1
|
Wang Y, Fan L, He Y, Yuan L, Li Z, Zheng W, Tang J, Li C, Jin K, Liu W, Chen X, Ouyang L, Ma X. Compensatory thickening of cortical thickness in early stage of schizophrenia. Cereb Cortex 2024; 34:bhae255. [PMID: 38897816 DOI: 10.1093/cercor/bhae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Brain structural abnormality has been observed in the prodromal and early stages of schizophrenia, but the mechanism behind it is not clear. In this study, to explore the association between cortical abnormalities, metabolite levels, inflammation levels and clinical symptoms of schizophrenia, 51 drug-naive first-episode schizophrenia (FES) patients, 51 ultra-high risk for psychosis (UHR), and 51 healthy controls (HC) were recruited. We estimated gray matter volume (GMV), cortical thickness (CT), concentrations of different metabolites, and inflammatory marks among four groups (UHR converted to psychosis [UHR-C], UHR unconverted to psychosis [UHR-NC], FES, HC). UHR-C group had more CT in the right lateral occipital cortex and the right medial orbito-frontal cortex (rMOF), while a significant reduction in CT of the right fusiform cortex was observed in FES group. UHR-C group had significantly higher concentration of IL-6, while IL-17 could significantly predict CT of the right fusiform and IL-4 and IL-17 were significant predictors of CT in the rMOF. To conclude, it is reasonable to speculate that the increased CT in UHR-C group is related to the inflammatory response, and may participate in some compensatory mechanism, but might become exhaustive with the progress of the disease due to potential neurotoxic effects.
Collapse
Affiliation(s)
- Yujue Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
| | - Lejia Fan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, 6875 Bd LaSalle, Verdun, Montreal, QC H4H 1R3, Canada
| | - Ying He
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- China National Technology Institute on Mental Disorders, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- Institute of Mental Health, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- Hunan Medical Center for Mental Health, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
| | - Liu Yuan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
| | - Zongchang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
| | - Wenxiao Zheng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
| | - Jinsong Tang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
| | - Chunwang Li
- Department of Radiology, Hunan Children's Hospital, Yuhua District catalpa garden road 86, Changsha 410007, Hunan, China
| | - Ke Jin
- Department of Radiology, Hunan Children's Hospital, Yuhua District catalpa garden road 86, Changsha 410007, Hunan, China
| | - Weiqing Liu
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, #165 Sanlin road, Pudong New Area,Shanghai 200124, China
- Laboratory for Molecular Mechanisms of Brain Development, Center for Brain Science (CBS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Xiaogang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- China National Technology Institute on Mental Disorders, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- Institute of Mental Health, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- Hunan Medical Center for Mental Health, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
| | - Lijun Ouyang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
| | - Xiaoqian Ma
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- China National Technology Institute on Mental Disorders, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- Institute of Mental Health, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- Hunan Medical Center for Mental Health, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
| |
Collapse
|
2
|
Wahid HH, Anahar FN, Isahak NH, Mohd Zoharodzi J, Mohammad Khoiri SNL, Mohamad Zainal NH, Kamarudin N, Ismail H, Mustafa Mahmud MIA. Role of Platelet Activating Factor as a Mediator of Inflammatory Diseases and Preterm Delivery. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:862-878. [PMID: 38403163 DOI: 10.1016/j.ajpath.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/27/2024]
Abstract
Nearly 70% of preterm deliveries occur spontaneously, and the clinical pathways involved include preterm labor and preterm premature rupture of membranes. Prediction of preterm delivery is considered crucial due to the significant effects of preterm birth on health and the economy at both the personal and community levels. Although similar inflammatory processes occur in both term and preterm delivery, the premature activation of these processes or exaggerated inflammatory response triggered by infection or sterile factors leads to preterm delivery. Platelet activating factor (PAF) is a phosphoglycerylether lipid mediator of inflammation that is implicated in infections, cancers, and various chronic diseases and disorders including cardiovascular, renal, cerebrovascular, and central nervous system diseases. In gestational tissues, PAF mediates the inflammatory pathways that stimulate the effector mechanisms of labor, including myometrial contraction, cervical dilation, and fetal membrane rupture. Women with preterm labor and preterm premature rupture of membranes have increased levels of PAF in their amniotic fluid. In mice, the intrauterine or intraperitoneal administration of carbamyl PAF activates inflammation in gestational tissues, thereby eliciting preterm delivery. This review summarizes recent research on PAF as an important inflammatory mediator in preterm delivery and in other inflammatory disorders, highlighting its potential value for prediction, intervention, and prevention of these diseases.
