1
|
Salvo N, Charles AM, Mohr AM. The Intersection of Trauma and Immunity: Immune Dysfunction Following Hemorrhage. Biomedicines 2024; 12:2889. [PMID: 39767795 PMCID: PMC11673815 DOI: 10.3390/biomedicines12122889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Hemorrhagic shock is caused by rapid loss of a significant blood volume, which leads to insufficient blood flow and oxygen delivery to organs and tissues, resulting in severe physiological derangements, organ failure, and death. Physiologic derangements after hemorrhage are due in a large part to the body's strong inflammatory response, which leads to severe immune dysfunction, and secondary complications such as chronic immunosuppression, increased susceptibility to infection, coagulopathy, multiple organ failure, and unregulated inflammation. Immediate management of hemorrhagic shock includes timely control of the source of bleeding, restoring intravascular volume, preferably with whole blood, and prevention of ischemia and organ failure by optimizing tissue oxygenation. However, currently, there are no clinically effective treatments available that can stabilize the immune response to hemorrhage and reinstate homeostatic conditions. In this review, we will discuss what is known about immunologic dysfunction following hemorrhage and potential therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Alicia M. Mohr
- Department of Surgery, Sepsis and Critical Illness Research Center, College of Medicine, University of Florida, 1600 SW Archer Road Box 100108, Gainesville, FL 32610, USA; (N.S.); (A.M.C.)
| |
Collapse
|
2
|
Ciancaglini R, Botash AS, Armijo-Garcia V, Hymel KP, Thomas NJ, Hicks SD. A Pilot Study of Saliva MicroRNA Signatures in Children with Moderate-to-Severe Traumatic Brain Injury. J Clin Med 2024; 13:5065. [PMID: 39274278 PMCID: PMC11396305 DOI: 10.3390/jcm13175065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Background/Objectives: Traumatic brain injury (TBI) is a leading cause of death and disability in children. Currently, no biological test can predict outcomes in pediatric TBI, complicating medical management. This study sought to identify brain-related micro-ribosomal nucleic acids (miRNAs) in saliva associated with moderate-to-severe TBI in children, offering a potential non-invasive, prognostic tool. Methods: A case-control design was used, enrolling participants ≤ 18 years old from three pediatric trauma centers. Participants were divided into moderate-to-severe TBI and non-TBI trauma control groups. Saliva samples were collected within 24 h of injury, with additional samples at 24-48 h and >48 h post-injury from the TBI group. miRNA profiles were visualized with partial least squares discriminant analysis (PLSDA) and hierarchical clustering. Mann-Whitney testing was used to compare miRNAs between groups, and mixed models were used to assess longitudinal expression patterns. DIANA miRPath v3.0 was used to interrogate the physiological functions of miRNAs. Results: Twenty-three participants were enrolled (14 TBI, nine controls). TBI and control groups displayed complete separation of miRNA profiles on PLSDA. Three miRNAs were elevated (adj. p < 0.05) in TBI (miR-1255b-5p, miR-3142, and miR-4320), and two were lower (miR-326 and miR-4646-5p). Three miRNAs (miR-3907, miR-4254, and miR-1273g-5p) showed temporal changes post-injury. Brain-related targets of these miRNAs included the glutamatergic synapse and GRIN2B. Conclusions: This study shows that saliva miRNA profiles in children with moderate-to-severe TBI may differ from those with non-TBI trauma and exhibit temporal changes post-injury. These miRNAs could serve as non-invasive biomarkers for prognosticating pediatric TBI outcomes. Further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Robert Ciancaglini
- Department of Pediatrics, Penn State Health Children's Hospital, Hershey, PA 17033, USA
| | - Ann S Botash
- Department of Pediatrics, SUNY Upstate Golisano Children's Hospital, Syracuse, NY 13210, USA
| | | | - Kent P Hymel
- Department of Pediatrics, Penn State Health Children's Hospital, Hershey, PA 17033, USA
| | - Neal J Thomas
- Department of Pediatrics, Penn State Health Children's Hospital, Hershey, PA 17033, USA
| | - Steven D Hicks
- Department of Pediatrics, Penn State Health Children's Hospital, Hershey, PA 17033, USA
| |
Collapse
|
3
|
