1
|
Honke N, Wiest CJ, Pongratz G. β2-Adrenergic Receptor Expression and Intracellular Signaling in B Cells Are Highly Dynamic during Collagen-Induced Arthritis. Biomedicines 2022; 10:biomedicines10081950. [PMID: 36009497 PMCID: PMC9406045 DOI: 10.3390/biomedicines10081950] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
The sympathetic nervous system (SNS) has either a pro-inflammatory or anti-inflammatory effect, depending on the stage of arthritis. In the past, treatment of arthritic B cells with a β2-adrenergic receptor (β2-ADR) agonist has been shown to attenuate arthritis. In this study, the expression and signaling of β2-ADR in B cells during collagen-induced arthritis (CIA) were investigated to provide an explanation of why only B cells from arthritic mice are able to improve CIA. Splenic B cells were isolated via magnetic-activated cell sorting (MACS). Adrenergic receptors on B cells and intracellular β2-ADR downstream molecules (G protein-coupled receptor kinase 2 (GRK-2), β-Arrestin 2, p38 MAPK, extracellular signal-regulated kinase 1/2 (ERK1/2) and cAMP response element-binding protein (CREB)) were analyzed at different time points in naïve and arthritic B cells with and without stimulation of β2-ADR agonist terbutaline by flow cytometry. β2-ADR-expressing B cells increase during CIA without a change in receptor density. Moreover, we observed a profound downregulation of GRK-2 shortly after induction of arthritis and an increase in β-Arrestin 2 only at late stage of arthritis. The second messengers studied (p38, ERK1/2 and CREB) followed a biphasic course, characterized by a reduction at onset and an increase in established arthritis. Stimulation of CIA B cells with the β-ADR agonist terbutaline increased pp38 MAPK independent of the timepoint, while pERK1/2 and pCREB were enhanced only in the late phase of arthritis. The phosphorylation of p38 MAPK, ERK1/2 and CREB in the late phase of arthritis was associated with increased IL-10 produced by B10 cells. The change of β2-ADR expression and signaling during sustained inflammation might be an integral part of the switch from pro- to anti-inflammatory action of sympathetic mechanisms in late arthritis.
Collapse
Affiliation(s)
- Nadine Honke
- Department of Rheumatology, Hiller Research Center Rheumatology, University Hospital Düsseldorf, 40225 Düsseldorf, Germany
- Correspondence: (N.H.); (G.P.); Tel.: +49-(0)-2118106149 (N.H.); +49-(0)-9405-18-1078 (G.P.)
| | - Clemens J. Wiest
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Georg Pongratz
- Department of Rheumatology, Hiller Research Center Rheumatology, University Hospital Düsseldorf, 40225 Düsseldorf, Germany
- Center for Rheumatologic Rehabilitation, Asklepios Clinic, 93077 Bad Abbach, Germany
- Medical Faculty of the University of Regensburg, 93053 Regensburg, Germany
- Correspondence: (N.H.); (G.P.); Tel.: +49-(0)-2118106149 (N.H.); +49-(0)-9405-18-1078 (G.P.)
| |
Collapse
|
2
|
Obray JD, Small CA, Baldwin EK, Jang EY, Lee JG, Yang CH, Yorgason JT, Steffensen SC. Dopamine D2-Subtype Receptors Outside the Blood-Brain Barrier Mediate Enhancement of Mesolimbic Dopamine Release and Conditioned Place Preference by Intravenous Dopamine. Front Cell Neurosci 2022; 16:944243. [PMID: 35903367 PMCID: PMC9314669 DOI: 10.3389/fncel.2022.944243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022] Open
Abstract
Dopamine (DA) is a cell-signaling molecule that does not readily cross the blood-brain barrier. Despite this, peripherally administered DA enhances DA levels in the nucleus accumbens and alters DA-related behaviors. This study was designed to investigate whether DA subtype-2 receptors are involved in the enhancement of nucleus accumbens (NAc) DA levels elicited by intravenous DA administration. This was accomplished by using microdialysis in the NAc and extracellular single unit recordings of putative DA neurons in the ventral tegmental area (VTA). Additionally, the reinforcing properties of intravenous DA were investigated using a place conditioning paradigm and the effects of intravenous DA on ultrasonic vocalizations were assessed. Following administration of intravenous dopamine, the firing rate of putative DA neurons in the VTA displayed a biphasic response and DA levels in the nucleus accumbens were enhanced. Pretreatment with domperidone, a peripheral-only DA D2 receptor (D2R) antagonist, reduced intravenous DA mediated increases in VTA DA neuron activity and NAc DA levels. Pretreatment with phentolamine, a peripheral α-adrenergic receptor antagonist, did not alter the effects of IV DA on mesolimbic DA neurotransmission. These results provide evidence for peripheral D2R mediation of the effects of intravenous DA on mesolimbic DA signaling.
Collapse
Affiliation(s)
- J. Daniel Obray
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, United States
| | - Christina A. Small
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, United States
| | - Emily K. Baldwin
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, United States
| | - Eun Young Jang
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, United States
- Research Center for Convergence Toxicology, Korea Institute of Toxicology, Daejeon, South Korea
| | - Jin Gyeom Lee
- College of Korean Medicine, Daegu Haany University, Daegu, South Korea
| | - Chae Ha Yang
- College of Korean Medicine, Daegu Haany University, Daegu, South Korea
| | - Jordan T. Yorgason
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, United States
| | - Scott C. Steffensen
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, United States
| |
Collapse
|
3
|
Filippi L, Pini A, Cammalleri M, Bagnoli P, Dal Monte M. β3-Adrenoceptor, a novel player in the round-trip from neonatal diseases to cancer: Suggestive clues from embryo. Med Res Rev 2021; 42:1179-1201. [PMID: 34967048 PMCID: PMC9303287 DOI: 10.1002/med.21874] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/29/2021] [Accepted: 12/15/2021] [Indexed: 01/19/2023]
Abstract
The role of the β-adrenoceptors (β-ARs) in hypoxia-driven diseases has gained visibility after the demonstration that propranolol promotes the regression of infantile hemangiomas and ameliorates the signs of retinopathy of prematurity (ROP). Besides the role of β2-ARs, preclinical studies in ROP have also revealed that β3-ARs are upregulated by hypoxia and that they are possibly involved in retinal angiogenesis. In a sort of figurative round trip, peculiarities typical of ROP, where hypoxia drives retinal neovascularization, have been then translated to cancer, a disease equally characterized by hypoxia-driven angiogenesis. In this step, investigating the role of β3-ARs has taken advantage of the assumption that cancer growth uses a set of strategies in common with embryo development. The possibility that hypoxic induction of β3-ARs may represent one of the mechanisms through which primarily embryo (and then cancer, as an astute imitator) adapts to grow in an otherwise hostile environment, has grown evidence. In both cancer and embryo, β3-ARs exert similar functions by exploiting a metabolic shift known as the Warburg effect, by acquiring resistance against xenobiotics, and by inducing a local immune tolerance. An additional potential role of β3-AR as a marker of stemness has been suggested by the finding that its antagonism induces cancer cell differentiation evoking that β3-ARs may help cancer to grow in a nonhospital environment, a strategy also exploited by embryos. From cancer, the round trip goes back to neonatal diseases for which new possible interpretative keys and potential pharmacological perspectives have been suggested.
