1
|
Lian X, Cheng Y, Kang H. New insights of acylation stimulating protein in modulating the pathological progression of metabolic syndromes. Int Immunopharmacol 2024; 132:112018. [PMID: 38588630 DOI: 10.1016/j.intimp.2024.112018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Obesity is associated with insulin resistance, hypertension, and coronary artery diseases which are grouped as metabolic syndrome. Rather than being a storage for energy, the adipocytes could synthesis and secret diverse hormones and molecules, named as adipokines. Under obese status, the adipocytes are dysfunctional with excessively producing the inflammatory related cytokines, such as interleukin 1 (IL-1), IL-6, and tumor necrosis factor α (TNF-α). Concerning on the vital role of adipokines, it is proposed that one of the critical pathological factors of obesity is the dysfunctional adipocytic pathways. Among these adipokines, acylation stimulating protein, as an adipokine synthesized by adipocytes during the process of cell differentiation, is shown to activate the metabolism of triglyceride (TG) by regulating the catabolism of glucose and free fatty acid (FFA). Recent attention has paid to explore the underlying mechanism whereby acylation stimulating protein influences the biological function of adipocyte and the pathological development of obesity. In the present review, we summarized the progression of acylation stimulating protein in modulating the physiological and hormonal catabolism which affects fat distribution. Furthermore, the potential mechanisms which acylation stimulating protein regulates the metabolism of adipose tissue and the process of metabolic syndrome were also summarized.
Collapse
Affiliation(s)
- Xi Lian
- Department of Anesthesia Surgery, the First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Ye Cheng
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China; School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Huiyuan Kang
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
2
|
Rezvani R, Shadmand Foumani Moghadam MR, Cianflone K. Acylation stimulating protein/C3adesArg in the metabolic states: role of adipocyte dysfunction in obesity complications. J Physiol 2024; 602:773-790. [PMID: 38305477 DOI: 10.1113/jp285127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/27/2023] [Indexed: 02/03/2024] Open
Abstract
Adipose tissue, as an endocrine organ, secretes several adipocyte-derived hormones named 'adipokines' that are implicated in regulating energy haemostasis. Substantial evidence shows that white adipose tissue-derived adipokines mediate the link between obesity-related exogenous factors (like diet and lifestyle) and various biological events (such as pre- and postmenopausal status) that have obesity consequences (cardiometabolic disorders). One of the critical aetiological factors for obesity-related diseases is the dysfunction of adipokine pathways. Acylation-stimulating protein (ASP) is an adipokine that stimulates triglyceride synthesis and storage in adipose tissue by enhancing glucose and fatty acid uptake. ASP acts via its receptor C5L2. The primary objective of this review is to address the existing gap in the literature regarding ASP by investigating its diverse responses and receptor interactions across multiple determinants of obesity. These determinants include diet composition, metabolic disorders, organ involvement, sex and sex hormone levels. Furthermore, this article explores the broader paradigm shift from solely focusing on adipose tissue mass, which contributes to obesity, to considering the broader implications of adipose tissue function. Additionally, we raise a critical question concerning the clinical relevance of the insights gained from this review, both in terms of potential therapeutic interventions targeting ASP and in the context of preventing obesity-related conditions, highlighting the potential of the ASP-C5L2 interaction as a pharmacological target. In conclusion, these findings validate that obesity is a low-grade inflammatory status with multiorgan involvement and sex differences, demonstrating dynamic interactions between immune and metabolic response determinants.
Collapse
Affiliation(s)
- Reza Rezvani
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Katherine Cianflone
- Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| |
Collapse
|
3
|
Roux-en-Y Gastric Bypass Surgery Has Early Differential Effects on Bile Acids and the Levels of Complement Component 3 and Acylation-Stimulating Protein. Obes Surg 2020; 31:773-780. [PMID: 32986170 DOI: 10.1007/s11695-020-04993-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Bile acids have been implicated in the mechanism by which Roux-en-Y gastric bypass (RYGB) can induce remission of type 2 diabetes (T2D). Our goal was to identify circulating proteins whose levels changed after RYGB when dysglycemic parameters normalized. MATERIALS AND METHODS This was a retrospective study of 26 participants who underwent RYGB. Blood proteins were identified using two-dimensional electrophoresis and mass spectroscopy. Complement proteins were measured using immunoassays and bile acids measured using ultra-high-performance liquid chromatography and mass spectroscopy. RESULTS A total of 7/452 blood proteins were found to change 2 days after RYGB. Complement component 3 (C3) was selected because of its regulation by bile acids and the glucoregulatory function of its proteolytically processed product C3adesArg or acylation-stimulating protein (ASP). The median (inter-quartile range/IQR) C3 level was 47.4 (34.5, 65.9) mg/dL before surgery decreasing to 40.9 (13.4, 64.1) mg/dL within 2 days after surgery (p = 0.0292). The median (IQR) ASP level increased from 2.8 (0.9, 7.3) nM before surgery to 8.0 (5.3, 14.1) nM within 2 days after surgery (p = 0.0016). ASP levels increased in 14/17 (82%) with T2D remission and in 6/6 with normoglycemia but decreased in 3/3 with persistent T2D. Of ten bile acids measured, the levels of ursodeoxycholic acid (UDCA) were significantly decreased after RYGB and the levels of taurodeoxycholic acid (TDCA) were significantly decreased with T2D remission. CONCLUSIONS These data further support an association of C3 with glucose metabolism and implicate bile acids and ASP in the early remittive effects of RYGB on T2D.
Collapse
|
4
|
Thomas RC, Kheder R, Alaridhee H, Martin N, Stover CM. Complement Properdin Regulates the Metabolo-Inflammatory Response to a High Fat Diet. ACTA ACUST UNITED AC 2020; 56:medicina56090484. [PMID: 32971872 PMCID: PMC7558790 DOI: 10.3390/medicina56090484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/03/2023]
Abstract
Background and objectives: Overnutrition leads to a metabolic and inflammatory response that includes the activation of Complement. Properdin is the only amplifier of complement activation and increases the provision of complement activation products. Its absence has previously been shown to lead to increased obesity in mice on a high fat diet. The aim of this study was to determine ways in which properdin contributes to a less pronounced obese phenotype. Materials and Methods: Wild type (WT) and properdin deficient mice (KO) were fed a high-fat diet (HFD) for up to 12 weeks. Results: There was a significant increase in liver triglyceride content in the KO HFD group compared to WT on HFD. WT developed steatosis. KO had an additional inflammatory component (steatohepatitis). Analysis of AKT signalling by phosphorylation array supported a decrease in insulin sensitivity which was greater for KO than WT in liver and kidney. There was a significant decrease of C5L2 in the fat membranes of the KO HFD group compared to the WT HFD group. Circulating microparticles in KO HFD group showed lower presence of C5L2. Expression of the fatty acid transporter CD36 in adipose tissue was increased in KO on HFD and was also significantly increased in plasma of KO HFD mice compared to WT on HFD. CD36 was elevated on microparticles from KO on HFD. Ultrastructural changes consistent with obesity-associated glomerulopathy were observed for both HFD fed genotypes, but tubular strain was greater in KO. Conclusion: Our work demonstrates that complement properdin is a dominant factor in limiting the severity of obesity-associated conditions that impact on liver and kidney. The two receptors, C5L2 and CD36, are downstream of the activity exerted by properdin.