Collapse
Affiliation(s)
- Hanan H Wahid
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia.
| | - Fatin N Anahar
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Nurul H Isahak
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Juwairiyah Mohd Zoharodzi
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Siti N L Mohammad Khoiri
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Nurul H Mohamad Zainal
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University of Putra Malaysia, Selangor, Malaysia
| | - Norhidayah Kamarudin
- Department of Pathology, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Hamizah Ismail
- Department of Obstetrics & Gynaecology, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Mohammed I A Mustafa Mahmud
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| |
Collapse
|
3
|
Dziedzic A, Maciak K, Miller ED, Starosta M, Saluk J. Targeting Vascular Impairment, Neuroinflammation, and Oxidative Stress Dynamics with Whole-Body Cryotherapy in Multiple Sclerosis Treatment. Int J Mol Sci 2024; 25:3858. [PMID: 38612668 PMCID: PMC11011409 DOI: 10.3390/ijms25073858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/05/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Multiple sclerosis (MS), traditionally perceived as a neurodegenerative disease, exhibits significant vascular alternations, including blood-brain barrier (BBB) disruption, which may predispose patients to increased cardiovascular risks. This vascular dysfunction is intricately linked with the infiltration of immune cells into the central nervous system (CNS), which plays a significant role in perpetuating neuroinflammation. Additionally, oxidative stress serves not only as a byproduct of inflammatory processes but also as an active contributor to neural damage. The synthesis of these multifaceted aspects highlights the importance of understanding their cumulative impact on MS progression. This review reveals that the triad of vascular damage, chronic inflammation, and oxidative imbalance may be considered interdependent processes that exacerbate each other, underscoring the need for holistic and multi-targeted therapeutic approaches in MS management. There is a necessity for reevaluating MS treatment strategies to encompass these overlapping pathologies, offering insights for future research and potential therapeutic interventions. Whole-body cryotherapy (WBCT) emerges as one of the potential avenues for holistic MS management approaches which may alleviate the triad of MS progression factors in multiple ways.
Collapse
Affiliation(s)
- Angela Dziedzic
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (K.M.)
| | - Karina Maciak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (K.M.)
| | - Elżbieta Dorota Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland; (E.D.M.); (M.S.)
| | - Michał Starosta
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland; (E.D.M.); (M.S.)
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (K.M.)
| |
Collapse
|
4
|
Wang J, Zhu F, Huang W, Yang C, Chen Z, Lei Y, Wang Y, Meng Y, Liu Y, Liu X, Sun B, Li H. Acupuncture at ST36 ameliorates experimental autoimmune encephalomyelitis via affecting the function of B cells. Int Immunopharmacol 2023; 123:110748. [PMID: 37531831 DOI: 10.1016/j.intimp.2023.110748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/15/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
Acupuncture at ST36 can alleviate a variety of autoimmune diseases, including experimental autoimmune encephalomyelitis (EAE), while the specific mechanism for the treatment of EAE is not clear. In this study, we found that acupuncture at ST36 can significantly increase the excitability of splenic sympathetic nerve, and promote the differentiation of peripheral B and CD4+T cells in the anti-inflammatory direction. After blocking the splenic sympathetic nerve with 6-OHDA, this anti-inflammatory effect of acupuncture is partially reversed. In addition, the results of western blot and qPCR showed that acupuncture at ST36 simultaneously activated the β2-AR-cAMP signaling pathway in the splenic B and CD4+T cells, and this activation was more significant in B cells. In vitro, when CD4+T cells were cultured alone, norepinephrine (NE) had no significant effect on their differentiation. While in the presence of B cells, NE significantly promotes the anti-inflammatory differentiation of B and CD4+T cells. Therefore, the above results reveal that acupuncture can relieve EAE by stimulating the sympathetic nerves of spleen, mainly through acting on B cells to mediate anti-inflammatory effects, and indirectly affecting the function of CD4+T cells.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Fangyi Zhu
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Wei Huang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Changxin Yang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Zhengyi Chen
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Yanting Lei
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Yanping Wang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Yanting Meng
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Yumei Liu
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Xijun Liu
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Bo Sun
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China.