Collapse
Affiliation(s)
- Luca Filippi
- Department of Clinical and Experimental Medicine, Neonatology and Neonatal Intensive Care UnitUniversity of PisaPisaItaly
| | - Alessandro Pini
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Maurizio Cammalleri
- Department of Biology, Unit of General PhysiologyUniversity of PisaPisaItaly
| | - Paola Bagnoli
- Department of Biology, Unit of General PhysiologyUniversity of PisaPisaItaly
| | - Massimo Dal Monte
- Department of Biology, Unit of General PhysiologyUniversity of PisaPisaItaly
| |
Collapse
|
4
|
Cao L, Chen E, Zhang H, Ba Y, Yan B, Li T, Yang J. Construction of a novel methylation-related prognostic model for colorectal cancer based on microsatellite status. J Cell Biochem 2021; 122:1781-1790. [PMID: 34397105 DOI: 10.1002/jcb.30131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022]
Abstract
The present study aimed to construct a novel methylation-related prognostic model based on microsatellite status that may enhance the prognosis of colorectal cancer (CRC) from methylation and microsatellite status perspective. DNA methylation and mRNA expression data with clinical information were downloaded from The Cancer Genome Atlas (TCGA) data set. The samples were divided into microsatellite stability and microsatellite instability group, and CIBERSORT was used to assess the immune cell infiltration characteristics. After identifying the differentially methylated genes and differentially expression genes using R packages, the methylation-driven genes were further identified. Prognostic genes that were used to establish the methylation-related risk score model were generated by the univariate and multivariate Cox regression model. Finally, we established and evaluated the methylation-related prognostic model for CRC patients. A total of 69 MDGs were obtained and three of these genes (MIOX, TH, DKFZP434K028) were selected to construct the prognostic model. Patients in the low-risk score group had a conspicuously better overall survival than those in the high-risk score group (p < .0001). The area under the receiver operating characteristic curve for this model was 0.689 at 3 years, 0.674 at 4 years, and 0.658 at 5 years. The Wilcoxon test showed that higher risk score was associated with higher T stage (p = .01), N stages (p = .0028), metastasis (p = .013), and advanced pathological stage (p = .0013). However, the more instability of microsatellite status, the lower risk score of CRC patients (p = .0048). Our constructed methylation-related prognostic model based on microsatellite status presents potential significance in assessing recurrence risk stratification, tumor staging, and immunotherapy for CRC patients.
Collapse
Affiliation(s)
- Lichao Cao
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Erfei Chen
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Hezi Zhang
- Shenzhen Nuclear Gene Technology Co., Ltd., Shenzhen, China
| | - Ying Ba
- Shenzhen Nuclear Gene Technology Co., Ltd., Shenzhen, China
| | - Bianbian Yan
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Tong Li
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Jin Yang
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| |
Collapse
|
5
|
Kim M, Kim SD, Kim KI, Jeon EH, Kim MG, Lim YR, Lkhagva-Yondon E, Oh Y, Na K, Chung YC, Jin BK, Song YS, Jeon MS. Dynamics of T Lymphocyte between the Periphery and the Brain from the Acute to the Chronic Phase Following Ischemic Stroke in Mice. Exp Neurobiol 2021; 30:155-169. [PMID: 33707347 PMCID: PMC8118758 DOI: 10.5607/en20062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 11/25/2022] Open
Abstract
Stroke causes systemic immunosuppression. T lymphocytes are involved in infarct size in the early stages of stroke. However, the phenotypes of T lymphocytes and their functions in peripheral immune organs and the brain have not been well analyzed in the acute and chronic phases of stroke. Here, we investigated pathological phenotypic alterations in the systemic immune response, especially changes in T lymphocytes, from one day to six months after ischemic stroke in mice. Impairment in thymocyte numbers, development, proliferation, and apoptosis were observed for up to two weeks. The number of mature T cells in the spleen and blood decreased and showed reduced interferon-γ production. Increased numbers of CD4-CD8-CD3+ double-negative T cells were observed in the mouse brain during the early stages of stroke, whereas interleukin (IL)-10+Foxp3+ regulatory T lymphocytes increased from two weeks during the chronic phase. These phenotypes correlated with body weight and neurological severity scores. The recovery of T lymphocyte numbers and increases in IL-10+Foxp3+ regulatory T lymphocytes may be important for long-term neurological outcomes. Dynamic changes in T lymphocytes between the acute and chronic phases may play different roles in pathogenesis and recovery. This study provides fundamental information regarding the T lymphocyte alterations from the brain to the peripheral immune organs following stroke.
Collapse
Affiliation(s)
- Minha Kim
- Translational Research Center, Department of Molecular Biomedicine, IRIMS, and College of Medicine, Inha University, Incheon 22332, Korea
| | - So-Dam Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - Kyoung In Kim
- Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Eun Hae Jeon
- Translational Research Center, Department of Molecular Biomedicine, IRIMS, and College of Medicine, Inha University, Incheon 22332, Korea.,Program in Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22332, Korea
| | - Min Gee Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - Yu-Ree Lim
- Translational Research Center, Department of Molecular Biomedicine, IRIMS, and College of Medicine, Inha University, Incheon 22332, Korea
| | - Enkhmaa Lkhagva-Yondon
- Translational Research Center, Department of Molecular Biomedicine, IRIMS, and College of Medicine, Inha University, Incheon 22332, Korea.,Program in Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22332, Korea
| | - Yena Oh
- Translational Research Center, Department of Molecular Biomedicine, IRIMS, and College of Medicine, Inha University, Incheon 22332, Korea
| | - Kwangmin Na
- Translational Research Center, Department of Molecular Biomedicine, IRIMS, and College of Medicine, Inha University, Incheon 22332, Korea
| | - Young Cheul Chung
- Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Byung Kwan Jin
- Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Yun Seon Song
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - Myung-Shin Jeon
- Translational Research Center, Department of Molecular Biomedicine, IRIMS, and College of Medicine, Inha University, Incheon 22332, Korea.,Program in Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22332, Korea.,Convergent Research Center for Metabolism and Immunoregulation, Inha University, Incheon 22212, Korea
| |
Collapse
|
6
|
Gomez-Flores R, Gutierrez-Leal I, Caballero-Hernández D, Orozco-Flores A, Tamez-Guerra P, Tamez-Guerra R, Rodríguez-Padilla C. Association of tyrosine hydroxylase expression in brain and tumor with increased tumor growth in sympathectomized mice. BMC Res Notes 2021; 14:94. [PMID: 33691777 PMCID: PMC7945299 DOI: 10.1186/s13104-021-05507-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/01/2021] [Indexed: 11/10/2022] Open
Abstract
Objective Lymphocytes express tyrosine hydroxylase (TH), the rate-limiting enzyme for the synthesis of dopamine, norepinephrine and epinephrine. This suggests a broader role for cathecholamines in lymphocyte function, as well as the potential secretion of catecholamines by tumors of lymphoid origin. Our aim was to evaluate the expression of Th by murine lymphoma cells in an in vivo mouse model. For this, L5178Y-R lymphoma cells were implanted in nerve-intact and sympathectomized male BALB/c mice. Relative Th gene expression in tumor and brain was determined by quantitative PCR. Body composition, tumor volume, and plasma TH1/TH2/TH17 cytokines were also evaluated as markers of tumor-host condition and anti-tumor immune response in absence of adrenergic innervation. Results We found a significant (p = 0.045) 3.3-fold decrease of Th gene expression in tumor and a non-significant (p = 0.60) 6.9-fold increase in brain after sympathectomy. Sympathectomized mice also showed a significant increase in tumor mass at days 18 (p = 0.032) and 28 (p = 0.022) and increased interscapular fat (p = 0.04). TH1/TH2 and TH17 cytokines levels in plasma from sympathectomized tumor-bearing mice were not different from control mice. Conclusion The L5178Y-R lymphoma does not express Th during in vivo progression.
Collapse
Affiliation(s)
- R Gomez-Flores
- Laboratorio de Inmunología y Virología, Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Apartado postal 46 F, San Nicolás de los Garza, 66451, NL, México
| | - I Gutierrez-Leal
- Laboratorio de Inmunología y Virología, Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Apartado postal 46 F, San Nicolás de los Garza, 66451, NL, México
| | - D Caballero-Hernández
- Laboratorio de Inmunología y Virología, Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Apartado postal 46 F, San Nicolás de los Garza, 66451, NL, México.
| | - A Orozco-Flores
- Laboratorio de Inmunología y Virología, Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Apartado postal 46 F, San Nicolás de los Garza, 66451, NL, México
| | - P Tamez-Guerra
- Laboratorio de Inmunología y Virología, Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Apartado postal 46 F, San Nicolás de los Garza, 66451, NL, México
| | - R Tamez-Guerra
- Laboratorio de Inmunología y Virología, Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Apartado postal 46 F, San Nicolás de los Garza, 66451, NL, México
| | - C Rodríguez-Padilla
- Laboratorio de Inmunología y Virología, Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Apartado postal 46 F, San Nicolás de los Garza, 66451, NL, México
| |
Collapse
|
7
|
Regulation of natural killer cell activity by glucocorticoids, serotonin, dopamine, and epinephrine. Cell Mol Immunol 2020; 17:705-711. [PMID: 32503998 PMCID: PMC7331581 DOI: 10.1038/s41423-020-0477-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
The immune system and the nervous system are highly complex organs composed of various different cells that must interact with each other for proper function of the system. This communication can be mediated by soluble factors. The factors released by the nervous system (neurotransmitters) differ from those released by the immune system (cytokines). Nevertheless, the nervous and immune systems can influence each other’s activity because immune cells express neurotransmitter receptors, and neurons express cytokine receptors. Moreover, immune cells can synthesize and release neurotransmitters themselves, thus using neurotransmitter-mediated pathways via autocrine and paracrine mechanisms. Natural killer (NK) cells are innate lymphocytes that are important for early and effective immune reactions against infections and cancer. Many studies have shown the strong influence of stress and the nervous system on NK cell activity. This phenomenon may be one reason why chronic stress leads to a higher incidence of infections and cancer. Here, we review the effects of neuroendocrine factors on the different activities of NK cells. Understanding the effects of neuroendocrine factors on NK cell activities during physiological and pathophysiological conditions may result in novel therapeutic strategies to enhance NK cell functions against tumors.
