induce vascular leakage via loss of vascular endothelial (VE)-cadherin. LPS triggered the AM purinergic receptor P2X7(R) to induce Ca(2+) influx and ATP depletion, which led to necrosis. P2X7R deficiency significantly reduced necrotic death of AM and release of pro-IL-1α into the lung. CD14 was required for LPS binding to P2X7R, as CD14 neutralization significantly diminished LPS induced necrotic death of AM and pro-IL-1α release. These results demonstrate a key role for pro-IL-1α from necrotic alveolar macrophages in LPS-mediated ALI, as a critical initiator of increased vascular permeability and early neutrophil infiltration.
Collapse
|
15
|
Khan N, Vidyarthi A, Pahari S, Agrewala JN. Distinct Strategies Employed by Dendritic Cells and Macrophages in Restricting Mycobacterium tuberculosis Infection: Different Philosophies but Same Desire. Int Rev Immunol 2015; 35:386-398. [PMID: 25793750 DOI: 10.3109/08830185.2015.1015718] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dendritic cells (DCs) and macrophages (Mϕs) are professional antigen-presenting cells (APCs) that can efficiently phagocytose Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis (TB). It is quite interesting to mention here that DCs and Mϕs use distinct strategies to combat and eliminate Mtb. Similarly, Mtb employs different mechanisms to counteract the action of DCs and Mϕs. Mϕs are evolved with specialized, innate, defensive machinery to restrict growth of Mtb at the initial phase of infection. However, DCs are more endowed toward initiating adaptive immunity by activating naïve T cells. During encounter with Mtb, DCs and Mϕs deliver discrete functions via triggering through different pattern recognition receptors (PRRs) expressed by these APCs. Mtb-infected DCs and Mϕs show differential expression of genes encoding cytokines, chemokines, costimulatory molecules, and adhesion molecules. Interestingly, Mtb impairs the immune defensive machinery by exploiting various PRRs. Remarkably, selective signaling through PRRs by Mtb abrogates the bactericidal activity of Mϕs, but subverts differentiation of monocytes to DCs. In this article, we highlight the role of PRRs in inducing distinct immune response by DCs and Mϕs against Mtb. Concurrently, we also discuss smart strategies exploited by Mtb to impair the function of host DCs and Mϕs.
Collapse
Affiliation(s)
- Nargis Khan
- a CSIR-Institute of Microbial Technology , Chandigarh , India
| | | | - Susanta Pahari
- a CSIR-Institute of Microbial Technology , Chandigarh , India
| | | |
Collapse
|
16
|
Jin X, Xu Q, Champion K, Kruth HS. Endotoxin contamination of apolipoprotein A-I: effect on macrophage proliferation--a cautionary tale. Atherosclerosis 2015; 240:121-4. [PMID: 25778625 DOI: 10.1016/j.atherosclerosis.2015.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/25/2015] [Accepted: 03/01/2015] [Indexed: 10/23/2022]
Abstract
This technical report addresses the problem of endotoxin contamination of apolipoprotein reagents. Using a bromodeoxyuridine incorporation cell proliferation assay, we observed that human plasma ApoA-I as low as 1 μg/ml resulted in a >90% inhibition in macrophage proliferation. However, not all ApoA-I from different sources showed this effect. We considered the possibility that endotoxin contamination of the apolipoproteins contributed to the differential inhibition of macrophage cell proliferation. Endotoxin alone very potently inhibited macrophage proliferation (0.1 ng/ml inhibited macrophage proliferation>90%). Measurement of endotoxin levels in the apolipoprotein products, including an analysis of free versus total endotoxin, the latter which included endotoxin that was masked due to binding to protein, suggested that free endotoxin mediated inhibition of macrophage proliferation. Despite the use of an advanced endotoxin removal procedure and agents commonly used to inhibit endotoxin action, the potency of endotoxin precluded successful elimination of endotoxin effect. Our findings show that endotoxin contamination can significantly influence apparent apolipoprotein-mediated cell effects (or effects of any other biological products), especially when these products are tested on highly endotoxin-sensitive cells, such as macrophages.