| | - Hulun Li
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China.
| |
Collapse
|
5
|
Hu W, Li P, Zeng N, Tan S. Exploring the hub mechanisms of ischemic stroke based on protein-protein interaction networks related to ischemic stroke and inflammatory bowel disease. Sci Rep 2023; 13:1741. [PMID: 36720935 PMCID: PMC9887582 DOI: 10.1038/s41598-023-27459-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/02/2023] [Indexed: 02/01/2023] Open
Abstract
Ischemic stroke is highly concerning because it often leads to severe long-term neurological disability. Among clinical trials, ischemic stroke and inflammatory bowel disease interactions have been increasingly reported in recent years. Therefore, using bioinformatics approaches to explore novel protein interactions between them is of interest. We performed this exploratory analysis by using bioinformatics tools such as string to analyze gene data downloaded from NHGRI-GWAS data related to ischemic stroke and inflammatory bowel disease. We constructed a prospective protein interaction network for ischemic stroke and inflammatory bowel disease, identifying cytokine and interleukin-related signaling pathways, Spliceosome, Ubiquitin-Proteasome System (UPS), Thrombus, and Anticoagulation pathways as the crucial biological mechanisms of the network. Furthermore, we also used data-independent acquisition mass spectrometry (DIA-MS) to detect differential protein expression in eight samples, which also suggested that immune system, signal transduction, and hemostasis-related pathways are key signaling pathways. These findings may provide a basis for understanding the interaction between these two states and exploring possible molecular and therapeutic studies in the future.
Collapse
Affiliation(s)
- Wei Hu
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.,Department of Rehabilitation, Xiangya Bo'ai Rehabilitation Hospital, Changsha, 410004, China
| | - Ping Li
- Department of Rehabilitation, Xiangya Bo'ai Rehabilitation Hospital, Changsha, 410004, China
| | - Nianju Zeng
- Department of Rehabilitation, Xiangya Bo'ai Rehabilitation Hospital, Changsha, 410004, China.
| | - Sheng Tan
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
6
|
Liu R, Du S, Zhao L, Jain S, Sahay K, Rizvanov A, Lezhnyova V, Khaibullin T, Martynova E, Khaiboullina S, Baranwal M. Autoreactive lymphocytes in multiple sclerosis: Pathogenesis and treatment target. Front Immunol 2022; 13:996469. [PMID: 36211343 PMCID: PMC9539795 DOI: 10.3389/fimmu.2022.996469] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by destruction of the myelin sheath structure. The loss of myelin leads to damage of a neuron’s axon and cell body, which is identified as brain lesions on magnetic resonance image (MRI). The pathogenesis of MS remains largely unknown. However, immune mechanisms, especially those linked to the aberrant lymphocyte activity, are mainly responsible for neuronal damage. Th1 and Th17 populations of lymphocytes were primarily associated with MS pathogenesis. These lymphocytes are essential for differentiation of encephalitogenic CD8+ T cell and Th17 lymphocyte crossing the blood brain barrier and targeting myelin sheath in the CNS. B-lymphocytes could also contribute to MS pathogenesis by producing anti-myelin basic protein antibodies. In later studies, aberrant function of Treg and Th9 cells was identified as contributing to MS. This review summarizes the aberrant function and count of lymphocyte, and the contributions of these cell to the mechanisms of MS. Additionally, we have outlined the novel MS therapeutics aimed to amend the aberrant function or counts of these lymphocytes.