Collapse
|
8
|
Ferizovic H, Spasojevic N, Stefanovic B, Jankovic M, Dronjak S. The fatty acid amide hydrolase inhibitor URB597 modulates splenic catecholamines in chronically stressed female and male rats. Int Immunopharmacol 2020; 85:106615. [PMID: 32447219 DOI: 10.1016/j.intimp.2020.106615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/23/2020] [Accepted: 05/14/2020] [Indexed: 12/22/2022]
Abstract
The changes in sympathetic innervations in lymphoid organs could be a key factor in immune dysregulation. The endocannabinoid system has been shown to exhibit potent immunomodulatory effects that may differ between males and females, representing a potential therapeutic target for peripheral and central inflammatory disorders. Thus, in the present study, an examination was made of the effect of fatty acid amide hydrolase inhibitor URB597 treatment on splenic catecholamine content, synthesis, uptake and degradation in chronically unpredictably stressed (CUS) female and male rats. The results show that CUS increases anxiety-like behaviors and that URB597 had an anxiolytic effect on chronically stressed animals of both sexes. CUS induced the expression of plasma interleukin - 6 (IL-6), interleukin - 10 (IL-10) and IL-6 in the spleen, whereas the expression of IL-10 was reduced in the spleen of both sexes. URB597 treatment did not cause changes in IL-6 in plasma or the spleen, whereas it increased IL-10 in the spleen in CUS animals of both sexes. CUS caused a significant depletion of noradrenaline content in the spleen of female rats and a reduction in noradrenaline uptake in the spleen of female rats, while stressed males had a small but insignificant decrease of splenic noradrenaline levels and an enhanced uptake. The FAAH inhibitor URB597 enhances reduced noradrenaline content, affecting its uptake directly at the level of the spleen. It gives rise to the possibility that endocannabinoids exert a neurorestorative effect on the sympathetic nerve system and cell-mediated immune responses in the spleen of chronically stressed rats.
Collapse
Affiliation(s)
- Harisa Ferizovic
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Natasa Spasojevic
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Bojana Stefanovic
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Milica Jankovic
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Sladjana Dronjak
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
9
|
Pilipović I, Stojić-Vukanić Z, Prijić I, Jasnić N, Leposavić G. Propranolol diminished severity of rat EAE by enhancing immunoregulatory/protective properties of spinal cord microglia. Neurobiol Dis 2020; 134:104665. [DOI: 10.1016/j.nbd.2019.104665] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/08/2019] [Accepted: 10/30/2019] [Indexed: 12/24/2022] Open
|
10
|
Adrenergic Modulation of Hematopoiesis. J Neuroimmune Pharmacol 2019; 15:82-92. [PMID: 30762159 DOI: 10.1007/s11481-019-09840-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/31/2019] [Indexed: 01/11/2023]
Abstract
Hematopoiesis produce every day billions of blood cells and takes place in the bone marrow (BM) by the proliferation and differentiation of hematopoietic stem cells (HSC). HSC are found mainly adjacent to the BM vascular sinusoids where endothelial cells and mesenchimal stromal cells promote HSC maintenance by producing a variety of factors. Other cell types that regulate HSC niches include sympathetic nerves, non-myelinating Schwann cells and a variety of mature hematopoietic cells such as macrophages, neutrophils, and megakaryocytes. This review will focus on the role of adrenergic signals, i.e. of catecholamines, in the regulation of the HSC niche. The available evidence is rather controversial possibly due to the fact that adrenergic receptors are expressed by many cellular components of the niche and also by the often neglected observation that catecholamines may be produced and released also by the BM cells themselves. In addition one has to consider that, physiologically, the sympathetic nervous system (SNS) activity follows a circadian rhythmicity as driven by the suprachiasmatic nucleus (SCN) of the hypothalamus but may be also activated by cognitive and non-cognitive environmental stimuli. The adrenergic modulation of hematopoiesis holds a considerable potential for pharmacological therapeutic approaches in a variety of hematopoietic disorders and for HSC transplantation however the complexity of the system demands further studies. Graphical Abstract Sympathetic nerve termini may release NE while mature BM cells may release norepinephrine (NE) and / or epinephrine (E). Both may bind to β-adrenergic receptor (AR) expressed in nestin+MSC in the hematopoietic stem cell (HSC) niche and regulate the physiological trafficking of HSC by modulating the expression of CXCL12 and SCF. Both NE and E may also activate Lin - c-Kit+ Sca-1+ (LKS) cell via another AR. In addition, NE may also signal to α1-AR expressed in pre-B cells which by TGF-β secretion might regulate proliferation of their lymphoid progenitors in an autocrine manner and/or inhibit myeloid progenitors.
Collapse
|
11
|
Ergang P, Mikulecká A, Vodicˇka M, Vagnerová K, Mikšík I, Pácha J. Social defeat stimulates local glucocorticoid regeneration in lymphoid organs. Endocr Connect 2018; 7:1389-1396. [PMID: 30400029 PMCID: PMC6280584 DOI: 10.1530/ec-18-0319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 10/30/2018] [Indexed: 11/08/2022]
Abstract
Stress is an important risk factors for human diseases. It activates the hypothalamic-pituitary-adrenal (HPA) axis and increases plasma glucocorticoids, which are powerful regulators of immune system. The response of the target cells to glucocorticoids depends not only on the plasma concentrations of cortisol and corticosterone but also on their local metabolism. This metabolism is catalyzed by 11β-hydroxysteroid dehydrogenases type 1 and 2, which interconvert glucocorticoid hormones cortisol and corticosterone and their 11-oxo metabolites cortisone and 11-dehydrocorticosterone. The goal of this study was to determine whether stress modulates glucocorticoid metabolism within lymphoid organs - the structures where immune cells undergo development and activation. Using the resident-intruder paradigm, we studied the effect of social stress on glucocorticoid metabolism in primary and secondary lymphoid organs of Fisher 344 (F344) and Lewis (LEW) rats, which exhibit marked differences in their HPA axis response to social stressors and inflammation. We show that repeated social defeat increased the regeneration of corticosterone from 11-dehydrocorticosterone in the thymus, spleen and mesenteric lymphatic nodes (MLN). Compared with the F344 strain, LEW rats showed higher corticosterone regeneration in splenocytes of unstressed rats and in thymic and MLN mobile cells after stress but corticosterone regeneration in the stroma of all lymphoid organs was similar in both strains. Inactivation of corticosterone to 11-dehydrocorticosterone was found only in the stroma of lymphoid organs but not in mobile lymphoid cells and was not upregulated by stress. Together, our findings demonstrate the tissue- and strain-dependent regeneration of glucocorticoids following social stress.