Collapse
Affiliation(s)
- Xueting Jin
- Section of Experimental Atherosclerosis, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qing Xu
- Section of Experimental Atherosclerosis, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Howard S Kruth
- Section of Experimental Atherosclerosis, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
Tomić S, Đokić J, Vasilijić S, Ogrinc N, Rudolf R, Pelicon P, Vučević D, Milosavljević P, Janković S, Anžel I, Rajković J, Rupnik MS, Friedrich B, Čolić M. Size-dependent effects of gold nanoparticles uptake on maturation and antitumor functions of human dendritic cells in vitro. PLoS One 2014; 9:e96584. [PMID: 24802102 PMCID: PMC4011871 DOI: 10.1371/journal.pone.0096584] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/08/2014] [Indexed: 12/23/2022] Open
Abstract
Gold nanoparticles (GNPs) are claimed as outstanding biomedical tools for cancer diagnostics and photo-thermal therapy, but without enough evidence on their potentially adverse immunological effects. Using a model of human dendritic cells (DCs), we showed that 10 nm- and 50 nm-sized GNPs (GNP10 and GNP50, respectively) were internalized predominantly via dynamin-dependent mechanisms, and they both impaired LPS-induced maturation and allostimulatory capacity of DCs, although the effect of GNP10 was more prominent. However, GNP10 inhibited LPS-induced production of IL-12p70 by DCs, and potentiated their Th2 polarization capacity, while GNP50 promoted Th17 polarization. Such effects of GNP10 correlated with a stronger inhibition of LPS-induced changes in Ca2+ oscillations, their higher number per DC, and more frequent extra-endosomal localization, as judged by live-cell imaging, proton, and electron microscopy, respectively. Even when released from heat-killed necrotic HEp-2 cells, GNP10 inhibited the necrotic tumor cell-induced maturation and functions of DCs, potentiated their Th2/Th17 polarization capacity, and thus, impaired the DCs' capacity to induce T cell-mediated anti-tumor cytotoxicity in vitro. Therefore, GNP10 could potentially induce more adverse DC-mediated immunological effects, compared to GNP50.
Collapse
Affiliation(s)
- Sergej Tomić
- Medical Faculty of the Military Medical Academy, University of Defense, Belgrade, Serbia
- Institute for Medical Research of the Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Jelena Đokić
- Medical Faculty of the Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Saša Vasilijić
- Medical Faculty of the Military Medical Academy, University of Defense, Belgrade, Serbia
- Institute for Medical Research of the Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Nina Ogrinc
- Microanalytical Center, Jožef Stefan Institute, Ljubljana, Slovenia
- LOTRIČ Metrology, Selca, Slovenia
| | - Rebeka Rudolf
- Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
- Zlatarna Celje d.d., Celje, Slovenia
| | - Primož Pelicon
- Microanalytical Center, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Dragana Vučević
- Medical Faculty of the Military Medical Academy, University of Defense, Belgrade, Serbia
- Institute for Medical Research of the Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Petar Milosavljević
- Institute for Medical Research of the Military Medical Academy, University of Defense, Belgrade, Serbia
| | | | - Ivan Anžel
- Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
| | | | | | - Bernd Friedrich
- Department of Process Metallurgy and Metal Recycling, Rheinisch-Westfälische Technische Hochschule, Aachen University, Aachen, Germany
| | - Miodrag Čolić
- Medical Faculty of the Military Medical Academy, University of Defense, Belgrade, Serbia
- Medical Faculty, University of Niš, Niš, Serbia
- * E-mail:
| |
Collapse
|
18
|
Ling GS, Bennett J, Woollard KJ, Szajna M, Fossati-Jimack L, Taylor PR, Scott D, Franzoso G, Cook HT, Botto M. Integrin CD11b positively regulates TLR4-induced signalling pathways in dendritic cells but not in macrophages. Nat Commun 2014; 5:3039. [PMID: 24423728 PMCID: PMC3905776 DOI: 10.1038/ncomms4039] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 12/02/2013] [Indexed: 12/24/2022] Open
Abstract
Tuned and distinct responses of macrophages and dendritic cells to Toll-like receptor 4 (TLR4) activation induced by lipopolysaccharide (LPS) underpin the balance between innate and adaptive immunity. However, the molecule(s) that confer these cell-type-specific LPS-induced effects remain poorly understood. Here we report that the integrin α(M) (CD11b) positively regulates LPS-induced signalling pathways selectively in myeloid dendritic cells but not in macrophages. In dendritic cells, which express lower levels of CD14 and TLR4 than macrophages, CD11b promotes MyD88-dependent and MyD88-independent signalling pathways. In particular, in dendritic cells CD11b facilitates LPS-induced TLR4 endocytosis and is required for the subsequent signalling in the endosomes. Consistent with this, CD11b deficiency dampens dendritic cell-mediated TLR4-triggered responses in vivo leading to impaired T-cell activation. Thus, by modulating the trafficking and signalling functions of TLR4 in a cell-type-specific manner CD11b fine tunes the balance between adaptive and innate immune responses initiated by LPS.
