1
|
Scalzo PL, Marshall A, Soriano S, Curry K, Dulay M, Hodics T, Quigley EMM, Treangen TJ, Piskorz MM, Villapol S. Gut microbiome dysbiosis and immune activation correlate with somatic and neuropsychiatric symptoms in COVID-19 patients: Microbiome dysbiosis linked to COVID-19 symptoms. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.18.24317428. [PMID: 39606341 PMCID: PMC11601728 DOI: 10.1101/2024.11.18.24317428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
COVID-19 patients often exhibit altered immune responses and neuropsychiatric symptoms during hospitalization. However, the potential interactions with gut microbiome profiles have not been fully characterized. Here, COVID-19 disease severity was classified as low (27.4%), moderate (29.8%), and critical (42.8%). Fever (66.1%) and cough (55.6%) were common symptoms. Additionally, 27.3% reported somatic symptoms, 27.3% experienced anxiety, 39% had depressive symptoms, and 80.5% reported stress. Gut microbiome profiling was performed using full-length 16S rRNA gene sequencing. Elevated interleukin-6 levels were observed in the most severe cases, indicating systemic inflammation. Reduced gut bacterial diversity was more pronounced in women and obese patients and correlated with higher disease severity. The presence of the genus Mitsuokella was significantly associated with increased physical, stress, anxiety, and depressive symptoms, and Granulicatella with critically ill patients. These findings suggest a link between mental health status, systemic inflammation, and gut dysbiosis in COVID-19 patients, emphasizing the potential of microbiome-targeted therapies to improve recovery and reduce severe complications.
Collapse
Affiliation(s)
- Paula L. Scalzo
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | - Austin Marshall
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Sirena Soriano
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Kristen Curry
- Department of Computer Science, Rice University, Houston, TX, USA
- Department of Computational Biology, Institut Pasteur, Université Paris Cité, Paris 75015, France
| | - Mario Dulay
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Timea Hodics
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Eamonn MM Quigley
- Lynda K. and David M. Underwood Center for Digestive Health, Houston Methodist Hospital, Houston, TX, USA
| | - Todd J. Treangen
- Department of Computer Science, Rice University, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - María M. Piskorz
- Department of Neurogastroenterology, Hospital de Clinicas José de San Martin, Universidad de Buenos Aires, Argentina
| | - Sonia Villapol
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
- Department of Neuroscience in Neurological Surgery, Weill Cornell Medical College, NY, USA
| |
Collapse
|
2
|
Zhu YB, Liu TL, Dai Q, Liu SF, Xiong P, Huang H, Yuan Y, Zhang TN, Chen Y. Characteristics and Risk Factors for Pediatric Sepsis. Curr Med Sci 2024; 44:648-656. [PMID: 38748371 DOI: 10.1007/s11596-024-2870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/22/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVE Sepsis is considered a major cause of health loss in children and had high mortality and morbidity. Currently, there is no reliable model for predicting the prognosis of pediatric patients with sepsis. This study aimed to analyze the clinical characteristics of sepsis in children and assess the risk factors associated with poor prognosis in pediatric sepsis patients to identify timely interventions and improve their outcomes. METHODS This study analyzed the clinical indicators and laboratory results of septic patients hospitalized in the Pediatric Intensive Care Unit of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China, from January 1, 2019, to December 31, 2021. Risk factors for sepsis were identified by logistic regression analyses. RESULTS A total of 355 children with sepsis were enrolled, with 333 children (93.8%) in the good prognosis group, and 22 children (6.2%) in the poor prognosis group. Among them, there were 255 patients (71.8%) in the sepsis group, and 100 patients (28.2%) in the severe sepsis group. The length of hospital stay in the poor prognosis group was longer than that in the good prognosis group (P<0.01). The levels of interleukin 1β (IL-1β) in the poor prognosis group were higher than those in the good prognosis group (P>0.05), and the platelet (PLT), albumin (ALB), and hemoglobin (Hb) levels were lower in the poor prognosis group (P<0.01). The IL-8 levels in the severe sepsis group were higher than those in the sepsis group (P<0.05). Multiple logistic regression analysis suggested that lower Hb levels, ALB levels, peak PLT counts, and higher IL-1β levels were independent risk factors for poor prognosis in children with sepsis. CONCLUSION Lower Hb, ALB, and PLT counts and elevated IL-1β are independent risk factors for poor prognosis in children with sepsis.