Collapse
Affiliation(s)
- Peter Ergang
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Anna Mikulecká
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martin Vodicˇka
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Karla Vagnerová
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Ivan Mikšík
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jirˇí Pácha
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
- Correspondence should be addressed to J Pácha:
| |
Collapse
|
12
|
Li W, Li L, Chopp M, Venkat P, Zacharek A, Chen Z, Landschoot-Ward J, Yan T, Chen J. Intracerebral Hemorrhage Induces Cardiac Dysfunction in Mice Without Primary Cardiac Disease. Front Neurol 2018; 9:965. [PMID: 30524357 PMCID: PMC6256175 DOI: 10.3389/fneur.2018.00965] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022] Open
Abstract
Background: Intracerebral hemorrhage (ICH) is a life threatening stroke subtype and a worldwide health problem. In this study, we investigate brain-heart interaction after ICH in mice and test whether ICH induces cardiac dysfunction in the absence of primary cardiac disease. We also investigate underlying mechanisms such as oxidative stress and inflammatory responses in mediating cardiac dysfunction post-ICH in mice. Methods: Male, adult (3–4 m) C57BL/6J mice were subjected to sham surgery or ICH using an autologous blood injection model (n = 16/group). Cardiac function was evaluated at 7 and 28 days after ICH using echocardiography (n = 8/group per time point). Western blot and immunostaining analysis were employed to assess oxidative stress and inflammatory responses in the heart. Results: Mice subjected to ICH exhibited significantly decreased cardiac contractile function measured by left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) at 7 and 28 days after ICH compared to sham-control mice (p < 0.05). ICH induced cardiac dysfunction was significantly worse at 28 days than at 7 days after ICH (p < 0.05). ICH in mice significantly increased cardiomyocyte apoptosis, inflammatory factor expression and inflammatory cell infiltration in heart tissue, and induced cardiac oxidative stress at 7 days post-ICH compared to sham-control mice. Compared to sham-control mice, ICH-mice also exhibited significantly increased (p < 0.05) cardiomyocyte hypertrophy and cardiac fibrosis at 28 days after ICH. Conclusions: ICH induces significant and progressive cardiac dysfunction in mice. ICH increases cardiac oxidative stress and inflammatory factor expression in heart tissue which may play key roles in ICH-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Wei Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Neurology, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in CNS, Ministry of Education and Tianjin City, Tianjin, China.,Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Linlin Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Neurology, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in CNS, Ministry of Education and Tianjin City, Tianjin, China
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States.,Department of Physics, Oakland University, Rochester, NY, United States
| | - Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Zhili Chen
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Neurology, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in CNS, Ministry of Education and Tianjin City, Tianjin, China.,Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | | | - Tao Yan
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Neurology, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in CNS, Ministry of Education and Tianjin City, Tianjin, China
| | - Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| |
Collapse
|
13
|
Vasamsetti SB, Florentin J, Coppin E, Stiekema LCA, Zheng KH, Nisar MU, Sembrat J, Levinthal DJ, Rojas M, Stroes ESG, Kim K, Dutta P. Sympathetic Neuronal Activation Triggers Myeloid Progenitor Proliferation and Differentiation. Immunity 2018; 49:93-106.e7. [PMID: 29958804 PMCID: PMC6051926 DOI: 10.1016/j.immuni.2018.05.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 03/23/2018] [Accepted: 05/15/2018] [Indexed: 01/31/2023]
Abstract
There is a growing body of research on the neural control of immunity and inflammation. However, it is not known whether the nervous system can regulate the production of inflammatory myeloid cells from hematopoietic progenitor cells in disease conditions. Myeloid cell numbers in diabetic patients were strongly correlated with plasma concentrations of norepinephrine, suggesting the role of sympathetic neuronal activation in myeloid cell production. The spleens of diabetic patients and mice contained higher numbers of tyrosine hydroxylase (TH)-expressing leukocytes that produced catecholamines. Granulocyte macrophage progenitors (GMPs) expressed the β2 adrenergic receptor, a target of catecholamines. Ablation of splenic sympathetic neuronal signaling using surgical, chemical, and genetic approaches diminished GMP proliferation and myeloid cell development. Finally, mice lacking TH-producing leukocytes had reduced GMP proliferation, resulting in diminished myelopoiesis. Taken together, our study demonstrates that catecholamines produced by leukocytes and sympathetic nerve termini promote GMP proliferation and myeloid cell development.
Collapse
Affiliation(s)
- Sathish Babu Vasamsetti
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan Florentin
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emilie Coppin
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lotte C A Stiekema
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Kang H Zheng
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Muhammad Umer Nisar
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, PA, USA
| | - John Sembrat
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - David J Levinthal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mauricio Rojas
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Erik S G Stroes
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Kang Kim
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, PA, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Partha Dutta
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Talhada D, Rabenstein M, Ruscher K. The role of dopaminergic immune cell signalling in poststroke inflammation. Ther Adv Neurol Disord 2018; 11:1756286418774225. [PMID: 29774058 PMCID: PMC5952273 DOI: 10.1177/1756286418774225] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/06/2018] [Indexed: 01/08/2023] Open
Abstract
Upon ischaemic stroke, brain-resident and peripheral immune cells accumulate in the central nervous system (CNS). Interestingly, these cells express pattern specific to neurotransmitter receptors and, therefore, seem to be susceptible to neurotransmitter stimulation, potentially modulating their properties and functions. One of the principal neurotransmitters in the CNS, dopamine, is involved in the regulation of processes of brain development, motor control and higher brain functions. It is constantly released in the brain and there is experimental and clinical evidence that dopaminergic signalling is involved in recovery of lost neurological function after stroke. Independent studies have revealed specific but different patterns of dopamine receptor subtypes on different populations of immune cells. Those patterns are dependent on the activation status of cells. Generally, exposure to dopamine or dopamine receptor agonists decreases detrimental actions of immune cells. In contrast, a reduction of dopaminergic inputs perpetuates a pro-inflammatory state associated with increased release of pro-inflammatory molecules. In addition, subsets of immune cells have been identified to synthesize and release dopamine, suggesting autoregulatory mechanisms. Evidence supports that inflammatory processes activated following ischaemic stroke are modulated by dopaminergic signalling.
Collapse
Affiliation(s)
- Daniela Talhada
- LUBIN Lab – Lund Brain Injury Laboratory for Neurosurgical Research, Department of Clinical Sciences, Lund University, Lund, Sweden CICS-UBI-Health Sciences Research Centre, Faculdade de Ciências da Saúde, Av. Infante D. Henrique, Universidade da Beira Interior, Portugal
| | - Monika Rabenstein
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Karsten Ruscher
- Lund Brain Injury Laboratory for Neurosurgical Research, Wallenberg Neuroscience Center, Lund University, BMC A13, S-22184 Lund, Sweden
| |
Collapse
|
15
|
Laukova M, Vargovic P, Rokytova I, Manz G, Kvetnansky R. Repeated Stress Exaggerates Lipopolysaccharide-Induced Inflammatory Response in the Rat Spleen. Cell Mol Neurobiol 2018; 38:195-208. [PMID: 28884416 DOI: 10.1007/s10571-017-0546-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/31/2017] [Indexed: 01/03/2023]
Abstract
Spleen is an immune organ innervated with sympathetic nerves which together with adrenomedullary system control splenic immune functions. However, the mechanism by which prior stress exposure modulates the immune response induced by immunogenic challenge is not sufficiently clarified. Thus, the aim of this study was to investigate the effect of a single (2 h) and repeated (2 h daily for 7 days) immobilization stress (IMO) on the innate immune response in the spleen induced by lipopolysaccharide (LPS, 100 µg/kg). LPS elevated splenic levels of norepinephrine and epinephrine, while prior IMO prevented this response. LPS did not alter de novo production of catecholamines, however, prior IMO attenuated phenylethanolamine N-methyltransferase gene expression. Particularly repeated IMO exacerbated LPS-induced down-regulation of α1B- and β1-adrenergic receptors (ARs), while enhanced α2A- and β2-AR mRNAs. Elevated expression of inflammatory mediators (iNOS2, IL-1β, IL-6, TNF-α, IL-10) was observed following LPS and repeated IMO again potentiated this effect. These changes were associated with enhanced Ly6C gene expression, a monocyte marker, and elevated MCP-1, GM-CSF, and CXCL1 mRNAs suggesting an increased recruitment of monocytes and neutrophils into the spleen. Additionally, we observed increased Bax/Bcl-1 mRNA ratio together with reduced B cell numbers in rats exposed to repeated IMO and treated with LPS but not in acutely stressed rats. Altogether, these data indicate that repeated stress via changes in CA levels and specific α- and β-AR subtypes exaggerates the inflammatory response likely by recruiting peripheral monocytes and neutrophils to the spleen, resulting in the induction of apoptosis within this tissue, particularly in B cells. These changes may alter the splenic immune functions with potentially pathological consequences.