Collapse
Affiliation(s)
- Rόisín C. Thomas
- Department of Respiratory Sciences, University of Leicester, Leicester LE1 9HN, UK; (R.C.T.); (R.K.); (H.A.); (N.M.)
| | - Ramiar Kheder
- Department of Respiratory Sciences, University of Leicester, Leicester LE1 9HN, UK; (R.C.T.); (R.K.); (H.A.); (N.M.)
| | - Hasanain Alaridhee
- Department of Respiratory Sciences, University of Leicester, Leicester LE1 9HN, UK; (R.C.T.); (R.K.); (H.A.); (N.M.)
| | - Naomi Martin
- Department of Respiratory Sciences, University of Leicester, Leicester LE1 9HN, UK; (R.C.T.); (R.K.); (H.A.); (N.M.)
- Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK
| | - Cordula M. Stover
- Department of Respiratory Sciences, University of Leicester, Leicester LE1 9HN, UK; (R.C.T.); (R.K.); (H.A.); (N.M.)
- Correspondence: ; Tel.: +44-116-2525032
| |
Collapse
|
5
|
Li XX, Lee JD, Kemper C, Woodruff TM. The Complement Receptor C5aR2: A Powerful Modulator of Innate and Adaptive Immunity. THE JOURNAL OF IMMUNOLOGY 2020; 202:3339-3348. [PMID: 31160390 DOI: 10.4049/jimmunol.1900371] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/07/2019] [Indexed: 01/01/2023]
Abstract
Complement activation generates the core effector protein C5a, a potent immune molecule that is linked to multiple inflammatory diseases. Two C5a receptors, C5aR1 (C5aR, CD88) and C5aR2 (C5L2, GPR77), mediate the biological activities of C5a. Although C5aR1 has broadly acknowledged proinflammatory roles, C5aR2 remains at the center of controversy, with existing findings supporting both immune-activating and immune-dampening functions. Recent progress has been made toward resolving these issues. Instead of being a pure recycler and sequester of C5a, C5aR2 is capable of mediating its own set of signaling events and through these events exerting significant immunomodulatory effects not only toward C5aR1 but also other pattern recognition receptors and innate immune systems, such as NLRP3 inflammasomes. This review highlights the existing knowns and unknowns concerning C5aR2 and provides a timely update on recent breakthroughs which are expected to have a substantial impact on future fundamental and translational C5aR2 research.
Collapse
Affiliation(s)
- Xaria X Li
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia; and
| | - John D Lee
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia; and
| | - Claudia Kemper
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia; and
| |
Collapse
|
6
|
Saleh J, Al-Maqbali M, Abdel-Hadi D. Role of Complement and Complement-Related Adipokines in Regulation of Energy Metabolism and Fat Storage. Compr Physiol 2019; 9:1411-1429. [PMID: 31688967 DOI: 10.1002/cphy.c170037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Adipose tissue releases many cytokines and inflammatory factors described as adipokines. In obesity, adipokines released from expanding adipose tissue are implicated in disease progression and metabolic dysfunction. However, mechanisms controlling the progression of adiposity and metabolic complications are not fully understood. It has been suggested that expanding fat mass and sustained release of inflammatory adipokines in adipose tissue lead to hypoxia, oxidative stress, apoptosis, and cellular damage. These changes trigger an immune response involving infiltration of adipose tissue with immune cells, complement activation and generation of factors involved in opsonization and clearance of damaged cells. Abundant evidence now indicates that adipose tissue is an active secretory source of complement and complement-related adipokines that, in addition to their inflammatory role, contribute to the regulation of metabolic function. This article highlights advances in knowledge regarding the role of these adipokines in energy regulation of adipose tissue through modulating lipogenic and lipolytic pathways. Several adipokines will be discussed including adipsin, Factor H, properdin, C3a, Acylation-Stimulating Protein, C1q/TNF-related proteins, and response gene to complement-32 (RGC-32). Interactions between these factors will be described considering their immune-metabolic roles in the adipose tissue microenvironment and their potential contribution to progression of adiposity and metabolic dysfunction. The differential expression and the role of complement factors in gender-related fat partitioning will also be addressed. Identifying lipogenic adipokines and their specific autocrine/paracrine roles may provide means for adipose-tissue-targeted therapeutic interventions that may disrupt the vicious circle of adiposity and disease progression. © 2019 American Physiological Society. Compr Physiol 9:1411-1429, 2019.
Collapse
Affiliation(s)
- Jumana Saleh
- Biochemistry Department, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Muna Al-Maqbali
- Biochemistry Department, College of Medicine, Sultan Qaboos University, Muscat, Oman
| | | |
Collapse
|
7
|
Zhang XY, Liu Y, He T, Yang TT, Wu J, Cianflone K, Lu HL. Anaphylatoxin C5a induces inflammation and reduces insulin sensitivity by activating TLR4/NF-kB/PI3K signaling pathway in 3T3-L1 adipocytes. Biomed Pharmacother 2018; 103:955-964. [PMID: 29710512 DOI: 10.1016/j.biopha.2018.04.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 01/17/2023] Open
Abstract
Obesity closely correlates with metaflammation and characterizes with systemic-chronic-low inflammation. This study aims to evaluate effects of C5a on the inflammatory response and insulin resistance in 3T3-L1 adipocytes. 3T3-L1 pre-adipocytes were induced to the mature 3T3-L1 adipocytes. Then, 3T3-L1 were intervened with anaphylatoxin C5a, lipopolysaccharide (LPS) and C5a + LPS, respectively. Levels of Omentin, Chemerin, Vaspin and Apelin 12 in supernatants of medium were examined using ELISA. C5L2, C5a receptor (C5aR), I kappa B (IkB), IkB kinase (IKK), insulin receptor substrate 1 (IRS-1), IRS-2, PI3 K, p-PI3 K and β-actin were examined using RT-PCR and western blot assay, respectively. C5L2-C5aR colocalization was identified using immunofluorescence double label. NF-kB expression or activity was evaluated using electrophoretic mobility shift assay (EMSA), dual luciferase assay and immunofluorescence assay, respectively. The glucose uptake and insulin sensitivity were also evaluated. Results showed that C5a intervention significantly enhanced inflammatory molecule levels in supernatants of 3T3-L1 adipocytes. IKK inflammatory signaling pathway participated in C5a induced inflammation of 3T3-L1 adipocytes. C5a triggered the colocalization of C5L2 and C5aR and activated the NF-kB inflammatory signaling pathway. C5a intervention in 3T3-L1 adipocytes decreased the glucose uptake and resulted in reduction of insulin sensitivity. Insulin signaling pathway participated in C5a caused insulin sensitivity reduction. C5a intervention triggered the phosphorylation of PI3 K. In conclusion anaphylatoxin C5a induced inflammatory response by activating TLR4/NF-kB signaling pathway and generating C5L2-C5aR dimer, and caused insulin sensitivity reduction by activating PI3 K signaling pathway.