Collapse
Affiliation(s)
- Yong-Bing Zhu
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tong-Lin Liu
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Dai
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shu-Fan Liu
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Peng Xiong
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hao Huang
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Yuan
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tian-Nan Zhang
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Chen
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Márton RA, Sebők C, Mackei M, Tráj P, Vörösházi J, Kemény Á, Neogrády Z, Mátis G. Pap12-6: A host defense peptide with potent immunomodulatory activity in a chicken hepatic cell culture. PLoS One 2024; 19:e0302913. [PMID: 38728358 PMCID: PMC11086923 DOI: 10.1371/journal.pone.0302913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
In the fight against antimicrobial resistance, host defense peptides (HDPs) are increasingly referred to as promising molecules for the design of new antimicrobial agents. In terms of their future clinical use, particularly small, synthetic HDPs offer several advantages, based on which their application as feed additives has aroused great interest in the poultry sector. However, given their complex mechanism of action and the limited data about the cellular effects in production animals, their investigation is of great importance in these species. The present study aimed to examine the immunomodulatory activity of the synthetic HDP Pap12-6 (PAP) solely and in inflammatory environments evoked by lipoteichoic acid (LTA) and polyinosinic-polycytidylic acid (Poly I:C), in a primary chicken hepatocyte-non-parenchymal cell co-culture. Based on the investigation of the extracellular lactate dehydrogenase (LDH) activity, PAP seemed to exert no cytotoxicity on hepatic cells, suggesting its safe application. Moreover, PAP was able to influence the immune response, reflected by the decreased production of interleukin (IL)-6, IL-8, and "regulated on activation, normal T cell expressed and secreted"(RANTES), as well as the reduced IL-6/IL-10 ratio in Poly I:C-induced inflammation. PAP also diminished the levels of extracellular H2O2 and nuclear factor erythroid 2-related factor 2 (Nrf2) when applied together with Poly I:C and in both inflammatory conditions, respectively. Consequently, PAP appeared to display potent immunomodulatory activity, preferring to act towards the cellular anti-inflammatory and antioxidant processes. These findings confirm that PAP might be a promising alternative for designing novel antimicrobial immunomodulatory agents for chickens, thereby contributing to the reduction of the use of conventional antibiotics.
Collapse
Affiliation(s)
- Rege Anna Márton
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| | - Csilla Sebők
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| | - Patrik Tráj
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Júlia Vörösházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Ágnes Kemény
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Department of Medical Biology, Medical School, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
4
|
Mabry S, Bradshaw JL, Gardner JJ, Wilson EN, Cunningham RL. Sex-dependent effects of chronic intermittent hypoxia: implication for obstructive sleep apnea. Biol Sex Differ 2024; 15:38. [PMID: 38664845 PMCID: PMC11044342 DOI: 10.1186/s13293-024-00613-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) affects 10-26% of adults in the United States with known sex differences in prevalence and severity. OSA is characterized by elevated inflammation, oxidative stress (OS), and cognitive dysfunction. However, there is a paucity of data regarding the role of sex in the OSA phenotype. Prior findings suggest women exhibit different OSA phenotypes than men, which could result in under-reported OSA prevalence in women. To examine the relationship between OSA and sex, we used chronic intermittent hypoxia (CIH) to model OSA in rats. We hypothesized that CIH would produce sex-dependent phenotypes of inflammation, OS, and cognitive dysfunction, and these sex differences would be dependent on mitochondrial oxidative stress (mtOS). METHODS Adult male and female Sprague Dawley rats were exposed to CIH or normoxia for 14 days to examine the impact of sex on CIH-associated circulating inflammation (IL-1β, IL-6, IL-10, TNF-α), circulating steroid hormones, circulating OS, and behavior (recollective and spatial memory; gross and fine motor function; anxiety-like behaviors; and compulsive behaviors). Rats were implanted with osmotic minipumps containing either a mitochondria-targeting antioxidant (MitoTEMPOL) or saline vehicle 1 week prior to CIH initiation to examine how inhibiting mtOS would affect the CIH phenotype. RESULTS Sex-specific differences in CIH-induced inflammation, OS, motor function, and compulsive behavior were observed. In female rats, CIH increased inflammation (plasma IL-6 and IL-6/IL-10 ratio) and impaired fine motor function. Conversely, CIH elevated circulating OS and compulsivity in males. These sex-dependent effects of CIH were blocked by inhibiting mtOS. Interestingly, CIH impaired recollective memory in both sexes but these effects were not mediated by mtOS. No effects of CIH were observed on spatial memory, gross motor function, or anxiety-like behavior, regardless of sex. CONCLUSIONS Our results indicate that the impact of CIH is dependent on sex, such as an inflammatory response and OS response in females and males, respectively, that are mediated by mtOS. Interestingly, there was no effect of sex or mtOS in CIH-induced impairment of recollective memory. These results indicate that mtOS is involved in the sex differences observed in CIH, but a different mechanism underlies CIH-induced memory impairments.