Collapse
Affiliation(s)
- M Laukova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505, Bratislava, Slovakia
- Department of Environmental Health Science, School of Health Sciences and Practice, Institute of Public Health, New York Medical College, Valhalla, NY, 10595, USA
| | - Peter Vargovic
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505, Bratislava, Slovakia.
| | - I Rokytova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505, Bratislava, Slovakia
| | - G Manz
- LDN Labor Diagnostica Nord, 48531, Nordhorn, Germany
| | - R Kvetnansky
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505, Bratislava, Slovakia
| |
Collapse
|
16
|
Spadari RC, Cavadas C, de Carvalho AETS, Ortolani D, de Moura AL, Vassalo PF. Role of Beta-adrenergic Receptors and Sirtuin Signaling in the Heart During Aging, Heart Failure, and Adaptation to Stress. Cell Mol Neurobiol 2018; 38:109-120. [PMID: 29063982 DOI: 10.1007/s10571-017-0557-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 10/06/2017] [Indexed: 01/03/2023]
Abstract
In the heart, catecholamine effects occur by activation of beta-adrenergic receptors (β-ARs), mainly the beta 1 (β1-AR) and beta 2 (β2-AR) subtypes, both of which couple to the Gs protein that activates the adenylyl cyclase signaling pathway. The β2-ARs can also couple to the Gi protein that counterbalances the effect of the Gs protein on cyclic adenosine monophosphate production and activates the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway. In several cardiovascular disorders, including heart failure, as well as in aging and in animal models of environmental stress, a reduction in the β1/β2-AR ratio and activation of the β2-AR-Gi-PI3K-Akt signaling pathway have been observed. Recent studies have shown that sirtuins modulate certain organic processes, including the cellular stress response, through activation of the PI3K-Akt signaling pathway and of downstream molecules such as p53, Akt, HIF1-α, and nuclear factor-kappa B. In the heart, SIRT1, SIRT3, and β2-ARs are crucial to the regulation of the cardiomyocyte energy metabolism, oxidative stress, reactive oxygen species production, and autophagy. SIRT1 and the β2-AR-Gi complex also control signaling pathways of cell survival and death. Here, we review the role played by β2-ARs and sirtuins during aging, heart failure, and adaptation to stress, focusing on the putative interplay between the two. That relationship, if proven, merits further investigation in the context of cardiac function and dysfunction.
Collapse
Affiliation(s)
- Regina Celia Spadari
- Laboratory of Stress Biology, Department of Biosciences, Campus Baixada Santista, Universidade Federal de São Paulo (UNIFESP), Santos, Brazil.
- Departamento de Biociências / Campus Baixada Santista, UNIFESP, Rua Silva Jardim 136, Santos, SP, 11015-020, Brazil.
| | - Claudia Cavadas
- Center for Neurosciences and Cell Biology (CNC) and School of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Ana Elisa T Saturi de Carvalho
- Laboratory of Stress Biology, Department of Biosciences, Campus Baixada Santista, Universidade Federal de São Paulo (UNIFESP), Santos, Brazil
| | - Daniela Ortolani
- Laboratory of Stress Biology, Department of Biosciences, Campus Baixada Santista, Universidade Federal de São Paulo (UNIFESP), Santos, Brazil
- Department of Physiological Science, Universidade Federal Do Espírito Santo (HUCAM, UFES), Vitória, Brazil
| | - Andre Luiz de Moura
- Laboratory of Stress Biology, Department of Biosciences, Campus Baixada Santista, Universidade Federal de São Paulo (UNIFESP), Santos, Brazil
| | - Paula Frizera Vassalo
- Department of Physiological Science, Universidade Federal Do Espírito Santo (HUCAM, UFES), Vitória, Brazil
- University Hospital Cassiano Antônio de Moraes, Universidade Federal Do Espírito Santo (HUCAM, UFES), Vitória, Brazil
| |
Collapse
|
17
|
Moya-Pérez A, Perez-Villalba A, Benítez-Páez A, Campillo I, Sanz Y. Bifidobacterium CECT 7765 modulates early stress-induced immune, neuroendocrine and behavioral alterations in mice. Brain Behav Immun 2017; 65:43-56. [PMID: 28512033 DOI: 10.1016/j.bbi.2017.05.011] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 05/04/2017] [Accepted: 05/11/2017] [Indexed: 12/26/2022] Open
Abstract
Emerging evidence suggests that there is a window of opportunity within the early developmental period, when microbiota-based interventions could play a major role in modulating the gut-brain axis and, thereby, in preventing mood disorders. This study aims at evaluating the effects and mode of action of Bifidobacterium pseudocatenulatum CECT 7765 in a murine model of chronic stress induced by maternal separation (MS). C57Bl/6J male breast-fed pups were divided into four groups, which were subjected or not to MS and supplemented with placebo or B. pseudocatenulatum CECT7765 until postnatal period (P) 21 and followed-up until P41. Behavioral tests were performed and neuroendocrine parameters were analyzed including corticosterone, cytokine/chemokine concentrations and neurotransmitters. Microbiota was also analyzed in stools by 16S rRNA gene sequencing. B. pseudocatenulatum CECT 7765 administration attenuated some aspects of the excessive MS-induced stress response of the hypothalamic-pituitary-adrenal (HPA) axis, particularly corticosterone production at baseline and in response to subsequent acute stress in adulthood. B. pseudocatenulatum CECT 7765 also down-regulated MS-induced intestinal inflammation (reducing interferon gamma [IFN-γ]) and intestinal hypercatecholaminergic activity (reducing dopamine [DA] and adrenaline [A] concentrations) at P21. These effects have a long-term impact on the central nervous system (CNS) of adult mice since MS mice fed B. pseudocatenulatum CECT 7765 showed lower anxiety levels than placebo-fed MS mice, as well as normal neurotransmitter levels in the hypothalamus. The anti-inflammatory effect of B. pseudocatenulatum CECT 7765 seemed to be related to an improvement in glucocorticoid sensitivity in mesenteric lymph node immunocompetent cells at P21. The administration of B. pseudocatenulatum CECT 7765 to MS animals also reversed intestinal dysbiosis affecting the proportions of ten Operational Taxonomic Units (OTUs) at P21, which could partly explain the restoration of immune, neuroendocrine and behavioral alterations caused by stress in early and later life. In summary, we show that B. pseudocatenulatum CECT 7765 is able to beneficially modulate the consequences of chronic stress on the HPA response produced by MS during infancy with long-lasting effects in adulthood, via modulation of the intestinal neurotransmitter and cytokine network with short and long-term consequences in brain biochemistry and behavior.
Collapse
Affiliation(s)
- A Moya-Pérez
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - A Perez-Villalba
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Departamento de Biología Celular, Universidad de Valencia, Spain.
| | - A Benítez-Páez
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - I Campillo
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Y Sanz
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain.
| |
Collapse
|
18
|
Carvajal Gonczi CM, Tabatabaei Shafiei M, East A, Martire E, Maurice-Ventouris MHI, Darlington PJ. Reciprocal modulation of helper Th1 and Th17 cells by the β2-adrenergic receptor agonist drug terbutaline. FEBS J 2017; 284:3018-3028. [PMID: 28710773 DOI: 10.1111/febs.14166] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 06/02/2017] [Accepted: 07/12/2017] [Indexed: 01/01/2023]
Abstract
Catecholamine hormones are powerful regulators of the immune system produced by the sympathetic nervous system (SNS). They regulate the adaptive immune system by altering T-cell differentiation into T helper (Th) 1 and Th2 cell subsets, but the effect on Th17 cells is not known. Th17 cells, defined, in part, by chemokine receptor CCR6 and cytokine interleukin (IL)-17A, are crucial for mediating certain pathogen-specific responses and are linked with several autoimmune diseases. We demonstrated that a proportion of human Th17 cells express beta 2-adrenergic receptor (β2AR), a G protein-coupled receptor that responds to catecholamines. Activation of peripheral blood mononuclear cells, which were obtained from venous blood drawn from healthy volunteers, with anti-cluster of differentiation 3 (CD3) and anti-CD28 and with a β2-agonist drug, terbutaline (TERB), augmented IL-17A levels (P < 0.01) in the majority of samples. TERB reduced interferon gamma (IFNγ) indicating that IL-17A and IFNγ are reciprocally regulated. Similar reciprocal regulation was observed with dbcAMP. Proliferation of Th cells was monitored by carboxyfluorescein diacetate N-succinimidyl ester labeling and flow cytometry with antibody staining for CD3 and CD4. TERB increased proliferation by a small but significant margin (P < 0.001). Next, Th17 cells (CD4+ CXCR3- CCR6+ ) were purified using an immunomagnetic positive selection kit, which removes all other mononuclear cells. TERB increased IL-17A from purified Th17 cells, which argues that TERB acts directly on Th17 cells. Thus, hormone signals from the SNS maintain a balance of Th cells subtypes through the β2AR.