Collapse
Affiliation(s)
- Rongzeng Liu
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Shushu Du
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Lili Zhao
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Sahil Jain
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Kritika Sahay
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Albert Rizvanov
- Gene and cell Department, Kazan Federal University, Kazan, Russia
| | - Vera Lezhnyova
- Gene and cell Department, Kazan Federal University, Kazan, Russia
| | - Timur Khaibullin
- Neurological Department, Republican Clinical Neurological Center, Kazan, Russia
| | | | - Svetlana Khaiboullina
- Gene and cell Department, Kazan Federal University, Kazan, Russia
- *Correspondence: Svetlana Khaiboullina, ; Manoj Baranwal, ;
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
- *Correspondence: Svetlana Khaiboullina, ; Manoj Baranwal, ;
| |
Collapse
|
7
|
Wang TJ, Wu ZY, Yang CH, Cao L, Wang ZZ, Cao ZY, Yu MY, Zhao MR, Zhang CF, Liu WJ, Zhao BJ, Shang XQ, Feng Y, Wang H, Deng LL, Xiao BG, Guo HY, Xiao W. Multiple Mechanistic Models Reveal the Neuroprotective Effects of Diterpene Ginkgolides against Astrocyte-Mediated Demyelination via the PAF-PAFR Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1565-1597. [PMID: 35902245 DOI: 10.1142/s0192415x22500665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Currently, therapies for ischemic stroke are limited. Ginkgolides, unique Folium Ginkgo components, have potential benefits for ischemic stroke patients, but there is little evidence that ginkgolides improve neurological function in these patients. Clinical studies have confirmed the neurological improvement efficacy of diterpene ginkgolides meglumine injection (DGMI), an extract of Ginkgo biloba containing ginkgolides A (GA), B (GB), and K (GK), in ischemic stroke patients. In the present study, we performed transcriptome analyses using RNA-seq and explored the potential mechanism of ginkgolides in seven in vitro cell models that mimic pathological stroke processes. Transcriptome analyses revealed that the ginkgolides had potential antiplatelet properties and neuroprotective activities in the nervous system. Specifically, human umbilical vein endothelial cells (HUVEC-T1 cells) showed the strongest response to DGMI and U251 human glioma cells ranked next. The results of pathway enrichment analysis via gene set enrichment analysis (GSEA) showed that the neuroprotective activities of DGMI and its monomers in the U251 cell model were related to their regulation of the sphingolipid and neurotrophin signaling pathways. We next verified these in vitro findings in an in vivo cuprizone (CPZ, bis(cyclohexanone)oxaldihydrazone)-induced model. GB and GK protected against demyelination in the corpus callosum (CC) and promoted oligodendrocyte regeneration in CPZ-fed mice. Moreover, GB and GK antagonized platelet-activating factor (PAF) receptor (PAFR) expression in astrocytes, inhibited PAF-induced inflammatory responses, and promoted brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) secretion, supporting remyelination. These findings are critical for developing therapies that promote remyelination and prevent stroke progression.