Collapse
Affiliation(s)
- Steve Mabry
- Department of Pharmaceutical Sciences, System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107-2699, USA
| | - Jessica L Bradshaw
- Department of Pharmaceutical Sciences, System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107-2699, USA
| | - Jennifer J Gardner
- Department of Pharmaceutical Sciences, System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107-2699, USA
| | - E Nicole Wilson
- Department of Pharmaceutical Sciences, System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107-2699, USA
| | - Rebecca L Cunningham
- Department of Pharmaceutical Sciences, System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107-2699, USA.
| |
Collapse
|
5
|
Hedayati-Ch M, Ebrahim-Saraie HS, Bakhshi A. Clinical and immunological comparison of COVID-19 disease between critical and non-critical courses: a systematic review and meta-analysis. Front Immunol 2024; 15:1341168. [PMID: 38690274 PMCID: PMC11058842 DOI: 10.3389/fimmu.2024.1341168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which appeared in 2019, has been classified as critical and non-critical according to clinical signs and symptoms. Critical patients require mechanical ventilation and intensive care unit (ICU) admission, whereas non-critical patients require neither mechanical ventilation nor ICU admission. Several factors have been recently identified as effective factors, including blood cell count, enzymes, blood markers, and underlying diseases. By comparing blood markers, comorbidities, co-infections, and their relationship with mortality, we sought to determine differences between critical and non-critical groups. Method We used Scopus, PubMed, and Web of Science databases for our systematic search. Inclusion criteria include any report describing the clinical course of COVID-19 patients and showing the association of the COVID-19 clinical courses with blood cells, blood markers, and bacterial co-infection changes. Twenty-one publications were eligible for full-text examination between 2019 to 2021. Result The standard difference in WBC, lymphocyte, and platelet between the two clinical groups was 0.538, -0.670, and -0.421, respectively. Also, the standard difference between the two clinical groups of CRP, ALT, and AST was 0.482, 0.402, and 0.463, respectively. The odds ratios for hypertension and diabetes were significantly different between the two groups. The prevalence of co-infection also in the critical group is higher. Conclusion In conclusion, our data suggest that critical patients suffer from a suppressed immune system, and the inflammation level, the risk of organ damage, and co-infections are significantly high in the critical group and suggests the use of bacteriostatic instead of bactericides to treat co-infections.