Collapse
Affiliation(s)
- Catalina M Carvajal Gonczi
- The Center for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada.,PERFORM Centre, Concordia University, Montreal, QC, Canada.,Department of Biology, Concordia University, Montreal, QC, Canada
| | - Mahdieh Tabatabaei Shafiei
- The Center for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada.,PERFORM Centre, Concordia University, Montreal, QC, Canada.,Department of Biology, Concordia University, Montreal, QC, Canada
| | - Ashley East
- The Center for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada.,PERFORM Centre, Concordia University, Montreal, QC, Canada.,Department of Exercise Science, Concordia University, Montreal, QC, Canada
| | - Erika Martire
- The Center for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada.,PERFORM Centre, Concordia University, Montreal, QC, Canada.,Department of Biology, Concordia University, Montreal, QC, Canada
| | - Meagane H I Maurice-Ventouris
- The Center for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada.,PERFORM Centre, Concordia University, Montreal, QC, Canada.,Department of Psychology, Concordia University, Montreal, QC, Canada
| | - Peter J Darlington
- The Center for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada.,PERFORM Centre, Concordia University, Montreal, QC, Canada.,Department of Biology, Concordia University, Montreal, QC, Canada.,Department of Exercise Science, Concordia University, Montreal, QC, Canada
| |
Collapse
|
19
|
Osinga TE, Links TP, Dullaart RPF, Pacak K, van der Horst-Schrivers ANA, Kerstens MN, Kema IP. Emerging role of dopamine in neovascularization of pheochromocytoma and paraganglioma. FASEB J 2017; 31:2226-2240. [PMID: 28264974 DOI: 10.1096/fj.201601131r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/07/2017] [Indexed: 01/11/2023]
Abstract
Dopamine is a catecholamine that acts both as a neurotransmitter and as a hormone, exerting its functions via dopamine (DA) receptors that are present in a broad variety of organs and cells throughout the body. In the circulation, DA is primarily stored in and transported by blood platelets. Recently, the important contribution of DA in the regulation of angiogenesis has been recognized. In vitro and in vivo studies have shown that DA inhibits angiogenesis through activation of the DA receptor type 2. Overproduction of catecholamines is the biochemical hallmark of pheochromocytoma (PCC) and paraganglioma (PGL). The increased production of DA has been shown to be an independent predictor of malignancy in these tumors. The precise relationship underlying the association between DA production and PCC and PGL behavior needs further clarification. Herein, we review the biochemical and physiologic aspects of DA with a focus on its relations with VEGF and hypoxia inducible factor related angiogenesis pathways, with special emphasis on DA producing PCC and PGL.-Osinga, T. E., Links, T. P., Dullaart, R. P. F., Pacak, K., van der Horst-Schrivers, A. N. A., Kerstens, M. N., Kema, I. P. Emerging role of dopamine in neovascularization of pheochromocytoma and paraganglioma.
Collapse
Affiliation(s)
- Thamara E Osinga
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Thera P Links
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Robin P F Dullaart
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Michiel N Kerstens
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
20
|
Ayala-Lopez N, Watts SW. New actions of an old friend: perivascular adipose tissue's adrenergic mechanisms. Br J Pharmacol 2016; 174:3454-3465. [PMID: 27813085 DOI: 10.1111/bph.13663] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/03/2016] [Accepted: 10/21/2016] [Indexed: 12/17/2022] Open
Abstract
The revolutionary discovery in 1991 by Soltis and Cassis that perivascular adipose tissue (PVAT) has an anti-contractile effect changed how we think about the vasculature. Most experiments on vascular pharmacology begin by removing the fat surrounding vessels. Thus, PVAT was thought to have a minor role in vascular function and its presence was just for structural support. The need to rethink PVAT's role was precipitated by observations that obesity carries a high cardiovascular risk and PVAT dysfunction is associated with obesity. PVAT is a vascular-adipose organ that has intimate connections with the nervous and immune system. A complex world of physiology resides in PVAT, including the presence of an 'adrenergic system' that is able to release, take up and metabolize noradrenaline. Adipocytes, stromal vascular cells and nerves within PVAT contain components that make up this adrenergic system. Some of the great strides in PVAT research came from studying adipose tissue as a whole. Adipose tissue has many roles and participates in regulating energy balance, energy stores, inflammation and thermoregulation. However, PVAT is dissimilar from non-PVAT adipose tissues. PVAT is intimately connected with the vasculature, which is what makes its role in body homeostasis unique. The adrenergic system within PVAT may be an integral link connecting the effects of obesity with the vascular dysfunction observed in obesity-associated hypertension, a condition in which the sympathetic nervous system has a significant role. This review will explore what is known about the adrenergic system in adipose tissue and PVAT, plus the translational importance of these findings. LINKED ARTICLES This article is part of a themed section on Molecular Mechanisms Regulating Perivascular Adipose Tissue - Potential Pharmacological Targets? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.20/issuetoc.
Collapse
Affiliation(s)
- Nadia Ayala-Lopez
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
21
|
Wang XQ, Liu Y, Cai HH, Peng YP, Qiu YH. Expression of tyrosine hydroxylase in CD4 + T cells contributes to alleviation of Th17/Treg imbalance in collagen-induced arthritis. Exp Biol Med (Maywood) 2016; 241:2094-2103. [PMID: 27444150 DOI: 10.1177/1535370216660635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tyrosine hydroxylase (TH), a rate-limiting enzyme for the synthesis of catecholamines, is expressed in T lymphocytes. However, the role of T cell-expressed TH in rheumatoid arthritis (RA) is less clear. Herein, we aimed to show the contribution of TH expression by CD4+ T cells to alleviation of helper T (Th)17/regulatory T (Treg) imbalance in collagen-induced arthritis (CIA), a mouse model of RA. CIA was prepared by intradermal injection of collagen type II (CII) at tail base of DBA1/J mice. Expression of TH in the spleen and the ankle joints was measured by real-time polymerase chain reaction and Western blot analysis. Percentages of TH-expressing Th17 and Treg cells in splenic CD4+ T cells were determined by flow cytometry. Overexpression and knockdown of TH gene in CD4+ T cells were taken to evaluate effects of TH on Th17 and Treg cells in CIA. TH expression was upregulated in both the inflamed tissues (spleen and ankle joints) and the CD4+ T cells of CIA mice. In splenic CD4+ T cells, the cells expressing TH were increased during CIA. These cells that expressed more TH in CIA were mainly Th17 cells rather than Treg cells. TH gene overexpression in CD4+ T cells from CIA mice reduced Th17 cell percentage as well as Th17-related transcription factor and cytokine expression and secretion, whereas TH gene knockdown enhanced the Th17 cell activity. In contrast, TH gene overexpression increased Treg-related cytokine expression and secretion in CD4+ T cells of CIA mice, while TH gene knockdown decreased the Treg cell changes. Collectively, these findings show that CIA induces TH expression in CD4+ T cells, particularly in Th17 cells, and suggest that the increased TH expression during CIA represents an anti-inflammatory mechanism.