Chen Q, Zhang Y, Rong J, Chen C, Wang S, Wang J, Li Z, Hou Z, Liu D, Tao J, Xu J. MicroRNA expression profile of chicken liver at different times after Histomonas meleagridis infection. Vet Parasitol 2024; 329:110200. [PMID: 38744230 DOI: 10.1016/j.vetpar.2024.110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Histomonas meleagridis, an anaerobic intercellular parasite, is known to infect gallinaceous birds, particularly turkeys and chickens. The resurgence of histomonosis in recent times has resulted in significant financial setbacks due to the prohibition of drugs used for disease treatment. Currently, research on about H. meleagridis primarily concentrate on the examination of its virulence, gene expression analysis, and the innate immunity response of the host organism. However, there is a lack of research on differentially expressed miRNAs (DEMs) related to liver infection induced by H. meleagridis. In this study, the weight gain and pathological changes at various post-infection time points were evaluated through animal experiments to determine the peak and early stages of infection. Next, High-throughput sequencing was used to examine the expression profile of liver miRNA at 10 and 15 days post-infection (DPI) in chickens infected with the Chinese JSYZ-F strain of H. meleagridis. A comparison with uninfected controls revealed the presence of 120 and 118 DEMs in the liver of infected chickens at 10 DPI and 15 DPI, respectively, with 74 DEMs being shared between the two time points. Differentially expressed microRNAs (DEMs) were categorized into three groups based on the time post-infection. The first group (L1) includes 45 miRNAs that were differentially expressed only at 10 DPI and were predicted to target 1646 genes. The second group (L2) includes 43 miRNAs that were differentially expressed only at 15 DPI and were predicted to target 2257 genes. The third group (L3) includes 75 miRNAs that were differentially expressed at both 10 DPI and 15 DPI and were predicted to target 1623 genes. At L1, L2, and L3, there were 89, 87, and 41 significantly enriched Gene Ontology (GO) terms, respectively (p<0.05). The analysis of differentially expressed miRNA target genes using KEGG pathways revealed significant enrichment at L1, L2, and L3, with 3, 4, and 5 pathways identified, respectively (p<0.05). This article suggests that the expression of liver miRNA undergoes dynamic alterations due to H. meleagridis and the host. It showed that the expression pattern of L1 class DEMs was more conducive to regulating the development of the inflammatory response, while the L2 class DEMs were more conducive to augmenting the inflammatory response. The observed patterns of miRNA expression associated with inflammation were in line with the liver's inflammatory process following infection. The results of this study provide a basis for conducting a comprehensive analysis of the pathogenic mechanism of H. meleagridis from the perspective of host miRNAs.
Collapse
Affiliation(s)
- Qiaoguang Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yuming Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Animal Husbandry and Veterinary Station of Daxindian, Penglai District, Yantai 265600, China
| | - Jie Rong
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Chen Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Shuang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jiege Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Zaifan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Zhaofeng Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
4
|
Haroun RAH, Osman WH, Eessa AM. Prognostic significance of serum miR-18a-5p in severe COVID-19 Egyptian patients. J Genet Eng Biotechnol 2023; 21:114. [PMID: 37953403 PMCID: PMC10641059 DOI: 10.1186/s43141-023-00565-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND The identification of miRNAs as well as characterization of miRNA-mRNA interactions in SARS-CoV-2 infection is important to understand their role in disease pathogenesis. Therefore the aim of the present study was to measure the expression levels of hsa-mir-18a-5p in the sera of severe COVID-19 Egyptian patients admitted to ICU to investigate its roles in the pathogenesis and severity of COVID-19 disease. METHODS A total of 180 unvaccinated severe COVID-19 patients were enrolled in our study. Besides the routine laboratory work, the expression level of hsa-mir-18a-5p was done using reverse transcription quantitative real-time PCR (RTqPCR) technique. Also, target genes of hsa-mir-18a-5p were explored by using online bioinformatics databases. RESULTS The expression level of hsa-mir-18a-5p decreased in nonsurvival severe COVID-19 patients (0.38 ± 0.26) when compared to the survival ones (0.84 ± 0.23). While as a prognostic tool for the prediction of bad prognosis and mortality among severe COVID-19 patients, our results showed that the serum hsa-mir-18a-5p expression level is a good sensitive and specific marker. By using bioinformatics tools, our results revealed that the decreased hsa-mir-18a-5p expression level may have a crucial role in COVID-19 pathogenesis and severity through decreased immunological responses (interpreted as lymphopenia) or increased inflammation (interpreted as increased serum levels of IL-6, CRP, LDH). CONCLUSION Taken together, the decreased expression level of hsa-mir-18a-5p could be a bad prognostic marker and therapeutic overexpression of hsa-mir-18a-5p could be a novel approach in the treatment of COVID-19 disease.