Collapse
Affiliation(s)
- Mojtaba Hedayati-Ch
- Department of Microbiology, Virology and Microbial Toxins, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Microbial Toxins Physiology Group (MTPG), Universal Scientific Education and Research Network (USERN), Rasht, Iran
| | - Hadi Sedigh Ebrahim-Saraie
- Department of Microbiology, Virology and Microbial Toxins, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arash Bakhshi
- Member of Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
6
|
Mabry S, Bradshaw JL, Gardner JJ, Wilson EN, Cunningham R. Sex-dependent effects of chronic intermittent hypoxia: Implication for obstructive sleep apnea. RESEARCH SQUARE 2024:rs.3.rs-3898670. [PMID: 38352622 PMCID: PMC10862974 DOI: 10.21203/rs.3.rs-3898670/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Background Obstructive sleep apnea (OSA) affects 10-26% of adults in the United States with known sex differences in prevalence and severity. OSA is characterized by elevated inflammation, oxidative stress (OS), and cognitive dysfunction. However, there is a paucity of data regarding the role of sex in the OSA phenotype. Prior findings suggest women exhibit different OSA phenotypes than men, which could result in under-reported OSA prevalence in women. To examine the relationship between OSA and sex, we used chronic intermittent hypoxia (CIH) to model OSA in rats. We hypothesized that CIH would produce sex-dependent phenotypes of inflammation, OS, and cognitive dysfunction, and these sex differences would be dependent on mitochondrial oxidative stress (mtOS). Methods Adult male and female Sprague Dawley rats were exposed to CIH or normoxia for 14 days to examine the impact of sex on CIH-associated circulating inflammation (IL-1β, IL-4, IL-6, IL-10, TNF-α), circulating OS, and behavior (recollective and spatial memory; gross and fine motor function; anxiety-like behaviors; and compulsive behaviors). A subset of rats was implanted with osmotic minipumps containing either a mitochondria-targeting antioxidant (MitoTEMPOL) or saline vehicle 1 week prior to CIH initiation to examine how inhibiting mtOS would affect the CIH phenotype. Results Sex-specific differences in CIH-induced inflammation, OS, motor function, and compulsive behavior were observed. In female rats, CIH increased inflammation (plasma IL-6 and IL-6/IL-10 ratio) and impaired fine motor function. Conversely, CIH elevated circulating OS and compulsivity in males. These sex-dependent effects of CIH were blocked by inhibiting mtOS. Interestingly, CIH impaired recollective memory in both sexes but these effects were not mediated by mtOS. No effects of CIH were observed on spatial memory, gross motor function, or anxiety-like behavior, regardless of sex. Conclusions Our results indicate that the impact of CIH is dependent on sex, such as an inflammatory response and OS response in females and males, respectively, that are mediated by mtOS. Interestingly, there was no effect of sex or mtOS in CIH-induced impairment of recollective memory. These results indicate that mtOS is involved in the sex differences observed in CIH, but a different mechanism underlies CIH-induced memory impairments.
Collapse
|
7
|
Jemaa AB, Oueslati R, Guissouma J, Ghadhoune H, Ali HB, Allouche H, Trabelsi I, Samet M, Brahmi H. Differences in leucocytes and inflammation-based indices among critically ill patients owing to SARS-CoV-2 variants during several successive waves of COVID-19 pandemic. Int Immunopharmacol 2023; 124:110836. [PMID: 37633238 DOI: 10.1016/j.intimp.2023.110836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND/AIM Inflammatory indices are useful informative markers in assessing the severity of the COVID-19 disease course; however, their involvements during series waves of SARS-CoV-2 virus outbreaks in critical patients with COVID-19 remain unclear. Hence, we aimed to ascertain the changing dynamics of the combined inflammatory indices (NLR, dNLR, CLR, LMR, PLR, SII, and SIRI) and their associations with clinical outcomes in severe COVID-19 patients during serial waves of SARS-CoV-2. PATIENTS AND METHODS We retrospectively enrolled 163 severe COVID-19 patients admitted to the ICU during six SARS-CoV-2 waves. RESULTS We found that most of patients admitted to the ICU were from the fourth wave. Patients in the fourth wave were considerably younger and had the highest percentage of ARDS than other waves. The highest CRP was found in the first wave, while the lowest in patients admitted in the sixth wave. Although most of the COVID-19 waves were marked with leukocytosis, neutrophilia, and lymphocytopenia, the lowest of both NLR and dNLR were found in the fourth wave "Delta wave" and the lowest of both CLR and SII were observed in "Omicron wave". Interestingly, during most of the COVID-19 waves, the derived combined inflammatory ratio NLR, dNLR, CLR, SII and SIRI were sustained at high levels in fatal cases at the last day of hospitalization, while these indices declined in the alive group at the end of ICU hospitalization. No major difference was identified in lymphocyte count between admission and the last day of hospitalization in both deceased and recovered COVID-19 patients during Delta and Omicron waves. Moreover, patients admitted in the Omicron wave had less severe disease compared to those admitted in the Delta wave. The Kaplan-Meier analysis revealed no significant difference in survival rates or the probability of respiratory failure between six successive COVID-19 waves. CONCLUSION Taken together, our results showed marked differences in the alteration of nonspecific inflammation and damage in the adaptive immune response during the six serial SARS-CoV-2 waves. Considering the inflammatory response of infectious diseases, embedding inflammatory indices informative markers into routine clinical testing offers the potential to mitigate the impact of future pandemics of COVID-19 and other infectious diseases.