Collapse
Affiliation(s)
- Guang Sheng Ling
- Centre for Complement and Inflammation Research, Department of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Jason Bennett
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Kevin J. Woollard
- Renal and Vascular Inflammation Section, Division of Immunology and Inflammation, Department of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Marta Szajna
- Centre for Complement and Inflammation Research, Department of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Liliane Fossati-Jimack
- Centre for Complement and Inflammation Research, Department of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Philip R. Taylor
- Cardiff Institute of Infection and Immunity, Cardiff University School of Medicine, Tenovus Building, Heath Park, Cardiff CF14 4XN, UK
| | - Diane Scott
- Centre for Complement and Inflammation Research, Department of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Guido Franzoso
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - H. Terence Cook
- Centre for Complement and Inflammation Research, Department of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Marina Botto
- Centre for Complement and Inflammation Research, Department of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
19
|
Ioannou K, Derhovanessian E, Tsakiri E, Samara P, Kalbacher H, Voelter W, Trougakos IP, Pawelec G, Tsitsilonis OE. Prothymosin α and a prothymosin α-derived peptide enhance T(H)1-type immune responses against defined HER-2/neu epitopes. BMC Immunol 2013; 14:43. [PMID: 24053720 PMCID: PMC3852324 DOI: 10.1186/1471-2172-14-43] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/17/2013] [Indexed: 12/31/2022] Open
Abstract
Background Active cancer immunotherapies are beginning to yield clinical benefit, especially those using peptide-pulsed dendritic cells (DCs). Different adjuvants, including Toll-like receptor (TLR) agonists, commonly co-administered to cancer patients as part of a DC-based vaccine, are being widely tested in the clinical setting. However, endogenous DCs in tumor-bearing individuals are often dysfunctional, suggesting that ex vivo educated DCs might be superior inducers of anti-tumor immune responses. We have previously shown that prothymosin alpha (proTα) and its immunoreactive decapeptide proTα(100–109) induce the maturation of human DCs in vitro. The aim of this study was to investigate whether proTα- or proTα(100–109)-matured DCs are functionally competent and to provide preliminary evidence for the mode of action of these agents. Results Monocyte-derived DCs matured in vitro with proTα or proTα(100–109) express co-stimulatory molecules and secrete pro-inflammatory cytokines. ProTα- and proTα(100–109)-matured DCs pulsed with HER-2/neu peptides induce TH1-type immune responses, prime autologous naïve CD8-positive (+) T cells to lyse targets expressing the HER-2/neu epitopes and to express a polyfunctional profile, and stimulate CD4+ T cell proliferation in an HER-2/neu peptide-dependent manner. DC maturation induced by proTα and proTα(100–109) is likely mediated via TLR-4, as shown by assessing TLR-4 surface expression and the levels of the intracellular adaptor molecules TIRAP, MyD88 and TRIF. Conclusions Our results suggest that proTα and proTα(100–109) induce both the maturation and the T cell stimulatory capacity of DCs. Although further studies are needed, evidence for a possible proTα and proTα(100–109) interaction with TLR-4 is provided. The initial hypothesis that proTα and the proTα-derived immunoactive decapeptide act as “alarmins”, provides a rationale for their eventual use as adjuvants in DC-based anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Kyriaki Ioannou
- Department of Animal and Human Physiology, Faculty of Biology, University of Athens, Athens 15784, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Brüne B, Dehne N, Grossmann N, Jung M, Namgaladze D, Schmid T, von Knethen A, Weigert A. Redox control of inflammation in macrophages. Antioxid Redox Signal 2013; 19:595-637. [PMID: 23311665 PMCID: PMC3718318 DOI: 10.1089/ars.2012.4785] [Citation(s) in RCA: 286] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 12/14/2012] [Accepted: 01/11/2013] [Indexed: 12/13/2022]
Abstract