Collapse
Affiliation(s)
- Xin-Yan Zhang
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yan Liu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ting He
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ting-Ting Yang
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wu
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Katherine Cianflone
- K. Cianflone. Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, QC, G1V4G5, Canada
| | - Hui-Ling Lu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Association of C5L2 genetic polymorphisms with coronary artery disease in a Han population in Xinjiang, China. Oncotarget 2018; 8:8590-8596. [PMID: 28052000 PMCID: PMC5352424 DOI: 10.18632/oncotarget.14353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/30/2016] [Indexed: 01/16/2023] Open
Abstract
Background C5aR-like receptor 2 (C5L2) has been identified as a receptor for the inflammatory factor Complement 5a (C5a) and acylation-stimulating protein (ASP). ASP binding to C5L2 leading to a net accumulation of TG stores and glucose transporter. The aim of the present study is to evaluate the association of the SNPs of C5L2 gene with coronary artery disease (CAD) in a Chinese population. Methods We examined the role of the tagging single nucleotide polymorphisms (SNPs) of C5L2 gene for CAD using a case-control design. We determined the prevalence of C5L2 genotypes in 505 CAD patients and 469 age and sex-matched healthy control subjects of Han population. Results There was significant difference in genotype distributions of rs2972607 and rs8112962 between CAD patients and control subjects. The rs2972607 was found to be associated with CAD in a dominant model (AA vs. AG + GG, P<0.001). Similarly, the rs8112962 was found to be associated with CAD in a dominant model (TT vs CT + CC, P=0.016). The difference remained statistically significant after multivariate adjustment (OR =1.401, 95% confidence interval [CI]:1.026~1.914, P=0.034; OR = 1.541, 95%CI:1.093~ 2.172, P=0.014; respectively). Conclusion The results of this study indicate that both rs2972607 and rs8112962 of C5L2 gene are associated with CAD in a Han population of China.
Collapse
|
9
|
Hu W, Wang M, Yin C, Li S, Liu Y, Xiao Y. Serum complement factor 5a levels are associated with nonalcoholic fatty liver disease in obese children. Acta Paediatr 2018; 107:322-327. [PMID: 28981167 DOI: 10.1111/apa.14106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/09/2017] [Accepted: 09/29/2017] [Indexed: 12/16/2022]
Abstract
AIM Nonalcoholic fatty liver disease (NAFLD) is a leading cause of progressive and chronic liver injury. Complement factor 5a (C5a) may be involved in many inflammation disorders. This study investigated levels of systemic C5a in patients with and without NAFLD and lean controls. METHODS A cross-sectional study was conducted from July 2012 to June 2013 among 96 Chinese children, aged 6-17 years, recruited from the Pediatric Department of the Second Affiliated Hospital of Xi'an Jiao Tong University: 40 obese children with NAFLD, 31 obese children without NAFLD and 25 lean controls. Anthropometric parameters, clinical data and circulating C5a levels were measured. RESULTS Obese children had higher serum concentrations of complement factor C5a compared with lean controls, especially in obese children with NAFLD. C5a was positively correlated with body mass index (BMI), waist circumference, diastolic blood pressure (BP), triglycerides and homoeostasis model of insulin resistance, independent of their body mass index standard deviations score and age. Of the well-known risk factors, C5a was a significant predictor of NAFLD in obese children. CONCLUSION Serum C5a was elevated in obese children, especially in those with NAFLD and it may be proposed as a novel marker to predict advanced disease.
Collapse
Affiliation(s)
- Wei Hu
- Department of Pediatrics; the Second Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - Min Wang
- Department of Pediatrics; the Second Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - Chunyan Yin
- Department of Pediatrics; the Second Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - Shuangshaung Li
- Department of Pediatrics; Shangluo City Central Hospital; Xi'an Shanxi Province China
| | - Yuesheng Liu
- Department of Pediatrics; the Second Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - Yanfeng Xiao
- Department of Pediatrics; the Second Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| |
Collapse
|
10
|
Wang R, Lu B, Gerard C, Gerard NP. C5L2, the Second C5a Anaphylatoxin Receptor, Suppresses LPS-Induced Acute Lung Injury. Am J Respir Cell Mol Biol 2017; 55:657-666. [PMID: 27285858 DOI: 10.1165/rcmb.2016-0067oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
LPS-induced lung injury in the mouse is one of the most robust experimental models used for studies of acute lung injury (ALI) and acute respiratory distress syndrome in humans. Prior clinical and experimental studies support an important role for complement activation, particularly production of C5a, in the pathophysiology of human ALI/acute respiratory distress syndrome. In the mouse model, however, the precise role of C5a and its receptors is unclear. C5L2, an enigmatic second receptor for C5a, has been characterized, and results have generated substantial debate regarding its in vivo function. Our previous work with human neutrophils revealed a unique role for C5L2 in negatively modulating C5a-C5a receptor (C5aR)-mediated cellular activation, in which antibody-mediated blockade of C5L2 resulted in augmented C5a-C5aR responses. Here, we demonstrate that C5L2-/- mice (BALB/c background) administered intranasal LPS exhibit significantly more airway edema and hemorrhage than do wild-type animals. Bronchoalveolar lavage fluid and lung homogenates have significantly more neutrophils and myeloperoxidase activity, as well as proinflammatory cytokines and chemokines. When a blocking antibody against the C5aR was administered before LPS administration, the increased neutrophilic infiltration and cytokine levels were reversed. Thus, our data show not only that C5a contributes significantly to LPS-induced ALI in the mouse, but also that C5L2 plays an important antiinflammatory role in this model through actions resulting at least in part from negative modulation of C5a receptor activation.
Collapse
Affiliation(s)
- Ruobing Wang
- 1 Division of Respiratory Diseases, Boston Children's Hospital, Boston, Massachusetts.,2 Department of Medicine, Harvard Medical School, Boston, Massachusetts; and
| | - Bao Lu
- 1 Division of Respiratory Diseases, Boston Children's Hospital, Boston, Massachusetts
| | - Craig Gerard
- 1 Division of Respiratory Diseases, Boston Children's Hospital, Boston, Massachusetts.,2 Department of Medicine, Harvard Medical School, Boston, Massachusetts; and
| | - Norma P Gerard
- 1 Division of Respiratory Diseases, Boston Children's Hospital, Boston, Massachusetts.,2 Department of Medicine, Harvard Medical School, Boston, Massachusetts; and.,3 Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
11
|
The Controversial C5a Receptor C5aR2: Its Role in Health and Disease. J Immunol Res 2017; 2017:8193932. [PMID: 28706957 PMCID: PMC5494583 DOI: 10.1155/2017/8193932] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/11/2017] [Indexed: 01/24/2023] Open
Abstract
After the discovery of the C5a receptor C5aR1, C5aR2 is the second receptor found to bind C5a and its des-arginine form. As a heptahelical G protein-coupled receptor but devoid of the intracellular Gα signal, C5aR2 is special and confusing. Ramifications and controversies about C5aR2 are under debate since its identification, from putative ligands and cellular localization to intracellular signals and pathological roles in inflammation and immunity. The ruleless and even conflicting pro- or anti-inflammatory role of C5aR2 in animal models of diverse diseases makes one bewildered. This review summarizes reports on C5aR2, tries to clear up available evidence on these four controversial aspects, and delineates C5aR2 function(s). It also summarizes available toolboxes for C5aR2 study.