Collapse
Affiliation(s)
- Awatef Ben Jemaa
- Unit IMEC-Immunology Microbiology Environmental and Carcinogenesis, Faculty of Science of Bizerte, Bizerte, Tunisia; Department of Biology, Faculty of Science of Gafsa, ,University of Gafsa, Gafsa, Tunisia.
| | - Ridha Oueslati
- Unit IMEC-Immunology Microbiology Environmental and Carcinogenesis, Faculty of Science of Bizerte, Bizerte, Tunisia
| | - Jihene Guissouma
- Intensive Care Department, CHU Habib Bougatpha Hospital, Bizerte, Tunisia; University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Hatem Ghadhoune
- Intensive Care Department, CHU Habib Bougatpha Hospital, Bizerte, Tunisia; University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Hana Ben Ali
- Intensive Care Department, CHU Habib Bougatpha Hospital, Bizerte, Tunisia; University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Hend Allouche
- Intensive Care Department, CHU Habib Bougatpha Hospital, Bizerte, Tunisia; University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Insaf Trabelsi
- Intensive Care Department, CHU Habib Bougatpha Hospital, Bizerte, Tunisia; University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Mohamed Samet
- Intensive Care Department, CHU Habib Bougatpha Hospital, Bizerte, Tunisia; University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Habib Brahmi
- Intensive Care Department, CHU Habib Bougatpha Hospital, Bizerte, Tunisia; University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia
| |
Collapse
|
8
|
Andrade AGD, Comberlang FC, Cavalcante-Silva LHA, Kessen TSL. COVID-19 vaccination: Effects of immunodominant peptides of SARS-CoV-2. Cytokine 2023; 170:156339. [PMID: 37607411 DOI: 10.1016/j.cyto.2023.156339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
T-cell immunity plays a critical role in controlling viral infections, making it essential to identify specific viral targets to develop effective vaccines. In this study, we focused on identifying and understanding the potential effects of different SARS-CoV-2-derived peptides, including spike, nucleocapsid, and ORFs, that have the potential to serve as T-cell epitopes. Assessing T cell response through flow cytometry, we demonstrated that PBMC collected from vaccinated individuals had a significantly higher expression of important biomarkers in controlling viral infection and proper regulation of immune response mediated by T CD4+ and T CD8+ cells stimulated with immunodominant peptides. These data highlight how cellular immune responses to some of these peptides could contribute to SARS-CoV-2 protection due to COVID-19 immunization.
Collapse
Affiliation(s)
- Arthur Gomes de Andrade
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Fernando Cézar Comberlang
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Luiz Henrique Agra Cavalcante-Silva
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Tatjana Souza Lima Kessen
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil.
| |
Collapse
|
9
|
Stoyanova K, Stoyanov D, Petrov S, Baldzhieva A, Bozhkova M, Murdzheva M, Kalfova T, Andreeva H, Taskov H, Vassilev P, Todev A. Conversion and Obsessive-Phobic Symptoms Predict IL-33 and IL-28A Levels in Individuals Diagnosed with COVID-19. Brain Sci 2023; 13:1271. [PMID: 37759873 PMCID: PMC10526257 DOI: 10.3390/brainsci13091271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The first epidemiological wave of the incidence of COVID-19 in Bulgaria was registered in June 2020. After the wave peak, we conducted a study in persons diagnosed with COVID-19 (N = 52). They were assessed with the anxiety-depressive scale (ADS), including basic (BS), vegetative (VS), conversion (CS), obsessive-phobic (OPS), and depressive (DS) symptoms. ADS assessment of individuals diagnosed with SARS-CoV-2 indicated a correlation between OPS and IL-33 values. IL-10 levels were higher than reference ranges in all patients. Multiple linear regression analyses demonstrated that combination of CS and OPS explained 28% of IL-33 levels, while combination of symptoms from all ADS dimensions explained 24% of IL-33 levels. It was also found that 21% of IL-28A levels was explained from the combination by all ADS dimensions, whereas OPS was the predictor for lower concentrations. The obtained results revealed meaningful correlations between psycho neuro-immunological factors in pathogenesis of illness from the coronavirus infection.