Macrophages are present throughout the human body, constitute important immune effector cells, and have variable roles in a great number of pathological, but also physiological, settings. It is apparent that macrophages need to adjust their activation profile toward a steadily changing environment that requires altering their phenotype, a process known as macrophage polarization. Formation of reactive oxygen species (ROS), derived from NADPH-oxidases, mitochondria, or NO-producing enzymes, are not necessarily toxic, but rather compose a network signaling system, known as redox regulation. Formation of redox signals in classically versus alternatively activated macrophages, their action and interaction at the level of key targets, and the resulting physiology still are insufficiently understood. We review the identity, source, and biological activities of ROS produced during macrophage activation, and discuss how they shape the key transcriptional responses evoked by hypoxia-inducible transcription factors, nuclear-erythroid 2-p45-related factor 2 (Nrf2), and peroxisome proliferator-activated receptor-γ. We summarize the mechanisms how redox signals add to the process of macrophage polarization and reprogramming, how this is controlled by the interaction of macrophages with their environment, and addresses the outcome of the polarization process in health and disease. Future studies need to tackle the option whether we can use the knowledge of redox biology in macrophages to shape their mediator profile in pathophysiology, to accelerate healing in injured tissue, to fight the invading pathogens, or to eliminate settings of altered self in tumors.
Collapse
Affiliation(s)
- Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I-Pathobiochemistry, Goethe-University Frankfurt, Frankfurt, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Lin CM, Jeng CR, Liu JP, Lin EC, Chang CC, Huang YL, Tsai YC, Chia MY, Wan CH, Pang VF. Immune gene expression profiles in swine inguinal lymph nodes with different viral loads of porcine circovirus type 2. Vet Microbiol 2013; 162:519-529. [DOI: 10.1016/j.vetmic.2012.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 11/04/2012] [Accepted: 11/07/2012] [Indexed: 01/19/2023]
|
22
|
Human beta-defensin DEFB126 is capable of inhibiting LPS-mediated inflammation. Appl Microbiol Biotechnol 2012; 97:3395-408. [PMID: 23229569 DOI: 10.1007/s00253-012-4588-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/08/2012] [Accepted: 11/09/2012] [Indexed: 12/11/2022]
Abstract
β-Defensins are cationic, antimicrobial peptides that participate in antimicrobial defense as well as the regulation of innate and adaptive immunity. Human β-defensin 126 (DEFB126) is a multifunctional glycoprotein consisting of a conserved β-defensin core and a unique long glycosylated peptide tail. The long glycosylated peptide tail has been proven to be critical for efficient transport of sperm in the female reproductive tract, preventing their immune recognition, and efficient delivery of capacitated sperm to the site of fertilization. However, the functions of the conserved β-defensin core remain to be fully elucidated. In the present work, the conserved β-defensin core of the DEFB126 was expressed to explore its potential antimicrobial and anti-inflammatory activities. The DEFB126 core peptide exhibited both high potency for binding and neutralizing lipopolysaccharide (LPS) in vitro, and potent anti-inflammatory ability by down-regulating the mRNA expression of pro-inflammatory cytokines including IL-α, IL-1β, IL-6 and TNF-α in a murine macrophage cell line RAW264.7. The treatment with the DEFB126 core peptide also led to correspondingly decreased secretion of IL-6 and TNF-α. The blockade of LPS-induced p42/44 and p38 MAPK signal pathway might contribute to the anti-inflammation effects of the DEFB126 core peptide. Furthermore, fluorescence-labeled DEFB126 could enter RAW 264.7 cells and reduce the production of LPS-stimulated inflammatory factors, implying that DEFB126 might also participate in intracellular regulation beyond its direct LPS neutralization. In summary, our results demonstrate that the DEFB 126 core peptide has critical functions in parallel to its C-terminal tail by showing LPS-binding activity, anti-inflammatory effects and intracellular regulatory function.