Collapse
|
12
|
Wu J, Jiao ZY, Li RZ, Lu HL, Zhang HH, Cianflone K. Cholinergic activation suppresses palmitate-induced macrophage activation and improves acylation stimulating protein resistance in co-cultured adipocytes. Exp Biol Med (Maywood) 2017; 242:961-973. [PMID: 28440734 DOI: 10.1177/1535370217700522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Acylation-stimulating protein (ASP), produced through activation of the alternative complement immune system, modulates lipid metabolism. Using a trans-well co-culture cell model, the mitigating role of α7-nicotinic acetylcholine receptor (α7nAChR)-mediated cholinergic pathway on ASP resistance was evaluated. ASP signaling in adipocytes via its receptor C5L2 and signaling intermediates Gαq, Gβ, phosphorylated protein kinase C-α, and protein kinase C-ζ were markedly suppressed in the presence of TNFα or medium from palmitate-treated RAW264.7 macrophages, indicating ASP resistance. There was no direct effect of α7nAChR activation in 3T3-L1 cell culture. However, α7nAChR activation almost completely reversed the ASP resistance in adipocytes co-cultured with palmitate-treated RAW264.7 macrophages. Further, α7nAChR activation could suppress the production of pro-inflammatory molecules TNFα and interleukin-6 produced from palmitate-treated co-cultured macrophages. These results suggest that macrophages play a significant role in the pathogenesis of ASP resistance and α7nAChR activation secondarily improves adipose ASP resistance through suppression of inflammation in macrophages. Impact statement 1. Adipocyte-macrophage interaction in acylation-stimulating protein (ASP) resistance 2. Lipotoxicity induced inflammatory response in ASP resistance 3. A vicious circle between lipotoxicity and inflammatory response in ASP resistance 4. Cholinergic modulation of inflammatory response in adipocyte and macrophage.
Collapse
Affiliation(s)
- Jing Wu
- 1 Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhou-Yang Jiao
- 2 Department of Cardiovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Rui-Zhen Li
- 3 Department of Endocrinology, Wuhan Children's Hospital, Wuhan Medical and Healthcare Center for Women and Children, Wuhan 430016, China
| | - Hui-Ling Lu
- 4 Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao-Hao Zhang
- 5 Department of Endocrinology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Katherine Cianflone
- 6 Centre de Recherche Institut Universitaire de Cardiologie and Pneumologie de Québec, Université Laval, Ville de Québec, QC G1V 4G5, Canada
| |
Collapse
|
13
|
Bavia L, de Castro ÍA, Cogliati B, Dettoni JB, Alves VAF, Isaac L. Complement C5 controls liver lipid profile, promotes liver homeostasis and inflammation in C57BL/6 genetic background. Immunobiology 2016; 221:822-32. [DOI: 10.1016/j.imbio.2016.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 02/06/2023]
|
14
|
Noel OF, Still CD, Argyropoulos G, Edwards M, Gerhard GS. Bile Acids, FXR, and Metabolic Effects of Bariatric Surgery. J Obes 2016; 2016:4390254. [PMID: 27006824 PMCID: PMC4783581 DOI: 10.1155/2016/4390254] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/31/2016] [Indexed: 01/02/2023] Open
Abstract
Overweight and obesity represent major risk factors for diabetes and related metabolic diseases. Obesity is associated with a chronic and progressive inflammatory response leading to the development of insulin resistance and type 2 diabetes (T2D) mellitus, although the precise mechanism mediating this inflammatory process remains poorly understood. The most effective intervention for the treatment of obesity, bariatric surgery, leads to glucose normalization and remission of T2D. Recent work in both clinical studies and animal models supports bile acids (BAs) as key mediators of these effects. BAs are involved in lipid and glucose homeostasis primarily via the farnesoid X receptor (FXR) transcription factor. BAs are also involved in regulating genes involved in inflammation, obesity, and lipid metabolism. Here, we review the novel role of BAs in bariatric surgery and the intersection between BAs and immune, obesity, weight loss, and lipid metabolism genes.
Collapse
Affiliation(s)
- Olivier F. Noel
- Temple University School of Medicine, Philadelphia, PA 19140, USA
- Penn State College of Medicine, Hershey, PA 17033, USA
| | | | | | - Michael Edwards
- Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Glenn S. Gerhard
- Temple University School of Medicine, Philadelphia, PA 19140, USA
- *Glenn S. Gerhard:
| |
Collapse
|
15
|
Liu Y, Fisette A, Lapointe M, Cianflone K. C5L2 Deficiency Enhances Development of Atherosclerosis in ApoE Knockout Mice. Chin Med 2015. [DOI: 10.4236/cm.2015.61007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
16
|
Gupta A, Rezvani R, Lapointe M, Poursharifi P, Marceau P, Tiwari S, Tchernof A, Cianflone K. Downregulation of complement C3 and C3aR expression in subcutaneous adipose tissue in obese women. PLoS One 2014; 9:e95478. [PMID: 24743347 PMCID: PMC3990631 DOI: 10.1371/journal.pone.0095478] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/27/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The central component of the complement system, C3, is associated with obesity, metabolic syndrome and cardiovascular disease however the underlying reasons are unknown. In the present study we evaluated gene expression of C3, the cleavage product C3a/C3adesArg and its cognate receptor C3aR in subcutaneous and omental adipose tissue in women. METHODS Women (n = 140, 21-69 years, BMI 19.5-79 kg/m2) were evaluated for anthropometric and blood parameters, and adipose tissue gene expression. RESULTS Subjects were separated into groups (n = 34-36) according to obesity: normal/overweight (≤30 kg/m2), obese I (≤45 kg/m2), obese II (≤51 kg/m2), and obese III (≤80 kg/m2). Overall, while omental expression remained unchanged, subcutaneous C3 and C3aR gene expression decreased with increasing adiposity (2-way ANOVA, p<0.01), with a concomitant decrease in SC/OM ratio (p<0.001). In subcutaneous adipose, both C3 and C3aR expression correlated with apoB, and apoA1 and inversely with waist circumference and blood pressure, while C3aR also correlated with glucose (p<0.05-0.0001). While omental C3aR expression did not correlate with any factor, omental C3 correlated with waist circumference, glucose and apoB (all p<0.05). Further, while plasma C3a/C3adesArg increased and adiponectin decreased with increasing BMI, both correlated (C3a negatively and adiponectin positively) with subcutaneous C3 and C3aR expression (p<0.05-0.001) or less). CONCLUSIONS The obesity-induced down-regulation of complement C3 and C3aR which is specific to subcutaneous adipose tissue, coupled to the strong correlations with multiple anthropometric, plasma and adipokine variables support a potential role for complement in immunometabolism.