Collapse
Affiliation(s)
- Kristina Stoyanova
- Research Institute at Medical University of Plovdiv, Research Group “Translational and Computational Neuroscience”, SRIPD, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Drozdstoy Stoyanov
- Research Institute at Medical University of Plovdiv, Research Group “Translational and Computational Neuroscience”, SRIPD, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
- Department of Psychiatry and Medical Psychology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Steliyan Petrov
- Department of Medical Microbiology and Immunology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (S.P.); (A.B.); (M.B.); (M.M.); (T.K.); (H.A.)
- Laboratory of Clinical Immunology, University Hospital “St. George”, 4002 Plovdiv, Bulgaria
| | - Alexandra Baldzhieva
- Department of Medical Microbiology and Immunology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (S.P.); (A.B.); (M.B.); (M.M.); (T.K.); (H.A.)
- Laboratory of Clinical Immunology, University Hospital “St. George”, 4002 Plovdiv, Bulgaria
| | - Martina Bozhkova
- Department of Medical Microbiology and Immunology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (S.P.); (A.B.); (M.B.); (M.M.); (T.K.); (H.A.)
- Laboratory of Clinical Immunology, University Hospital “St. George”, 4002 Plovdiv, Bulgaria
| | - Mariana Murdzheva
- Department of Medical Microbiology and Immunology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (S.P.); (A.B.); (M.B.); (M.M.); (T.K.); (H.A.)
- Laboratory of Clinical Immunology, University Hospital “St. George”, 4002 Plovdiv, Bulgaria
| | - Teodora Kalfova
- Department of Medical Microbiology and Immunology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (S.P.); (A.B.); (M.B.); (M.M.); (T.K.); (H.A.)
- Laboratory of Clinical Immunology, University Hospital “St. George”, 4002 Plovdiv, Bulgaria
| | - Hristina Andreeva
- Department of Medical Microbiology and Immunology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (S.P.); (A.B.); (M.B.); (M.M.); (T.K.); (H.A.)
- Laboratory of Clinical Immunology, University Hospital “St. George”, 4002 Plovdiv, Bulgaria
| | - Hristo Taskov
- Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Petar Vassilev
- Department of Infectious Disease, Parasitology, and Tropical Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (P.V.); (A.T.)
| | - Angel Todev
- Department of Infectious Disease, Parasitology, and Tropical Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (P.V.); (A.T.)
| |
Collapse
|
10
|
Sadeghizadeh M, Asadollahi E, Jahangiri B, Yadollahzadeh M, Mohajeri M, Afsharpad M, Najafi F, Rezaie N, Eskandari M, Tavakoli-Ardakani M, Feizabadi F, Masjedi MR. Promising clinical outcomes of nano-curcumin treatment as an adjunct therapy in hospitalized COVID-19 patients: A randomized, double-blinded, placebo-controlled trial. Phytother Res 2023; 37:3631-3644. [PMID: 37118944 DOI: 10.1002/ptr.7844] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 04/01/2023] [Accepted: 04/08/2023] [Indexed: 04/30/2023]
Abstract
Different immunomodulation strategies have been used to manage COVID-19 due to the complex immune-inflammatory processes involved in the pathogenesis of this infection. Curcumin with its powerful anti-inflammatory and antiviral properties could serve as a possible COVID-19 therapy. In this study, a randomized, double-blinded, placebo-controlled trial was performed to investigate the effectiveness and safety of nano-curcumin oral soft gels as a complementary therapy in moderate-severe COVID-19 patients. Hydroxychloroquine (HCQ) plus sofosbuvir was routinely administered to all 42 COVID-19 patients, who were randomly assigned to receive 140 mg of nano-curcumin or placebo for 14 days. CT scans of the chest were taken, and blood tests were run for all patients at time points of 0, 7, and 14 days. Our results indicated that C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) levels significantly decreased from baseline in the nano-curcumin-treated group on day 7. Furthermore, blood levels of D-dimer, CRP, serum ferritin, ESR, and inflammatory cytokines including IL-6, IL-8, and IL-10 decreased more significantly in the nano-curcumin-treated group after 14 days. Additionally, the nano-curcumin group showed significant improvements in chest CT scores, oxygen saturation levels, and hospitalization duration. Based on our data, oral administration of nano-curcumin may be regarded as a promising adjunct treatment for COVID-19 patients due to its ability to speed up chest clearance and recovery.