Collapse
|
23
|
Cao W, Wang Y, Lv X, Yu X, Li X, Li H, Wang Y, Lu D, Qi R, Wang H. Rhynchophylline prevents cardiac dysfunction and improves survival in lipopolysaccharide-challenged mice via suppressing macrophage I-κBα phosphorylation. Int Immunopharmacol 2012; 14:243-51. [PMID: 22841535 DOI: 10.1016/j.intimp.2012.07.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 07/08/2012] [Accepted: 07/12/2012] [Indexed: 02/05/2023]
Abstract
Myocardial dysfunction is a common complication during sepsis and significantly contributes to the mortality of patients with septic shock. However, none of the available therapeutic strategies proven to be effective in patients with severe sepsis are designed specifically to target myocardial dysfunction. The purpose of the present study is to investigate the effect of rhynchophylline (Rhy) on LPS-induced myocardial dysfunction in mice. We found that pretreatment with Rhy significantly improved cardiac systolic dysfunction, increased stroke volume and cardiac output in mice challenged with LPS. LPS induced cardiac inhibitor-κBα (I-κBα) phosphorylation, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) mRNA expression, and in turn increased cardiac TNF-α and IL-1β protein production, all of which were attenuated by pretreatment with Rhy. Immunohistochemistry revealed that TNF-α was found in infiltrated macrophages (F4/80(+)) and myocardium, and Rhy reduced TNF-α immunostaining in cardiac infiltrated macrophages in LPS-challenged mice. Furthermore, Rhy inhibited LPS-induced I-κBα phosphorylation and TNF-α production in cultured mouse peritoneal macrophages, but not in neonatal mouse cardiomyocytes. Pretreatment with Rhy significantly decreased the mortality of LPS-challenged mice. These results indicate that Rhy reduces cardiac dysfunction and improves survival via suppression of macrophage I-κBα phosphorylation in LPS-challenged mice, and suggest that Rhy may be a potential agent for the treatment of septic cardiac dysfunction.
Collapse
Affiliation(s)
- Wenjuan Cao
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sisti F, Fernández J, Higgins SC, Casabuono A, Couto A, Mills KHG, Hozbor D. A deep rough type structure in Bordetella bronchiseptica lipopolysaccharide modulates host immune responses. Microbiol Immunol 2012; 55:847-54. [PMID: 22039958 DOI: 10.1111/j.1348-0421.2011.00395.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present authors have previously obtained the Bordetella bronchiseptica mutant BbLP39, which contains a deep-rough lipopolysaccharide (LPS) instead the wild type smooth LPS with O antigen. This mutant was found to be altered in the expression of some proteins and in its ability to colonize mouse lungs. Particularly, in BbLP39 the expression of pertactin is decreased. To differentiate the contribution of each bacterial component to the observed phenotype, here mice defective in the LPS sensing receptor TLR4 (TLR4-defective mice) were used. In contrast to wild-type mice, infection of TLR4-defective mice with BbLP39 resulted in lung infection, which persisted for more than 10 days post-challenge. Comparative analysis of the immune responses induced by purified mutant and wild type LPSs showed that the mutant LPS induced significantly higher degrees of expression of TNF-α and IL-10 mRNA than did the wild type. UV matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) mass spectrometry analysis revealed that both LPSs had the same penta-acylated lipid A structure. However, the lipid A from BbLP39 contained pyrophosphate instead of phosphate at position 1. This structural difference, in addition to the lack of O-antigen in BbLP39, may explain the functional differences between BbLP39 and wild type strains.