Collapse
Affiliation(s)
- Xiao-Qin Wang
- 1 School of Biological & Basic Medical Sciences, Soochow University, Suzhou 215123, China.,2 Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yan Liu
- 2 Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Huan-Huan Cai
- 2 Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yu-Ping Peng
- 2 Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yi-Hua Qiu
- 2 Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
22
|
Vargovic P, Laukova M, Ukropec J, Manz G, Kvetnansky R. Lipopolysaccharide induces catecholamine production in mesenteric adipose tissue of rats previously exposed to immobilization stress. Stress 2016; 19:439-47. [PMID: 27314578 DOI: 10.1080/10253890.2016.1203414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Catecholamines (CAs) are mainly produced by sympathoadrenal system but their de novo production has been also observed in adipose tissue cells. The aim of this work was to investigate whether immune challenge induced by lipopolysaccharide (LPS) modulates biosynthesis of CAs in mesenteric adipose tissue (MWAT), as well as whether previous exposure to immobilization (IMO) stress could modulate this process. Sprague-Dawley rats were exposed to single (2 h) or repeated (2 h/7 days) IMO and afterwards injected with LPS (i.p., 100 μg/kg body weight) and sacrificed 3 h later. LPS did not alter CA biosynthesis in MWAT in control rats. Single and repeated IMO elevated CAs and expression of CA biosynthetic enzymes in MWAT, including adipocyte and stromal/vascular fractions (SVF). Repeated IMO followed by LPS treatment led to the up-regulation of CA-biosynthetic enzymes expression, elevation of CAs in SVF but depletion of norepinephrine and epinephrine in adipocyte fraction. Prior IMO caused a marked LPS-induced macrophage infiltration in MWAT as evaluated by F4/80 expression. A positive correlation between expression of tyrosine hydroxylase and F4/80 suggests macrophages as the main source of LPS-induced CA production in MWAT. Furthermore, prior exposure to the single or repeated IMO differently affected immune responses following LPS treatment by modulation of inflammatory cytokine expression. These data suggest that stress might be a significant modulator of immune response in MWAT via stimulation of the macrophage infiltration associated with cytokine response and de novo production of CAs.
Collapse
Affiliation(s)
- P Vargovic
- a Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences , Bratislava , Slovakia
| | - M Laukova
- a Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences , Bratislava , Slovakia
- b Department of Environmental Health Science, School of Health Sciences and Practice , Institute of Public Health, New York Medical College , Valhalla , NY , USA
| | - J Ukropec
- a Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences , Bratislava , Slovakia
| | - G Manz
- c LDN Labor Diagnostica Nord , Nordhorn , Germany
| | - R Kvetnansky
- a Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences , Bratislava , Slovakia
| |
Collapse
|
23
|
Levite M. Dopamine and T cells: dopamine receptors and potent effects on T cells, dopamine production in T cells, and abnormalities in the dopaminergic system in T cells in autoimmune, neurological and psychiatric diseases. Acta Physiol (Oxf) 2016; 216:42-89. [PMID: 25728499 DOI: 10.1111/apha.12476] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/07/2014] [Accepted: 02/23/2015] [Indexed: 12/12/2022]
Abstract
Dopamine, a principal neurotransmitter, deserves upgrading to 'NeuroImmunotransmitter' thanks to its multiple, direct and powerful effects on most/all immune cells. Dopamine by itself is a potent activator of resting effector T cells (Teffs), via two independent ways: direct Teffs activation, and indirect Teffs activation by suppression of regulatory T cells (Tregs). The review covers the following findings: (i) T cells express functional dopamine receptors (DRs) D1R-D5R, but their level and function are dynamic and context-sensitive, (ii) DR membranal protein levels do not necessarily correlate with DR mRNA levels, (iii) different T cell types/subtypes have different DR levels and composition and different responses to dopamine, (iv) autoimmune and pro-inflammatory T cells and T cell leukaemia/lymphoma also express functional DRs, (v) dopamine (~10(-8) M) activates resting/naive Teffs (CD8(+) >>>CD4(+) ), (vi) dopamine affects Th1/Th2/Th17 differentiation, (vii) dopamine inhibits already activated Teffs (i.e. T cells that have been already activated by either antigen, mitogen, anti-CD3 antibodies cytokines or other molecules), (viii) dopamine inhibits activated Tregs in an autocrine/paracrine manner. Thus, dopamine 'suppresses the suppressors' and releases the inhibition they exert on Teffs, (ix) dopamine affects intracellular signalling molecules and cascades in T cells (e.g. ERK, Lck, Fyn, NF-κB, KLF2), (x) T cells produce dopamine (Tregs>>>Teffs), can release dopamine, mainly after activation (by antigen, mitogen, anti-CD3 antibodies, PKC activators or other), uptake extracellular dopamine, and most probably need dopamine, (xi) dopamine is important for antigen-specific interactions between T cells and dendritic cells, (xii) in few autoimmune diseases (e.g. multiple sclerosis/SLE/rheumatoid arthritis), and neurological/psychiatric diseases (e.g. Parkinson disease, Alzheimer's disease, Schizophrenia and Tourette), patient's T cells seem to have abnormal DRs expression and/or responses to dopamine or production of dopamine, (xiii) drugs that affect the dopaminergic system have potent effects on T cells (e.g. dopamine=Intropin, L-dopa, bromocriptine, haloperidol, quinpirole, reserpine, pergolide, ecopipam, pimozide, amantadine, tetrabenazine, nomifensine, butaclamol). Dopamine-induced activation of resting Teffs and suppression of Tregs seem beneficial for health and may also be used for immunotherapy of cancer and infectious diseases. Independently, suppression of DRs in autoimmune and pro-inflammatory T cells, and also in cancerous T cells, may be advantageous. The review is relevant to Immunologists, Neurologists, Neuroimmunologists, Hematologists, Psychiatrists, Psychologists and Pharmacologists.
Collapse
Affiliation(s)
- M. Levite
- School of Pharmacy; Faculty of Medicine; The Hebrew University; Jerusalem Israel
- Institute of Gene Therapy; Hadassah Hebrew University Hospital; Jerusalem Israel
- School of Behavioral Sciences; Academic College of Tel-Aviv-Yaffo; Tel Aviv Israel
| |
Collapse
|
24
|
Mravec B, Vargovic P, Filipcik P, Novak M, Kvetnansky R. Effect of a single and repeated stress exposure on gene expression of catecholamine biosynthetic enzymes in brainstem catecholaminergic cell groups in rats. Eur J Neurosci 2015; 42:1872-86. [PMID: 25994480 DOI: 10.1111/ejn.12955] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 12/14/2022]
Abstract
Brainstem catecholaminergic neurons significantly participate in the regulation of neuroendocrine system activity, particularly during stressful conditions. However, so far the precise quantitative characterisation of basal and stress-induced changes in gene expression and protein levels of catecholaminergic biosynthetic enzymes in these neurons has been missing. Using a quantitative reverse transcription-polymerase chain reaction method, we investigated gene expression of catecholamine biosynthetic enzymes in brainstem noradrenergic and adrenergic cell groups in rats under resting conditions as well as in acutely and repeatedly stressed animals. For the first time, we described quantitative differences in basal levels of catecholamine biosynthetic enzyme mRNA in brainstem catecholaminergic ascending and descending projecting cell groups. Moreover, we found and defined some differences among catecholaminergic cell groups in the time-course of mRNA levels of catecholaminergic enzymes following a single and especially repeated immobilisation stress. The data obtained support the assumption that brainstem catecholaminergic cell groups represent a functionally differentiated system, which is highly (but specifically) activated in rats exposed to stress. Therefore, potential interventions for the treatment of stress-related diseases need to affect the activity of brainstem catecholaminergic neurons not uniformly but with some degree of selectivity.
Collapse
Affiliation(s)
- Boris Mravec
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06, Bratislava, Slovakia.,Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Slovakia
| | - Peter Vargovic
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06, Bratislava, Slovakia
| | - Peter Filipcik
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Richard Kvetnansky
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06, Bratislava, Slovakia
| |
Collapse
|
25
|
Laukova M, Tillinger A, Novakova M, Krizanova O, Kvetnansky R, Myslivecek J. Repeated immobilization stress increases expression of β3 -adrenoceptor in the left ventricle and atrium of the rat heart. Stress Health 2014; 30:301-9. [PMID: 23878066 DOI: 10.1002/smi.2515] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 05/24/2013] [Accepted: 06/21/2013] [Indexed: 11/12/2022]
Abstract
Stress is a contributor of many cardiovascular diseases. Positive inotropic and chronotropic effects of catecholamines are regulated via β-adrenergic receptors (ARs). Many reports exist concerning changes of cardiac β1 - and β2 -ARs in stress, but only a few deal with modulation of cardiac β3 -AR. Our aim was to analyze the expression and binding sites of β1 -, β2 - and β3 -ARs and adenylyl cyclase activity in the left ventricle, and β3 -AR expression and binding in the left atrium of rats exposed to acute and chronic immobilization stress (IMO). The concentration of noradrenaline in the ventricle decreased, while adrenaline increased, especially after repeated IMO. The mRNA and protein levels, and binding sites of β3 -subtype significantly rose following chronic IMO, while all parameters for β2 -AR dropped after single and repeated exposure. Similarly, the mRNA levels and binding sites for β3 -subtype increased in the left atrium as a consequence of chronic IMO. The rise in β3 -subtypes and a drop in β2 -subtypes resulted in inhibition of adenylyl cyclase activity within the left ventricle. Taken together, among other factors, up-regulation of β3 -AR could represent an adaptation mechanism, which might be related to altered physiological function of the left ventricle and atrium during prolonged emotional stress and might serve cardioprotective function during catecholamine overload.