Collapse
Affiliation(s)
- Abhishek Gupta
- Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec, Canada
- Department of Physiology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Reza Rezvani
- Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec, Canada
| | - Marc Lapointe
- Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec, Canada
| | - Pegah Poursharifi
- Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec, Canada
| | - Picard Marceau
- Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec, Canada
| | - Sunita Tiwari
- Department of Physiology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Andre Tchernof
- Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec, Canada
| | - Katherine Cianflone
- Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec, Canada
- * E-mail:
| |
Collapse
|
17
|
Protective role for properdin in progression of experimental murine atherosclerosis. PLoS One 2014; 9:e92404. [PMID: 24667818 PMCID: PMC3965423 DOI: 10.1371/journal.pone.0092404] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 02/21/2014] [Indexed: 12/29/2022] Open
Abstract
Genetic, dietary and immune factors contribute to the pathogenesis of atherosclerosis in humans and mice. Complement activation is an integral part of the innate immune defence but also shapes cellular responses and influences directly triglyceride synthesis. Deficiency of Factor B of the alternative pathway (AP) of complement is beneficial in LDLR(-/-) mice fed a high fat diet. The serum glycoprotein properdin is a key positive regulator of the AP but has not been studied in experimental atherosclerosis. Atherosclerosis was assessed after feeding low fat (LFD) or high fat (HFD) Western type diets to newly generated LDLR(-/-) Properdin(KO) (LDLR(-/-)P(KO)) and LDLR-/-PWT mice. Lipids, lymphocytes and monocytes were similar among genotypes, genders and diets. Complement C3, but not C3adesarg, levels were enhanced in LDLR(-/-)P(KO) mice regardless of diet type or gender. Non-esterified fatty acids (NEFA) were decreased in male LDLR(-/-)P(KO) fed a HFD compared with controls. All mice showed significant atherosclerotic burden in aortae and at aortic roots but male LDLR(-/-) mice fed a LFD were affected to the greatest extent by the absence of properdin. The protective effect of properdin expression was overwhelmed in both genders of LDLR(-/-)mice when fed a HFD. We conclude that properdin plays an unexpectedly beneficial role in the development and progression of early atherosclerotic lesions.
Collapse
|
18
|
Poursharifi P, Lapointe M, Fisette A, Lu H, Roy C, Munkonda MN, Fairlie DP, Cianflone K. C5aR and C5L2 act in concert to balance immunometabolism in adipose tissue. Mol Cell Endocrinol 2014; 382:325-333. [PMID: 24397921 DOI: 10.1016/j.mce.2013.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 10/15/2013] [Indexed: 12/24/2022]
Abstract
Recent studies suggested that the immunometabolic receptors; C5aR and C5L2, constitutively self-associate into homo-/heterodimers and that acylation stimulating protein (ASP/C3adesArg) or C5a treatment of adipocytes increased their colocalization. The present study evaluates the C5aR contribution in adipocytes to the metabolic and immune responses elicited by ligand stimulation. The effects of C5a, ASP, and insulin on cytokine production, triglyceride synthesis (TGS), and key signaling pathways were evaluated in isolated primary adipocytes and cultured 3T3-L1 differentiated adipocytes. In addition, mRNA expression of IRS1 and PGC1α was compared in adipose tissue samples from WT vs. C5aRKO mice. Both C5a and ASP directly increased MCP-1 (238±4%; P<0.001, and 377±2% vs. basal 100%; P<0.001, respectively) and KC (413±11%; P<0.001, and 529±16%; P<0.001 vs. basal 100%, respectively) secretion, TGS (131±1%; P<0.001, and 152±6%; P<0.001, vs. basal 100% respectively), and Akt/NFκB phosphorylation pathways in adipocytes. However, in C5aRKO adipocytes, C5a effects were disrupted, while stimulatory effects of ASP were mostly maintained. Addition of C5a completely blocked ASP signaling and activity in both C5aRKO and WT adipocytes as well as 3T3-L1 adipocytes. Furthermore, C5aRKO adipocytes revealed impaired insulin stimulation of cytokine production, with partial impairment of signaling and TGS stimulation, consistent with decreased IRS1 and PGC1α mRNA expression in adipose tissue. These observations indicate the importance of C5aR in adipose tissue metabolism and immunity, which may be regulated through heterodimerization with C5L2.
Collapse
Affiliation(s)
- Pegah Poursharifi
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC, Canada; Department of Medicine, Laval University, Québec, QC, Canada
| | - Marc Lapointe
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC, Canada
| | - Alexandre Fisette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC, Canada; Department of Medicine, Laval University, Québec, QC, Canada
| | - Huiling Lu
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC, Canada
| | - Christian Roy
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC, Canada; Department of Medicine, Laval University, Québec, QC, Canada
| | - Mercedes Nancy Munkonda
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC, Canada; Department of Medicine, Laval University, Québec, QC, Canada
| | - David P Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Katherine Cianflone
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC, Canada; Department of Medicine, Laval University, Québec, QC, Canada.
| |
Collapse
|
19
|
Association of immune and metabolic receptors C5aR and C5L2 with adiposity in women. Mediators Inflamm 2014; 2014:413921. [PMID: 24523571 PMCID: PMC3913464 DOI: 10.1155/2014/413921] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/07/2013] [Accepted: 12/11/2013] [Indexed: 12/30/2022] Open
Abstract
Adipose tissue receptors C5aR and C5L2 and their heterodimerization/functionality and interaction with ligands C5a and acylation stimulating protein (ASP) have been evaluated in cell and rodent studies. Their contribution to obesity factors in humans remains unclear. We hypothesized that C5a receptors, classically required for host defense, are also associated with adiposity. Anthropometry and fasting blood parameters were measured in 136 women divided by body mass index (BMI): normal/overweight (≤30 kg/m(2); n = 34), obese I (≤45 kg/m(2); n = 33), obese II (≤51 kg/m(2); n = 33), and obese III (≤80 kg/m(2); n = 36). Subcutaneous and omental adipose tissue C5aR and C5L2 expression were analysed. C5L2 expression was comparable between subcutaneous and omental across all BMI groups. Plasma ASP and ASP/omental C5L2 expression increased with BMI (P < 0.001 and P < 0.01, resp.). While plasma C5a was unchanged, C5aR expression decreased with increasing BMI in subcutaneous and omental tissues (P < 0.01 and P < 0.05, resp.), with subcutaneous omental depots. Omental C5L2/C5aR ratio increased with BMI (P < 0.01) with correlations between C5L2/C5aR and waist circumference, HDL-C, and adiponectin. Tissue and BMI differences in receptors and ligands, particularly in omental, suggest relationship to metabolic disturbances and highlight adipose-immune interactions.