Collapse
Affiliation(s)
- Tuan-Jie Wang
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, P. R. China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu 222001, P. R. China
| | - Zi-Yin Wu
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu 222001, P. R. China
| | - Chun-Hua Yang
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, P. R. China
- CapitalBio Corporation, Beijing 102206, P. R. China
| | - Liang Cao
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, P. R. China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu 222001, P. R. China
| | - Zhen-Zhong Wang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu 222001, P. R. China
| | - Ze-Yu Cao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu 222001, P. R. China
| | - Ming-Yang Yu
- Key Laboratory of Standardization of Chinese Medicines, Ministry of Education Institute of Chinese Materia Medica of Shanghai, University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Meng-Ru Zhao
- Key Laboratory of Standardization of Chinese Medicines, Ministry of Education Institute of Chinese Materia Medica of Shanghai, University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Chen-Feng Zhang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu 222001, P. R. China
| | - Wen-Jun Liu
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu 222001, P. R. China
| | - Bin-Jiang Zhao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu 222001, P. R. China
| | - Xue-Qi Shang
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, P. R. China
- CapitalBio Corporation, Beijing 102206, P. R. China
| | - Yu Feng
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, P. R. China
- CapitalBio Corporation, Beijing 102206, P. R. China
| | - Hui Wang
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, P. R. China
- CapitalBio Corporation, Beijing 102206, P. R. China
| | - Li-Li Deng
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, P. R. China
- CapitalBio Corporation, Beijing 102206, P. R. China
| | - Bao-Guo Xiao
- Department of Neurology and National Research Center for Aging and Medicine Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Hong-Yan Guo
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, P. R. China
- CapitalBio Corporation, Beijing 102206, P. R. China
| | - Wei Xiao
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, P. R. China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu 222001, P. R. China
| |
Collapse
|
8
|
Kraus RF, Gruber MA. Neutrophils-From Bone Marrow to First-Line Defense of the Innate Immune System. Front Immunol 2022; 12:767175. [PMID: 35003081 PMCID: PMC8732951 DOI: 10.3389/fimmu.2021.767175] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophils (polymorphonuclear cells; PMNs) form a first line of defense against pathogens and are therefore an important component of the innate immune response. As a result of poorly controlled activation, however, PMNs can also mediate tissue damage in numerous diseases, often by increasing tissue inflammation and injury. According to current knowledge, PMNs are not only part of the pathogenesis of infectious and autoimmune diseases but also of conditions with disturbed tissue homeostasis such as trauma and shock. Scientific advances in the past two decades have changed the role of neutrophils from that of solely immune defense cells to cells that are responsible for the general integrity of the body, even in the absence of pathogens. To better understand PMN function in the human organism, our review outlines the role of PMNs within the innate immune system. This review provides an overview of the migration of PMNs from the vascular compartment to the target tissue as well as their chemotactic processes and illuminates crucial neutrophil immune properties at the site of the lesion. The review is focused on the formation of chemotactic gradients in interaction with the extracellular matrix (ECM) and the influence of the ECM on PMN function. In addition, our review summarizes current knowledge about the phenomenon of bidirectional and reverse PMN migration, neutrophil microtubules, and the microtubule organizing center in PMN migration. As a conclusive feature, we review and discuss new findings about neutrophil behavior in cancer environment and tumor tissue.
Collapse
Affiliation(s)
- Richard Felix Kraus
- Department of Anesthesiology, University Medical Center Regensburg, Regensburg, Germany
| | | |
Collapse
|
9
|
Ouyang L, Li D, Li Z, Ma X, Yuan L, Fan L, Yang Z, Zhang Z, Li C, He Y, Chen X. IL-17 and TNF-β: Predictive biomarkers for transition to psychosis in ultra-high risk individuals. Front Psychiatry 2022; 13:1072380. [PMID: 36590607 PMCID: PMC9800867 DOI: 10.3389/fpsyt.2022.1072380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Dysregulation of immunity, such as levels of inflammatory factors, has been regarded as a sign of schizophrenia. Changes in cytokine levels are not only described in the early onset of disease, but also observed in ultra-high risk (UHR) individuals. This study aimed to investigate the potential of cytokines as biomarkers for psychotic disorders and in individuals at UHR of developing a psychotic disorder in the future. METHODS The Luminex liquid chip technology was used to detect the concentrations of Interferon-gamma (INF-γ), Interleukin (IL)-2, Interleukin (IL)-4, Interleukin (IL)-6, Interleukin (IL)-17, Interleukin-1beta (IL-1β), and Tumor Necrosis Factor-beta (TNF-β) in the plasma of all subjects. Meanwhile, the plasma level of Tumor Necrosis Factor-Alpha (TNF-α) was measured with the enzyme-linked immunosorbent assay (ELISA) kits. Then, the levels of these cytokines were compared among patients with Drug-naïve first-episode schizophrenia (FES; n = 40), UHR population (UHR; n = 49), and healthy controls (HCs; n = 30). Baseline cytokine levels were compared among UHR individuals who later transitioned (UHR-T; n = 14), those who did not transition (UHR-NT; n = 35), and HCs (n = 30). RESULTS Our analysis results showed that IL-1β levels were significantly higher in UHR group than HC group (p = 0.015). Meanwhile, TNF-α concentration was significantly increased in FES group compared with HC group (p = 0.027). IL-17 (p = 0.04) and TNF-β (p = 0.008) levels were significantly higher in UHR-T group compared with UHR-NT group. CONCLUSION In conclusion, our findings suggest that the immuno-inflammatory activation level is increased in the early stage of psychosis before psychotic conversion and the Drug-naïve FES. IL-1β and TNF-α are the representatives of the specific biomarkers for UHR and FES, respectively. IL-17 and TNF-β may be the potential selective predictive biomarkers for future transition in UHR individuals.