Collapse
Affiliation(s)
- Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elahe Asadollahi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Babak Jahangiri
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mahdi Yadollahzadeh
- Firoozgar Medical & Educational Hospital Department of Internal Medicine School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mandana Afsharpad
- Cancer Control Research Center, Cancer Control Foundation, Iran University of Medical Sciences, Tehran, Iran
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Nader Rezaie
- Department of Pulmonology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohana Eskandari
- Firoozgar Medical & Educational Hospital Department of Internal Medicine School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maria Tavakoli-Ardakani
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Feizabadi
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Masjedi
- Cancer Control Research Center, Cancer Control Foundation, Iran University of Medical Sciences, Tehran, Iran
- Department of Pulmonary Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tobacco Control Research Center (TCRC), Iranian Anti-tobacco Association, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Carlini V, Noonan DM, Abdalalem E, Goletti D, Sansone C, Calabrone L, Albini A. The multifaceted nature of IL-10: regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions. Front Immunol 2023; 14:1161067. [PMID: 37359549 PMCID: PMC10287165 DOI: 10.3389/fimmu.2023.1161067] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Interleukin-10 (IL-10) is a pleiotropic cytokine that has a fundamental role in modulating inflammation and in maintaining cell homeostasis. It primarily acts as an anti-inflammatory cytokine, protecting the body from an uncontrolled immune response, mostly through the Jak1/Tyk2 and STAT3 signaling pathway. On the other hand, IL-10 can also have immunostimulating functions under certain conditions. Given the pivotal role of IL-10 in immune modulation, this cytokine could have relevant implications in pathologies characterized by hyperinflammatory state, such as cancer, or infectious diseases as in the case of COVID-19 and Post-COVID-19 syndrome. Recent evidence proposed IL-10 as a predictor of severity and mortality for patients with acute or post-acute SARS-CoV-2 infection. In this context, IL-10 can act as an endogenous danger signal, released by tissues undergoing damage in an attempt to protect the organism from harmful hyperinflammation. Pharmacological strategies aimed to potentiate or restore IL-10 immunomodulatory action may represent novel promising avenues to counteract cytokine storm arising from hyperinflammation and effectively mitigate severe complications. Natural bioactive compounds, derived from terrestrial or marine photosynthetic organisms and able to increase IL-10 expression, could represent a useful prevention strategy to curb inflammation through IL-10 elevation and will be discussed here. However, the multifaceted nature of IL-10 has to be taken into account in the attempts to modulate its levels.