Collapse
Affiliation(s)
- Federico Sisti
- VacSal Laboratory, Biotechnology and Molecular Biology Institute, Department of Biological Sciences, Faculty of Sciences, National University of La Plata, National Council of Scientific and Technical Research (CONICET), Calles 47 y 115 (1900) La Plata, Argentina
| | | | | | | | | | | | | |
Collapse
|
25
|
The prolyl isomerase Pin1 modulates development of CD8+ cDC in mice. PLoS One 2012; 7:e29808. [PMID: 22238658 PMCID: PMC3251613 DOI: 10.1371/journal.pone.0029808] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 12/06/2011] [Indexed: 11/21/2022] Open
Abstract
Background Pin1 has previously been described to regulate cells that participate in both innate and adaptive immunity. Thus far, however, no role for Pin1 has been described in modulating conventional dendritic cells, innate antigen presenting cells that potently activate naïve T cells, thereby bridging innate and adaptive immune responses. Methodology/Principal Findings When challenged with LPS, Pin1-null mice failed to accumulate spleen conventional dendritic cells (cDC). Analysis of steady-state spleen DC populations revealed that Pin1-null mice had fewer CD8+ cDC. This defect was recapitulated by culturing Pin1-null bone marrow with the DC-instructive cytokine Flt3 Ligand. Additionally, injection of Flt3 Ligand for 9 days failed to induce robust expansion of CD8+ cDC in Pin1-null mice. Upon infection with Listeria monocytogenes, Pin1-null mice were defective in stimulating proliferation of adoptively transferred WT CD8+ T cells, suggesting that decreases in Pin1 null CD8+ cDC may affect T cell responses to infection in vivo. Finally, upon analyzing expression of proteins involved in DC development, elevated expression of PU.1 was detected in Pin1-null cells, which resulted from an increase in PU.1 protein half-life. Conclusions/Significance We have identified a novel role for Pin1 as a modulator of CD8+ cDC development. Consistent with reduced numbers of CD8+ cDC in Pin1-null mice, we find that the absence of Pin1 impairs CD8+ T cell proliferation in response to infection with Listeria monocytogenes. These data suggest that, via regulation of CD8+ cDC production, Pin1 may serve as an important modulator of adaptive immunity.
Collapse
|
26
|
Lin CM, Jeng CR, Hsiao SH, Lee Y, Tsai YC, Chia MY, Pang VF. Monocyte-derived dendritic cells enhance cell proliferation and porcine circovirus type 2 replication in concanavalin A-stimulated swine peripheral blood lymphocytes in vitro. Vet Immunol Immunopathol 2012; 145:368-78. [DOI: 10.1016/j.vetimm.2011.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 12/08/2011] [Accepted: 12/14/2011] [Indexed: 01/28/2023]
|
27
|
Blednov Y, Benavidez J, Geil C, Perra S, Morikawa H, Harris R. Activation of inflammatory signaling by lipopolysaccharide produces a prolonged increase of voluntary alcohol intake in mice. Brain Behav Immun 2011; 25 Suppl 1:S92-S105. [PMID: 21266194 PMCID: PMC3098320 DOI: 10.1016/j.bbi.2011.01.008] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 01/17/2011] [Accepted: 01/17/2011] [Indexed: 02/03/2023] Open
Abstract
Previous studies showed that mice with genetic predisposition for high alcohol consumption as well as human alcoholics show changes in brain expression of genes related to immune signaling. In addition, mutant mice lacking genes related to immune function show decreased alcohol consumption (Blednov et al., 2011), suggesting that immune signaling promotes alcohol consumption. To test the possibility that activation of immune signaling will increase alcohol consumption, we treated mice with lipopolysaccaride (LPS; 1mg/kg, i.p.) and tested alcohol consumption in the continuous two-bottle choice test. To take advantage of the long-lasting activation of brain immune signaling by LPS, we measured drinking beginning one week or one month after LPS treatment and continued the studies for several months. LPS produced persistent increases in alcohol consumption in C57BL/6J (B6) inbred mice, FVBxB6F1 and B6xNZBF1 hybrid mice, but not in FVB inbred mice. To determine if this effect of LPS is mediated through binding to TLR4, we tested mice lacking CD14, a key component of TLR4 signaling. These null mutants showed no increase of alcohol intake after treatment with LPS. LPS treatment decreased ethanol-conditioned taste aversion but did not alter ethanol-conditioned place preference (B6xNZBF1 mice). Electrophysiological studies of dopamine neurons in the ventral tegmental area showed that pretreatment of mice with LPS decreased the neuronal firing rate. These results suggest that activation of immune signaling promotes alcohol consumption and alters certain aspects of alcohol reward/aversion.