Collapse
Affiliation(s)
- Marcela Laukova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, USA; Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | | | | | | |
Collapse
|
26
|
Wang D, Chen Y, Jiang J, Zhou A, Pan L, Chen Q, Qian Y, Chu M, Chen C. Carvedilol has stronger anti-inflammation and anti-virus effects than metoprolol in murine model with coxsackievirus B3-induced viral myocarditis. Gene 2014; 547:195-201. [PMID: 24905653 DOI: 10.1016/j.gene.2014.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/16/2014] [Accepted: 06/02/2014] [Indexed: 12/26/2022]
Abstract
AIMS This study aims to compare the effects of carvedilol and metoprolol in alleviating viral myocarditis (VMC) induced by coxsackievirus B3 (CVB3) in mice. METHODS A total of 116 Balb/c mice were included in this study. Ninety-six mice were inoculated intraperitoneally with CVB3 to induce VMC. The CVB3 inoculated mice were evenly divided into myocarditis group (n=32), carvedilol group (n=32) and metoprolol group (n=32). Twenty mice (control group) were inoculated intraperitoneally with normal saline. Hematoxylin and eosin staining and histopathologic scoring were used to investigate the effects of carvedilol and metoprolol on myocardial histopathologic changes on days 3 and 5. In addition, serum cTn-I levels, cytokine levels and virus titers were determined using chemiluminescence immunoassay, enzyme-linked immunosorbent assay and plaque assay, respectively, on days 3 and 5. Finally, the levels of phosphorylated p38MAPK were studied using immunohistochemical staining and Western blotting on day 5. RESULTS Carvedilol had a stronger effect than metoprolol in reducing the pathological scores of VMC induced by CVB3. Both carvedilol and metoprolol reduced the levels of cTn-I, but the effect of carvedilol was stronger. Carvedilol and metoprolol decreased the levels of myocardial pro-inflammatory cytokines and increased the expression of anti-inflammatory cytokine, with the effects of carvedilol being stronger than those of metoprolol. Carvedilol had a stronger effect in reducing myocardial virus concentration compared with metoprolol. Carvedilol was stronger than metoprolol in decreasing the levels of myocardial phosphorylated p38MAPK. CONCLUSIONS In conclusion, carvedilol was more potent than metoprolol in ameliorating myocardial lesions in VMC, probably due to its stronger modulation of the balance between pro- and anti-inflammatory cytokines by inhibiting the activation of p38MAPK pathway through β1- and β2-adrenoreceptors.
Collapse
Affiliation(s)
- Dan Wang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, PR China; Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, PR China
| | - Yiming Chen
- Department of Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, PR China
| | - Jianbin Jiang
- Department of Pediatrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, PR China
| | - Aihua Zhou
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, PR China
| | - Lulu Pan
- Department of Pediatrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, PR China
| | - Qi Chen
- Department of Pediatrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, PR China
| | - Yan Qian
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, PR China
| | - Maoping Chu
- Department of Pediatrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, PR China.
| | - Chao Chen
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, PR China.
| |
Collapse
|
27
|
Zha J, Smith A, Andreansky S, Bracchi-Ricard V, Bethea JR. Chronic thoracic spinal cord injury impairs CD8+ T-cell function by up-regulating programmed cell death-1 expression. J Neuroinflammation 2014; 11:65. [PMID: 24690491 PMCID: PMC4230802 DOI: 10.1186/1742-2094-11-65] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 03/21/2014] [Indexed: 11/10/2022] Open
Abstract
Background Chronic spinal cord injury (SCI) induces immune depression in patients, which contributes to their higher risk of developing infections. While defects in humoral immunity have been reported, complications in T-cell immunity during the chronic phase of SCI have not yet been explored. Methods To assess the impact of chronic SCI on peripheral T-cell number and function we used a mouse model of severe spinal cord contusion at thoracic level T9 and performed flow cytometry analysis on the spleen for T-cell markers along with intracellular cytokine staining. Furthermore we identified alterations in sympathetic activity in the spleen of chronic SCI mice by measuring splenic levels of tyrosine hydroxylase (TH) and norepinephrine (NE). To gain insight into the neurogenic mechanism leading to T-cell dysfunction we performed in vitro NE stimulation of T-cells followed by flow cytometry analysis for T-cell exhaustion marker. Results Chronic SCI impaired both CD4+ and CD8+ T-cell cytokine production. The observed T-cell dysfunction correlated with increased expression of programmed cell death 1 (PD-1) exhaustion marker on these cells. Blocking PD-1 signaling in vitro restored the CD8+ T-cell functional defect. In addition, we showed that chronic SCI mice had higher levels of splenic NE, which contributed to the T-cell exhaustion phenotype, as PD-1 expression on both CD4+ and CD8+ T-cells was up-regulated following sustained exposure to NE in vitro. Conclusions These studies indicate that alteration of sympathetic activity following chronic SCI induces CD8+ T-cell exhaustion, which in turn impairs T-cell function and contributes to immune depression. Inhibition of the exhaustion pathway should be considered as a new therapeutic strategy for chronic SCI-induced immune depression.
Collapse
Affiliation(s)
| | | | | | - Valerie Bracchi-Ricard
- The Miami Project to Cure Paralysis, Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | | |
Collapse
|
28
|
Urbina M, Arroyo R, Lima L. 5-HT7 receptors and tryptophan hydroxylase in lymphocytes of rats: mitogen activation, physical restraint or treatment with reserpine. Neuroimmunomodulation 2014; 21:240-9. [PMID: 24603678 DOI: 10.1159/000357148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/06/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Serotonin (5-HT)7 receptors in lymphocytes play a relevant role as modulators of T cell functions and might be modified by stress protocols. The aims of this work were to evaluate: (i) the presence of 5-HT7 receptors in specific lymphocyte populations, (ii) the probable modifications of them by inflammatory stress with mitogen and (iii) the effects of physical and pharmacological stress. METHODS Blood lymphocytes were isolated by density gradients and differential adhesion to plastic. Concanavalin A (Con A) was systemically administered (500 μg/kg) or added to lymphocyte cultures (2.5 μg/ml, final volume 200 μl). Physical restraint was performed in Plexiglass boxes for 5 h per day for 5 days. Reserpine administration was 2.5 mg/kg for 3 days. Immunocytochemical labeling of CD4+, CD8+ and 5-HT7 receptors, and also tryptophan hydroxylase cells was performed. mRNA of 5-HT7 receptors was evaluated by RT-PCR. Controls were included for each protocol. RESULTS Con A treatment or culture exposure increased the number of lymphocytes expressing 5-HT7 receptors or tryptophan hydroxylase, as compared to absence of the mitogen. Receptors were present in 12-16% of total rat lymphocytes, in ∼10% of CD4+ and in ∼5% of CD8+ cells from control rats. CD4+ decreased, and CD8+ and 5-HT7 cells increased after physical restraint. Reserpine treatment elevated CD8+ and 5-HT7 cells. Con A and physical restraint, but not reserpine treatment, significantly augmented 5-HT7 receptor mRNA in lymphocytes. CONCLUSIONS Rat lymphocytes, expressing tryptophan hydroxylase, could synthesize 5-HT, functioning as a direct autocrine modulator. The modifications of CD4+, CD8+ and 5-HT7 receptors in lymphocytes by three stress protocols could have an impact on immune responses. In addition, the differential distribution of 5-HT7 receptors indicates potential specific physiopathological roles.
Collapse
Affiliation(s)
- Mary Urbina
- Laboratorio de Neuroquímica, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | | | | |
Collapse
|