Collapse
|
20
|
Rezvani R, Smith J, Lapointe M, Marceau P, Tchernof A, Cianflone K. Complement receptors C5aR and C5L2 are associated with metabolic profile, sex hormones, and liver enzymes in obese women pre- and postbariatric surgery. J Obes 2014; 2014:383102. [PMID: 24796007 PMCID: PMC3984800 DOI: 10.1155/2014/383102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Obesity is associated with metabolic dysfunction with sex differences and chronic, low-grade inflammation.We proposed that hepatic expression of immune complement C3 related receptors (C3aR, C5aR, and C5L2) would be associated with pre- or postmenopausal status and metabolic profile in severely obese women. We hypothesized that C5L2/C5aR ratio, potentially influencing the ASP/C5L2 metabolic versus C5a/C5aR immune response, would predict metabolic profiles after weight loss surgery. MATERIALS AND METHODS Fasting plasma (hormone, lipid, and enzyme analysis) and liver biopsies (RT-PCR gene expression) were obtained from 91 women during surgery. RESULTS Hepatic C5L2 mRNA expression was elevated in pre- versus postmenopausal women (P < 0.01) and correlated positively with circulating estradiol, estrone, ApoB, ApoA1, ApoA1/B, waist circumference, age, and LDL-C (all P < 0.05).While plasma ASP was lower in pre- versus postmenopausal women (P < 0.01), the hepatic C5L2/C5aR mRNA ratio was increased (P < 0.001) and correlated positively with estrone (P < 0.01) and estradiol (P < 0.001) and negatively with circulating ApoB and liver enzymes ALT, AST, and GGT (all P < 0.05). Over 12 months postoperatively, liver enzymes in low C5L2/C5aR mRNA ratio group remained higher (ALP and ALT, P < 0.05, AST and GGT, P < 0.001 2-way-ANOVA). CONCLUSION C5L2-C5aR association with other mediators including estrogens may contribute to hepatic metabolic and inflammatory function.
Collapse
Affiliation(s)
- Reza Rezvani
- Centre de Recherche de l'Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Y4332, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
| | - Jessica Smith
- Centre de Recherche de l'Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Y4332, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
| | - Marc Lapointe
- Centre de Recherche de l'Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Y4332, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
| | - Picard Marceau
- Centre de Recherche de l'Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Y4332, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
| | - Andre Tchernof
- Centre de Recherche de l'Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Y4332, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
| | - Katherine Cianflone
- Centre de Recherche de l'Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Y4332, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
- *Katherine Cianflone:
| |
Collapse
|
21
|
Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, Horuk R, Sparre-Ulrich AH, Locati M, Luster AD, Mantovani A, Matsushima K, Murphy PM, Nibbs R, Nomiyama H, Power CA, Proudfoot AEI, Rosenkilde MM, Rot A, Sozzani S, Thelen M, Yoshie O, Zlotnik A. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 2013; 66:1-79. [PMID: 24218476 DOI: 10.1124/pr.113.007724] [Citation(s) in RCA: 680] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145-176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human Genome Nomenclature Committee.
Collapse
Affiliation(s)
- Francoise Bachelerie
- Chair, Subcommittee on Chemokine Receptors, Nomenclature Committee-International Union of Pharmacology, Bldg. 10, Room 11N113, NIH, Bethesda, MD 20892.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Croker DE, Halai R, Fairlie DP, Cooper MA. C5a, but not C5a-des Arg, induces upregulation of heteromer formation between complement C5a receptors C5aR and C5L2. Immunol Cell Biol 2013; 91:625-33. [PMID: 24060963 DOI: 10.1038/icb.2013.48] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 11/09/2022]
Abstract
Receptors for C5a have an important role in innate immunity and inflammation where their expression and activation is tightly regulated. There are two known receptors for C5a: the C5a receptor (C5aR) and the C5a receptor like-2 (C5L2) receptor. Here we hypothesized that activation of C5aR might lead to heteromer formation with C5L2, as a downregulatory mechanism for C5aR signaling. To investigate this experimentally, bioluminescent resonance energy transfer (BRET) was implemented and supported by wide-field microscopy to analyze receptor localization in transfected HEK293 cells and human monocyte-derived macrophages (HMDM). BRET experiments indicated the presence of constitutive C5aR-C5L2 heteromers, where C5a, but not C5a-des Arg, was able to induce further heteromer formation, which was inhibited by a C5aR-specific antagonist. The data obtained suggest that C5aR-C5L2 can form heteromers in a process enhanced by C5a, but not by C5a-des Arg. There was also a significant difference in the levels of the anti-inflammatory cytokine IL-10 detected in HMDM following exposure to C5a compared with that seen for C5a-des Arg but no differences in the pro-inflammatory cytokines TNFα and IL-6. These subtle differences in C5a and C5a-des Arg induced receptor function may be of benefit in understanding the regulation of C5a in acute inflammation.
Collapse
Affiliation(s)
- Daniel E Croker
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | |
Collapse
|
23
|
Phieler J, Chung KJ, Chatzigeorgiou A, Klotzsche-von Ameln A, Garcia-Martin R, Sprott D, Moisidou M, Tzanavari T, Ludwig B, Baraban E, Ehrhart-Bornstein M, Bornstein SR, Mziaut H, Solimena M, Karalis KP, Economopoulou M, Lambris JD, Chavakis T. The complement anaphylatoxin C5a receptor contributes to obese adipose tissue inflammation and insulin resistance. THE JOURNAL OF IMMUNOLOGY 2013; 191:4367-74. [PMID: 24043887 DOI: 10.4049/jimmunol.1300038] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obese adipose tissue (AT) inflammation contributes critically to development of insulin resistance. The complement anaphylatoxin C5a receptor (C5aR) has been implicated in inflammatory processes and as regulator of macrophage activation and polarization. However, the role of C5aR in obesity and AT inflammation has not been addressed. We engaged the model of diet-induced obesity and found that expression of C5aR was significantly upregulated in the obese AT, compared with lean AT. In addition, C5a was present in obese AT in the proximity of macrophage-rich crownlike structures. C5aR-sufficient and -deficient mice were fed a high-fat diet (HFD) or a normal diet (ND). C5aR deficiency was associated with increased AT weight upon ND feeding in males, but not in females, and with increased adipocyte size upon ND and HFD conditions in males. However, obese C5aR(-/-) mice displayed improved systemic and AT insulin sensitivity. Improved AT insulin sensitivity in C5aR(-/-) mice was associated with reduced accumulation of total and proinflammatory M1 macrophages in the obese AT, increased expression of IL-10, and decreased AT fibrosis. In contrast, no difference in β cell mass was observed owing to C5aR deficiency under an HFD. These results suggest that C5aR contributes to macrophage accumulation and M1 polarization in the obese AT and thereby to AT dysfunction and development of AT insulin resistance.