Collapse
Affiliation(s)
- Lijun Ouyang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Changsha, Hunan, China
| | - David Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Changsha, Hunan, China
| | - Zongchang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Changsha, Hunan, China
| | - Xiaoqian Ma
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Changsha, Hunan, China
| | - Liu Yuan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Changsha, Hunan, China
| | - Lejia Fan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Changsha, Hunan, China
| | - Zihao Yang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Changsha, Hunan, China
| | - Zhenmei Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Changsha, Hunan, China
| | - Chunwang Li
- Department of Radiology, Hunan Children's Hospital, Changsha, China
| | - Ying He
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Changsha, Hunan, China
| | - Xiaogang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Changsha, Hunan, China
| |
Collapse
|
10
|
Meng-Ru Z, Ruo-Xuan S, Ming-Yang Y, Tong T, Lei Z, Ying-Bo Y, Bao-Guo X. Antagonizing astrocytic platelet activating factor receptor-neuroinflammation for total flavone of epimedium in response to cuprizone demyelination. Int Immunopharmacol 2021; 101:108181. [PMID: 34607229 DOI: 10.1016/j.intimp.2021.108181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/07/2021] [Accepted: 09/18/2021] [Indexed: 01/01/2023]
Abstract
Demyelinating diseases of the central nervous system are characterized by recurrent demyelination and progressive neurodegeneration, but there are no clinical drugs targeting myelin regeneration or improving functional disability in the treatment of multiple sclerosis. Total flavone of Epimedium (TFE) is the main active components of Epimedium, which exhibits the beneficial biological activities in the treatment of diseases, but there is no report in the treatment of demyelinating disorder. The purpose of this study was to explore the therapeutic potential and possible mechanism of TFE in the treatment of demyelination. The results showed that TFE efficiently improved the behavioural performance and histological demyelination in cuprizone (CPZ)-induced demyelinating model. In terms of action, TFE increased astrocytes enrichment in corpus callosum, striatum and cortex, and promoted astrocytes to express neurotrophic factors. Furthermore, the expression of platelet-activating factor receptor (PAFR) in astrocytes was induced by CPZ feeding and LPS stimulation, accompanied by the increase of inflammatory cytokines TNF-α,IL-6 and IL-1β. TFE declined the expression of PAFR, and inhibited inflammatory response. At the same time, TFE also antagonized PAFR activation and inflammatory response triggered by PAF, which further confirmed that TFE, as a new PAFR antagonist, inhibited the astrocyte-derived inflammatory response by antagonizing PAFR-neuroinflammation axis, thus contributing to myelin protection and regeneration.
Collapse
Affiliation(s)
- Zhao Meng-Ru
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Sui Ruo-Xuan
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Ming-Yang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tian Tong
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhang Lei
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yang Ying-Bo
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao Bao-Guo
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, China.
| |
Collapse
|