Collapse
Affiliation(s)
- Y.A. Blednov
- Corresponding author. Address: Waggoner Center for Alcohol and Addiction Research, 1 University Station A4800, Austin, TX 78712-0159, USA. Fax: +1 512 232 2525., (Y.A. Blednov)
| | | | | | | | | | | |
Collapse
|
28
|
Shumilina E, Huber SM, Lang F. Ca2+ signaling in the regulation of dendritic cell functions. Am J Physiol Cell Physiol 2011; 300:C1205-14. [PMID: 21451105 DOI: 10.1152/ajpcell.00039.2011] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dendritic cells (DCs) are highly versatile antigen-presenting cells critically involved in both innate and adaptive immunity as well as maintenance of self-tolerance. DC function is governed by Ca(2+) signaling, which directs the DC responses to diverse antigens, including Toll-like receptor ligands, intact bacteria, and microbial toxins. Ca(2+)-sensitive DC functions include DC activation, maturation, migration, and formation of immunological synapses with T cells. Moreover, alterations of cytosolic Ca(2+) trigger immune suppression or switch off DC activity. Ca(2+) signals are generated by the orchestration of Ca(2+) transport processes across plasma, endoplasmic reticulum, and inner mitochondrial membrane. These processes include active pumping of Ca(2+), Ca(2+)/Na(+) antiport, and electrodiffusion through Ca(2+)-permeable channels or uniporters. Ca(2+) channels in the plasma membrane such as Ca(2+) release-activated Ca(2+) or L-type Ca(2+) channels are tightly regulated by the membrane potential which in turn depends on the activity of voltage-gated K(+) or Ca(2+)-activated nonselective cation channels. The rapidly growing knowledge on the function and regulation of these membrane transport proteins provides novel insight into pathophysiological mechanisms underlying dysfunction of the immune system and opens novel therapeutic opportunity to favorably influence the function of the immune system.
Collapse
Affiliation(s)
- Ekaterina Shumilina
- Department of Physiology, University of Tübingen, Gmelinstrasse 5, Tübingen, Germany.
| | | | | |
Collapse
|
29
|
Cavalieri D, Rivero D, Beltrame L, Buschow SI, Calura E, Rizzetto L, Gessani S, Gauzzi MC, Reith W, Baur A, Bonaiuti R, Brandizi M, De Filippo C, D'Oro U, Draghici S, Dunand-Sauthier I, Gatti E, Granucci F, Gündel M, Kramer M, Kuka M, Lanyi A, Melief CJ, van Montfoort N, Ostuni R, Pierre P, Popovici R, Rajnavolgyi E, Schierer S, Schuler G, Soumelis V, Splendiani A, Stefanini I, Torcia MG, Zanoni I, Zollinger R, Figdor CG, Austyn JM. DC-ATLAS: a systems biology resource to dissect receptor specific signal transduction in dendritic cells. Immunome Res 2010; 6:10. [PMID: 21092113 PMCID: PMC3000836 DOI: 10.1186/1745-7580-6-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 11/19/2010] [Indexed: 12/20/2022] Open
Abstract
Background The advent of Systems Biology has been accompanied by the blooming of pathway databases. Currently pathways are defined generically with respect to the organ or cell type where a reaction takes place. The cell type specificity of the reactions is the foundation of immunological research, and capturing this specificity is of paramount importance when using pathway-based analyses to decipher complex immunological datasets. Here, we present DC-ATLAS, a novel and versatile resource for the interpretation of high-throughput data generated perturbing the signaling network of dendritic cells (DCs). Results Pathways are annotated using a novel data model, the Biological Connection Markup Language (BCML), a SBGN-compliant data format developed to store the large amount of information collected. The application of DC-ATLAS to pathway-based analysis of the transcriptional program of DCs stimulated with agonists of the toll-like receptor family allows an integrated description of the flow of information from the cellular sensors to the functional outcome, capturing the temporal series of activation events by grouping sets of reactions that occur at different time points in well-defined functional modules. Conclusions The initiative significantly improves our understanding of DC biology and regulatory networks. Developing a systems biology approach for immune system holds the promise of translating knowledge on the immune system into more successful immunotherapy strategies.
Collapse
Affiliation(s)
- Duccio Cavalieri
- Department of Pharmacology, University of Firenze, Firenze, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|