Collapse
Affiliation(s)
- Julia Phieler
- Division of Vascular Inflammation, Diabetes and Kidney, Department of Medicine III, Dresden University, 01307 Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang R, Lu B, Gerard C, Gerard NP. Disruption of the complement anaphylatoxin receptor C5L2 exacerbates inflammation in allergic contact dermatitis. THE JOURNAL OF IMMUNOLOGY 2013; 191:4001-9. [PMID: 24043888 DOI: 10.4049/jimmunol.1301626] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The complement anaphylatoxin C5a is a critical mediator of allergic contact dermatitis, bridging essential aspects of innate and adaptive immunity. This anaphylatoxin functions by interacting with two 7-transmembrane segment receptors, the C5aR and C5L2. The C5aR is a classical G protein coupled receptor, whereas C5L2 is deficient in coupling to G proteins because of variations in the sequence. Our previous work in human neutrophils revealed a unique role for C5L2 in negatively modulating anaphylatoxin receptor mediated cellular activation through interactions with β-arrestin. When C5L2 is deficient, C5aR-mediated β-arrestin signaling is greatly enhanced. The work described in this study was undertaken first to determine the effect of C5L2 deficiency in a murine model of contact sensitivity, and second to determine whether the resultant exacerbation of inflammatory parameters reflects a negative modulatory function of C5L2 on the C5aR. First, we find dramatic increases in inflammation in C5L2(-/-) animals compared with wild type mice. Second, these increases are completely reversed following administration of mAb against the C5aR. Thus, in allergic contact sensitivity, as in isolated human neutrophils, C5L2 functions to suppress C5a-C5aR-mediated responses, further underscoring its role as a negative regulator of anaphylatoxin activity.
Collapse
Affiliation(s)
- Ruobing Wang
- Ina Sue Perlmutter Laboratory, Division of Respiratory Diseases, Department of Pediatrics, Children's Hospital, Boston, MA 02115
| | | | | | | |
Collapse
|
25
|
Obesity-inducing diet promotes acylation stimulating protein resistance. Biochem Biophys Res Commun 2013; 437:403-7. [PMID: 23831465 DOI: 10.1016/j.bbrc.2013.06.090] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 06/24/2013] [Indexed: 01/19/2023]
Abstract
Acylation stimulating protein (ASP) is an adipokine derived from the immune complement system that is involved in energy homeostasis and inflammation. ASP acts on and correlates positively with postprandial fat clearance in healthy subjects. However, in obesity, ASP levels are elevated and correlate inversely with fat clearance, indicative of a potential resistance to ASP. Using a mouse model, we hypothesized that, over time, diet-induced obesity (DIO) would result in development of ASP insensitivity, as compared to chow-fed animals as controls. Injection of recombinant ASP in DIO mice failed to accelerate fat clearance to the same extent as in chow-fed mice. DIO mice exhibited higher basal levels of plasma ASP and, after 30weeks of diet, showed lower ASP receptor (C5L2) expression in adipose tissue compared to chow-fed mice. Additionally, ex vivo ASP stimulation failed to induce normal Ser(473)AKT phosphorylation in adipose tissue from DIO mice VS chow-fed controls. These results demonstrate for the first time a state of diet-induced ASP resistance. Changes in the ASP-C5L2 pathway dynamics in obesity could alter the development of obesity and co-morbidities such as atherosclerosis and type 2 diabetes.
Collapse
|
26
|
The role of the complement system in metabolic organs and metabolic diseases. Semin Immunol 2013; 25:47-53. [PMID: 23684628 DOI: 10.1016/j.smim.2013.04.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/13/2013] [Indexed: 12/20/2022]
Abstract
Emerging evidence points to a close crosstalk between metabolic organs and innate immunity in the course of metabolic disorders. In particular, cellular and humoral factors of innate immunity are thought to contribute to metabolic dysregulation of the adipose tissue or the liver, as well as to dysfunction of the pancreas; all these conditions are linked to the development of insulin resistance and diabetes mellitus. A central component of innate immunity is the complement system. Interestingly, the classical view of complement as a major system of host defense that copes with infections is changing to that of a multi-functional player in tissue homeostasis, degeneration, and regeneration. In the present review, we will discuss the link between complement and metabolic organs, focusing on the pancreas, adipose tissue, and liver and the diverse effects of complement system on metabolic disorders.
Collapse
|
27
|
Paradoxical glucose-sensitizing yet proinflammatory effects of acute ASP administration in mice. Mediators Inflamm 2013; 2013:713284. [PMID: 23737652 PMCID: PMC3666230 DOI: 10.1155/2013/713284] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/16/2013] [Accepted: 04/19/2013] [Indexed: 12/17/2022] Open
Abstract
Acylation stimulating protein (ASP) is an adipokine derived from the immune complement system, which stimulates fat storage and is typically increased in obesity, type 2 diabetes, and cardiovascular disease. Using a diet-induced obesity (DIO) mouse model, the acute effects of ASP on energy metabolism and inflammatory processes in vivo were evaluated. We hypothesized that ASP would specifically exert proinflammatory effects. C57Bl/6 wild-type mice were put on a high-fat-high-sucrose diet for 12 weeks. Mice were then subjected to both glucose and insulin tolerance tests, each manipulation being preceded by recombinant ASP or vehicle (control) bolus injection. ASP supplementation increased whole-body glucose excursion, and this was accomplished with reduced concomitant insulin levels. However, ASP did not directly alter insulin sensitivity. ASP supplementation induced a proinflammatory phenotype, with higher levels of cytokines including IL-6 and TNF-α in plasma and in adipose tissue, liver, and skeletal muscle mRNA. Additionally, ASP increased M1 macrophage content of these tissues. ASP exerted a direct concentration-dependent role in the migration and M1 activation of cultured macrophages. Altogether, the in vivo and in vitro experiments demonstrate that ASP plays a role in both energy metabolism and inflammation, with paradoxical whole-body glucose-sensitizing yet proinflammatory effects.
Collapse
|
28
|
Roy C, Gupta A, Fisette A, Lapointe M, Poursharifi P, Richard D, Lu H, Lu B, Gerard N, Gerard C, Cianflone K. C5a receptor deficiency alters energy utilization and fat storage. PLoS One 2013; 8:e62531. [PMID: 23667486 PMCID: PMC3646841 DOI: 10.1371/journal.pone.0062531] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/22/2013] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE To investigate the impact of whole body C5a receptor (C5aR) deficiency on energy metabolism and fat storage. DESIGN Male wildtype (WT) and C5aR knockout (C5aRKO) mice were fed a low fat (CHOW) or a high fat high sucrose diet-induced obesity (DIO) diet for 14 weeks. Body weight and food intake were measured weekly. Indirect calorimetry, dietary fatload clearance, insulin and glucose tolerance tests were also evaluated. Liver, muscle and adipose tissue mRNA gene expression were measured by RT-PCR. RESULTS At week one and 12, C5aRKO mice on DIO had increased oxygen consumption. After 12 weeks, although food intake was comparable, C5aRKO mice had lower body weight (-7% CHOW, -12% DIO) as well as smaller gonadal (-38% CHOW, -36% DIO) and inguinal (-29% CHOW, -30% DIO) fat pads than their WT counterparts. Conversely, in WT mice, C5aR was upregulated in DIO vs CHOW diets in gonadal adipose tissue, muscle and liver, while C5L2 mRNA expression was lower in C5aRKO on both diet. Furthermore, blood analysis showed lower plasma triglyceride and non-esterified fatty acid levels in both C5aRKO groups, with faster postprandial triglyceride clearance after a fatload. Additionally, C5aRKO mice showed lower CD36 expression in gonadal and muscle on both diets, while DGAT1 expression was higher in gonadal (CHOW) and liver (CHOW and DIO) and PPARγ was increased in muscle and liver. CONCLUSION These observations point towards a role (either direct or indirect) for C5aR in energy expenditure and fat storage, suggesting a dual role for C5aR in metabolism as well as in immunity.