Collapse
Affiliation(s)
| | - Waleed H Osman
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Asmaa M Eessa
- Department of Geriatric Medicine and Gerontology, Faculty of Medicine, Port-Said University, Port-Said, Egypt
| |
Collapse
|
5
|
Feng Z, Fan Y, Xie J, Liu S, Duan C, Wang Q, Ye Y, Yin W. HIF-1α promotes the expression of syndecan-1 and inhibits the NLRP3 inflammasome pathway in vascular endothelial cells under hemorrhagic shock. Biochem Biophys Res Commun 2022; 637:83-92. [DOI: 10.1016/j.bbrc.2022.10.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/13/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
|
6
|
Huang Q, Gao S, Yao Y, Wang Y, Li J, Chen J, guo C, Zhao D, Li X. Innate immunity and immunotherapy for hemorrhagic shock. Front Immunol 2022; 13:918380. [PMID: 36091025 PMCID: PMC9453212 DOI: 10.3389/fimmu.2022.918380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
Hemorrhagic shock (HS) is a shock result of hypovolemic injury, in which the innate immune response plays a central role in the pathophysiology ofthe severe complications and organ injury in surviving patients. During the development of HS, innate immunity acts as the first line of defense, mediating a rapid response to pathogens or danger signals through pattern recognition receptors. The early and exaggerated activation of innate immunity, which is widespread in patients with HS, results in systemic inflammation, cytokine storm, and excessive activation of complement factors and innate immune cells, comprised of type II innate lymphoid cells, CD4+ T cells, natural killer cells, eosinophils, basophils, macrophages, neutrophils, and dendritic cells. Recently, compelling evidence focusing on the innate immune regulation in preclinical and clinical studies promises new treatment avenues to reverse or minimize HS-induced tissue injury, organ dysfunction, and ultimately mortality. In this review, we first discuss the innate immune response involved in HS injury, and then systematically detail the cutting-edge therapeutic strategies in the past decade regarding the innate immune regulation in this field; these strategies include the use of mesenchymal stem cells, exosomes, genetic approaches, antibody therapy, small molecule inhibitors, natural medicine, mesenteric lymph drainage, vagus nerve stimulation, hormones, glycoproteins, and others. We also reviewed the available clinical studies on immune regulation for treating HS and assessed the potential of immune regulation concerning a translation from basic research to clinical practice. Combining therapeutic strategies with an improved understanding of how the innate immune system responds to HS could help to identify and develop targeted therapeutic modalities that mitigate severe organ dysfunction, improve patient outcomes, and reduce mortality due to HS injury.
Collapse
Affiliation(s)
- Qingxia Huang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Song Gao
- Jilin Xiuzheng Pharmaceutical New Drug Development Co., Ltd., Changchun, China
| | - Yao Yao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yisa Wang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chen guo
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Daqing Zhao, ; Xiangyan Li,
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Daqing Zhao, ; Xiangyan Li,
| |
Collapse
|