Collapse
Affiliation(s)
- Valentina Carlini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
| | - Douglas M. Noonan
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Eslam Abdalalem
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Clementina Sansone
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, Napoli, Italy
| | - Luana Calabrone
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
| | - Adriana Albini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) European Institute of Oncology IEO-, Milan, Italy
| |
Collapse
|
12
|
Alvarez M, Trent E, Goncalves BDS, Pereira DG, Puri R, Frazier NA, Sodhi K, Pillai SS. Cognitive dysfunction associated with COVID-19: Prognostic role of circulating biomarkers and microRNAs. Front Aging Neurosci 2022; 14:1020092. [PMID: 36268187 PMCID: PMC9577202 DOI: 10.3389/fnagi.2022.1020092] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/13/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is renowned as a multi-organ disease having subacute and long-term effects with a broad spectrum of clinical manifestations. The evolving scientific and clinical evidence demonstrates that the frequency of cognitive impairment after COVID-19 is high and it is crucial to explore more clinical research and implement proper diagnostic and treatment strategies. Several central nervous system complications have been reported as comorbidities of COVID-19. The changes in cognitive function associated with neurodegenerative diseases develop slowly over time and are only diagnosed at an already advanced stage of molecular pathology. Hence, understanding the common links between COVID-19 and neurodegenerative diseases will broaden our knowledge and help in strategizing prognostic and therapeutic approaches. The present review focuses on the diverse neurodegenerative changes associated with COVID-19 and will highlight the importance of major circulating biomarkers and microRNAs (miRNAs) associated with the disease progression and severity. The literature analysis showed that major proteins associated with central nervous system function, such as Glial fibrillary acidic protein, neurofilament light chain, p-tau 181, Ubiquitin C-terminal hydrolase L1, S100 calcium-binding protein B, Neuron-specific enolase and various inflammatory cytokines, were significantly altered in COVID-19 patients. Furthermore, among various miRNAs that are having pivotal roles in various neurodegenerative diseases, miR-146a, miR-155, Let-7b, miR-31, miR-16 and miR-21 have shown significant dysregulation in COVID-19 patients. Thus the review consolidates the important findings from the numerous studies to unravel the underlying mechanism of neurological sequelae in COVID-19 and the possible association of circulatory biomarkers, which may serve as prognostic predictors and therapeutic targets in future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sneha S. Pillai
- Department of Surgery, Biomedical Sciences and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| |
Collapse
|
13
|
Marashian SM, Hashemian M, Pourabdollah M, Nasseri M, Mahmoudian S, Reinhart F, Eslaminejad A. Photobiomodulation Improves Serum Cytokine Response in Mild to Moderate COVID-19: The First Randomized, Double-Blind, Placebo Controlled, Pilot Study. Front Immunol 2022; 13:929837. [PMID: 35874678 PMCID: PMC9304695 DOI: 10.3389/fimmu.2022.929837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/20/2022] [Indexed: 01/03/2023] Open
Abstract
BackgroundBecause the major event in COVID-19 is the release of pre- and inflammatory cytokines, finding a reliable therapeutic strategy to inhibit this release, help patients manage organ damage and avoid ICU admission or severe disease progression is of paramount importance. Photobiomodulation (PBM), based on numerous studies, may help in this regard, and the present study sought to evaluate the effects of said technology on cytokine reduction.MethodsThis study was conducted in the 2nd half of 2021. The current study included 52 mild-to-moderately ill COVID-19, hospitalized patients. They were divided in two groups: a Placebo group and a PBM group, treated with PBM (620-635 nm light via 8 LEDs that provide an energy density of 45.40 J/cm2 and a power density of 0.12 W/cm2), twice daily for three days, along with classical approved treatment. 28 patients were in Placebo group and 24 in PBM group. In both groups, blood samples were taken four times in three days and serum IL-6, IL-8, IL-10, and TNF-α levels were determined.ResultsDuring the study period, in PBM group, there was a significant decrease in serum levels of IL-6 (-82.5% +/- 4, P<0.001), IL-8 (-54.4% ± 8, P<0.001), and TNF-α (-82.4% ± 8, P<0.001), although we did not detect a significant change in IL-10 during the study. The IL-6/IL-10 Ratio also improved in PBM group. The Placebo group showed no decrease or even an increase in these parameters. There were no reported complications or sequelae due to PBM therapy throughout the study.ConclusionThe major cytokines in COVID-19 pathophysiology, including IL-6, IL-8, and TNF-α, responded positively to PBM therapy and opened a new window for inhibiting and managing a cytokine storm within only 3-10 days.
Collapse
Affiliation(s)
- Seyed Mehran Marashian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Hashemian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mihan Pourabdollah
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mansour Nasseri
- Department of Immunology, School of Public Health, University of Medical Sciences, Tehran, Iran
| | - Saeed Mahmoudian
- National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Florian Reinhart
- Medical Research & Innovation Department, Medical and Biomedical Consultancy Office “Innolys”, Illkirch-Graffenstaden, France
- *Correspondence: Florian Reinhart,
| | - Alireza Eslaminejad
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|