Collapse
Affiliation(s)
- Christian Roy
- Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Abhishek Gupta
- Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Alexandre Fisette
- Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Marc Lapointe
- Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Pegah Poursharifi
- Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Denis Richard
- Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - HuiLing Lu
- Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Bao Lu
- Ina Sue Perlmutter Lab, Children’s Hospital, Harvard Medical School, Boston, Massachusetts United States of America
| | - Norma Gerard
- Ina Sue Perlmutter Lab, Children’s Hospital, Harvard Medical School, Boston, Massachusetts United States of America
| | - Craig Gerard
- Ina Sue Perlmutter Lab, Children’s Hospital, Harvard Medical School, Boston, Massachusetts United States of America
| | - Katherine Cianflone
- Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec, Québec, Canada
- * E-mail:
| |
Collapse
|
29
|
Deficiency of C5L2 increases macrophage infiltration and alters adipose tissue function in mice. PLoS One 2013; 8:e60795. [PMID: 23630572 PMCID: PMC3632610 DOI: 10.1371/journal.pone.0060795] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 03/03/2013] [Indexed: 12/22/2022] Open
Abstract
Background Obesity is considered as a systemic chronic low grade inflammation characterized by increased serum pro-inflammatory proteins and accumulation of macrophages within white adipose tissue (WAT) of obese patients. C5L2, a 7-transmembrane receptor, serves a dual function, binding the lipogenic hormone acylation stimulating protein (ASP), and C5a, involved in innate immunity. Aim We evaluated the impact of C5L2 on macrophage infiltration in WAT of wildtype (Ctl) and C5L2 knock-out (C5L2−/−) mice over 6, 12 and 24 weeks on a chow diet and moderate diet-induced obesity (DIO) conditions. Results In Ctl mice, WAT C5L2 and C5a receptor mRNA increased (up to 10-fold) both over time and with DIO. By contrast, in C5L2−/−, there was no change in C5aR in WAT. C5L2−/− mice displayed higher macrophage content in WAT, varying by time, fat depot and diet, associated with altered systemic and WAT cytokine patterns compared to Ctl mice. However, in all cases, the M1 (pro-) vs M2 (anti-inflammatory) macrophage proportion was unchanged but C5L2−/− adipose tissue secretome appeared to be more chemoattractant. Moreover, C5L2−/− mice have increased food intake, increased WAT, and altered WAT lipid gene expression, which is reflected systemically. Furthermore, C5L2−/− mice have altered glucose/insulin metabolism, adiponectin and insulin signalling gene expression in WAT, which could contribute to development of insulin resistance. Conclusion Disruption of C5L2 increases macrophage presence in WAT, contributing to obesity-associated pathologies, and further supports a dual role of complement in WAT. Understanding this effect of the complement system pathway could contribute to targeting treatment of obesity and its comorbidities.
Collapse
|
30
|
Fujita T, Hemmi S, Kajiwara M, Yabuki M, Fuke Y, Satomura A, Soma M. Complement-mediated chronic inflammation is associated with diabetic microvascular complication. Diabetes Metab Res Rev 2013; 29:220-6. [PMID: 23280928 DOI: 10.1002/dmrr.2380] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 10/20/2012] [Accepted: 11/15/2012] [Indexed: 01/10/2023]
Abstract
BACKGROUND Chronic inflammation is characteristic of type 2 diabetes mellitus (T2DM). Obesity-activated adipocytes release adipocytokines, which induce the secretion of proinflammatory cytokines, resulting in vascular endothelial dysfunction and organ injury. C3a is a candidate to induce tissue inflammation. METHODS We investigated the association between diabetic microangiopathy and complement-mediated inflammation in 32 obese T2DM patients and 32 normal donors. Plasma levels of complement components and their activation intermediates were examined and related to the level of complication. An incubation study of post-prandial serum was carried out to measure the in vitro production of acylation stimulating protein (ASP/C3a desArg) by chylomicron. RESULTS Plasma levels of C3, C4, factor B, iC3b, Bb, and ASP were significantly increased in T2DM patients. Levels of C4d and membrane attack complex (C5b-9) were not significantly elevated. The activation rate of these factors indicated that only the early phase of alternative complement pathway was excessively activated. A statistical study revealed close correlation between ASP, body mass index, and highly sensitive C-reactive protein. Plasma ASP was significantly increased in the macroalbuminuric and proliferative retinopathy patient groups. An incubation study revealed that ASP was produced after the in vitro incubation of post-prandial serum from a T2DM patient with hyperchylomicronaemia. CONCLUSIONS Activation of the alternative complement pathway occurs in obese T2DM patients and is enhanced in the post-prandial hyperchylomicronic condition, which induces overproduction of ASP and C3a-mediated tissue inflammation. Therefore, complement-mediated inflammation may contribute to the acceleration of diabetic microangiopathy in addition to the development of macroangiopathy.
Collapse
Affiliation(s)
- Takayuki Fujita
- Department of Nephrology, Hypertension and Endocrinology, Nihon University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Relationship of C5L2 receptor to skeletal muscle substrate utilization. PLoS One 2013; 8:e57494. [PMID: 23460866 PMCID: PMC3583831 DOI: 10.1371/journal.pone.0057494] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/22/2013] [Indexed: 11/30/2022] Open
Abstract
Objective To investigate the role of Acylation Stimulating Protein (ASP) receptor C5L2 in skeletal muscle fatty acid accumulation and metabolism as well as insulin sensitivity in both mice and human models of diet-induced insulin resistance. Design and Methods Male wildtype (WT) and C5L2 knockout (KO) mice were fed a low (LFD) or a high (HFD) fat diet for 10 weeks. Intramyocellular lipid (IMCL) accumulation (by oil red O staining) and beta-oxidation HADH enzyme activity were determined in skeletal muscle. Mitochondria were isolated from hindleg muscles for high-resolution respirometry. Muscle C5L2 protein content was also determined in obese type 2 diabetics and age- and BMI matched men. Results IMCL levels were increased by six-fold in C5L2KO-HFD compared to WT-HFD mice (p<0.05) and plasma insulin levels were markedly increased in C5L2KO-HFD mice (twofold, p<0.05). Muscle HADH activity was elevated in C5L2KO-LFD mice (+75%, p<0.001 vs. WT-LFD) and C5L2KO-HFD displayed increased mitochondrial fatty acid oxidative capacity compared to WT-HFD mice (+23%, p<0.05). In human subjects, C5L2 protein content was reduced (−48%, p<0.01) in type 2 diabetic patients when compared to obese controls. Further, exercise training increased C5L2 (+45%, p = 0.0019) and ASP (+80%, p<0.001) in obese insulin-resistant men. Conclusion The results suggest that insulin sensitivity may be permissive for coupling of C5L2 levels to lipid storage and utilization.
Collapse
|